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Abstract—We propose an efficient tree search algorithm for
determining the free distance of variable-length error-correcting
codes (VLECs). A main idea behind the algorithm is to structure
all pairs of codeword-concatenated sequences as a tree, in which
we seek the pair of sequences that determine the free distance. In
order to speed up the algorithm, we establish constraints that do
not compromise optimality in determining the free distance. Ex-
perimental results on VLECs algorithmically constructed for the
English alphabet show that our algorithm requires a considerably
smaller number of bitwise distance computations and covers a
much smaller number of tree nodes than Dijkstra’s algorithm
operating over the pairwise distance graph (PDG), while being
a hundred times faster in terms of execution time.

Index Terms—Joint source-channel coding, variable length
error-correcting codes, free distance, Dijkstra’s algorithm.

I. INTRODUCTION

The source-channel separation principle states that the
source and channel coding operations can be separately de-
signed and applied in tandem without loosing system optimal-
ity in terms of sending a source over a noisy point-to-point
channel and reliably recovering it [1]. This result, however,
relies on the key assumption that unlimited complexity and
coding delay can be tolerated by the system, which is unreal-
istic in practical communication systems.

Many works have demonstrated that joint source-channel
coding (JSCC) can considerably outperform separate source-
channel coding (e.g., see [2], [3], [4], [5] and the references
therein and thereafter), particularly when the system has severe
complexity and delay constraints. JSCC systems are usually
constructed by either coordinating the source and channel
coding operations or combining them in a single operation.
In this paper, we consider JSCC designs of the latter type
using variable-length error-correcting codes (VLECsS).

In one of the original works on VLEC design, Buttigieg [6],
[7] showed that the free distance of a VLEC can be utilized
to predict its error performance. For a given VLEC codebook
C, the free distance is defined as

diree(C) = min {d(a,b) : @,b € Xx(C) and a # b},
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where d(a,b) is the Hamming distance between two binary
bitstreams a and b, and

N L
Xn(C) & U {6182"'CLZCZ' € C and Z\cz| :N}
L=1 i=1
is the set of codeword-concatenated sequences of length N.
Here, |c;| denotes the length of bitstream c;. Buttigieg’s
finding simplifies the algorithmic strategy of searching for
good VLEC designs as to either fix a free distance lower
bound and minimize the average codeword length [8], or fix
a set of codeword lengths and maximize the free distance
[9], [10], [11]. The algorithmic efficiency of either strategies
relies heavily on how effectively the free distance of candidate

VLECs can be determined.

In [8], dfee(C) is calculated using the trellis diagram sug-
gested in [6]. A sufficient condition based on converge and
diverge distances is applied to quickly exclude those VLEC
designs that violate a free distance lower bound. A different
approach was used in [9], where the pairwise distance graph
(PDG) of the VLEC is first generated and then Dijkstra’s
algorithm is applied to the PDG to determine the free distance.

In this work, a new tree search algorithm for determining
dfree (C) is proposed. The algorithm, which is a refinement of
the one introduced in [6, Sec. 3.5.1.1] for a similar task, is
shown to be much more efficient than the PDG search in
[9]. Different from the PDG search, we structure all pairs of
codeword-concatenated sequences as a tree, over which we
locate the pair of sequences that result in dge(C). In order
to speed up the search process, we introduce constraints that
yield no loss of optimality in determining dge.(C). Experi-
ments executed for VLECs designed for the English alphabet
demonstrate the efficiency of the proposed algorithm.

II. DETERMINATION OF THE FREE DISTANCE

A key problem for the determination of df.(C) is to have
an algorithmically tractable structure, over which all pairs of
equal-length codeword-concatenated sequences can be either
exhausted, or excluded if their pairwise distance exceeds
dfree(C). Different from the PDG search adopted in [9], we
list all pairs of codeword-concatenated sequences in a tree.
The construction of the tree begins with the generation of
(lg‘) = W child nodes from the dummy root node,
each of which contains a pair of distinct codewords from C as
illustrated in Fig. 1 for C = {¢1, c2, c3}. The three child nodes
extended from the root node in Fig. 1 thus contain (¢1, ¢3),
(2, c3) and (e, c3), respectively.
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Fig. 1: Example of a search tree for C = {¢; = 0,c2 =
10, ¢3 = 111}. The nodes in black circles contain two equal-
length sequences and hence have no child nodes.

Next, from each child node, we extend the sequence with
a shorter length by concatenating it with a codeword. Thus,
every child node has |C| extended nodes. For example, since
|C| = 3 in Fig. 1, each child node has three extended nodes.

When the lengths of the two sequences contained in a node
are equal, no further extension is performed. By this rule, the
nodes in black circles in Fig. 1 are no longer extended, and
hence have no child nodes.

The first property we derive to help simplify the tree search
is that it suffices to consider indecomposable pairs of equal-
length sequence.

Definition 1 (Indecomposable equal-length sequence pair):
A pair of equal-length sequences

a=c;cy,---¢, and b=cjcy ¢y,

is indecomposable if

n'—1

m'—1
Z ‘clk| # Z |cjk|
k=1 k=1

forevery 1 <m/ <mand 1 <n’ <n.
Lemma 1: When computing d..(C), it suffices to consider
only indecomposable equal-length sequence pairs.

Proof: If (a,b) = (c;, ¢y, - €, sCjCj, -+ Cj,) is an
equal-length sequence pair but not indecomposable, there must
exist m’ and n’ with 1 < m’ <m and 1 < n’ < n such that
" lej, . Since

—1
ket €| =2kt

d(ciyCiy - i,y 1€ Cj €5, )

<d(cici,-ci,, |, CiCiyCi, )
+d(cim/ Gy Cy Cjn)

=d(ci ciy - ¢, CjiCj, - ¢, ) = d(a,b),

excluding (a,b) in the tree search will not compromise the
determination of dje(C). The lemma therefore holds. [ |

It could happgn that the tree is extended indefinitely. For
example, if 7 |ei | # S0 e, | for every 1 < m/ <
mand1 <n' <n,butd> - . |c;|=>1_, . ]|c;|for some
1 <m” <mand 1 < n” < mn, an indefinite extension occurs
because no ancestor nodes of (a’, b’) as defined below contain
equal-length sequences and hence their extensions will never

be terminated:

! _ .
a = cil e cim//—l cim// e cim e cim// e Cim,
periodic pattern periodic pattern ( l)
/
b = le s Cjn/,71 Cjn,, . Cjn . Cjn,, . Cjn .

periodic pattern periodic pattern

In order to mitigate such an indefinite node extension problem,
a criterion based on the converge and diverge distances [6] is
provided and proven in the next lemma.

Definition 2 (Converge and diverge distances): For a se-
quence pair (a,b) with |a| < |b], the converge distance
dc(a,b) and the diverge distance dp(a, b) are defined as

dc(a, b) £ d(a,bsyt) and dp(a,b) £ d(a, bpret),

where bgug and by are the suffix and prefix of b, respec-
tively, satisfying |bsust| = |bpref| = |al.!

Two notations will be used. Let D, .c be the minimum
converge distance among all distinct codeword pairs of un-
equal length, i.e.,

Dinin-c = de(ciy, €iy)-

min
Ciy,Ciy €C ey [<eiy |
Denote by tmp-dge. the smallest distance among all nodes
that have thus far been visited by a tree search process and
that contain an equal-length sequence pair.
Lemma 2: If the sequence pair (a,b) contained in a node
satisfies
dp(a,b) + Drin.c > tmp-dipee, (2)

then the removal of this node over the search tree will never
compromise the determination of dfee(C).

Proof: Without loss of generality, we assume that at least
one equal-length sequence pair has been visited by the tree
search process such that tmp-dpe. is finite.

Since an offspring node (a’,b’) of node (a,b) satisfies

d(a/7 b/) 2 dD(aa b) + Dmin—C7

provided |a’| = |b’|, and since the search process has already
identified a pair of candidate sequences whose pairwise dis-
tance is equal to tmp-dge., we obtain from (2) that

d(a', b/) > tmp-dfee > dfree(c)'

Consequently, further extension of node (a,b) will never
yield a pair of equal-length sequences with their pairwise
distance less than tmp-dgee. Its removal, therefore, will not
compromise the determination of dgee(C). [ |

It is straightforward from the definition of dpe.(C) that a
node labeled with sequence pair (a, b) shall be removed during

IFor clarity, in this paper, b and b’ (resp. a and a’) are used to denote
sequences of codewords, whereas b, bprer and by,g¢ (cf. Lemma 3) denote
binary sequences of arbitrary length.
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the algorithmic search of dgee(C) if dp(a,b) exceeds the
recorded threshold value tmp-de.. The above lemma conse-
quentially provides an early elimination of nodes by lowering
the threshold by the amount of Dy, .c. Since the number of
nodes increases exponentially as nodes are expanded further,
early elimination of nodes even with a small positive Dy, ¢
can speed up considerably the search process; this will be
confirmed by our experimental results.

In general, the diverge distance is non-decreasing along a
path of the tree to be constructed, and hence (2) is expected
to be ultimately violated. However, in an unusual situation, it
may happen that the two sequences (a’, b’) defined in (1) have
the same diverge distance as ¢;, ---¢; ,,_, andcj ---¢; ,_ .,
regardless of the number of the periodic patterns. As such, (2)
is always valid, and fails to stop the indefinite extension. This
can be resolved by the next lemma.

Lemma 3: For a node that contains sequence pair (a,b)
with |a| < |b], let b = bprerbiast With |big| = |b] — |a. If two
or more nodes have the same by, then retaining one with the
minimum diverge distance among them (and eliminating all
others) will not compromise the determination of de(C).

Proof: Two or more nodes having identical b, must have
identical structure for their offspring nodes. Since the diverge
distance patterns of the offspring nodes only depend on by, it
suffices to keep one node with the minimum diverge distance.

|

A particular case of Lemma 3 that may help figure out how
an indefinite extension could occur and hence avoid it in VLEC
code designs is that ¢; , ---¢;, in (1) is the (n” — m”)-
bit right circular shift of ¢; ,, ---c¢;,, Then, irrespective of
the number of periodic patterns in (1), dp(a’,d’) remains the
same. Such an indefinite extension can therefore be avoided
by adopting the speedup technique from Lemma 3 in the
algorithmic search of dfee(C).

We summarize the proposed tree search algorithm for find-
ing dpee(C) as follows.

Tree Search Algorithm: Each node is labeled with two
sequences (a, b).

Step 1. Initialization. Generates (‘gl) child nodes from the root
node. Compute the minimum converge distance Dy, -c.
Set tmp-dfee = 00.

Step 2. tmp-dgee Update and Equal-length Check. For every
node (a,b), if |a| = |b| and d(a,b) < tmp-de., update
tmp-dfee = d(a, b).

Remove all nodes with an equal-length sequence pair.
Step 3. Early Elimination. Remove all nodes satisfying (2).
Step 4. bja-Check. Let b = bpyerbiase With |big| = |b| — |al,

where b denotes the longer one of the two sequences a

node contains. If two or more nodes have the same by,

retain one with the minimum diverge distance and remove
all others.

Step 5. End-of-Search Check and Node Extension. If there are
no nodes remaining, set dge.(C) = tmp-dyee and stop the
algorithm; else, among all remaining nodes, set the node
with the minimum diverge distance as the parent node,
and generate |C| child nodes by concatenating the shorter
sequence with a codeword, and remove the parent node of

these |C| child nodes.> Go to Step 2.

III. EXPERIMENTAL RESULTS

In this section, the efficiency of the proposed tree search
algorithm is examined and compared with that of the PDG
search algorithm in [9]. The experiments were programmed
using the C language under a 64-bit Linux operating system
(Ubuntu 16.04.3 LTS) executed over an Intel server sys-
tem with 2 Xeon(R) E5-2620 v3 2.40GHz CPUs and 64GB
memory. Two main factors that may affect the efficiency
of an algorithm are computational complexity and memory
access burden. Irrespective of programming skills, the former
can be assessed via the operation that repeats mostly for
a diree(C)-determination algorithm, i.e., the bit-wise XOR
(i.e., bit-wise computation of Hamming distance), while the
latter is proportional to the number of nodes required to be
extended. Based on our implementations, the execution times
of both algorithms are also reported. The first eight VLECs
to be studied are from [8, Table II and Table III], which are
algorithmically constructed for the 26-letter English alphabet
subject to free distance bounds of 3, 5, 7 and 9 in combination
with two source distributions. A comparison is also conducted
based on the VLEC from [12] (which is a follow-up work of
[9D.

It can be observed from Table I that the number of bit-
wise XOR operations required by the proposed tree search
algorithm is considerably smaller than the number of bit-wise
XOR operations required by the PDG search algorithm. It
should be mentioned that the PDG search algorithm imple-
mented here is not the original one in [9], where the search of
dfree (C) is conducted after the construction of the entire PDG,
but an improved version of it, where nodes over the PDG are
extended only when the computation of the respective bit-wise
distance is required. We then compared the number of nodes
required by each algorithm, and found that the superiority of
the proposed tree search over the PDG search is mainly due
to the effectiveness of node removal through Steps 3 and 4.
This observation can be more easily seen by highlighting those
edges over the PDG that are “equivalently” XOR-operated
by the proposed tree search. Based on the PDG for VLEC
C = {c; = 00,¢cy = 011,35 = 1001}, Dijkstra’s algorithm
is adopted to determine dfe.(C) in [9], where only 22 XOR
operations are needed as shown in Fig. 2(a). The proposed
tree search algorithm reduces the XOR operations down to
16 as shown in Fig. 2(b), where seven XOR operations are
saved owing to (2) but one XOR operation is added because
our distance computation is codeword-based and hence the bit-
wise XORs corresponding to a codeword must be all included.
This reduction of XOR operations is reflected by the reduction
of node expansions (e.g., from 19 visited nodes down to 15
visited nodes in Fig. 2). Note that it is conceptually hard
to compare directly the number of nodes required by both
algorithms since they operate on different search structures.
The interpretation effort made in Fig. 2 is to figure visually

2Notably, the algorithm essentially keeps a list of unexplored nodes,
including the |C| child nodes just generated. The algorithm stops when these
unexplored nodes are all removed via the node removal in Steps 2-4.
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TABLE I: Numbers of nodes, bit-wise XOR operations and
execution times for the proposed tree search algorithm and
the PDG search algorithm. In addition to the number of XORs
required for the execution of the entire algorithm, the number
of XORs required to compute D, ¢ is separately listed in
parentheses. The execution time reported is the total time of
repeating an algorithm 1000 times. The ratio in the last column
is equal to (Execution time/Number of nodes) x 10%.

VLECs from [8, Table II]

Nodes XORs Execution time | Ratio
Tree (df.. = 3) 33 | 3991 (1828) 0.028 secs 8.48
PDG (dg.. = 3) 4468 8840 3.085 secs 6.90
Tree (di.. = 5) 56 | 5731 (2760) 0.034 secs 6.07
PDG (dg.. =5) | 16852 23487 10.703 secs 6.35
Tree (df.. =7) 33 | 6527 (2995) 0.036 secs | 10.91
PDG (dg.. = 7) | 26580 33242 17.591 secs 6.62
Tree (df.. = 9) 99 | 8492 (4090) 0.042 secs 4.24
PDG (dg.. =9) | 48396 58026 31.910 secs 6.59

VLECs from [8, Table III]

Nodes XORs Execution time | Ratio
Tree (di.. = 3) 32 | 4005 (1855) 0.028 secs 8.75
PDG (df.. = 3) 4839 9183 3.229 secs 6.67
Tree (df.. = 5) 14 | 5413 (2561) 0.033 secs | 23.57
PDG (df.. =5) | 19769 25791 13.002 secs 6.58
Tree (d.. = 7) 47 | 6758 (3209) 0.038 secs 8.09
PDG (df.. =T7) | 33686 41334 26.648 secs 791
Tree (df.. = 9) 91 | 8453 (4071) 0.043 secs 473
PDG (df.. =9) | 52851 62395 33.181 secs 6.28

VLEC from [12]

Nodes XORs Execution time | Ratio
Tree (di,,. = 7) 62 | 6281 (2814) 0.036 secs 5.81
PDG (dg.. =7) | 30221 37733 18.537 secs 6.13

(a) XORs by Dijkstra’s algorithm

(b) XORs by the proposed algorithm

Fig. 2: PDG for C = {¢; = 00,¢c2 = 011,¢3 = 1001}. The
solid arrows and the dotted arrows correspond to the PDG edge
labels of 1 and 0, respectively. The bit-wise XOR operations
taken by an algorithm is highlighted by color red.

what would be required when operating the proposed tree
search algorithm over the PDG.

The ratios between execution time and numbers of nodes are
also calculated in Table 1. These ratios lie between 4.24 and
10.91 except for one, indicating that the execution efficiency
of our implementations are approximately proportional to
the number of node extensions. The result verifies that the
superiority of the proposed tree search over the PDG search
is mainly due to the effective node removal through Steps 3
and 4.

We close the section by remarking that in addition to the
overall number of XORs required for the execution of the

entire algorithm, the number of XORs required to compute
Din ¢ is separately listed in parentheses in Table I. This
indicates that a large portion of XOR operations is actually
spent on the computation of Dy, c.

IV. CONCLUSION

In this paper, a new tree search algorithm for the determi-
nation of the free distance of a VLEC was proposed. By in-
corporating constraints to effectively prune the search tree, the
algorithm was shown to be much more efficient than state-of-
the-art techniques such as applying Dijkstra’s algorithm over
the PDG. Future work includes improving the efficiency of
the algorithmic VLEC construction, e.g., in [8], and designing
better codes than existing ones. Another worthwhile direction
is to apply similar node removal constraints to the PDG search
to further improve its efficiency.
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