
1

Optimal Busy-Node Repair of (k + 4, k, 4) MDS
Codes with Small Sub-packetization Level
Jiayi Rui, Qin Huang, Senior Member, IEEE, Yunghsiang S. Han, Fellow, IEEE, Ting-Yi Wu

Abstract—Maximum distance separable array codes with small
sub-packetization level (MDS-SSL) are of practical importance in
distributed storage systems. This letter addresses their repair of a
single failed node in the case that there exists a busy node during
the repair. Additional check relations among codeword symbols
excluding those in the busy node are formed to compensate for
the absence of information. Then, it allows us to repair the failed
node without symbols in the busy node. A lower bound of the
busy-node repair bandwidth is derived for (k + 4, k, 4) MDS-
SSL codes, consisting of four groups of nodes. It indicates that
its achievability requires a cubic constraint among elements in the
parity-check matrix. Then, an explicit busy-node repair scheme
is proposed to achieve a lower bound in the case of the failed
node and the busy node being in different groups.

Index Terms—Distributed storage system, busy-node repair,
optimal access, small sub-packetization, bandwidth.

I. INTRODUCTION

IN a distributed storage system with (n,k,l) maximum
distance separable (MDS) codes, all symbols stored in n

nodes can be recovered by connecting to k arbitrary nodes.
The data of each node is partitioned into l sections, where l is
referred to as sub-packetization level or node size. Small sub-
packetization level (e.g., l = 4) [1], [2] not only contributes to
an easy implementation of the system, but also may distribute
the load of providing information for the repair of a failed
node among a large number of nodes. Thus, MDS codes with
small sub-packetization level (MDS-SSL) are required in large
scale distributed storage systems. Recently, Rawat proposed
(n, k, l = n−k) MDS-SSL with near optimal repair bandwidth
for single node repair in [2]. Such MDS-SSL codes have
attracted much attention in both academia and industry.

In the single node repair model of [2]–[7], nodes involved in
the node repair are all accessible. However, some nodes may
be busy during the repair process in practice. Most repairing
schemes for a single-node failure need to access the remaining
n−1 nodes, which is not applicable when some survival nodes
are busy. It should be mentioned that, unlike the multi-node
repair [8] needs to recover all inaccessible nodes, the busy-
node repair only needs to recover the failed node while some

This work was supported by the National Natural Science Foundation of
China under Grant 62071026 and 61941106.

Jiayi Rui and Qin Huang are with the School of Electronic and In-
formation Engineering, Beihang University, Beijing 100191, China (email:
jiayirui@buaa.edu.cn; qhuang.smash@gmail.com). (Corresponding author:
Qin Huang.)

Yunghsiang S. Han is with the Shenzhen Institute for Advanced Study,
University of Electronic Science and Technology of China (email: yungh-
siangh@gmail.com).

Ting-Yi Wu is with the Theory Lab, Central Research Institute, 2012 Labs,
Huawei Technology Co. Ltd (email: wu.ting.yi@huawei.com).

busy nodes are inaccessible. The difficulty of busy-node repair
is that we need to optimize both performances of repairing a
single node with or without busy nodes simultaneously. In
particular, the majority of all busy cases are one busy node.

Since the information in the busy node is unavailable, the
repair scheme designed in need of n − 1 surviving nodes,
cannot provide enough check relations for the failed node
repair. This letter proposes to form additional check relations
among codeword symbols excluding those in the busy node to
compensate for the absence of information in the busy node.
We focus on the family of (n = k + 4, k, l = 4) MDS-
SSL codes which are of practical importance [2]. Such codes
divide the nodes into l groups, according to the structure of
the generator matrix of each node. A lower bound of the busy-
node repair bandwidth is derived by going through all cases.
It indicates that its achieveability requires a cubic constraint
among elements in the parity-check matrix. Then a busy-node
repair scheme under such constraint is proposed to achieve a
lower bound in the case of the failed node and the busy node
being in different groups.

II. PRELIMINARY

Consider (n, k, l) MDS codes for a distributed storage
system with k data nodes and n − k redundant nodes. Each
node store l symbols and the l symbols stored in a node are
viewed as an l length vector. For a positive integer t, [t] denotes
the set {1, 2, . . . , t}. Let |U | denote the cardinality of the set U .
The following illustrates the construction of (n, k, l = n− k)
MDS-SSL codes [2].

Let r = n− k = l and n = sr. The n nodes are partitioned
into r groups with size s in each. Each node is indexed by a
tuple (u, v), where u ∈ [r] and v ∈ [s]. In particular, for i ∈
[n], the associated tuple (u, v) satisfies i = (u−1)s+v. With
this notation in place, for (u, v) ∈ [r]×[s], the ((u−1)s+v)-th
node is denoted by

c(u−1)s+v = c(u,v) = (c(1; (u, v)), . . . , c(r; (u, v))) ∈ Br,

where for x ∈ [r], c(x; (u, v)) denotes the x-th symbol of the
((u − 1)s + v)-th node and the finite field B is an extension
field of the finite filed L of size at least n+ 1. Let {λi}i∈[n]

be n distinct nonzero elements of L and {ψi,j}i∈[n],j∈[r−1] be
elements of B. We can present the r2×nr parity-check matrix
of the code [2] with parameters (n, k, l = r = n− k) as

H =


I I · · · I

λ1I+Ψ1,1 λ2I+Ψ2,1 · · · λnI+Ψn,1

...
... · · ·

...
λr−1
1 I+Ψ1,r−1 λr−1

2 I+Ψ2,r−1 · · · λr−1
n I+Ψn,r−1

 , (1)

where I is the r× r identity matrix, Ψ(u−1)s+v,p is the r× r
matrix with the element ψ(u−1)s+v,p in the position (u, u+ p)
and zeros elsewhere, u ∈ [r], v ∈ [s], p ∈ [r − 1] and for a
strictly positive integer e, the quantity ē is defined as follows:

ē =

{
r if e (mod r) = 0,

e (mod r) otherwise.
(2)

Let H =
[
HT

0 HT
1 · · · HT

r−1

]T
and Hi =[

hTi,1 hTi,2 · · · hTi,r
]T

, where Hi’s are matrices of size
r×nr, hi,j’s are vectors of length nr, 0 ≤ i ≤ r−1, 1 ≤ j ≤ r
and T denotes the transpose operation.

Then we illustrate the exact repair of a node. Let (u∗, v∗) ∈
[r]× [s] be the tuple associated with the failed node. Let

Uf = {c(x; (u∗, v∗))|x ∈ [r]}

denote the set of r symbols which need to be recovered. The
repair scheme takes advantage of r linear constraints defined
by r rows {h0,u∗ , . . . , hr−1,u∗} of the parity-check matrix,
i.e., {hi,u∗ · [c1 . . . cn]T|i = 0, 1, 2, 3}, as below. For every
p ∈ [r − 1], ∑

(u,v)∈[r]×[s]

c(u∗; (u, v)) = 0; (3)

∑
(u,v)∈[r]×[s]

λp(u−1)s+v · c(u
∗; (u, v))

+
∑
v∈[s]

ψ(u∗−1)s+v,p · c(u∗ + p; (u∗, v)) = 0.
(4)

These linear constraints show that the set of symbols involved
in Eq. (3) is A0 = {c(u∗; (u, v)|(u, v) ∈ [r]×[s]}. Sets of sym-
bols involved in Eq. (4) are Ap = A0∪{c(u∗ + p; (u∗, v))|v ∈
[s]}, for every p ∈ [r− 1]. Eqs. (3) and (4) indicate that there
are r unknown symbols (i.e., r symbols to be repaired) and
r equations. In order to recover the failed node, it needs to
download the set of symbols as

Unb = (A0 ∪ · · · ∪Ar−1)\Uf ,

where the subscript “nb” means the condition that there is
no busy node. Note that the total number of symbols to be
downloaded is |Unb| = r(s−1)+s(r−1) = 2n−s−r which
is referred to as repair bandwidth and denoted by γnb.

III. LOWER BOUND OF BUSY-NODE REPAIR BANDWIDTH

Under the repair scheme in Section II, all n− 1 remaining
nodes are required in a failed node repair. It cannot repair the
failed node once one remaining node is busy. Thus, a busy-
node repair scheme is necessary in consideration of keeping
the repair scheme when there is no busy node.

In this section, we analyze a lower bound of the busy-node
repair bandwidth under the case of (n, k, l = r = n− k = 4)
and s = n/r > 7. In many practical systems, nodes have
no computation ability such that we only consider access
bandwidth, i.e., the average of the number of access symbols
involved in recovering a single node. Suppose that the node
with the tuple (u∗, v∗) fails and the node with the tuple
(u′, v′) is busy, where (u∗, v∗), (u′, v′) ∈ [r] × [s] and

(u′, v′) ̸= (u∗, v∗). Since the node with the tuple (u′, v′) is
busy, the symbols (in the busy node) involved in the repair of
the failed node are unavailable. Eqs. (3) and (4) turn to be more
than r unknown symbols (symbols in the failed node and busy
node) and r equations. The node with the tuple (u∗, v∗) cannot
be recovered. Thus, we propose to form additional equations
(i.e., linear constraints) by taking linear combinations of rows
of H except rows used in Eqs. (3) and (4).

Suppose that additional equations (i.e., linear constraints)
are defined by distinct vectors E1, . . . , Em which are linear
combinations of rows of H except rows used in Eqs. (3) and
(4), where 1 ≤ m ≤ |B|12 − 1. Linear constraints defined
by {E1, . . . , Em} together with Eqs. (3) and (4) form the
whole busy-node repair. Let Ui denote the set of symbols
involved in linear constraints defined by Ei, where i ∈ [m].
For ∀A = {i1, . . . , it} ⊂ [m], linear constraints defined by
{Ei1 , . . . , Eit} lead to download the set of symbols UA =
(Ui1 ∪ · · · ∪ Uit)\(Uf ∪ Ub), where 1 ≤ t ≤ m, A is a non-
empty set and Ub = {c(x; (u′, v′))|x ∈ [r]} denotes the set of
symbols in the busy node. The additional bandwidth brought
by {Ei1 , . . . , Eit} is defined as γA = |UA\Unb|. Specially,
let γ denote additional bandwidth brought by {E1, . . . , Em}
for simplicity. According to definitions, it is obvious that for
∀A ⊂ [m]

γA ≤ γ ≤
m∑
i=1

γi, (5)

where γi is the shorthand notation of γ{i}.
A lower bound of busy-node repair bandwidth is derived

by analyzing additional bandwidth brought by additional e-
quations. Before the analysis of lower bound of the busy-node
repair bandwidth, we first present the parity-check matrix H in
the form as shown in Fig. 1, which is obtained by employing
row and column permutations on the parity-check matrix H.
Correspondences between columns and symbols are illustrated
in Fig. 1. This form helps for the illustration of the analysis.

A. Failed node and busy node are in different groups

In this subsection, we consider the case that the failed
node and busy node are in different groups i.e., u′ ̸= u∗.
The set of symbols downloaded in Eqs. (3) and (4) is
Unb\{c(u∗; (u′, v′))}. Eqs. (3) and (4) turn to be r + 1
unknown symbols, Uf ∪ {c(u∗; (u′, v′))}, and r equations.
Thus, at least another one equation is required. According
to Eq. (5), we have γ ≥ γ1. The analysis of γ starts from
additional bandwidth γ1 brought by one vector E1. Then
consider whether E2 is necessary. If E2 is unnecessary, Eqs.
(3), (4) together with E1 form a busy-node repair scheme;
otherwise, analyze additional bandwidth brought by vectors
{E1, E2}. Repeat the above process until we can form a
busy-node repair scheme. A lower bound of busy-node repair
bandwidth is derived from going through all cases.

The analysis of γ1 is equal to analyze nonzero elements in
E1. The less nonzero elements in E1 are, the lower γ1 is. The
analysis of γ1 can be partitioned into two cases in terms of
the position of λ’s in rows of H.

Case I: We consider E1 composed of rows with λ’s in
the same position. In this case, E1 can be represented as

Symbol 1: { (1; (,))| , × []}

Group 1 Group 2 Group 3 Group 4

Symbol 2: { (2; (,))| , × []} Symbol 3: { (3; (,))| , × []} Symbol 4: { (4; (,))| , × []}

Fig. 1. The parity-check matrix after row and column permutations.

∑3
i=0 lihi,û, where û ∈ [4]\{u∗} and l0, . . . , l3 ∈ B are not

all zero. Linear constraints defined by E1 is∑
(u,v)∈[r]×[s]

(

3∑
j=0

ljλ
j
(u−1)s+v) · c(û; (u, v))︸ ︷︷ ︸
(a)

+
3∑

p=1

∑
v∈[s]

lpψ(û−1)s+v,p · c(û+ p; (û, v))

︸ ︷︷ ︸
(b)

= 0.

(6)

If coefficients
∑3

j=0 ljλ
j
(u−1)s+v and lpψ(û−1)s+v,p are

nonzero, symbols c(û; (u, v)) and c(û+ p; (û, v)) are involved
in the repair, respectively. Since symbols in the set Unb\Ub

have been downloaded, it is unnecessary to consider their
coefficients. In order to achieve a lower γ1, as more zero
coefficients as possible are desired. The following we analyze
the minimum number of nonzero coefficients in E1.

For the part (a) in Eq. (6), if given a coefficien-
t
∑3

j=0 ljλ
j
i′ = 0, i.e., l0 = −

∑3
j=1 ljλ

j
i′ , where i′ ∈

[n]\{(u∗ − 1)s + 1, . . . , u∗s}, we need to analyze that how
many zero coefficients can exist. We have the coefficient

3∑
j=0

ljλ
j
i = −

3∑
j=1

ljλ
j
i′ +

3∑
j=1

ljλ
j
i =

3∑
j=1

lj(λ
j
i − λji′). (7)

There exist at most three different λi’s, s.t. Eq. (7)= 0, where
i ∈ [n]\{(u∗ − 1)s + 1, . . . , u∗s}. Suppose that these three
different λi’s are {λi1 , λi2 , λi3}, where i1, i2, i3 ∈ [n]\{(u∗−
1)s+1, . . . , u∗s}. If one of {i1, i2, i3} equals (u′ − 1)s+ v′,
i.e., it corresponds to the busy node, the part (a) does not
introduce unknown symbols (in the busy node) and will lead
to additionally download 3s− 3 symbols. Otherwise, the part
(a) introduces one unknown symbol c(û; (u′, v′)) and will lead
to additionally download 3s− 4 symbols.

For the part (b) in Eq. (6), suppose that for every
p ∈ [3]\{p′}, lp = 0, where û+ p′ = u∗. Symbols
{c(û+ p; (û, v))|p ∈ [3]\{p′}, v ∈ [s]} are unnecessary to
be additionally downloaded. In this condition,

E1 = l0h0,û + lp′hp′,û,

where l0 and lp′ are nonzero. Eq. (6) can be represented as∑
(u,v)∈[r]×[s]

(l0 + lp′λp
′

(u−1)s+v) · c(û; (u, v)) = 0. (8)

Thus, in consideration of parts (a) and (b),
1) if E1 introduces no unknown symbols in the busy node,

E1 together with Eqs. (3), (4) can be viewed as one busy-node
repair scheme, i.e., m = 1. We have γ = γ1 = 3s− 3.

2) if E1 introduces one unknown symbol in the busy node,
we have γ1 ≥ 3s− 4. Eqs. (3), (4) together with E1 indicate
that there are r + 2 unknown symbols (i.e., r symbols to be
repaired and 2 unavailable symbols in the busy node) and r+1
equations. Thus, at least E2 is required to form the busy-node
repair scheme, i.e., m ≥ 2.

Since 3s− 4 < 3s− 3, it is necessary to present γ1 in two
conditions for the analysis of γ.

Case II: We consider E1 composed of rows with λ’s in
different positions. Without loss of generality, we set u∗ = 1.
The analysis of E1 can be partitioned into two conditions.

(a) E1 can be represented as E1 =
∑

u∈Q

∑3
j=0 lj,u · hj,u,

where for ∀u ∈ Q, 0 ≤ j ≤ 3, lj,u ∈ B, Q is a subset of
{2, 3, 4} and |Q| = 2. E1 will lead to additionally download
at least 2×(2s−1−3) = 4s−8 symbols. Thus, γ1 ≥ 4s−8 >
3s− 3 in this condition.

(b) E1 can be represented as E1 =
∑

u∈{2,3,4}
∑3

j=0 lj,u ·
hj,u, where for ∀u ∈ {2, 3, 4}, 0 ≤ j ≤ 3, lj,u ∈ B. E1 will
lead to additionally download at least 3×(s−3)−1 = 3s−10
symbols. If γ1 ≥ 3s− 9 holds, that means that the following
two properties should be satisfied.

i) There exist {i1, i2, i3} ∈ {s + 1, . . . , 2s}, {i4, i5, i6} ∈
{2s + 1, . . . , 3s} and {i7, i8, i9} ∈ {3s + 1, . . . , 4s} such
that for ∀t ∈ [3],

∑3
j=0 lj,2λ

j
it

= 0,
∑3

j=0 lj,3λ
j
it+3

=

0,
∑3

j=0 lj,4λ
j
it+6

= 0.
ii) When s + 1 ≤ i ≤ 2s,

∑3
j=0 lj,3λ

j
i + l1,2ψi,1 = 0

and
∑3

j=0 lj,4λ
j
i + l2,2ψi,2 = 0. When 2s + 1 ≤ i ≤ 3s,∑3

j=0 lj,2λ
j
i + l3,3ψi,3 = 0 and

∑3
j=0 lj,4λ

j
i + l1,3ψi,1 = 0.

When 3s + 1 ≤ i ≤ 4s,
∑3

j=0 lj,2λ
j
i + l2,4ψi,2 = 0 and∑3

j=0 lj,3λ
j
i + l3,4ψi,3 = 0.

If (u′ − 1)s + v′ ∈ {i1, . . . , i9}, i.e., E1 introduces no
unknown symbol, Eqs. (3), (4) together with E1 can form a
busy-node repair scheme. If (u′−1)s+v′ /∈ {i1, . . . , i9}, i.e.,
E1 introduces one unknown symbol c(u′; (u′, v′)), we have
γ1 = 3s − 10. Eqs. (3), (4) together with E1 indicate that
there are r + 2 unknown symbols and r + 1 equations. Thus,
at least E2 is required to form the busy-node repair scheme.
Moreover, since vectors, which are linearly dependent of E1,
have no contribution to the repair, such vectors are viewed as
the same as E1. Considering that if the code is well designed,

a vector E1 with coefficients {lj,u|0 ≤ j ≤ 3, u ∈ {2, 3, 4}}
is unique such that γ1 ≥ 3s− 9 holds.

The following we analyze a lower bound of γ.
1) If E1 satisfies Case I,
1.1) If E1 introduces no unknown symbols, γ1 ≥ 3s − 3.

Thus, we have m = 1 and γ ≥ γ1 ≥ 3s− 3.
1.2) If E1 introduces one unknown symbol, γ1 ≥ 3s − 4.

At least E2 is required. If E2 satisfies Case I, E2 must be
composed of rows with λ’s in the same position as E1 such
that additional bandwidth γ{1,2} brought by {E1, E2} will be
the least. According to the above analysis, γ{1,2} = γ1, if and
only if E2 = a ·E1, where a ∈ B. However, if E2 = a ·E1, E2

has no contribution to recover the failed node. Therefore, if E2

contributes to the busy-node node repair, γ{1,2} > γ1 ≥ 3s−4
thus to γ{1,2} ≥ 3s− 3. Thus, we have γ ≥ γ{1,2} ≥ 3s− 3.
If E2 satisfies Case II, we have γ{1,2} ≥ 3s− 4+ 2(s− 3) =
5s− 10 thus to γ > 3s− 3.

2) If E1 satisfies Case II.(a), γ ≥ γ1 > 3s− 3;
3) If E1 satisfies Case II.(b), when (u′, v′) does not take

one of 9 specific tuples, E1 introduces one unknown symbol.
At least E2 is required. Since E2 ̸= a ·E1, we have γ{1,2} ≥
3s − 10 + 2s = 5s − 10, where a ∈ B. Thus, we can obtain
that γ > 9×(3s−9)+(3s−9)×(5s−10)

3s = 5s− 16+ 3
s > 3s− 3 in

terms of the average bandwidth.
To sum up, we have γ ≥ 3s − 3. Thus, a lower bound of

busy-node repair is γnb−1+γ ≥ (2n− s− r)−1+3s−3 =
10s−8 when failed node and busy node are in different groups.

B. Failed node and busy node are in the same group

This subsection considers the case that the failed node and
busy node are in the same group, i.e., u′ = u∗. The set of
symbols downloaded in Eqs. (3) and (4) is Unb\Ub. Eqs. (3)
and (4) turn to be r + 4 unknown symbols, Uf ∪ Ub, and r
equations. Thus, at least another four equations are required.
We first present a lower bound of Ei, where 1 ≤ i ≤ m.
Then, the properties that additional vectors should satisfy are
analyzed. Last, a lower bound of busy-node repair bandwidth
is derived from going through all cases.

Continue the settings in Section III.A. In this case, m = 4.
The analysis of lower bound when the failed node and busy
node are in the same group is similar to that of lower bound
when failed node and busy node are in different groups.
The difference is due to the position of the busy node.
Any additional equation would not introduce the unknown
symbol in the busy node. Without loss of generality, we set
u′ = u∗ = 1 in the following analysis.

Similar to the analysis in Section III.A, we can obtain a
lower bound of Ei drawn as below, where 1 ≤ i ≤ 4.

Case I: Consider Ei composed of rows with λ’s in the same
position. We have γi ≥ 3s− 3.

Case II: Consider Ei composed of rows with λ’s in different
positions.

(a) Ei can be represented as

Ei =
∑
u∈Q

3∑
j=0

li,j,u · hj,u, (9)



























1 1

ψt∗,1 λt′ − λt∗ ψt′,1

ψt∗,2 λ2
t′
− λ2

t∗
ψt′,2

ψt∗,3 λ3
t′
− λ3

t∗
ψt′,3

0
∑

3

j=0
l1,j,2λ

j

t∗

∑

3

j=0
l1,j,3λ

j

t∗
0 0

∑

3

j=0
l1,j,2λ

j

t′

∑

3

j=0
l1,j,3λ

j

t′
0

0
∑

3

j=0
l2,j,2λ

j

t∗

∑

3

j=0
l2,j,3λ

j

t∗
0 0

∑

3

j=0
l2,j,2λ

j

t′

∑

3

j=0
l2,j,3λ

j

t′
0

0
∑

3

j=0
l3,j,2λ

j

t∗

∑

3

j=0
l3,j,3λ

j

t∗
0 0

∑

3

j=0
l3,j,2λ

j

t′

∑

3

j=0
l3,j,3λ

j

t′
0

0
∑

3

j=0
l4,j,2λ

j

t∗

∑

3

j=0
l4,j,3λ

j

t∗
0 0

∑

3

j=0
l4,j,2λ

j

t′

∑

3

j=0
l4,j,3λ

j

t′
0



























Fig. 2. The matrix Hrp for the proof of Property2.

where for ∀u ∈ Q, 0 ≤ j ≤ 3, li,j,u ∈ B, Q is a subset of
{2, 3, 4} and |Q| = 2. We have γi ≥ 4s− 6.

(b) Ei can be represented as Ei =
∑

u∈{2,3,4}
∑3

j=0 li,j,u ·
hj,u, where for ∀u ∈ {2, 3, 4}, 0 ≤ j ≤ 3, li,j,u ∈ B. We have
γi ≥ 3s− 9.

Then, we analyze the necessary properties that
{E1, . . . , E4} should satisfy, if additional equations defined
by {E1, . . . , E4} together with Eqs. (3), (4) can recover
the failed node. According to Eqs. (3), (4) and additional
equations defined by vectors {E1, . . . , E4}, the repair process
can be written as Hrp ·

[
c(u∗,v∗) c(u′,v′)

]T
= Hdl · ĉT,

where Hrp and Hdl are coefficient matrices and ĉ denotes
the vector composed of downloaded symbols. When the
coefficient matrix Hrp is full rank, symbols in the failed node
can be recovered. Employing row transformations on Hrp,
we have

1 1
ψt∗,1 λ

t′ − λt∗ ψ
t′,1

ψt∗,2 λ2
t′ − λ2

t∗ ψ
t′,2

ψt∗,3 λ3
t′ − λ3

t∗ ψ
t′,3

F1

.

.

.
F4

,
where t∗ = (u∗−1)s+v∗, t′ = (u′−1)s+v′ and F1, . . . , F4

correspond to E1, . . . , E4, respectively.

Property 1. There at most exist two of E1, . . . , E4 composed
of rows with λ’s in the same position.

Proof. Assume that there exist no less than two of E1, . . . , E4

composed of rows with λ’s in the same position. We might
as well set Ei being represented as

∑3
j=0 li,jhj,2, where

li,0, . . . , li,3 ∈ B are not all zero and i = 1, 2, 3. The matrix[
F1
F2
F3

]
=

[
0

∑3
j=0 l1,jλ

j
t∗ 0 0 0

∑3
j=0 l1,jλ

j
t′

0 0

0
∑3
j=0 l2,jλ

j
t∗ 0 0 0

∑3
j=0 l2,jλ

j
t′

0 0

0
∑3
j=0 l3,jλ

j
t∗ 0 0 0

∑3
j=0 l3,jλ

j
t′

0 0

]
is not full rank.

Property 2. If E1, . . . , E4 are all composed of rows repre-
sented as Eq. (9) with the same Q, the matrix Hrp is not full
rank. That is to say, the necessary condition that the matrix
Hrp is full rank is that rows with λ’s in three different positions
should all be involved in compositions of {E1, . . . , E4}.

Proof. We might as well set Q = {2, 3}. Vectors E1, . . . , E4

can be represented as Eq. (9). The matrix Hrp presented in
Fig. (2) is not full rank.

Compositions of E1, . . . , E4 can be discussed in terms of
the above two properties. Then, in consideration of a lower
bound of Ei, it can be verified that a lower bound of γ is
7s − 8, where 1 ≤ i ≤ 4. Thus, a lower bound of the busy-
node repair is γnb − 4 + γ = 7s− 4− 4 + 7s− 8 = 14s− 16
when the failed node and busy node are in the same group.

IV. OPTIMAL BUSY-NODE REPAIR SCHEME WHEN FAILED
NODE AND BUSY NODE ARE IN DIFFERENT GROUPS

In this section, we propose a busy-node repair scheme when
the failed node and the busy node are in different groups.
The proposed scheme shows that it requires a cubic constraint
among elements in the parity-check matrix to achieve a lower
bound analyzed in Section III.A.

A. Optimal busy-node repair scheme

Based on the analysis in Section III.A, we propose to design
E1 as E1 = −λ3(u′−1)s+v′h0,û+h3,û, where 3 + û = u∗. The
linear constraint defined by the vector E1 is∑

(u,v)∈[r]×[s]

(λ3
(u−1)s+v − λ3

(u′−1)s+v′) · c(û; (u, v))

+
∑
v∈[s]

ψ(û−1)s+v,3 · c(u∗; (û, v)) = 0.
(10)

The busy-node repair is composed of Eqs. (3), (4) and (10).
Then we show that how can the proposed scheme

achieve a lower bound. Since (λ3(u′−1)s+v′ − λ3(u′−1)s+v′) ·
c(û; (u′, v′)) = 0, the additional linear constraint (10) does not
introduce new unknown symbol. Eqs. (3), (4) and (10) indicate
that there are r + 1 unknown symbols and r + 1 equations.
Symbols {c(u∗; (û, v))|v ∈ [s]} have been downloaded when
there is no busy node, so they do not increase the repair band-
width. Thus, the analysis of the busy-node repair bandwidth
only needs to consider the items (λ3(u−1)s+v − λ3(u′−1)s+v′) ·
c(û; (u, v)), where (u, v) ∈ [r]× [s].

Lemma 1. Suppose that i1 is a constant value in the finite
field B of size |B|. If 3|(|B| − 1), there exist three different
i ∈ B such that i3 − i31 = 0.

Proof. Let α denote the primitive element of B. Any value
in B can be written as the power of α. Let i1 = αa1 and
i = αa, where 0 ≤ a1, a ≤ |B| − 2. If i3 − i31 = 0, i3 = i31
or i31 · α|B|−1 or i31 · α|B|−1 · α|B|−1, i.e., (αa)3 = (αa1)3

or (αa1)3 · α|B|−1 or (αa1)3 · α|B|−1 · α|B|−1, because 3a ≤
3(|B|−2). Thus, 3a = 3a1 or 3a1+(|B|−1) or 3a1+2(|B|−1).
If 3|(|B|−1), a can take three different values a1, (a1+

|B|−1
3)

mod (|B|− 1), (a1+
2(|B|−1)

3) mod (|B|− 1), i.e., i can take
three different values.

According to Lemma 1, there exist at most three different
λ(u−1)s+v such that (λ3(u−1)s+v − λ3(u′−1)s+v′) = 0 which is
termed as cubic constraint. Symbols required to be download-
ed additionally are at least γc = (r − 1)s − 3 = n − s − 3,
i.e., the bandwidth of the proposed scheme is 10s− 8, if the
code is well designed to reach it.

B. A necessary and sufficient condition of our repair

According to Eqs. (3), (4) and (10), the repair process can
be written as Hrp ·

[
c(u∗,v∗) c(u∗; (u′, v′))

]T
= Hdl · ĉT,

where Hrp and Hdl are coefficient matrices and ĉ denotes
the vector composed of downloaded symbols. The coefficient
matrix Hrp being full rank is the necessary and sufficient
condition that the proposed repair scheme can recover the
failed node.

Employing column permutation on Hrp, we have 1 0 0 0 1
λt∗ ψt∗,1 0 0 λ

t′
λ2
t∗ 0 ψt∗,2 0 λ2

t′
λ3
t∗ 0 0 ψt∗,3 λ3

t′
0 λ3

t∗ − λ3
t′ 0 0 ψ

t′,3

 or

 1 0 0 0 1
λt∗ ψt∗,1 0 0 λ

t′
λ2
t∗ 0 ψt∗,2 0 λ2

t′
λ3
t∗ 0 0 ψt∗,3 λ

3
t′

0 λ3
t∗ − λ3

t′ 0 0 0

,
where t∗ = (u∗−1)s+v∗ and t′ = (u′−1)s+v′. Hrp being
full rank means that∣∣∣∣ ψt∗,1 λt′ − λt∗

λ3t∗ − λ3t′ ψt′,3

∣∣∣∣ ̸= 0 and λ3t∗ − λ3t′ ̸= 0. (11)

To sum up, the proposed scheme can achieve a lower bound
of bandwidth by linear combinations the row of the parity-
check matrix. In order to achieve a lower bound, the code
design should satisfy conditions drawn as below. Given the
failed node with the tuple (u∗, v∗), the busy node with the
tuple (u′, v′) and λ(u′−1)s+v′ , where u′ ̸= u∗,

1) the size of the finite field B should satisfy that 3|(B−1).
2) elements in the parity-check matrix should satis-

fy cubic constraints. Select two different tuples
(u1, v1), (u2, v2) and let λ(u1−1)s+v1 = λ(u′−1)s+v′ ·
α

|B|−1
3 and λ(u2−1)s+v2

= λ(u′−1)s+v′ · α
2(|B|−1)

3 ,
where (u1, v1), (u2, v2) ∈ [r] × [s], u1, u2 ̸= u∗,
(u1, v1), (u2, v2) ̸= (u′, v′) and α is the primitive
element in B.

3) the selection of λ(u∗−1)s+v∗ , ψ(u∗−1)s+v∗,1, ψ(u′−1)s+v′,3

should satisfy Eq. (11).

Example 1. Suppose that a (12, 8, 4) MDS-SSL code with
the parity check matrix H satisfies λ31 = λ32 = λ33, λ34 =
λ35 = λ36, λ37 = λ38 = λ39 and λ310 = λ311 = λ312. If the
node (1, 1) fails and the node (2, 1) is busy, we recover the
failed node by vectors h0,1, h1,1, h2,1, h3,1 and −λ34h0,2+h3,2.
Downloaded symbols are c(1,2), c(1,3), c(1; (2, 2)), c(1; (2, 3))
and {c(x; (u, v))|x ∈ [2], u ∈ {3, 4}, v ∈ [3]}. The number of
downloaded symbols is 22, i.e., busy-node repair bandwidth
is 22, which achieves the bound analyzed.

REFERENCES

[1] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and M. Rosen-
blum, “Copysets: Reducing the frequency of data loss in cloud storage,”
in Proc. 2013 USENIX Annual Technical Conference (USENIX ATC 13),
San Jose, CA, Jun. 2013, pp. 37–48, USENIX Association.

[2] A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko, “MDS
code constructions with small sub-packetization and near-optimal repair
bandwidth,” IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6506–6525,
Feb. 2018.

[3] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sept. 2010.

[4] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh,
“Asymptotic interference alignment for optimal repair of MDS codes in
distributed storage,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2974–
2987, May. 2013.

[5] B. Sasidharan, G. K. Agarwal, and P. V. Kumar, “A high-rate MSR
code with polynomial sub-packetization level,” in Proc. 2015 IEEE
International Symposium on Information Theory (ISIT).

[6] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array codes
with optimal repair bandwidth,” IEEE Trans. Inf. Theory, vol. 63, no. 4,
pp. 2001–2014, Apr. 2017.

[7] J. Li and X. Tang, “Systematic construction of MDS codes with small
sub-packetization level and near optimal repair bandwidth,” in Proc. 2019
IEEE International Symposium on Information Theory (ISIT), 2019, pp.
1067–1071.

[8] K. W. Shum and Y. Hu, “Cooperative regenerating codes,” IEEE Trans.
Inf. Theory, vol. 59, no. 11, pp. 7229–7258, Jul. 2013.

