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Abstract—Reed-Solomon (RS) codes are widely used to correct
errors and erasures. This paper proposes a fast error and erasure
decoding algorithm for RS codes. It achieves the best-known
complexity O(n log(n− k)+ (n− k) log2(n− k)), where n, k are
the code length and dimension, respectively. Furthermore, the
proposed method is efficient for practical codes. For decoding
RS(255, 223), compared with the existing method, the new
algorithm saves 32% field operations.
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I. INTRODUCTION

Reed-Solomon (RS) codes, the most commonly used error-
correcting codes, have been adopted in many applications,
such as storage devices, digital television and data transmis-
sion. Hence, investigating fast decoding algorithms for RS
codes is an important research topic. As RS codes can be
defined by finite field Fourier transform, designing decoding
algorithms that take advantage of fast Fourier transform (FFT)
draws much attention. For example, by using composite cy-
clotomic Fourier transform, [1] derived fast syndrome-based
decoders. An efficient syndrome calculation method was pro-
posed in [2] by improving the inverse cyclotomic discrete
Fourier transform. In [3], an interpolation-based decoding
algorithm was designed, whose complexity is O(t log2(t))
over FFT-friendly field, where t is the correction capability.
Based on the additive FFT, an error-only decoding algorithm
of RS codes was proposed in [4], whose complexity is
O(n log(n−k)+ (n−k) log2(n−k)), where n and k are the
code length and dimension, respectively, and n− k must be a
power of two. This achieves the best complexity to date. By
proposing the partial FFT algorithm, the constraint on n − k
was removed in [5]. By reconstructing the modular approach,
[6] further improved this error-only decoding algorithm to
make it competitive for practical codes, e.g., RS(255, 223)
used in optical communication.

In many applications, RS codewords are disturbed by er-
rors and erasures, for example, in Compact Disc devices or
Quick-Response codes. In [7], an error-and-erasure decoding
technique was proposed that uses prime-factor discrete Fourier
transform. It should be noted that an error and erasure de-
coding algorithm based on FFT has been provided in [8].
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However, the key equation in [8] is incomplete, such that
the proposed decoding algorithm cannot decode up to all
decodable error and erasure patterns. In this paper, we define
the syndrome for the error-and-erasure decoding algorithm and
derive the key equation, which generalizes the algorithm in [6]
to an error-and-erasure decoding algorithm. The complexity of
the proposed algorithm is O(n log(n−k)+(n−k) log2(n−k)),
which is the best complexity for error-and-erasure decoding of
RS codes to date. The comparison shows that the proposed
algorithm is superior to known methods in complexity for
practical codes.

This paper is organized as follows. Section II describes
FFT algorithms. Then we derive the error-and-erasure decod-
ing algorithm in Section III. Section IV provides a detailed
implementation of the proposed algorithm. A comparison is
given in Section V, which compares the proposed method with
others in the literature.

II. FFT ALGORITHM

This section reviews the n-point FFT algorithm with com-
plexity O(n log n) over finite fields presented in [9]. Through-
out this paper, unless otherwise stated, we assume that the ele-
ments appeared are in F2m and the polynomials are in F2m [x].
Given a basis of F2m over F2, denoted by {v0, v1, . . . , vm−1},
the elements in F2m can be represented by

ωl = l0v0 + l1v1 + · · ·+ lm−1vm−1, 0 ≤ l < 2m, (1)

where (l0, l1, . . . , lm−1) is the binary representation of l. For
0 ≤ τ ≤ m, the subspace polynomial is defined by

sτ (x) =

2τ−1∏
l=0

(x− ωl).

The set X̄ = {X̄0(x), X̄1(x), . . . , X̄2m−1(x)}, where

X̄l(x) =
s0(x)

l0s1(x)
l1 · · · sm−1(x)

lm−1

s0(v0)l0s1(v1)l1 · · · sm−1(vm−1)lm−1
,

is a basis of F2m [x]/(x2m − x) over F2m . We define pl as

pl = s0(v0)
l0s1(v1)

l1 · · · sm−1(vm−1)
lm−1 , 0 ≤ l < 2m.

For a polynomial f(x) ∈ F2m [x]/(x2m − x) of degree less
than 2τ , given its coordinate vector f̄ = (f̄0, f̄1, . . . , f̄2τ−1)
with respect to X̄ and β ∈ F2m , an FFT algorithm computes
F = (f(ω0 + β), f(ω1 + β), . . . , f(ω2τ−1 + β)) within
O(2τ log(2τ )) field operations, which is denoted by

F = FFTX̄(f̄ , τ, β).
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The inverse transform is written as

f̄ = IFFTX̄(F, τ, β).

Detailed descriptions of FFTX̄ and IFFTX̄ are shown in
Algorithms 1 and 2, respectively. For more discussions, we
refer to [10].

Algorithm 1 FFTX̄ [9]

Input: f̄ = (f̄0, f̄1, . . . , f̄2τ−1), τ , β.
Output: (f(ω0 + β), f(ω1 + β), . . . , f(ω2τ−1 + β)).

1: if τ = 0 then
2: return f̄0
3: end if
4: for l = 0, 1, . . . , 2τ−1 − 1 do
5: a

(0)
l = f̄l +

sτ−1(β)

sτ−1(vτ−1)
f̄l+2τ−1

6: a
(1)
l = a

(0)
l + f̄l+2τ−1

7: end for
8: a(0) = (a

(0)
0 , . . . , a

(0)
2τ−1−1),a

(1) = (a
(1)
0 , . . . , a

(1)
2τ−1−1)

9: Calculate A0 = FFTX̄(a
(0), τ − 1, β), A1 =

FFTX̄(a
(1), τ − 1, vτ−1 + β)

10: return (A0,A1)

Algorithm 2 IFFTX̄ [9]
Input: F = (f(ω0 + β), f(ω1 + β), . . . , f(ω2τ−1 + β)), τ, β
Output: f̄ such that F = FFTX̄(f̄ , τ, β)

1: if τ = 0 then
2: return f(ω0 + β)
3: end if
4: A0 = (f(ω0+β), . . . , f(ω2τ−1−1+β)),A1 = (f(ω2τ−1+

β)), . . . , f(ω2τ−1 + β))
5: a(0) = IFFTX̄(A0, τ − 1, β) , a(1) = IFFTX̄(A1, τ −

1, vτ−1 + β)
6: for l = 0, 1, . . . , 2τ−1 − 1 do
7: f̄l+2τ−1 = a

(0)
l + a

(1)
l

8: f̄l = a
(0)
l +

sτ−1(β)

sτ−1(vτ−1)
f̄l+2τ−1

9: end for
10: return f̄

III. THE PROPOSED ALGORITHM

This section derives the fast error and erasure decoding
algorithm.

Let ϵ = n− k. An (n, k) RS code over F2m is defined by

{(f(ω0), f(ω1), . . . , f(ωn−1)) | deg(f(x)) < 2m − ϵ,

f(ωl) = 0, l = n, n+ 1, . . . , 2m − 1}.

Detailed explanation of this definition is referred to [5]. To
simplify the discussion, we use the original codeword, that is

F = (f(ω0), f(ω1), . . . , f(ω2m−1)), (2)

instead of the shortened codeword. Obviously, since f(ωl) = 0
for n ≤ l < 2m, these positions need not be sent, and thus
they are not disturbed by the noise.

The received vector may contain both errors and erasures.
We say an error occurs if a different symbol is received for
a transmitted symbol and an erasure occurs if the transmitted
symbol is unreadable or lost at the receiver. The error pattern E
is a vector (e0, e1, . . . , e2m−1) such that a nonzero component
implies an error occurs in that position. In the same manner,
the erasure pattern W is a vector (w0, w1, . . . , w2m−1) such
that a nonzero component implies an erasure occurs. The
received vector is written as

R = F+E+W,

where E and W are the error and erasure patterns, respec-
tively. After assigning 0 to all erased positions, by finite field
Fourier transform, there exists r(x) of degree deg(r(x)) < 2m

satisfying

R = (r(ω0), r(ω1), . . . , r(ω2m−1)). (3)

The notation Ew represents the set of erasure locators known
in advance. Let Ee be the set of error locators, i.e., Ee = {ωi |
f(ωi) ̸= r(ωi), ωi /∈ Ew}. Clearly, we have f(ωi) ̸= r(ωi) if
ωi ∈ Ee and r(ωi) = 0 if ωi ∈ Ew. The decoder needs to find
the set Ee, the error value f(ωi)− r(ωi) for ωi ∈ Ee and the
erasure value f(ωi) for ωi ∈ Ew. Without loss of generality,
we assume that |Ee| = g, |Ew| = h and 2g + h ≤ n− k.

The error locator polynomial and erasure locator polynomial
are defined as

λ(x) =
∏
a∈Ee

(x− a), γ(x) =
∏

a∈Ew

(x− a),

respectively. For all ωl ∈ F2m , we have

f(ωl)λ(ωl)γ(ωl) = r(ωl)λ(ωl)γ(ωl).

This implies that, for all ωl,

f(x)λ(x)γ(x) ≡ r(x)λ(x)γ(x) (mod (x− ωl)).

According to the Chinese remainder theorem, we have

f(x)λ(x)γ(x) ≡ r(x)λ(x)γ(x) (mod sm(x)).

Hence, there exists q(x) such that

f(x)λ(x)γ(x) = r(x)λ(x)γ(x) + q(x)sm(x), (4)

where sm(x) = x2m −x. As deg(f(x)λ(x)γ(x)) < 2m − ϵ+
g+h, deg(r(x)λ(x)γ(x))< 2m+g+h and deg(sm(x)) = 2m,
we have deg(q(x)) < g + h.

Let µ be the smallest integer such that 2µ ≥ ϵ. By
polynomial division, we have the following equations:

f(x)λ(x)γ(x) = z1(x)p2m−2µX̄2m−2µ(x) + ηf (x),

r(x) = u1(x)p2m−2µX̄2m−2µ(x) + ηr(x),

sm(x) = (sµ(x) + sµ(vµ))p2m−2µX̄2m−2µ(x) + ηs(x).

When dividing p2m−2µX̄2m−2µ(x) on both sides of (4) and
keeping the quotients, we obtain

z1(x) = u1(x)λ(x)γ(x) + q(x)(sµ(x) + sµ(vµ)) + θ(x),
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where θ(x) corresponds to the quotient of λ(x)γ(x)ηr(x) +
q(x)ηs(x). Clearly, deg(θ(x)) < g + h. Let z2(x) = z1(x)−
θ(x)− q(x)sµ(vµ). It follows that

z2(x) = u1(x)λ(x)γ(x) + q(x)sµ(x). (5)

Here, we have deg(z2(x)) < 2µ − ϵ+ g + h. By polynomial
division, we have the following equations:

z2(x) = z3(x)

2µ−1∏
i=ϵ−h

(x− ωi) + ηz2(x),

u1(x)γ(x) = u2(x)

2µ−1∏
i=ϵ−h

(x− ωi) + ηu1
(x), (6)

sµ(x) =

ϵ−h−1∏
i=0

(x− ωi)

2µ−1∏
j=ϵ−h

(x− ωj).

Hence, dividing both sides of (5) by
∏2µ−1

i=ϵ−h(x − ωi) and
keeping the quotients, we obtain that

z3(x) = u2(x)λ(x) + q(x)

ϵ−h−1∏
i=0

(x− ωi) + θ1(x), (7)

where θ1(x) corresponds to the quotient of λ(x)ηu1(x). It
is easy to verify that deg(θ1(x)) < g. If we let z4(x) =
z3(x)− θ1(x), we then obtain the key equation

z4(x) = u2(x)λ(x) + q(x)

ϵ−h−1∏
i=0

(x− ωi), (8)

where deg(z4(x)) < deg(λ(x)) = g.
The key equation (8) can be solved by the modular approach

proposed in [6] and the coordinate vectors of λ(x) and z4(x)
for X̄ can be obtained.

Once we are given the error locator polynomial λ(x), the
error locators can be computed by

FFTX̄(λ̄, µ, ωi), i = 0, 1, . . . , ⌈n/2µ⌉ − 1, (9)

where λ̄ is the coordinate vector of λ(x) with respect to X̄.
It remains to compute the error and erasure values. The

ordinary derivative of (4) is

f
′
(x)λ(x)γ(x) + f(x)λ

′
(x)γ(x) + f(x)λ(x)γ

′
(x)

= r
′
(x)λ(x)γ(x) + r(x)λ

′
(x)γ(x) + r(x)λ(x)γ

′
(x)+

q
′
(x)sm(x) + q(x)s

′

m(x). (10)

Recall that s
′

m(x) = 1. If a ∈ Ee, by substituting a into (10),
we have

f(a)λ
′
(a)γ(a) = r(a)λ

′
(a)γ(a) + q(a).

Therefore, the error value

(f(a)− r(a)) =
q(a)

λ′(a)γ(a)
.

If a ∈ Ew, by substituting a into (10), one has

f(a)λ(a)γ
′
(a) = r(a)λ(a)γ

′
(a) + q(a).

Since r(a) = 0 if a is an erasure, thus the erasure value

f(a) =
q(a)

λ(a)γ′(a)
.

To sum up, if we let Λ(x) = λ(x)γ(x), Forney’s formula for
computing both error values and erasure values is

q(a)

Λ′(a)
. (11)

Notice that if λ(x) and z4(x) are known, q(x) can be com-
puted by the key equation (8).

According the above discussion, it is easy to see that the
decoding algorithm is capable of correcting g errors and h
erasures for all 2g + h ≤ n− k.

IV. IMPLEMENTATION AND COMPARISON

This section presents the details of implementation and
analyzes the computational complexity. Then a comparison
between the proposed method and other known algorithms is
provided.

The whole description of the algorithm is shown in Algo-
rithm 3.

Algorithm 3 Error-and-Erasure Decoding Algorithm
Input: Received vector R = F+E+W.
Output: The codeword F.

1: Given Ew, compute the erasure locator polynomial γ(x).
2: Compute the syndrome polynomial u1(x) according to

(12).
3: Evaluate u1(x) at points ω0, ω1, . . . , ω2µ−1 by Algorithm

1.
4: Given ηu1

(ωl) = u1(ωl)γ(ωl) for l = ϵ − h, . . . , 2µ − 1,
compute ηu1

(x) by IFFTX̄.
5: Evaluate u1(x), γ(x),

∏2µ−1
i=ϵ−h(x − ωi) and ηu1

(x) at
ω2µ , . . . , ω2µ+1−1 and compute u2(x) according to (6).

6: Given u2(x), compute the error locator polynomial λ(x)
and the error evaluator polynomial z4(x) by the modular
approach [6].

7: Find the error locations by (9).
8: Given z4(x), u2(x), λ(x) and

∏ϵ−h−1
i=0 (x − ωi), compute

q(x).
9: Compute Λ(x) = λ(x)γ(x).

10: Compute the error and erasure pattern by (11).
11: return F = R+E+W.

Given Ew, the computation of γ(x) takes O(h log2 h) field
operations by repeatedly using the convolution theorem. As
h ≤ n − k, this step costs at most O((n − k) log2(n − k))
operations (Step 1 in Algorithm 3). Note that, by using the
fast Walsh-Hadamard transform, [11] proposed a method of
complexity O(2m log 2m) for computing γ(x). However, it is
more suitable for low-rate RS codes.

Let Ri,µ = (r(ωi·2µ), r(ωi·2µ+1), . . . , r(ωi·2µ+2µ−1)),
which is a sub-vector of R. The coordinate vector of u1(x)
with respect to X̄ is computed by (see [4])

⌈n/2µ⌉−1∑
i=0

IFFTX̄(Ri,µ, µ, ωi·2µ)/p2m−2µ . (12)
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This costs O(n log(n − k)) field operations (Step 2 in Algo-
rithm 3).

According to (6), we have ηu1
(ωl) = u1(ωl)γ(ωl) for l =

ϵ−h, ϵ−h+1, . . . , 2µ−1. As deg(ηu1
(x)) < 2µ−ϵ+h, thus

ηu1
(x) is determined uniquely. Hence, we first evaluate u1(x)

and γ(x) at ω0, ω1, . . . , ω2µ−1 and then compute ηu1(x) by
IFFTX̄. Next, u1(x), γ(x),

∏2µ−1
i=ϵ−h(x − ωi) and ηu1(x) are

evaluated at ω2µ , ω2µ+1, . . . , ω2µ+1−1. By (6), we can obtain
u2(ω2µ), . . . , u2(ω2µ+1−1). Therefore, u2(x) can be computed
by IFFTX̄. This step costs O((n− k) log(n− k)) operations
(Step 3, 4 and 5 in Algorithm 3).

Given u2(x), the key equation (8) can be solved by fre-
quency domain modular approach or fast modular approach
(Algorithm 4 or 6 in [6]) and λ(x) and z4(x) are obtained.
This step costs at most O((n−k) log2(n−k)) operations (Step
6 in Algorithm 3). More detailed discussions are referred to
[6].

The roots of λ(x) are computed by (9). Notice that only
the elements ω0, ω1, . . . , ωn−1 are taken into account. This
process needs O(n log(n−k)) operations (Step 7 in Algorithm
3).

Given the evaluations of z4(x), u2(x), λ(x) and∏ϵ−h−1
i=0 (x−ωi) at ω2µ , ω2µ+1, . . . , ω2µ+1−1, then by (8), the

evaluations of q(x) can be computed. So the polynomial q(x)
is obtained by IFFTX̄. This step takes O((n− k) log(n− k))
operations (Step 8 in Algorithm 3). Recall that we already
have the evaluations of λ(x) and γ(x). Thus, Λ(x) can be
computed by multiplying them and executing IFFTX̄. Finally,
the error and erasure values are computed by (11). This
process needs O((n − k) log(n − k)) operations (Step 9 and
10 in Algorithm 3). Hence, the whole decoding algorithm has
a complexity of O(n log(n− k) + (n− k) log2(n− k)).

Remarks: For RS codes with various parameters, the de-
coding procedures may be slightly different. The reason is
that if the polynomial to be evaluated has a small degree, a
straightforward computation is more efficient than FFTX̄. This
also holds for IFFTX̄. On the other hand, if the number of
points to be transformed is not a power of two, the FFTX̄
and IFFTX̄ should be slightly modified. More discussions
have been provided in [12], where the FFTX̄ and IFFTX̄
are generalized to arbitrary points. In practice, one should
carefully design the decoding algorithm for specific RS codes
to obtain further improvement.

Table I compares the proposed method and the algorithm
in [7] when decoding ⌊(n − k)/2⌋ errors. For decoding
RS(255, 223) codes, the proposed method saves 32% field
operations. Furthermore, the proposed method can be used
for RS codes with arbitrary parameters, which is more flexible
than the technique in [7]. Table II provides the number of field
operations needed for RS(255, 223) when decoding various
numbers of errors and erasures. Obviously, more operations
are needed if more errors occur since there are more iterations
in the key equation solver.

V. CONCLUSION

An important research issue is designing an efficient al-
gorithm for the error-and-erasure decoding of Reed-Solomon

TABLE I
COMPLEXITY COMPARISON BETWEEN ALGORITHM IN [7] AND THE

PROPOSED METHOD

Codes Algorithm in [7] Proposed method
Mul. Add. Div. Mul. Add. Div.

RS(255, 223) 9,476 12,892 0 6,458 8,691 148
RS(511, 447) 41,606 54,064 0 18,714 23,451 212
RS(1023, 895) 131,741 164,211 0 78,022 88,657 608

TABLE II
COMPLEXITY OF THE PROPOSED METHOD WHEN DECODING VARIOUS

NUMBERS OF ERRORS AND ERASURES FOR RS(255, 223)

g
h h = 24 h = 16

Mul. Add. Div. Mul. Add. Div.
g = 0 4,468 7,371 156 3,750 6,851 148
g = 2 4,977 8,043 158 4,345 7,491 150
g = 4 5,362 8,467 160 4,769 7,883 152

codes. A fast error and erasure decoding algorithm of com-
plexity O(n log(n−k)+(n−k) log2(n−k)) is proposed for RS
codes in this work. This algorithm also suits practical codes
such as RS(255, 223). The proposed algorithm is very efficient
under software implementation; however, implementing it in
hardware is one potential future research direction.
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