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Abstract— In this letter, we consider the distributed classifica-
tion problem in wireless sensor networks. The DCSD approach
employing the binary code matrix has recently been proposed
to cope with the errors caused by both sensor faults and the
effect of fading channels. However, the performance of the system
employing the binary code matrix could be degraded if the
distance between different hypotheses can not be kept large. In
this letter, we design the DCSD approach employing the D-ary
code matrix when log2 D bits local decision information is used,
where D > 2. Simulation results show that the performance of
the DCSD approach employing the D-ary code matrix is better
than that of the DCSD approach employing the binary code
matrix.

Index Terms— Fault-tolerance, wireless sensor networks, cod-
ing, multisensor fusion, distributed classification.

I. INTRODUCTION

RESEARCH on decentralized multiple event or target
classifications based on observation in wireless sensor

networks has received a great amount of interest recently. In
the distributed multiclass classification problem, each local
sensor transmits its decision to the fusion center [1], [2] for
making the final classification decision. The fusion center can
be the cluster head of a cluster-based wireless sensor network.
Due to bandwidth and energy limitations in wireless sensor
networks (WSN), the information bits sent out from each local
sensor could be less than �log2 M�, where M is the number
of classes to be distinguished. Also, it has been indicated
that, in a wireless sensor network, fault-tolerance capability
is critical since sensors can be damaged, blocked, or run out
of battery energy [3], [4]. We take the above requirements into
consideration in this letter.

Recently, distributed classification fusion approach using
error correcting codes (DCFECC) [5] and using soft-decision
decoding (DCSD) [6] have been proposed to tolerate several
types of faults including stuck-at faults, drained batteries, and
channel transmission errors. At the heart of both approaches is
the fault-tolerant fusion rule. Unlike the conventional approach
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that employs the optimal fusion rule [7], the fault-tolerant
fusion rule provides enough distance between the decision
regions corresponding to different hypotheses by using a code
matrix. The observed local decision vectors could still fall into
correct decision regions even when several sensor faults are
present. The DCSD approach extends the DCFECC approach
by using soft decision decoding to combat channel fading.

The original DCSD approach is designed to employ a
binary code matrix. However, when the number of sensors
is small or the number of hypotheses is large, using binary
code matrix may not be enough to keep a large distance
between different hypotheses. The classification performance
and fault-tolerance capability will be degraded due to the
smaller distance between different hypotheses. In this letter,
we extend the DCSD approach and employ a D-ary code
matrix with D > 2 when log2 D bit local decision information
is used. We call this new approach non-binary DCSD. Note
that if D is larger than the number of hypotheses M , then the
best code matrix is the repetition code matrix. In this case,
we have the largest minimum Hamming distance equal to the
number of sensors, N . Thus, in this work we only consider
the case that D < M .

II. PROBLEM STATEMENT

Let H�, where � = 0, 1, . . . ,M − 1 and M ≥ 2, denote
the M hypotheses under test at each of the N sensors.
Furthermore, the a priori probabilities of these M hypotheses
are denoted by P (H�) = P�, respectively. The observation at
each local sensor or detector is represented by yj , where j =
1, . . . , N . Assume that the distribution function, P (yj |H�), of
yj under each hypothesis is known.

A code matrix C to perform distributed classification fusion
is designed by either the simulated annealing or the gradient
approach [5] in advance. The code matrix is an M×N matrix
with elements c�j , 0 ≤ � ≤ M − 1, 1 ≤ j ≤ N . c�j could be
D-ary (D > 2) as opposed to be only binary in the problem
formulated in our earlier work [5]. Each hypothesis H� ∈
Ω = {H0,H1, . . . , HM−1} is associated with a row in the
code matrix C. Each local sensor processes its observations
and makes a multilevel D-ary decision uj = d, where d =
0, . . . , D−1, based on the corresponding column of matrix C.
Since the multilevel local decision rule in the DCSD approach
is designed according to either D-ary or binary code matrix
C, different distance metrics must be employed to measure
the distance between the multilevel local decision and the
codeword in the given code matrix. These distance metrics will
be used to design the optimal local fusion rule but the decoding
rule at the fusion center will employ soft-decision decoding.
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Distance metrics will be defined in Section III. Note that each
local sensor makes its decision by itself based on its own
observations and is independent of the other sensors. After
processing the observations locally, possibly in the presence
of faults, the local decisions uj are mapped to a binary signal
vector bj = (bj1, . . . , bjS), where S = �log2 D� is the number
of bits to represent the local decision uj = d, d = 0, . . . , D−1.
In this letter, we assume that all local decisions, uj , take
values from 0 up to D − 1. For instance, a four-level local
decision is transmitted by means of one of the 2-bit binary
signal vectors, {11, 10, 01, 00}. These binary signal vectors
are transmitted to the fusion center over parallel channels
that are assumed to undergo independent fading. We further
make the assumption of phase coherent reception. Hence, the
effect of fading channels is further simplified as a real scalar
multiplication given the transmitted signal.

We assume that binary antipodal signalling is employed for
transmission and results in a received vector at the fusion
center consisting of real numbers, R = (r1, r2, . . . , rN ),
rj = (rj1, . . . , rjS), where j = 1, . . . , N . The rjs, for s =
1, . . . , S, can be expressed as rjs = αjs(−1)bjs

√
Eb + njs,

where Eb is the energy per channel bit and njs is a noise
sample from a Gaussian process with two-sided power spectral
density N0/2. αjs is the attenuation factor determined by the
fading type.

III. THE NON-BINARY DCSD SCHEME

For simplicity, the derivation of local decision rules is based
on receiving multilevel quantization (hard) decisions instead of
the real numbers at the fusion center. The real vector is used,
however, during the design of the non-binary DCSD fusion
rule (decoding rule).

A. Optimal local decision rules

Let the Hamming distance measure between u =
(u1, . . . , uN ) and c� = (c�1, . . . , c�N ), � = 0, . . . , M −
1, be defined as dD(u, c�) =

∑N
j=1 dD

j (uj , c�j), where
dD

j (uj , c�j) = 0 if uj = c�j ; otherwise dD
j (uj , c�j) = 1.

Define L�
i1,i2,...,iN

, where i1, i2, . . . , iN ∈ {0, 1, . . . ,D − 1},
as the cost that the received word at the fusion center u1

equals (i1, i2, . . . , iN ) and the true hypothesis is H�. These
costs L�

i1,i2,...,iN
can be determined by the decision regions

of codewords. According to the designed code matrix, the
decision region Z of a codeword c ∈ Cw is given as follows:

Z(c) = {u|dD(u, c) ≤ dD(u, c′) for all c′ ∈ Cw},
where Cw = {c�|� = 0, . . . ,M − 1} is the set of all
codewords, i.e., all rows of the code matrix. In order to
minimize the probability of misclassification, set L�

i1,...,iN
= 0

if (i1, . . . , iN ) is in the decision region of c� that is the
row of C corresponding to the hypothesis H�; otherwise set
L�

i1,...,iN
= 1. Whenever a received vector (i1, . . . , iN ) simul-

taneously belongs to decision regions of ck0 , ck1 , . . . , ckq−1 ,
where q > 1, for all � = 0, . . . , q−1, set L�

i1,...,iN
= (1−1/q),

i.e., we assume the fusion center randomly picks one codeword

1The received word u is assumed to be a hard-decision result. That is,
ui ∈ {0, 1, . . . , D − 1}.

among the codewords which are at the same distance from the
received word u.

According to the costs assigned above, the probability of
error can be minimized if we set the local decision rule at
sensor k as

P (uk = ik|yk) =

⎧⎪⎪⎨
⎪⎪⎩

1, if I∗
k(ik) ≤ I∗

k(m) for all ik
and m such that ik �= m, and

ik,m = 0, . . . , D − 1;
0, otherwise,

(1)
where,

I∗
k(ik) =

∑
�

P (yk|H�)
∑

i1,...,ik−1,ik+1,...,iN

P� ×

P (u1 = i1|H�) × · · · × P (uk−1 = ik−1|H�) ×
P (uk+1 = ik+1|H�) × · · · × P (uN = iN |H�) ×
L�

i1,...,ik,...,iN
, (2)

under the assumption of conditionally independent observa-
tions given their hypotheses.

B. Non-binary DCSD fusion (decoding) rule

As mentioned earlier, the essence of the fusion process
in the DCFECC approach is decoding. This coding structure
enables us to consider the received vector at the fusion center
as a codeword transmitted collectively from all local sensors.
The non-binary DCSD fusion rule is then able to jointly
consider the local decision rules and word-by-word decoding
to achieve robust system performance by providing sensor
fault-tolerance capability and channel error correction.

By decoding the received vector using the MAP criterion
and assuming equal prior probability of each hypothesis, we
have the following fusion rule: Given the received vector R,
set ĉ = c� ∈ Cw, if

P (R|c�) ≥ P (R|ck), for all ck ∈ Cw. (3)

Assuming conditional independence of observations at the sen-
sors and discrete memoryless channels between local decision
outputs and the fusion center, (3) can be formulated as

N∏
j=1

P (rj |c�j) ≥
N∏

j=1

P (rj |ckj), for all ck ∈ Cw.

The above equation can be rewritten as

N∑
j=1

ln
∑D−1

d=0 P (rj |ujd)P (ujd|c�j)∑D−1
d=0 P (rj |ujd)P (ujd|ckj)

≥ 0, for all ck ∈ Cw.

(4)
since the received rj only depends on the local decision ujd

and does not depend on the code matrix we designed.

IV. PERFORMANCE EVALUATION

In this section, the performance of the non-binary DCSD
using D-ary code matrices, where D = 4, is evaluated and
then compared with that of the DCSD employing binary code
matrices. Since D = 4 we only consider the case of 2-bit
information in the simulation.
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Fig. 1. Performance comparison of the non-binary DCSD with D-ary code
matrix and the DCSD with binary code matrix, when stuck-at faults are
considered. CSNR is at 5 dB.
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Fig. 2. Performance comparison of the non-binary DCSD with D-ary
code matrix and the DCSD with binary code matrix when stuck-at faults
are considered. OSNR is at 5 dB.

A system with a fusion center and seven independent local
sensors are considered to identify seven equally likely hy-
potheses H0,H1,H2,H3,H4,H5, and H6.The probability den-
sity function for each hypothesis is assumed to be a Gaussian
distribution with the same variance (σ2 = 1) but with
different means −3V ,−2V ,−V ,0,V ,2V , and 3V , respectively.
We assume that all the sensor measurements are identically
distributed. The observation signal-to-noise ratio (OSNR) at
each local sensor is defined as 20 log10 V . Also, the total
energy E output from the local sensor nodes is fixed, and
E = S × Eb, where Eb is the energy per channel bit. The
decisions of local sensors are transmitted over Rayleigh fading
channels to the fusion center. The channel signal-to-noise ratio
(CSNR) is defined as γ = Eb/N0×E[α2

js]. In this evaluation,
the Gauss-Seidel algorithm [1] is used to compute the local
decision rules in (1).

The D-ary code matrix and the binary code matrix em-
ployed in this evaluation are designed by simulated annealing
and are given in Code Matrices I and II, respectively:

Code Matrix I: (11556, 7693, 7276, 2008, 1923, 7209, 9487)

Code Matrix II: (25, 112, 99, 57, 102, 51, 51).

The referred code matrices are represented as a vector of M
bit integers. Each integer zj corresponding to column j in the

code matrix represents a column vector in the code matrix,
and can be expressed as zj =

∑M−1
�=0 c�j ×Q�, where Q = D

if D-ary code matrix is used and Q = 2 if binary code matrix
is employed. It is easy to see that the minimum Hamming
distance between any two codewords in the D-ary code matrix
is 4. However, the minimum Hamming distance between any
two codewords in the binary code matrix is only 2.

The performance of both schemes are evaluated in both
fault-free and faulty situations. We consider the stuck-at fault
in this evaluation. When the stuck-at fault occurred at a
particular sensor node, we assume that the sensor always
makes the decision 3, i.e. u1 = 3 and sends the 2-bit binary
signal vector 11 to the fusion center.

Figs. 1 and 2 show the performance of the system that
employ the D-ary code matrix and binary code matrix in
sensor-fault free case, one stuck-at fault (sensor 1) case, and
two stuck-at faults (sensors 1 and 2) case. Fig. 1 shows that the
performance comparison when the transmission channel has
CSNR= 5 dB. Fig. 2 shows the performance comparison when
the OSNR is fixed at 5 dB. From the result of both figures, one
can see that the performance of the system employing a D-ary
code matrix is better than that of the system employing the
binary code matrix in both the sensor-fault free situation and
sensor faults case. The performance difference becomes more
and more apparent as the number of sensor faults increases.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have extended the DCSD approach by
using a D-ary code matrix, where D > 2. This approach can
be used in cluster-based WSN, where collaborative detection
processing is carried out among nodes within a cluster with
all the local decisions related to the same phenomenon. Future
extensions to this research include incorporation of spatio-
temporal information and detection/classification of multiple
targets.
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