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1 Introduction

Reed-Solomon (RS) codes were invented in 1960 (Reed
and Solomon, 1960). An (n, k) RS code is encoded
over a finite field Fq for the length n equal to q −
1 or q and information dimension k. RS codes are
maximum distance separable (MDS), where the minimum
Hamming distances of them are n− k + 1. (n, k) RS
codes can correct up to ⌊(n− k)/2⌋ erroneous symbols.
The systematic (n, k) RS code adds n− k redundancy
symbols with the k information (message) symbols to form
a codeword. RS codes have been applied to many important
applications, including space exploration, barcodes, storage
devices, digital broadcast system, and data transmission
technologies. Recently, RS codes are adapted to construct
other distributed storage codes such as regenerating codes
(Rashmi et al., 2011). Since the real-world applications of
RS codes involve erasure and error correction functions
over characteristic-2 finite fields, the decoding complexity
of RS codes has attracted a lot of attentions (Chen and Yan,
2008; Truong et al., 2006; Justesen, 1976; Gao, 2002).

Recently some fast approaches to the decoding of
RS codes based on fast Fourier transform (FFT) or fast
polynomial arithmetic techniques were invented (Justesen,
1976; Gao, 2002; Dianat et al., 2006; Motazedi and
Dianat, 2018; Lin et al., 2014, 2016a, 2016b). Among
these approaches, Lin et al. (2014, 2016a) showed a novel
method to perform FFT over finite fields. The authors
invented a new polynomial basis that is constructed by
subspace polynomials over F2m to perform FFT. For a
polynomial of degree less than n presented in this new
basis, the n-point evaluations on this polynomial can be
performed in O(n logn) field operations. That is, it is the
first FFT on the coefficients of a polynomial with time
complexity O(n logn) over all finite fields. Based on the
FFT, encoding and erasure decoding algorithms for (n, k)
RS codes were proposed with time complexity O(n logn).
Later, an error-correction RS decoding algorithm with
decoding complexity O(n log(n− k) + (n− k) log2(n−
k)) was provided in Lin et al. (2016b).

The original key equation derived in Lin et al. (2016b)
was based on Chinese remainder theorem. In this work,
we re-derive this key equation based on the Lagrange
polynomial which is easier than the original derivation.
We also further generalise the error decoding of RS codes
presented in Lin et al. (2016b) to an erasure-and-error
decoding. This decoding algorithm can simultaneously
correct up to v errors and f erasures when 2v + f <
n− k + 1, which is the best one can do. The decoding
complexity is only O(n logn+ (n− k) log2(n− k)). This
decoding complexity, to the best of the authors’ knowledge,
is the least so far.

The rest of this work is presented as follows. Section 2
reviews the FFT and the encoding algorithm of RS codes.
Section 3 derives the key equation and Section 4 proposes
the erasure-and-error decoding algorithm of RS codes.
Section 5 concludes this work.

2 Brief review of the FFT and encoding of RS codes
based on the FFT

Let F2m denote the finite field with size 2m. Assume that
B = (b0, b1, ..., bm−1) is a basis of F2m . A subspace Vk of
F2m with dimension k is given as

Vk = {i0 · b0 + i1 · b1 + ...+ ik−1 · bk−1|,
∀ij ∈ {0, 1}}, (1)

where Bk = (b0, b1, ..., bk−1) is a basis of subspace Vk, and
k ≤ m. Let {ω0, ω1, ..., ω2m−1} denote the 2m elements of
F2m and they are represented as

ωi = i0 · b0 + i1 · b1 + ...+ im−1 · bm−1,

where

i = i0 + i1 · 2 + ...+ im−1 · 2m−1, ∀ij ∈ {0, 1} (2)
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is the binary representation of i. The subspace polynomial
(Ore, 1933; Cantor, 1989) of Vk with degree 2k is defined
as

fk(x) =
∏
ω∈Vk

(x− ω). (3)

Next we present the basis designed in Lin et al. (2016b)
based on the subspace polynomials. Let X = {X0(x),
X1(x), ..., X2m−1(x)} denote a basis of polynomial ring
F2m [x]/(x2m − x), where

Xi(x) =
m−1∏
j=0

(fj(x))
ij , (4)

and ij ∈ {0, 1} is given in equation (2) that is the binary
representation of i. Note that deg(Xi(x)) = i, and thus the
basis X can represent all polynomials in F2m [x]/(x2m − x).

A polynomial P̄ℓ(x) of degree ℓ− 1 represented in the
basis X is

P̄ℓ(x) =
ℓ−1∑
i=0

āiXi(x), (5)

where āi ∈ F2m . Let P̄ℓ = (ā0, ā1, ..., āℓ−1) indicate the
vector of the coefficients of P̄ℓ(x). Throughout this paper,
in order to avoid confusion, we sometimes put the ‘bar’ on
the top of a polynomial when it is represented in the basis
X. For any vector v = (v0, v1, ..., vn−1), its polynomial
representation is denoted as v(x) =

∑n−1
i=0 vix

i.
Let g(V ) denote a sequence of evaluation values of

polynomial g(x), where V is a set of elements from
F2m . Lin et al. (2016b) presented a recursive algorithm in
O(2k log 2k) to compute P̄2k(Vk + β), where

Vk + β = {ω + β, ω ∈ Vk} for any β ∈ F2m .

The algorithm is an FFT on the coefficients of g(x).
We present it in Algorithm 1. Note that Algorithm 1
is performed under the basis X̄ = {X̄0(x), X̄1(x),
..., X̄2m−1(x)}, where X̄i(x) = Xi(x)/pi and pi =∏m−1

j=0 (fj(bj))
ij , 0 ≤ i ≤ 2m − 1. pi are pre-calculated

constants to normalise the basis such that the FFTX̄ has
multiplication complexity constant 1/2. Hence, when we
call FFTX in this paper, we assume that the normalisation
is performed before and after the FFTX̄. It is the same for
the inverse of FFT, IFFTX. The normalisation takes O(2k)
and will be ignored since 2k-point FFTX̄ and IFFTX̄ take
O(2k log 2k).

An efficient encoder has been presented in Lin et al.
(2016b) with complexity O(n log(n− k)). Now consider an
(n = 2m, k) RS code over F2m with 2t = n− k. Assume
the information polynomial ū(x) is presented in the basis
X such that ū(x) =

∑k−1
i=0 uiXi(x). Let

u = (u0, u1, ..., uk−1,

2t︷ ︸︸ ︷
ω0, ω0, ..., ω0), (6)

with 2t ω0s as the coefficients in the high degrees. Then the
codeword c can be computed via FFTX as follows. First, c
is divided into a number of sub-vectors

c = (c0, c1, ..., cn/2t−1), (7)

where each ci has 2t elements and is defined as

ci = (ci·2t , c1+i·2t , ..., c2t−1+i·2t) i = 0, 1, ..., n/2t − 1.

We want c to have the message symbols in {ci}n/2
t−1

i=1 and
all parity symbols in c0. The parity c0 can be computed via

c′0 = IFFTX(c1, t, ω1·2t) + IFFTX(c2, t, ω2·2t) + ...

+ IFFTX(cn/2t−1, t, ωk),

c0 = FFTX(c′0, t, ω0).

(8)

Algorithm 1 FFT in the basis X̄

Input: FFTX̄(P̄2k , k, β): P̄2k = (ā0, ā1, ..., ā2k−1),
and β ∈ F2m

Output: 2k evaluations P2k = (a0, a1, ..., a2k−1),
where each ai = P̄2k(ωi + β)

if k = 0 then1

return ā02

for i = 0, ..., 2k−1 − 1 do3

g
(0)
i ← āi +

fk−1(β)
fk−1(bk−1)

āi+2k−14

g
(1)
i ← g

(0)
i + āi+2k−1

Call D0 ← FFTX̄(P̄
(0)

2k−1 , k − 1, β), where5

P̄(0)

2k−1 = (g
(0)
0 , ..., g

(0)

2k−1−1
) and

D0 = (a0, ..., a2k−1−1)

Call D1 ← FFTX̄(P̄
(1)

2k−1 , k − 1, vk−1 + β), where6

P̄(1)

2k−1 = (g
(1)
0 , ..., g

(1)

2k−1−1
) and

D1 = (a2k−1 , ..., a2k−1)
return P2k = (a0, a1, ..., a2k−1)7

Source: Lin et al. (2016b)

3 Syndrome and key equation of the RS codes

In this section we discuss the syndromes of the traditional
RS codes proposed by Reed and Solomon (1960) that
perform encoding and decoding in monomial basis, 1, x, x2,
..., x2m−1, and the RS codes proposed in Lin et al. (2016b)
that perform encoding and decoding in X.

Let the (n = 2m, k) RS code over finite field F2m

be C and the codeword corresponding to the information
sequence u0, u1, ..., uk−1 be

c = (c0, c1, ..., cn−1) = (ū(ω0), ..., ū(ωn−1)),

where ū(x) =
∑k−1

i=0 uiXi(x) and n− k = 2t for some
integer t. After we expand Xi(x) into monomial basis
representation and substitute them into ū(x), we have

ū(x) =
k−1∑
i=0

uiXi(x) =
k−1∑
i=0

ûix
i.

Let the (n = 2m, k) RS code over finite field F2m given
in Reed and Solomon (1960) be Ĉ such that the codeword
corresponding to the information sequence û0, û1, ..., ûk−1

be

c = (c0, c1, ..., cn−1) = (û(ω0), ..., û(ωn−1)),
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where û(x) =
∑k−1

i=0 ûix
i. Hence, the codeword in C

corresponding to the information sequence u0, u1, ..., uk−1

is the same as that in Ĉ corresponding to the information
sequence û0, û1, ..., ûk−1. We then have the following
lemma.

Lemma 1: Let the (n = 2m, k) RS code over finite
field F2m be C and the codeword corresponding to the
information sequence u0, u1, ..., uk−1 be

c = (c0, c1, ..., cn−1) = (ū(ω0), ..., ū(ωn−1)),

where ū(x) =
∑k−1

i=0 uiXi(x). Let the (n = 2m, k) RS code
over finite field F2m given in Reed and Solomon (1960) be
Ĉ such that the codeword corresponding to the information
sequence û0, û1, ..., ûk−1 be

c = (c0, c1, ..., cn−1) = (u(ω0), ..., (ωn−1)),

where û(x) =
∑k−1

i=0 ûix
i. Then C = Ĉ.

By the above lemma, one can see that Lin et al. (2016b)
proposed a clever way to encode the RS codes that employs
the FFT proposed in Lin et al. (2016a). Assume that the
transmitted codeword is

c = (c0, c1, ..., cn−1) = (ū(ω0), ..., ū(ωn−1)).

Since C = Ĉ, by Moon (2005), we have

Lemma 2: For any c ∈ C, α, α2, ..., α2p are the roots of the
codeword polynomial c(x) =

∑n−1
i=0 cix

i, where p is the
error correction capability and 2p = n− k.

According to Lemma 2, any RS code encoded by the FFT
in X can still be decoded by traditional method such as
Berlekamp-Massey algorithm based on syndrome calculated
by c(αi) for 1 ≤ i ≤ 2p. However, when we represent
c(x) in X, i.e., c(x) =

∑n−1
i=0 ciXi(x), α, α2, ..., α2p are

not necessary roots of c(x). Hence, we cannot calculate
syndrome in X as in monomial basis.

Next we present a way to calculate syndrome in X and
derive the key equation by Lagrange polynomial instead
of Chinese remainder theorem used in Lin et al. (2016b).
Let the received vector y = (y0, y1, ..., yn−1) have v errors,
where the errors are at i1, i2, ..., iv. Assume that v ≤ p. Let

Ev = {ωiℓ ∈ F2m |1 ≤ ℓ ≤ v} (9)

denote the set of ωi corresponding to locations of errors.
The error-locator polynomial is defined as

λ(x) =
∏

ωi∈Ev

(x− ωi). (10)

Let r̄(x) be the unique polynomial with degree at most n−
1 such that, for 0 ≤ i ≤ n− 1, r̄(ωi) = yi. Note that r̄(x)
can be obtained by applying inverse FFT (IFFT) to y. If
there are no errors, r̄(x) is the information polynomial with
degree no more than k − 1. We then divide r̄(x) by Xk(x)
into

r̄(x) = r̄L(x) +Xk(x)s̄(x), (11)

where r̄L(x) is the remainder. Note that s̄(x) can be treated
as a syndrome polynomial since s̄(x) = 0 when there are
no errors.

Let y = e+ c, where e is the error pattern vector. Then

r̄(x) = e(x) + ū(x), (12)

where e(x) = IFFT(e) is the error polynomial represented
by the monomial basis. Next we derive e(x). Assume that
e = (e0, e1, ..., en−1). Hence, ei = 0 and ωi is the root of
e(x) for ωi /∈ Ev . By Lagrange polynomial, we have

e(x) =
n−1∑
i=0

ei
Ai

fm(x)

(x− ωi)
=
∑

ωi∈Ev

ei
Ai

fm(x)

(x− ωi)
, (13)

where ei = e(ωi), Ai =
∏n−1

j=0,j ̸=i(ωi − ωj) = −1 = 1, and
fm(x) =

∏2m−1
j=0 (x− ωj). We then represent fm(x) =

âm(x) +Xk(x)ft(x), where the degree of âm(x) is at most
k (Lin et al., 2016b). Multiplying equation (13) by λ(x), it
becomes

e(x)λ(x) =
∑

ωi∈Ev

ei
λ(x)

(x− ωi)
(âm(x) +Xk(x)ft(x))

= p(x) +Xk(x)ft(x)q(x), (14)

where p(x) =
∑

ωi∈Ev

ei
λ(x)

(x− ωi)
âm(x) and q(x) =

∑
ωi∈Ev

ei
λ(x)

(x− ωi)
. The degree of p(x) is less than k + v

and the degree of q(x) is less than v.
Multiplying equation (12) by λ(x) on both sides, we

have

r̄L(x)λ(x) + λ(x)Xk(x)s̄(x)

= p(x) +Xk(x)ft(x)q(x)

+λ(x)ū(x). (15)

By dividing Xk(x) and taking only quotient on both sides,
we have

z(x) = s̄(x)λ(x) + ft(x)q(x), (16)

where deg(z(x)) < v ≤ (n− k)/2. Equation (16) can be
treated as the key equation to find the error locator
polynomial λ(x) and q(x). Next we show how to calculate
the error values. The derivation is slightly different from
that given in Lin et al. (2016b).

According to equation (14),

q(x) =
∑

ωi∈Ev

ei
λ(x)

x− ωi
=
∑

ωi∈Ev

eiλi(x), (17)

where λi(x) =
λ(x)
x−ωi

. Note that λ′(x) =
∑

ωi∈Ev
λi(x) and

λ′(ωi) = λi(ωi) for ωi ∈ Ev. Hence,

q(ωj) =
∑

ωi∈Ev

eiλi(ωj) = ejλ
′(w = ωj),

∀ωj ∈ Ev, (18)
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which is equivalent to

ej = e(ωj) =
q(ωj)

λ′(ωj)
, ∀ωj ∈ Ev. (19)

If C is a systematic code, u0, u1, ..., uk−1 can be obtained
by c. If it is not, ū(x) can be obtained by applying IFFT
to c. Note that equation (19) is similar to Forney’s formula
except the error-evaluator polynomial becomes q(x).

4 Erasure-and-error decoding of RS codes

In this section, we present an erasure-and-error decoding
algorithm for (n = 2m, k) RS codes over finite field F2m ,
where n− k = 2t for some integer t. A new key equation
based on equation (16) will be presented.

4.1 Key equation

Assume the transmitted codeword is

c = (c0, c1, ..., cn−1) = (ū(ω0), ..., ū(ωn−1)).

Let the received vector y = (y0, y1, ..., yn−1) have v errors
and f erasures, where the errors are at i1, i2, ..., iv and
the erasures at j1, j2, ..., jf . Note that {i1, i2, ..., iv} ∩
{j1, j2, ..., jf} = ∅. Assume that 2v + f < n− k + 1. Let

Ev = {ωiℓ ∈ F2m |1 ≤ ℓ ≤ v} (20)

and

Ef = {ωjℓ ∈ F2m |1 ≤ ℓ ≤ f} (21)

denote the set of ωi corresponding to locations of errors
and erasures, respectively. The error-locator polynomial is
defined as

λ(x) =
∏

ωi∈Ev

(x− ωi) (22)

and the erasure-locator polynomial defined as

γ(x) =
∏

ωi∈Ef

(x− ωi). (23)

Note that, at the beginning of the decoding procedure, the
erasure-locator polynomial γ(x) can be computed since all
erased positions are known.

Let y = e+ w+ c, where e is the error pattern vector
and w is the erasure pattern vector. Then

r̄(x) = e(x) + w(x) + ū(x), (24)

where e(x) = IFFT(e) is the error polynomial and w(x) =
IFFT(w) is the erasure polynomial, both represented by the
monomial basis. Next we derive e(x) and w(x). Assume
that e = (e0, e1, ..., en−1) and w = (w0, w1, ..., wn−1).
Hence, ei = 0 and ωi is a root of e(x) for ωi /∈ Ev. Also
wi = 0 and ωi is a root of w(x) for ωi /∈ Ef . By Lagrange
polynomial, we have

e(x) =

n−1∑
i=0

ei
Ai

fm(x)

(x− ωi)
=
∑

ωi∈Ev

ei
Ai

fm(x)

(x− ωi)
, (25)

where ei = e(ωi), Ai =
∏n−1

j=0,j ̸=i(ωi − ωj) = −1 = 1,
and fm(x) =

∏2m−1
j=0 (x− ωj). Similarly, by Lagrange

polynomial, we have

w(x) =
∑

ωi∈Ef

wi
fm(x)

(x− ωi)
, (26)

where wi = w(ωi). Then we have

e(x) + w(x) =

( ∑
ωi∈Ev

ei
(x− ωi)

+
∑

ωi∈Ef

wi

(x− ωi)

 fm(x). (27)

We represent fm(x) = âm(x) +Xk(x)ft(x), where the
degree of âm(x) is at most k. Multiplying equation (27) by
λ(x)γ(x), it becomes

(e(x) + w(x))λ(x)γ(x)

=

 ∑
ωi∈Ev

ei
λ(x)γ(x)

(x− ωi)
+
∑

ωi∈Ef

wi
λ(x)γ(x)

(x− ωi)


× (âm(x) +Xk(x)ft(x)) (28)
= p(x) +Xk(x)ft(x)q(x), (29)

where

p(x) =

( ∑
ωi∈Ev

ei
λ(x)γ(x)

(x− ωi)

+
∑

ωi∈Ef

wi
λ(x)γ(x)

(x− ωi)

 âm(x)

and

q(x) =

 ∑
ωi∈Ev

ei
λ(x)γ(x)

(x− ωi)
+
∑

ωi∈Ef

wi
λ(x)γ(x)

(x− ωi)

 .

The degree of p(x) is less than k + v + f and the degree
of q(x) is less than v + f .

Multiplying equation (24) by λ(x)γ(x) on both sides,
we have

r̄L(x)λ(x)γ(x) + λ(x)γ(x)Xk(x)s̄(x)

= p(x) +Xk(x)ft(x)q(x) + λ(x)γ(x)ū(x). (30)

By dividing Xk(x) and taking only quotient on both sides
of equation (30), we have

z̄(x) = (s̄(x)γ(x))λ(x) + q(x)ft(x). (31)

Note that deg(z̄(x)) < v + f ≤ n−k+f
2 . Let

s̄(x)γ(x) = q̄g(x)ft(x) + s̄g(x), (32)

where deg(s̄g(x)) < 2t. Then s̄g(x) can be treated as
a generalised syndrome polynomial. We now have a
generalised key equation (GKE) as

z̄(x) = s̄g(x)λ(x) + q̃(x)ft(x), (33)

where q̃(x) = q̄g(x)λ(x) + q(x).
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4.2 Decoding steps

We summarise the steps of erasure-and-error decoding as
follows:

1 Calculate the generalised syndrome polynomial s̄g(x).

2 Find the error-locator polynomial λ(x) from GKE
[equation (33)] by half-GCD algorithm given in Lin
et al. (2016b).

3 Calculate the error locations Ev .

4 Determine the error values and the erasure values.

The detail of each step is given below.

Step 1

To calculate s̄g(x) we first need to determine s̄(x). By
equation (11), s̄(x) is the higher degree portion of r̄(x).
r̄(x) can be obtained by performing IFFTX on the received
vector y and s̄(x) can be obtained by the encoding scheme
given in equation (8) in Section 2, where set c̄(x) =
r̄(x) and c̄0(x) is the desired s̄(x). This calculation takes
O(n logn).

Note that s̄(x) is obtained in the basis X and γ(x)
is presented in the monomial basis. In order to perform
multiplication of s̄(x) and γ(x) to obtain s̄g(x) by FFTX,
we first need to find the values that γ(x) is evaluated
in ωi for ωi ∈ F2m , 0 ≤ i ≤ 2t − 1. This can be done
by applying the fast Walsh-Hadamard transform (FWHT)
proposed in Didier (2009). For completeness, we present
this transform in Appendix. This evaluation takes time
complexity O(n logn).

When there are 2m points evaluated for γ(x) and
s̄(x) in the field, we can compute γ(x)s̄(x) mod fm(x)
by FFTX and IFFTX as γ(x)s̄(x) mod fm(x) =
IFFTX(FFTX(γ(x))⊗ FFTX(s̄(x))), where ⊗ is the
component-wise multiplication (von zur Gathen and
Gerhard, 2013). Since we only need s̄g(x) = γ(x)s̄(x)
mod ft(x) in the GKE, next we prove that the
multiplication can be performed in F2m with 2t points
evaluated.

Lemma 3: Let s̄g(x) = s̄(x)γ(x) mod ft(x). Then

s̄g(x) = IFFTX(FFTX(γ(x))⊗ FFTX(s̄(x))),

where FFTX and IFFTX are taken in the finite field F2m

and there are only 2t evaluated points involving in the
transform.

Proof: It is well-known that γ(x)s̄(x) mod fm(x) =
IFFTX(FFTX(γ(x))⊗ FFTX(s̄(x))), where FFTX and
IFFTX are taken in the finite field F2m (von zur Gathen
and Gerhard, 2013). Since ft(ωi) = 0 for 0 ≤ ωi ≤ 2t − 1,
we have s̄g(ωi) = s̄(ωi)γ(ωi) for 0 ≤ ωi ≤ 2t − 1 and they
are the first 2t components in FFTX(γ(x))⊗ FFTX(s̄(x)).
Since deg s̄g(x) < 2t, it is uniquely defined by s̄g(ωi)
for 0 ≤ ωi ≤ 2t − 1. Hence, by IFFTX, we can recover

s̄g(x) as s̄g(x) = IFFTX(FFTX(γ(x))⊗ FFTX(s̄(x))).
Furthermore, 2t = n− k < n = 2m such that all operations
mentioned above can be performed in F2m .

The computation complexity of the IFFTX and the
IFFTX are O((n− k) log(n− k)) due to the fact that
deg(s̄(x)), deg(γ(x)) and deg(s̄g(x)) are no more than n−
k. Hence, the overall complexity to obtain s̄g(x) in this step
is O(n logn).

Step 2

This step is similar to the process to obtain λ(x) given in
Lin et al. (2016b). We briefly summarise it as follows. Fist
we divide ft(x) by s̄g(x) to obtain the remainder r̄t(x)
and the quotient q̄t(x). Then apply the half-GCD algorithm
(Algorithm 5) presented in Lin et al. (2016b) with inputs
s̄g(x), r̄t(x), and t to obtain two matrices([

w̄0(x)
w̄1(x)

]
,

[
ū0(x) v̄0(x)
ū1(x) v̄1(x)

])
. (34)

By the above matrices,

w̄1(x) = ū1(x)s̄
g(x) + v̄1(x)r̄t(x) (35)

which is equivalent to

w̄1(x) = (ū1(x)− v̄1(x)qt(x))s̄
g(x) + v̄1(x)ft(x). (36)

The error-locator polynomial then becomes

λ̄(x) = ū1(x)− v̄1(x)q̄t(x),

where λ̄(x) is λ(x) represented in the basis X. The overall
time complexity of this step is O((n− k) log2(n− k)).

Step 3

The error locations are the roots of λ̄(x). They can be
found via FFTX. The overall time complexity in this step is
O(n log(n− k)).

Step 4

In this step, we need to determine the error values and the
erasure values. According to equation (28),

q(x) =
∑

ωi∈Ev

ei
λ(x)γ(x)

(x− ωi)
+
∑

ωj∈Ef

wj
λ(x)γ(x)

(x− ωj)

=
∑

ωi∈Ev

eiλi(x)γ(x) +
∑

ωj∈Ef

wjλ(x)γj(x), (37)

where λi(x) =
λ(x)
x−ωi

and γj(x) =
γ(x)
x−ωj

. Note that λ′(x) =∑
ωi∈Ev

λi(x) and λ′(ωi) = λi(ωi) for ωi ∈ Ev. Hence,

q(ωℓ) =
∑

ωi∈Ev

eiλi(ωℓ)γ(ωℓ)

+
∑

ωj∈Ef

wjλ(ωℓ)γj(ωℓ)

= eℓλ
′(ωℓ)γ(ωℓ), ∀ωℓ ∈ Ev, (38)

which is equivalent to
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eℓ = e(ωℓ) =
q(ωℓ)

λ′(ωℓ)γ(ωℓ)
, ∀ωℓ ∈ Ev. (39)

Similarly, γ′(x) =
∑

ωj∈Ef
γj(x) and γ′(ωj) = γj(ωj) for

ωj ∈ Ef . Hence,

q(ωℓ) =
∑

ωi∈Ev

eiλi(ωℓ)γ(ωℓ)

+
∑

ωj∈Ef

wjλ(ωℓ)γj(ωℓ)

= wℓλ(ωℓ)γ
′(ωℓ), ∀ωℓ ∈ Ef , (40)

which is equivalent to

wℓ = w(ωℓ) =
q(ωℓ)

λ(ωℓ)γ′(ωℓ)
, ∀ωℓ ∈ Ef . (41)

The above calculation requires determining q(ωi), ∀ωi ∈
Ev ∪ Ef . Next we give a way to calculate them. Recall
that q(x) = q̃(x)− q̄g(x)λ(x). By equation (35), q̃(x) =
v̄1(x) and, by equation (32), ft(x)q̄

g(x) = s̄(x)γ(x)−
s̄g(x). When ωi ∈ Ev, q(ωi) = q̃(ωi) = v̄1(ωi). When ωi ∈
Ef and ft(ωi) ̸= 0, we have

q(ωi) = q̃(ωi)−
s̄(ω)λ(ωi)γ(ωi)− s̄g(ωi)λ(ωi)

ft(ωi)
(42)

= v̄1(ωi)−
s̄(ω)λ(ωi)γ(ωi)− s̄g(ωi)λ(ωi)

ft(ωi)
. (43)

When ft(ωi) = 0, more effort is needed. By taking formal
derivative on both sides of equation (32), we have

q̄g(x) + ft(x)(q̄
g)′(x) = s̄′(x)γ(x) + s̄(x)γ′(x)

− (s̄g)′(x).

Substituting ωi into the above equation, we get

q̄g(ωi) = s̄(ωi)γ
′(ωi)− (s̄g)′(ωi).

Hence, when ωi ∈ Ef and st(ωi) = 0, we have

q(ωi) = v̄1(ωi)− s̄(ωi)λ(ωi)γ
′(ωi)

− (s̄g)′(ωi)λ(ωi). (44)

In this step, several FFTX and IFFTX are involved and their
time complexity are O((n− k) log(n− k)). Furthermore,
the formal derivative of λ(x) (indeed λ̄(x)) is performed
and its time complexity is O(n logn) (Lin et al., 2016a).
The evaluation of the formal derivative of γ(x) on wi ∈ Ef

can be obtained by the FWHT given in Appendix. Hence,
the overall complexity of this step is O(n logn).

In summary, the overall time complexity of the
erasure-and-error decoding is O(n logn) +O((n− k) log2
(n− k)).

5 Conclusions

In this work, we present a fast erasure-and-error decoding
algorithm for RS codes. This algorithm is based on
a newly invented FFT over finite fields. The time
complexity of the erasure-and-error decoding for an (n, k)
RS code is reduced to O(n logn)+O((n− k) log2(n− k)).
An interesting future work is to design an erasure-and-error
decoding algorithm of RS codes such that when no error
occurs, the complexity of it can reduce to that of the erasure
decoding proposed in Lin et al. (2014).
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Appendix

Evaluating erasure-locator polynomials with FWHTs

Since the operating finite field is F2m , we have γ(x) =∏
i∈Ef

(x+ ωi). By substituting x = ωℓ ∈ F2m \ Ef into
Π(x), we have

Π(ωℓ) =
∏

ωi∈Ef ,ωi ̸=ωℓ

(ωℓ + ωi)

=
∏

ω∈F2m ,ωℓ ̸=ω

(ωℓ + ω)Rω , (45)

where {Rω|ω ∈ F2m} is defined as

Rω =

{
1 if ω ∈ Ef ;
0 otherwise. (46)

Let Log(x) denote the discrete logarithm function of F∗
2m ,

where F∗
2m = F2m \ {0}. That is, for each ω ∈ F∗

2m , we
have Log(ω) = j iff ω = αj , where α is a primitive
element of F∗

2m . Then equation (45) can be rewritten as

Log(Π(ωℓ)) =
⊎

ω∈F2m ,ω ̸=ωℓ

RωLog(ωℓ + ω),

∀ωℓ ∈ F2m \ Ef ,

where
⊎

is the summation with normal additions, rather
than the additions in the finite field. By letting Log(0) = 0,
the above equation can be rewritten as

Log(Π(ωℓ)) =
⊎

ω∈F2m

RωLog(ωℓ + ω),

∀ωℓ ∈ F2m \ Ef . (47)

In equation (47), + is the addition in F2m and it can be
treated as exclusive-or operation. Hence, equation (47) is
the logical convolution (Gibbs and Pichler, 1971; Robinson,
1972) that can be efficiently computed by FWHTs (Fino
and Algazi, 1976). The steps of the algorithm are given as
follows.

Let FWT(•) denote the h-point FWHT. An h-point
FWHT requires h lg(h) additions. Define

R̃ = (Rω0 , Rω1 , ..., Rω2m−1
),

L̃ = (0,Log(ω1),Log(ω2), ...,Log(ω2m−1)).

Equation (47) can be computed by

Rw = FWT(FWT(R̃)× FWT(L̃)), (48)

where × denotes pairwise integer multiplication. Note that
FWT(L̃) can be precomputed, and equation (48) can be
computed with performing two fast Walsh transforms of
length 2m. Since Rw is the logarithm of the desired values,
the exponent for each element is computed. Hence, the
computation complexity requires O(2m lg(2m)) modulus
additions, O(2m) modulus multiplications, and O(2m)
exponentiations for 2m = n.


