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Abstract—In this paper, we consider the update bandwidth
in distributed storage systems (DSSs). The update bandwidth,
which measures the transmission efficiency of the update process
in DSSs, is defined as the average amount of data symbols trans-
ferred in the network when the data symbols stored in a node
are updated. This paper contains the following contributions.
First, we establish the closed-form expression of the minimum
update bandwidth attainable by irregular array codes. Second,
after defining a class of irregular array codes, called Minimum
Update Bandwidth (MUB) codes, which achieve the minimum
update bandwidth of irregular array codes, we determine the
smallest code redundancy attainable by MUB codes. Third, the
code parameters, with which the minimum code redundancy
of irregular array codes and the smallest code redundancy
of MUB codes can be equal, are identified, which allows us
to define MR-MUB codes as a class of irregular array codes
that simultaneously achieve the minimum code redundancy and
the minimum update bandwidth. Fourth, we introduce explicit
code constructions of MR-MUB codes and MUB codes with the
smallest code redundancy. Fifth, we establish a lower bound of
the update complexity of MR-MUB codes, which can be used to
prove that the minimum update complexity of irregular array
codes may not be achieved by MR-MUB codes. Last, we construct
a class of (n = k + 2, k) vertical maximum-distance separable
(MDS) array codes that can achieve all of the minimum code
redundancy, the minimum update bandwidth and the optimal
repair bandwidth of irregular array codes.

I. INTRODUCTION

Some distributed storage systems (DSSs) adopt replication
policy to improve reliability. However, the replication policy
requires a high level of storage overhead. To reduce this
overhead while maintaining reliability, the erasure coding has
been used in DSSs, such as Google File System [1] and
Microsoft Azure Storage [2]. A main issue of erasure codes
in DSSs is the required bandwidth to repair failure node(s).
To tackle this issue, many linear block codes, such as regen-
erating codes [3], [4] and locally repairable codes (LRCs) [5],
[6], were proposed in recent years. When the original data
symbols change, the coded symbols stored in a DSS must be
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updated accordingly. Since performing updates consumes both
bandwidth and energy, a better update efficiency is favorable
for erasure codes in scenarios where updates are frequent.
Different update scenarios have been studied [7]–[11]. When
updating a stale node that has missed an update message from
those nodes that has the message, [7] considered the mini-
mization of the communications cost, of which tight bounds
were developed. As a follow-up, [8] extended the setting to
the regenerating-codes-based DSSs. A similar scenario was
considered in [9], where the update scheme with the minimum
communication cost for arbitrary linear functions had been
investigated. Unlike the previous works, [10] considered the
scenario that different versions of data files might coexist in a
storage system after many update activities and exploited the
differences across updates to reduce the I/O access. Recently,
in an asynchronous update scenario, [11] studied the necessary
storage cost to ensure data consistency. In this paper, a scenario
different from all mentioned above is considered. Assuming
no communication miss and no mismatch in data file versions,
we focus on the typical update process that a node sends
update information to other nodes for the maintenance of
parity symbols among nodes.

This update process has two important phases, which are
symbol transmission among nodes and symbol updating (i.e.,
reading-out and writing-in) in each node. Thus, the update
efficiency should include the transmission efficiency and the
I/O efficiency. Two definitions of I/O efficiency under the
name of update complexities have been introduced in the
literature [12]–[25]. By defining the update complexity as the
average number of coded symbols (i.e., parity symbols) that
must be updated when any single data symbol is changed,
[12]–[14] studied the I/O efficiency of the update process of
MDS array codes in the context of RAID storage systems.
By following this definition, MDS array codes with the
minimum update complexity were later constructed in [15],
[16]. Then, the same definition of update complexity was
adopted in the investigation of the update performance of
regenerating codes [17], [18] and LRCs [19], [20]. In contrast,
[21] defined the update complexity as the maximum number
of coded symbols updated when a data symbol is altered.
As a result, in [21], a code is said to be update-efficient if
its maximum update complexity is sub-linear with respect
to the code length. Based on this definition, many update-
efficient schemes were subsequently introduced in [22]–[25].
In this work, we consider the average update complexity
rather than the maximal one. There are two considerations for
our selection. First, our paper focuses on MDS array codes,
which are basically designed to tolerate a linear number of
erasures; hence, a sub-linear maximal update complexity may
not be a suitable criterion for their I/O efficiency. Second, the
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average update complexity can characterize the long-term I/O
efficiency of an update process, which is a main concern of
most storage systems. For simplicity, as in [12]–[20], we will
use update complexity to refer to average update complexity
in the rest of the paper.

One may regard the transmission efficiency as a function of
the I/O efficiency and treat the latter as a key indicator for an
update process’s efficiency. A supporting observation is that
when updating a single data symbol, as the number of symbols
transmitted between nodes is at most one, the fewer nodes
affected by an update of a symbol, the better the transmission
efficiency. However, when updating many or even all symbols
in a node simultaneously, the two efficiencies are no longer
in perfect agreement, and an update process that minimizes
the transmission efficiency may not achieve the minimum I/O
efficiency (cf. Theorem 10). To our best knowledge, there is
no work discussing the transmission efficiency in the update
process of a DSS. Note that [7]–[9] also studied the trans-
mission efficiency, however, of a different updating scenario.
They considered a setting that an offline node comes back and
has to download information from other nodes without the
knowledge of which data symbols have been modified during
the offline period and what their original values are. Instead,
we consider the transmission cost that after a node is updated
(as a usual frequent activity in a storage system), it must send
update information to other nodes to maintain the integrity of
the parity symbols among nodes.

In this paper, we introduce a new metric, called the update
bandwidth, to measure the transmission efficiency in the
update process of erasure codes applied in DSSs. It is defined
as the average amount of symbols that must be transmitted
among nodes when the data symbols stored in a node are
updated. As the storage capacity of a node is very large
nowadays, an erasure-codes-based DSS may contain a large
amount of codewords, each of which, structured as an irregular
array, places a column of symbols at a node. Let the symbols
in a node corresponding to the same codeword be a coded
block. As such, a node divides its storage capacity into several
blocks, and each block stores all symbols from a column of
a specific codeword. Since every codeword follows its own
encoding and decoding operations and there is no exchange
of updating information between codewords, without loss of
generality, we could adopt the simplest setting that the DSS
system only contains a single codeword in our analysis of
updating bandwidth. For simplicity, we consider the updating
operation of a block as a whole in this work.1 Thus, when
any data symbol in a block is required to be updated, all
data symbols in the block are involved in this single updating
operation.

The update model that we consider is described as follows.

1Although it is possible to consider the update bandwidth that allows a
partial update of symbols within a block, exchanging the information of
which symbols in a block are updated and which not with all the other
nodes requires extra maintenance bandwidth. Since the number of cases
corresponding to which symbols in a block are updated grows exponentially
fast as the block size increases, the overhead to handle partial updating may
increase considerably. Therefore, a more delicate tradeoff between the extra
maintenance bandwidth/overhead and the save of the update bandwidth is
necessary and is deferred as a future work.
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Fig. 1. An instance of the considered update model, where the data symbols
stored in N1 are updated, and Ni has the data vector xi and the parity vector
pi. When updating the data symbols stored in N1, N1 sends intermediate
symbols {∆p1,i}i=2,...,n respectively to all other nodes such that they can
calculate the new parity vectors.

Assume that there are n nodes {Ni}ni=1 in the network. Node
Ni stores data vector xi and parity vector pi, where the former
consists of data symbols, while the parity symbols are placed
in the latter. Fig. 1 demonstrates the update procedure when
the data vector x1 is updated to x∗

1. In the update procedure,
N1 first calculates n − 1 intermediate vectors {∆p1,i}ni=2,
and then sends ∆p1,i to Ni respectively for i = 2, 3, . . . , n.
After receiving ∆p1,i, Ni computes the updated parity vector
p∗
i from ∆p1,i and the old parity vector pi. This completes

the update procedure. Notably, this update model is similar
to the one adopted in [26], in which partial-updating schemes
for erasure-coded storage are considered. Our general update
model will be given formally in Section II-C.

It is worthy mentioning that the codes with the minimum
update complexity (i.e., I/O efficiency) may not achieve the
minimum update bandwidth, and vice versa. To show that, Fig.
2 presents two (n = 4, k = 2) maximum distance separable
(MDS) array codes, where the elements in the i-th column are
the symbols stored in node Ni and the number of symbols in
each node is α = 4. In Fig. 2(a), the first row and the third row
form an instance of a 2× 4 P-code [16], and the second row
and the fourth row form another instance of a 2 × 4 P-code.
Thus, Fig. 2(a) is an instance of a 4× 4 P-code. Furthermore,
Fig. 2(b) is an instance of our codes proposed in Section V.
In Figs. 2(a) and 2(b), the data symbols {xi,j}i=1,...,4,j=1,2

are arranged in the first two gray rows, and the last two rows
are occupied by parity symbols. It can be verified that the data
symbols can be recovered by accessing any two columns of the
codes in Figs. 2(a) and 2(b), and hence k = 2. It is known that
P-codes [16] achieve the minimum update complexity when
n− k = 2. Hence, when updating a data symbol in Fig. 2(a),
we must update at least n−k = 2 parity symbols. For example,
when updating x1,1, the third symbol in the second column
x1,1+x3,1 and the third symbol in the fourth column x1,1+x2,1

need to be updated. However, in Fig. 2(b), when updating a
data symbol, two or three parity symbols need to be updated,
i.e., the corresponding update complexity is larger than 2. For
example, when updating x1,1, the third symbol in the second
column x1,1+x4,2 and the fourth symbol in the fourth column
x1,1 + x1,2 + x2,2 need to be updated. Yet, the updating of
x1,2 requires the modification of both parity symbols in the
third column (i.e, x2,1 + x1,2 and x4,1 + x4,2 + x1,2) and the
fourth symbol in the fourth column (i.e., x1,1 + x1,2 + x2,2).

Next, we consider the update bandwidth. Suppose that the
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x1,1 x2,1 x3,1 x4,1

x1,2 x2,2 x3,2 x4,2

x3,1 + x4,1 x1,1 + x3,1 x2,1 + x4,1 x1,1 + x2,1

x3,2 + x4,2 x1,2 + x3,2 x2,2 + x4,2 x1,2 + x2,2
(a)

x1,1 x2,1 x3,1 x4,1

x1,2 x2,2 x3,2 x4,2

x4,1 + x3,2 x1,1 + x4,2 x2,1 + x1,2 x3,1 + x2,2

x2,1 + x2,2 + x3,2 x3,1 + x3,2 + x4,2 x4,1 + x4,2 + x1,2 x1,1 + x1,2 + x2,2

(b)

Fig. 2. (a) presents an instance, where gray rows contain the data symbols, of a 4 × 4 P-code with optimal update complexity 2 and update bandwidth 4;
(b) presents an instance, where gray rows contain the data symbols, of a proposed (n = 4, k = 2) code, which has update complexity larger than 2 and
minimum update bandwidth 3. Note that the instance presented in (b) also has the optimal repair bandwidth.

two data symbols in the first node in Fig. 2(a) are updated,
i.e., x1,j are updated to x∗

1,j , j = 1, 2. The first node should
send two symbols ∆x1,1 and ∆x1,2 to both nodes 2 and 4,
where ∆xi,j = x∗

i,j − xi,j . Thus, the required bandwidth
is four. It is easy to check that the required bandwidth of
updating two data symbols of any other node is also four.
Therefore, the update bandwidth of the 4 × 4 P-code is four.
Next we show that the update bandwidth of the code in Fig.
2(b) is three. When two data symbols in node 1 in Fig. 2(b)
are updated, we only need to send ∆x1,1 to node 2, ∆x1,2

to node 3, and (∆x1,1 + ∆x1,2) to node 4. Therefore, the
required update bandwidth is three. We can verify that the
required update bandwidth when updating any other node in
Fig. 2(b) is also three. Consequently, the update bandwidth of
the code in Fig. 2(b) is better than that of the 4 × 4 P-code
in Fig. 2(a). We will show in Section IV that the code in Fig.
2(b) achieves the minimum update bandwidth among all (4, 2)
irregular array codes with two data symbols per node.

Other than update complexity and update bandwidth, the
repair bandwidth, defined as the amount of symbols down-
loaded from the surviving nodes to repair the failed node, is
also an important consideration in DSSs. The repair problem
was first brought into the spotlight by Dimakis et al. [3]. It can
be anticipated that a well-designed code with both minimum
update bandwidth and optimal repair bandwidth is attractive
for DSSs. Surprisingly, the code in Fig. 2(b) also achieves the
optimal repair bandwidth among all (4, 2) MDS array codes.
One can check that we can repair the four symbols stored in
node 1 by downloading the six underlined symbols in Fig.
2(b), i.e., {x2,1, x2,2} from node 2, {x3,2, x2,1 + x1,2} from
node 3, and {x4,1, x1,1 + x1,2 + x2,2} from node 4. Thus, the
repair bandwidth of node 1 is six, which is optimal for the
parameters of n = 4, k = 2 and α = 4 [3]. We can verify
that the repair bandwidth of any other node in Fig. 2(b) is also
six. Therefore, the repair bandwidth of the code in Fig. 2(b)
is optimal.

The contributions of this paper are as follows.

• We introduce a new metric, i.e., update bandwidth, and
emphasize its importance in scenarios where storage
updates are frequent.

• We consider irregular array codes with a given level of
protection against block erasures [27], and establish the

closed-form expression of the minimum update band-
width attainable for such codes.

• Referring to the class of irregular array codes that achieve
the minimum update bandwidth as MUB codes, we next
derive the smallest code redundancy attainable by MUB
codes.

• Comparing the smallest code redundancy of MUB codes
with the minimum code redundancy of irregular array
codes derived in [27], we identify a class of MUB codes,
called MR-MUB codes, that can achieve simultaneously
the minimum code redundancy of irregular array codes
and the minimum update bandwidth of irregular array
codes.

• Systematic code constructions for MR-MUB codes and
for MUB codes with the smallest code redundancy are
both provided.

• We establish a lower bound of the update complexity of
MR-MUB codes, by which we confirm that the update
complexity of irregular array codes may not be achieved
by MR-MUB codes.

• We construct an (n, k = n− 2) MR-MUB code with the
optimal repair bandwidth for all nodes via the transfor-
mation in [28], confirming the existence of the irregular
array codes that can simultaneously achieve the minimum
code redundancy, the minimum update bandwidth and the
optimal repair bandwidth for all codes.

The rest of this paper is organized as follows. Section II
introduces the notations used in this paper and the proposed
update model. Section III establishes the necessary condition
for the existence of an irregular array code. In Section IV,
via the form of integer programs, we determine the minimum
update bandwidth of irregular array codes and the smallest
code redundancy of MUB codes. Section V presents the
explicit constructions of MR-MUB codes and MUB codes.
Section VI derives a lower bound of the update complexity of
MR-MUB codes. Section VII devises a class of (n = k+2, k)
MR-MUB codes with the optimal repair bandwidth for all
nodes. Section VIII concludes this work.
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II. PRELIMINARY

A. Definition

We first introduce the notations used in this paper. Let
[n] ≜ {1, . . . , n} for a positive integer n, and by convention,
set [0] ≜ ∅. (ai)i∈[n] denotes an index set (a1, a2, . . . , an). Let
[xi,j ]i∈[m],j∈[n] denote an m × n matrix whose entry in row
i and column j is xi,j . wt(v) denotes the weight of vector
v, i.e., the number of nonzero elements in vector v. MT

represents the transpose of matrix M. row(M), col(M) and
rank(M) represent the number of rows of M, the number
of columns of M and the rank of M, respectively. M−1

denotes the inverse matrix of M, provided M is invertible. |S|
denotes the cardinality of a set S. Fq denotes the finite field
of size q, where q is a power of a prime. For two discrete
random variables X and Y , their joint probability distribution
is denoted as PXY (x, y). Hq(X) denotes the q-ary entropy
of X , and Iq(X;Y ) denotes the q-ary mutual information
between X and Y , where q is the base of the logarithm.
We consider linear codes throughout the paper and the main
notations used in this paper are listed in Table I.

B. Irregular array code

As its name reveals, an irregular array code [27], [29]
consists of codewords that are irregular arrays, where the
size of each column can be arbitrary as shown in Fig. 3.
Formally, given a positive integer n and two column vectors
m = [m1 . . . mn]

T and p = [p1 . . . pn]
T, where mi, pi ≥ 0

for i ∈ [n], the codeword of an irregular array code C over Fq

is denoted as
C = (c1, c2, . . . , cn), (1)

where the column vector ci contains mi data symbols and pi
parity symbols. Specifically, we denote

ci =

[
xi

pi

]
, i ∈ [n], (2)

where xi is the i-th data vector that contains mi data symbols
and pi is the i-th parity vector that contains pi parity symbols.
Since xi contains data symbols, we can naturally consider
that xi is uniformly distributed over Fmi

q , and xi and xj are
independent for i ̸= j ∈ [n]. As such, we have

Hq(xi) = mi ∀i ∈ [n], (3)

Iq(xi;xj) = 0 ∀i, j ∈ [n], i ̸= j. (4)

As all symbols in pi ∈ Fpi
q may not be independent, we can

only obtain
Hq(pi) ≤ pi ∀i ∈ [n]. (5)

The storage redundancy (i.e., code redundancy) of C is the total
number of parity symbols, i.e., R =

∑n
i=1 pi. An example of

irregular array codes is illustrated in Fig. 3, where the gray
cells contain the data symbols. In this example, we have m =
[4 2 2 0]T, p = [2 3 3 3]T and R = 11. In addition, the first
column of the irregular array code in Fig. 3 stores four data
symbols x1 = [x1,1 x1,2 x1,3 x1,4]

T and two parity symbols
p1 = [x2,1 + x2,2 x3,2]

T.

x1,1 x2,1 x3,1 x1,1 + x1,3 + x3,1

x1,2 x2,2 x3,2 x1,2 + x1,4 + x3,1

x1,3 x1,1 x1,3 x2,2 + x3,1

x1,4 x1,2 x1,4

x2,1 + x2,2 x3,1 + x3,2 x2,1

x3,2

Fig. 3. This figure, where the gray cells contain the data symbols, shows a
(4, 2,m) irregular MDS array code with m = [4 2 2 0]T and p = [2 3 3 3]T.

When mi + pi = mj + pj for any i ̸= j ∈ [n], the irregular
array code C is reduced to a regular array code. When mi =
mj and pi = pj for all i ̸= j ∈ [n], C is called a vertical array
code. As an example, both codes in Fig. 2 are vertical array
codes. When a regular array code satisfies pi = 0 for i ∈ [k]
and mj = 0 for k < j ≤ n, it is called a horizontal array
code. If we can retrieve all the data symbols by accessing any
k columns, and there is a set of k − 1 columns which we
can not retrieve all the data symbols from, then the code C is
parameterized as an (n, k,m) irregular array code.

We will demonstrate in Section V-C that the code in Fig.
3 can only be reconstructed by accessing at least any two
columns, and hence it is a (4, 2,m) irregular array code. In
fact, the code in Fig. 3 is also an MUB code with the smallest
code redundancy (cf. Section IV-C). In the subsection that
follows, we will introduce the update model and the update
bandwidth of (n, k,m) irregular array codes.

C. Update model and update bandwidth

In an (n, k,m) irregular array code C, each parity symbol
can be generated as a linear combination of all data symbols.
Thus, the parity symbols in each column can be obtained from

pj =

n∑
i=1

Mi,jxi j ∈ [n], (6)

where Mi,j is a pj × mi matrix, called construction matrix.
Apparently, when the data vector in node i is updated from xi

to x∗
i , node j with j ∈ [n]\{i} needs to update its parity vector

via p∗
j = pj+Mi,j∆xi, where ∆xi = x∗

i−xi. Such an update
process can be divided into two steps, which are performed
by node i and node j, respectively. In the first step, with a
pre-specified linear transformation Ai,j , node i calculates the
intermediate vector Ai,j∆xi, and sends the symbols in this
vector to node j. In the second step, node j also pre-specifies
a linear transformation Bi,j and calculates ∆pj = p∗

j − pj

from the intermediate vector Ai,j∆xi just received via ∆pj =
Bi,jAi,j∆xi. As a result of (6), the two matrices Ai,j and
Bi,j corresponding to the linear transformations respectively
performed by node i and node j must satisfy Mi,j = Bi,jAi,j .
Based on the above update model, the number of symbols sent
from node i to node j is row(Ai,j).

Denote

γi,j ≜ min
Ai,j ,Bi,j

{row(Ai,j)|Mi,j = Bi,jAi,j}, for i ̸= j.

(7)
as the minimum amount of symbols sent from node i to
node j when updating the data symbols stored in node i. The
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TABLE I
MAIN NOTATIONS USED IN THIS PAPER

Notation Description
n The number of nodes
mi The number of data symbols in node i
pi The number of parity symbols in node i

m m = [m1 . . .mn]T

p p = [p1 . . . pn]T

xi The i-th data vector
pi The i-th parity vector
ci ci = [xT

i pT
i ]

T, the i-th column vector
C C = (c1, c2, . . . , cn), the codeword of an irregular array code
Mi,j The construction matrix
Ai,j , Bi,j A decomposition of Mi,j , i.e., Mi,j = Bi,jAi,j

E A subset of [n] with |E| = n− k, where the elements in it are denoted as ei with i ∈ [n− k]
Ē Ē = [n] \ E , where the elements in it are denoted as ēi with i ∈ [k]

CE , XE , PE CE = [cTe1 . . . cTen−k
]T, XE = [xT

e1
. . .xT

en−k
]T, PE = [pT

e1
. . .pT

en−k
]T

B The number of data symbols
R The number of parity symbols, i.e., code redundancy
γi,j The minimum number of symbols sent from node i to node j when updating the data symbols in node i
γ The average required bandwidth when updating a node, i.e., update bandwidth
γmin The minimum update bandwidth among all irregular array codes
Rmin The minimum code redundancy among all irregular array codes
Rsma The smallest code redundancy for irregular array codes with update bandwidth equal to γmin

θ The average number of parity symbols affected by a change of a single data symbol, i.e., update complexity

following theorem then shows that in order to achieve γi,j ,
Mi,j = Bi,jAi,j must correspond to a full rank decomposi-
tion of Mi,j .

Theorem 1. row(Ai,j) = γi,j if, and only if, rank(Ai,j) =
rank(Bi,j) = row(Ai,j), and both Ai,j and Bi,j are full rank.
Furthermore, γi,j = rank(Mi,j).

Proof. For better readability, the proof is relegated to Ap-
pendix A.

Theorem 1 indicates that γi,j = rank(Mi,j) is the minimum
amount of symbols required to be sent from node i to node
j when updating the data symbols stored in node i. We thus
define the update bandwidth γ for a code C as the average
required bandwidth. Formally,

Definition 1. Given an (n, k,m) irregular array code C with
construction matrices {Mi,j}i,j∈[n], the update bandwidth γ
of code C is defined as

γ ≜ 1

n

n∑
i=1

∑
j∈[n]\{i}

γi,j , (8)

where γi,j = rank(Mi,j).

By Theorem 1, the update bandwidth γ can be achieved by
adopting two full-rank matrices that fulfill Mi,j = Bi,jAi,j ,
where Bi,j is a pj×γi,j matrix and Ai,j is a γi,j×mi matrix.
In the rest of the paper, the full-rank matrices Bi,j and Ai,j

used in our update model are fixed as the ones with rank γi,j .

D. Encoding aspect of the update model
The update model in the previous subsection can also be

equivalently characterized via an encoding aspect from (7).
Specifically, we can first calculate

pi,j = Ai,jxi ∀i, j ∈ [n], i ̸= j. (9)

Similar to (5), since symbols in pi,j ∈ Fγi,j
q are possibly

dependent, we can only obtain

Hq(pi,j) ≤ γi,j ∀i, j ∈ [n], i ̸= j. (10)

Then, as pj =
∑n

i=1 Mi,jxi for any j ∈ [n] (cf. (6)), we
obtain

pj =

n∑
i=1,i̸=j

Bi,jpi,j ∀j ∈ [n]. (11)

As a result, the parity symbols are the coded symbols from
two sets of encoding matrices {Ai,j}i,j∈[n] and {Bi,j}i,j∈[n].
This encoding aspect of the update model will be adopted in
later sections. Since the number of symbols passed from (9) to

(11) is
n∑

i=1

∑
j∈[n]\{i}

γi,j = nγ, the average number of symbols

transmitted among all nodes during the encoding process is
equal to the update bandwidth γ.

III. NECESSARY CONDITION FOR THE EXISTENCE OF AN
IRREGULAR ARRAY CODE

In this section, we provide a necessary condition for the
parameters {pj}j∈[n] and {γi,j}i ̸=j∈[n] such that an (n, k,m)
irregular array code C, where retrieval of data symbols can
only be guaranteed by any other k columns but not by any
other k − 1 columns, exists (cf. Theorem 2 and Corollary 1).
For simplicity, we use H(·) and I(· ; ·) to represent Hq(·)
and Iq(· ; ·) in this section.

Some notations used in the proofs below are first introduced
(cf. Table I). For a subset E ⊂ [n] with |E| = n − k, the
elements in E are denoted as ei with i ∈ [n − k]. Similarly,
denote the elements in Ē ≜ [n] \ E as ēi with i ∈ [k]. Let
XE ≜ [xT

e1 . . .x
T
en−k

]T and XĒ ≜ [xT
ē1 . . .x

T
ēk
]T, and CE ,
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CĒ , PE and PĒ are similarly defined. Equation (6) can then
be rewritten using these notations as

pj =
∑

i∈[n−k]

Mei,jxei +
∑
i∈[k]

Mēi,jxēi . (12)

Thus, we can write

PĒ =


pē1

pē2
...

pēk

 =


Me1,ē1 . . . Men−k,ē1

Me1,ē2 . . . Men−k,ē2
...

. . .
...

Me1,ēk . . . Men−k,ēk

XE

+


Mē1,ē1 . . . Mēk,ē1

Mē1,ē2 . . . Mēk,ē2
...

. . .
...

Mē1,ēk . . . Mēk,ēk

XĒ .

(13)

Let

ME ≜


Me1,ē1 . . . Men−k,ē1

Me1,ē2 . . . Men−k,ē2
...

. . .
...

Me1,ēk . . . Men−k,ēk

 ,

MĒ ≜


Mē1,ē1 . . . Mēk,ē1

Mē1,ē2 . . . Mēk,ē2
...

. . .
...

Mē1,ēk . . . Mēk,ēk

 .

(14)

Then, from (13) and (14), we establish that

PĒ = MEXE +MĒXĒ . (15)

In the following, we provide four lemmas that will be useful
in characterizing a necessary condition for the existence of an
(n, k,m) irregular array code in Theorem 2.

Lemma 1. Given a matrix A ∈ Fa×b
q and a random column

vector b ∈ Fb
q , we have H(Ab) ≤ rank(A).

Proof. The lemma trivially holds when rank(A) = 0 or
rank(A) = row(A). Here, we provide the proof sub-
ject to row(A) > rank(A) > 0. Given a matrix
A ∈ Fa×b

q , there is an invertible matrix R such that
RA =

[
A′
[0]

]
, where [0] is a (row(A) − rank(A)) ×

col(A) zero matrix. Then, given A′b, we can determine
Ab via Ab = R−1

[
A′b
[0]

]
, and vice versa. Thus, we have

H(Ab|A′b) = H(A′b|Ab) = 0. As I(A′b;Ab) =
H(A′b) − H(A′b|Ab) = H(Ab) − H(Ab|A′b), we con-
clude H(Ab) = H(A′b) ≤ row(A′b) = rank(A). This
completes the proof.

The next three lemmas associate m, p and {γi,j =
rank(Mi,j)}i,j∈[n] through rank(ME).

Lemma 2. Given any E ⊂ [n] with |E| = n − k, if each
codeword C ∈ C can be determined uniquely by CĒ , then we
have

∑
i∈E mi ≤ rank(ME).

Proof. If the knowledge of CĒ can reconstruct the entire C,
then H(XE |CĒ) = 0. Thus, we have

I(CĒ ;XE) = H(XE)−H(XE |CĒ) = H(XE) =
∑
i∈E

mi.

(16)

Since I(XĒ ;XE) = 0 as indicated by (4), we get

I(CĒ ;XE) = I(XĒ ,PĒ ;XE)

= I(XĒ ;XE) + I(PĒ ;XE |XĒ)

= I(PĒ ;XE |XĒ).

(17)

We then obtain from (15) and (17) that

I(PĒ ;XE |XĒ) =I(MEXE +MĒXĒ ;XE |XĒ)

=H(MEXE +MĒXĒ |XĒ)

−H(MEXE +MĒXĒ |XĒ ,XE)

=H(MEXE |XĒ)

=H(MEXE),

which, together with (16), (17) and Lemma 1, implies∑
i∈E

mi = I(CĒ ;XE) = I(PĒ ;XE |XĒ)

= H(MEXE) ≤ rank(ME).

Lemma 3. rank(ME) ≤
∑

j∈Ē min{pj ,
∑

i∈E γi,j}.

Proof. We first note from (14) that

rank(ME) ≤
∑
j∈[k]

rank([Me1,ēj . . .Men−k,ēj ]). (18)

Using γi,j = rank(Mi,j) from Theorem 1, we obtain

rank([Me1,ēj . . .Men−k,ēj ]) ≤
∑

i∈[n−k]

rank(Mei,ēj )

=
∑

i∈[n−k]

γei,ēj .
(19)

Next, we note that

rank([Me1,ēj . . .Men−k,ēj ]) ≤ row([Me1,ēj . . .Men−k,ēj ])

= pēj .
(20)

Combining (19) and (20) yields

rank([Me1,ēj . . .Men−k,ēj ]) ≤ min

{
pēj ,

∑
i∈[n−k]

γei,ēj

}
.

(21)
The validity of the lemma can thus be confirmed by (18)
and (21).

Lemma 4. rank(ME) ≤
∑

i∈E min{mi,
∑

j∈Ē γi,j}.

Proof. The proof of this lemma is similar to that of Lemma 3.
First from (14), we establish

rank(ME) = rank(MT
E ) ≤

∑
i∈[n−k]

rank([MT
ei,ē1 . . .M

T
ei,ēk

]).

(22)
In parallel to (19) and (20), we next derive
rank([MT

ei,ē1 . . .M
T
ei,ēk

]) ≤
∑

j∈[k] γei,ēj and
rank([MT

ei,ē1 . . .M
T
ei,ēk

]) ≤ row([MT
ei,ē1 . . .M

T
ei,ēk

]) = mei ,
which immediately gives

rank([MT
ei,ē1 . . .M

T
ei,ēk

]) ≤ min

{
mei ,

∑
j∈[k]

γei,ēj

}
. (23)
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The lemma then follows from (22) and (23).

After establishing the above four lemmas, we are now ready
to prove the main result in this section.

Theorem 2. Given any E ⊂ [n] with |E| = n − k, if each
codeword C ∈ C can be determined uniquely by CĒ , then the
following inequalities must hold:∑

j∈Ē

γi,j ≥ mi ∀i ∈ E , (24)

∑
i∈E

mi ≤
∑
j∈Ē

min

{
pj ,
∑
i∈E

γi,j

}
. (25)

Proof. Inequality (25) is an immediate consequence of Lem-
mas 2 and 3.

The inequality in (24) can be proved by contradiction.
Suppose

∑
j∈Ē γu,j < mu for some u ∈ E . Then, we can

infer from Lemma 4 that

rank(ME) ≤
∑

i∈E\{u}

min

{
mi,

∑
j∈Ē

γi,j

}
+
∑
j∈Ē

γu,j

<
∑

i∈E\{u}

mi +mu =
∑
i∈E

mi,
(26)

which contradicts to Lemma 2. Consequently, inequality (24)
must hold for every i ∈ E .

For completeness, we conclude the section by reiterating
the result in Theorem 2 in the following corollary.

Corollary 1. An (n, k,m) irregular array code C with
construction matrices {Mi,j}i,j∈[n] and numbers of parity
symbols specified in p must fulfill (24) and (25) for every
E ⊂ [n] with |E| = n− k.

IV. LOWER BOUNDS FOR CODE REDUNDANCY AND
UPDATE BANDWIDTH

In this section, three lower bounds will be established,
which are lower bounds respectively for code redundancy and
update bandwidth, and a lower bound for code redundancy
subject to the minimum update bandwidth. Their achievability
by explicit constructions of irregular array codes under k | mi

for all i ∈ [n] will be shown in Section V. Without loss of
generality, we assume in this section that

m1 ≥ m2 ≥ · · · ≥ mn ≥ 0. (27)

A. Minimization of code redundancy

Theorem 2 indicates that a lower bound for the code redun-
dancy of an (n, k,m) irregular array code can be obtained by
solving the integer program problem below.2

2In order to keep the constraints close to the respective theorems that follow,
we will repeat (24) and (25) in Integer Programings 1-6 whenever they are
applied. Specifically, (24) will reappear in (28a), (37a) and (39), and (25) will
be repeated in (28b), (37b), (46b) and (54b).

Integer Program 1. To minimize R =
∑n

i=1 pi subject to

∑
j∈Ē

γi,j ≥ mi ∀i ∈ E

∑
i∈E

mi ≤
∑
j∈Ē

min

{
pj ,
∑
i∈E

γi,j

}
(28a)

(28b)

among all E ⊂ [n] with |E| = n− k.

Since the object function of Integer Program 1 is only a
function of p, a code redundancy R is attainable due to a
choice of p, if there exists a set of corresponding {γi,j}i ̸=j∈[n]

that can validate both (28a) and (28b). A valid selection of
such {γi,j}i ̸=j∈[n] for a given p is to persistently increase
{γi,j}i ̸=j∈[n] until both (28a) and

pj ≤
∑
i∈E

γi,j ∀j ∈ Ē (29)

are satisfied for arbitrary choice of E ⊂ [n] with |E| = n− k.
As a result, we can disregard (28a) and reduce (28b) to∑

i∈E
mi ≤

∑
j∈Ē

pj , (30)

leading to a new integer program setup as follows.

Integer Program 2. To minimize R =
∑n

i=1 pi subject to∑
i∈E

mi ≤
∑
j∈Ē

pj (31)

among all E ⊂ [n] with |E| = n− k.

Lemma 5. Integer Program 1 is equivalent to Integer Pro-
gram 2.

Proof. It is obvious that all minimizers of Integer Program 1
satisfy the constraint in Integer Program 2. On the contrary,
given a minimizer p of Integer Program 2, we can assign
γi,j = max{mi, pj} to satisfy the constraints in Integer
Program 1. Thus, Integer Program 1 and Integer Program 2
are equivalent.

Remark 1. Note that Integer Program 2, which was first given
in [27], is not related to the update bandwidth γ of an irregular
array code, while the proposed setup in Integer Program 1 is.
Thus, the latter setup can be used to determine an irregular
array code of update-bandwidth efficiency by replacing the
object function R with update bandwidth γ. However, for the
minimization of code redundancy, the two integer program
settings are equivalent as confirmed in Lemma 5.

To solve Integer Program 2, Tosato and Sandell [27] intro-
duced a water level parameter µ, defined as

µ = max

{
mn−k,

⌈
B

k

⌉}
, (32)

where B ≜
∑

i∈[n] mi is the total number of data symbols,
and by following the assumption in (27), mn−k is the (n−k)-
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th largest element in vector m. It was shown in [27] that the
minimum code redundancy equals

Rmin =

n−k∑
i=1

([µ−mi]+ +mi), (33)

which can only be achieved by those p’s satisfying
pi = [µ−mi]+ for 1 ≤ i ≤ n− k,

pi ≤ [µ−mi]+ for n− k < i ≤ n,∑n
i=n−k+1 pi =

∑n−k
i=1 mi,

(34)

where [x]+ ≜ max{0, x}. The class of (n, k,m) irregular
array codes conforming to (34) is called irregular MDS array
codes [27]. In particular, when k | B and m1 ≤ B/k, (33)
and (34) can be respectively reduced to

Rmin =
(n− k)

k
B, (35)

and
pi =

B

k
−mi ∀i ∈ [n]. (36)

B. Minimization of update bandwidth

We now turn to the determination of the minimum update
bandwidth. As similar to Integer Program 1, a lower bound
for the update bandwidth of an (n, k,m) irregular array code
can be obtained using the integer program below.

Integer Program 3. To minimize γ = 1
n

∑n
i=1

∑
j∈[n]\{i} γi,j

subject to 

∑
j∈Ē

γi,j ≥ mi ∀i ∈ E

∑
i∈E

mi ≤
∑
j∈Ē

min

{
pj ,
∑
i∈E

γi,j

}
(37a)

(37b)

among all E ⊂ [n] with |E| = n− k.

Since p is not used in the above object function, a choice of
{γi,j}i ̸=j∈[n] is feasible for the minimization of γ as long as
there is a corresponding p that validates both (37a) and (37b).
A valid selection of such p for given {γi,j}i ̸=j∈[n] is to set
pj =

∑
i∈[n] γi,j , which reduces (37b) to a consequence of

(37a), i.e., ∑
i∈E

mi ≤
∑
j∈Ē

∑
i∈E

γi,j . (38)

As a result, by following an analogous proof to that used in
Lemma 5, Integer Program 3 can also be solved through the
following equivalent setup.

Integer Program 4. To minimize γ = 1
n

∑n
i=1

∑
j∈[n]\{i} γi,j

subject to ∑
j∈Ē

γi,j ≥ mi ∀i ∈ E (39)

among all E ⊂ [n] with |E| = n− k.

The solution of Integer Program 4 is then given in the
following theorem.

Theorem 3. (Minimum update bandwidth) The minimum
update bandwidth determined through Integer Program 4 is
given by

γmin =
B

n
+

(n− k − 1)

n

∑
i∈[n]

⌈mi

k

⌉
. (40)

Under k < n − 1, the minimum update bandwidth can only
be achieved by the assignment that satisfies for every i ∈ [n],{∑

u∈[wi]
γi,ju(i) = wi

⌊
mi

k

⌋
,

γi,ju(i) =
⌈
mi

k

⌉
∀u ∈ [n− 1] \ [wi],

(41)

where wi ≜ k
⌈
mi

k

⌉
− mi < k,3 and for notational con-

venience, we let the indices j1(i), j2(i), . . . , jn−1(i) be a
permutation of [n] \ {i} such that

0 ≤ γi,j1(i) ≤ · · · ≤ γi,jn−1(i) for i ∈ [n]. (42)

When k = n − 1, any {γi,j}i̸=j∈[n] that achieves γmin must
satisfy ∑

j∈[n]\{i}

γi,j = mi ∀i ∈ [n]. (43)

Proof. For better readability, the proof is relegated to Ap-
pendix B.

Note that under k = n − 1, the assignment that achieves
γmin is no longer restricted to (41) but must be generalized to
(43). An example is provided below.

Example 1. For an (3, 2,m = [5 5 5]T) irregular array code,
the assignment of (41) gives γi,j1(i) = 2 and γi,j2(i) = 3 for
i ∈ [3], but

γi,j =

{
5, (i, j) ∈ {(1, 3), (2, 3), (3, 2)}
0, (i, j) ∈ {(1, 2), (2, 1), (3, 1)

(44)

can also achieve γmin = 5. This justifies our separate
consideration of the case of k = n− 1.

C. Determination of the smallest code redundancy subject to
γ = γmin

In Theorem 3, the class of optimal {γi,j}i ̸=j∈[n] that achieve
γmin is also determined. In particular, when k < n − 1 and
k | mi for every i, we have wi = 0 and [wi] = ∅ for all
i ∈ [n], which together with (41) indicates that

γi,j =
mi

k
∀i ̸= j ∈ [n] (45)

uniquely achieves γmin. This facilitates our finding the small-
est code redundancy attainable subject to γ = γmin as
formulated in Integer Program 5 below.

3A particular situation that will be considered in the next subsection is
k | mi, in which case we have wi = 0 and [wi] = ∅, and (41) is reduced to
γi,ju(i) =

mi
k

for u ∈ [n− 1].
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Integer Program 5. To minimize R =
∑n

i=1 pi subject to
γi,j =

mi

k
∀i ̸= j ∈ [n]∑

i∈E
mi ≤

∑
j∈Ē

min

{
pj ,
∑
i∈E

γi,j

} (46a)

(46b)

among all E ⊂ [n] with |E| = n− k, provided 1 ≤ k < n− 1
and k | mi for all i ∈ [n].

Theorem 4. The solution of Integer Program 5 is given by

Rsma ≜ (n− 1)

k

n−k∑
i=1

mi +
(n− k)

k
mn−k+1, (47)

where by following the assumption in (27), mi is the i-th
largest element in vector m. The smallest code redundancy
subject to γ = γmin is uniquely achieved by

pj =

{
1
k

∑
i∈[n−k+1]\{j} mi for 1 ≤ j ≤ n− k,

1
k

∑n−k
i=1 mi for n− k < j ≤ n.

(48)

Proof. We first prove by contradiction that

pj ≥
∑
i∈E

γi,j =
1

k

∑
i∈E

mi ∀E and ∀j ∈ Ē . (49)

Suppose there are E ⊂ [n] with |E| = n− k and j′ ∈ Ē such
that

pj′ <
∑
i∈E

γi,j′ =
1

k

∑
i∈E

mi. (50)

Then, (46b) results in a contradiction as follows:∑
i∈E

mi ≤ min

{
pj′ ,

∑
i∈E

γi,j′

}
+

∑
j∈Ē\{j′}

min

{
pj ,
∑
i∈E

γi,j

}
<
∑
j∈Ē

∑
i∈E

γi,j

=
∑
j∈Ē

∑
i∈E

mi

k
=
∑
i∈E

mi, (51)

where (51) follows from (46a). Thus, (49) holds for arbitrary
E ⊂ [n] \ {j}. As a result, we have

pj ≥ max
E⊂[n]\{j}:|E|=n−k

1

k

∑
i∈E

mi

=

{
1
k

∑
i∈[n−k+1]\{j} mi for 1 ≤ j ≤ n− k,

1
k

∑n−k
i=1 mi for n− k < j ≤ n,

(52)

which implies

R =

n∑
j=1

pj ≥
(n− 1)

k

n−k∑
i=1

mi +
(n− k)

k
mn−k+1 = Rsma.

(53)
Since any {pj}j∈[n] that satisfies (52) with strict inequality
for some j ∈ [n] cannot achieve Rsma, the smallest code
redundancy subject to γ = γmin is uniquely achieved by the
one that fulfills (52) with equality.

The contradiction proof in (51) requires
∑

j∈Ē γi,j = mi,
which is guaranteed by (41) when k | mi for all i ∈ [n].

However, without k | mi for all i ∈ [n], the
∑

j∈Ē γi,j
in (41) may not achieve mi but generally lies between mi

and k
⌈
mi

k

⌉
. Our preliminary study indicates that the general

formula of Rsma for arbitrary k < n − 1 and arbitrary m
does not seem to have a simple expression but depends on
the pattern of w = [w1 w2 · · ·wn]

T. Theorem 5 only deals
with w = [0 0 · · · 0]T. The establishment of the smallest
code redundancy for cases that allow k ∤ mi is left as a future
research.

Surprisingly, in the particular case of k = n − 1, we
found Rsma = Rmin due to the fact that

∑
j∈Ē γi,j = mi

is guaranteed by (43).

Integer Program 6. To minimize R =
∑n

i=1 pi subject to

∑
j∈[n]\{i}

γi,j = mi ∀i ∈ [n]

∑
i∈E

mi ≤
∑
j∈Ē

min

{
pj ,
∑
i∈E

γi,j

} (54a)

(54b)

among all E ⊂ [n] with |E| = n− k, provided k = n− 1.

Theorem 5. The solution of Integer Program 6 is given by
the Rmin in (33), which can only be achieved by those p’s
satisfying (34).

Proof. It suffices to prove that Integer Program 2 and Integer
Program 6 are equivalent under n− k = 1. We first note that
under n − k = 1, all feasible p and {γi,j}i̸=j∈[n] satisfying
(54a) and (54b), i.e.,

mi =
∑

j∈[n]\{i}

γi,j ≤
∑

j∈[n]\{i}

min{pj , γi,j} ∀i ∈ [n], (55)

must validate (30), i.e.,

mi ≤
∑

j∈[n]\{i}

pj ∀i ∈ [n]. (56)

On the contrary, for every p that fulfills (56), we can always
construct {γi,j}i̸=j∈[n] with γi,j ≤ pj such that (55) holds.
Thus, Integer Program 2 is equivalent to Integer Program 6.

V. EXPLICIT CONSTRUCTIONS OF MUB AND MR-MUB
CODES

A. MR-MUB and MUB codes

Based on the previous section, we can now define two
particular classes of irregular array codes.

Definition 2. A Minimal Update Bandwidth (MUB) code is an
(n, k,m) irregular array code with update bandwidth equal
to γmin.

Definition 3. A Minimum Redundancy and Minimum Update
Bandwidth (MR-MUB) code is an (n, k,m) irregular array
code, of which the code redundancy and the update bandwidth
are equal to Rmin and γmin, respectively.

Note that the existence of MR-MUB codes for certain
parameters n, k and m is not guaranteed. In certain cases, we
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can only have Rsma > Rmin, i.e., the smallest code redundancy
subject to γ = γmin is strictly larger than the minimum code
redundancy among all irregular array codes. An example is
given in Fig. 3, where we can obtain from (47) that the smallest
code redundancy of (4, 2,m = [4 2 2 0]T) irregular array
codes is equal to

Rsma =
3

2

2∑
i=1

mi +
2

2
m3 =

3

2
(4 + 2) + 2 = 11, (57)

while the minimum code redundancy in (33) is given by

Rmin = ([4− 4]+ + 4) + ([4− 2]+ + 2) = 8. (58)

It can be verified that the code redundancy of the irregular
array code in Fig. 3 achieves p1+ p2+ p3+ p4 = 11 = Rsma.

To confirm that the code in Fig. 3 is an MUB code, we note
that the update of the first node has to send ∆x1,1 and ∆x1,2

to node 2, ∆x1,3 and ∆x1,4 to node 3, (∆x1,1 +∆x1,3) and
(∆x1,2 + ∆x1,4) to node 4, respectively. Thus, the required
update bandwidth for node 1 is 6. Similarly, we can verify
that the required bandwidths of the second, the third and the
fourth nodes are 3, 3 and 0, respectively. As a result, γ =
1
4 (6 + 3 + 3 + 0) = 3, which equals γmin in (40).

Two particular situations, which guarantee the existence of
MR-MUB codes, are k = 1 and k = n − 1. In the former
situation, we can obtain from (47) and (33) that

Rsma = Rmin =
(n− k)

k
B =

(n− k)

k

∑
i∈[n]

mi, (59)

while the latter has been proven in Theorem 5. For 1 < k <
n − 1, however, it is interesting to find that an MR-MUB
code exists only when m is either an extremely balanced
all-equal vector or an extremely unbalanced all-zero-but-one
vector, which is proven in the next theorem under k | mi for
all i ∈ [n].

Theorem 6. Under 1 < k < n− 1 and k | mi for all i ∈ [n],
(n, k,m) MR-MUB codes exist if, and only if, one of the two
situations occurs:{

mi =
B
n ∀i ∈ [n],

pj =
(n−k)
nk B ∀j ∈ [n].

(60)

and {
m1 = B, and mi = 0 for 2 ≤ i ≤ n,

p1 = 0, and pj =
B
k for 2 ≤ j ≤ n.

(61)

In either situation, {γi,j}i ̸=j∈[n] follows from (46a).

Proof. The theorem can be proved by simply equating the
two p1’s that respectively achieve Rmin and Rsma. Specifically,
(34) indicates that Rmin is achieved by p1 = [µ−m1]+, where
µ is given in (32). From (48), Rsma is reached when

p1 =
1

k

(
n−k+1∑
i=1

mi −m1

)
=

1

k

n−k+1∑
i=2

mi. (62)

We thus have

p1 = [µ−m1]+ =
1

k

n−k+1∑
i=2

mi. (63)

We then distinguish between two cases: p1 = 0 and p1 > 0.
Consider p1 = 1

k

∑n−k+1
i=2 mi = 0, which from (27), im-

mediately leads to m1 = B and m2 = m3 = · · · = mn = 0.
Thus, we obtain from (32) and (34) that µ = B

k and pj = B
k

for 2 ≤ j ≤ n. As anticipated, this p also satisfies (48) and
validates Rmin = Rsma.

Next, we consider p1 = [µ − m1]+ > 0, which leads to
µ > m1. As mn−k ≤ m1 from (32), we have µ = B

k > m1.
Thus, (63) becomes

B

k
−m1 =

1

k

n−k+1∑
i=2

mi, (64)

which implies

(k − 1)m1 = mn−k+2 + · · ·+mn︸ ︷︷ ︸
k−1

. (65)

We can then conclude from (27) that m1 = m2 = · · · = mn.
The verification of Rmin = Rsma straightforwardly follows.

In practice, it may be unusual to place all data symbols in
one node. Thus, we will focus on the construction of MR-
MUB codes that follows (60) in the next subsection. In other
words, the (n, k,m = [m m · · · m]T) MR-MUB codes
considered in the rest of the paper are (n, k) vertical MDS
array codes with each node containing m data symbols and
p = (n−k)

k m parity symbols subject to k | m.
Note that Theorem 6 seems limited in its applicability since

(60) simply shows vertical MDS codes can achieve both Rmin

and γmin under a particular case of k | m. However, without
the condition of k | m, vertical MDS array codes may not
form a sub-class of MR-MUB codes. This can be justified
by two observations. First, it can be verified from (34) that
the fulfillment of both pi = [µ − mi]+ for 1 ≤ i ≤ n − k
and

∑n
i=n−k+1 pi =

∑n−k
i=1 mi under each pi = p and each

mi = m requires k | nm. Thus, under k ∤ nm, vertical MDS
array codes cannot achieve the minimum code redundancy, and
hence cannot be MR-MUB codes. Second, when k | nm but
k ∤ m, examples and counterexamples for vertical MDS array
codes being able to achieve simultaneously Rmin and γmin

can both be constructed as follows. Hence, we conjecture that
k | m is also a necessary condition for vertical MDS array
codes being MUB codes, provided k ∤ n.

Example 2. A supporting example of our conjecture follows
when n = 6, k = 3 and m = 4, where setting pi = p = 4 and

γi,j =

{
1, j ∈ {(imod 6) + 1, [(i+ 1)mod 6] + 1}
2, otherwise

(66)

for i ̸= j ∈ [n] fulfills both (24) and (25), and achieves
simultaneously Rmin and γmin.

Example 3. A counterexample to our conjecture exists when
n = 9, k = 6 and m = 2. From (34), we know Rmin can
only be achieved by adopting pj = 1 for j ∈ [n]. By (41), the
achievability of γmin requires γi,j1(i) = γi,j2(i) = γi,j3(i) =
γi,j4(i) = 0 and γi,j5(i) = γi,j6(i) = γi,j7(i) = γi,j8(i) = 1
for every i ∈ [n]. Then, the pigeon hole principle implies
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that there is j′ such that {γi,j′}i∈[n]\{j′} contains at least
four 0’s. Let γi1,j′ = γi2,j′ = γi3,j′ = γi4,j′ = 0 and
E = {i1, i2, i3}, where j′ ̸∈ {i1, i2, i3, i4}. A violation to (25)
can thus be obtained as follows:

∑
i∈E mi = |E|m = 6,

and
∑

j∈Ē min
{
pj ,
∑

i∈E γi,j
}

= min
{
pj′ ,

∑
i∈E γi,j′︸ ︷︷ ︸
=0

}
+∑

j∈Ē\{j′} min
{
pj ,
∑

i∈E γi,j
}

≤ 5. Consequently, (9, 6)
vertical MDS array codes with each node having m = 2 data
symbols cannot be MR-MUB codes.

Theorem 6 only deals with the situation of 1 < k < n− 1.
For completeness, the next corollary incorporates also the two
particular cases of k = 1 and k = n− 1.

Corollary 2. Under 1 ≤ k < n and k | m, an (n, k,m11)
MR-MUB code must parameterize with

pj =
(n− k)

k
m ≜ p ∀j ∈ [n], (67)

γi,j =
m

k
∀i ̸= j ∈ [n], (68)

where 11 ≜ [1 1 · · · 1]T is the all-one vector.

Proof. We only substantiate the corollary for k = 1 and k =
n− 1 since the situation of 1 < k < n− 1 has been proved in
Theorem 6. The validity of (67) under k = 1 and k = n−1 can
be confirmed by (36). We can also obtain from (46a) that (68)
holds under k = 1. It remains to verify (68) under k = n− 1
by contradiction.

Fix k = n − 1. Suppose there is a j′ ∈ [n] \ {i} such that
γi,j′ <

m
k = pj′ . A contradiction can be established from (25)

as follows:

m = mi ≤
∑

j∈[n]\{i}

min{pj , γi,j}

≤
∑

j∈[n]\{i,j′}

pj + γi,j′ <
∑

j∈[n]\{i}

pj = m.
(69)

Accordingly, γi,j ≥ m
k for all i ̸= j ∈ [n], which implies∑

j∈[n]\{i}

γi,j ≥
m

k
(n− 1) = m. (70)

By noting from (43) that the inequality in (70) must be
replaced by an equality, (68) holds under k = n− 1.

As horizontal array codes are widely implemented in DSSs,
we close this subsection by checking whether an (n, k,m11k)
horizontal array code can achieve the minimum update band-
width γmin, where 11k ≜ [1 · · · 1 0 · · · 0]T is the vector,
the first k components of which equal one and the remaining
of which are zero.4 As a result, Mi,j is the zero matrix for
either i ∈ [n]\[k] or j ∈ [k], implying from Theorem 1 that the
corresponding γi,j = rank(Mi,j) = 0. We then derive from
(24) that for i ∈ [k], j′ ∈ [n] \ [k] and Ē = {j′} ∪ [k] \ {i},∑

j∈Ē

γi,j = γi,j′ ≥ mi = m, (71)

4From its definition given in Section II-B, an (n, k) horizontal array code
should parameterize with m1 = m2 = · · · = mk = pk+1 = pk+2 = · · · =
pn = m and p1 = p2 = · · · = pk = mk+1 = mk+2 = · · · = mn = 0.

and hence the update bandwidth of an (n, k,m11k) horizontal
array code must satisfy

γ =
1

n

∑
i∈[n]

∑
j∈[n]\[k]

γi,j =
1

n

∑
i∈[k]

∑
j∈[n]\[k]

γi,j (72)

≥ (n− k)km

n
. (73)

Since γi,j ≥ m for i ∈ [k] and j ∈ [n] \ [k], it is obvious that
the lower bound in (73) can only be achieved by γi,j = m
for i ∈ [k] and j ∈ [n] \ [k], and γi,j = 0, otherwise.
Comparing (73) with the minimum update bandwidth γmin

for general irregular array codes in Theorem 3, we found that
other than the two trivial cases of k = 1 and k = n − 1,
an (n, k,m11k) horizontal array code cannot achieve γmin

except when m = 1, and therefore cannot be an MUB code.
This finding complements the result in Theorem 6 as it holds
without the condition k | mi for all i ∈ [n].

Theorem 7. Under 1 < k < n − 1, the update bandwidth
of an (n, k,m11k) horizontal array code cannot achieve γmin

except when m = 1.

Proof. It suffices to prove that for 1 < k < n− 1 and m > 1,
the lower bound in (73) is greater than γmin, i.e.,

(n− k)km

n
> γmin =

mk + (n− k − 1)k
⌈
m
k

⌉
n

=
mk

n

(
1 +

(n− k − 1)
⌈
m
k

⌉
m

)
,

(74)

which can be verified straightforwardly via m >
⌈
m
k

⌉
. The

proof is completed by noting that under m = 1, (74) becomes
an equality, and the previously mentioned setting to achieve
(73) coincides with (41).

B. Construction of MR-MUB codes

For the construction of an (n, k,m11) MR-MUB code,
denoted as CO for convenience, we require xi ∈ Fm

q and
pj ∈ Fp

q with p = (n−k)
k m for i, j ∈ [n]. The construction of

{Ai,j}i ̸=j∈[n] and {Bi,j}i ̸=j∈[n] associated with CO are then
addressed as follows.

First, we construct {Ai,j}i̸=j∈[n] of dimension m
k ×m. We

begin by choosing an (n − 1, k) MDS array code M over
Fq with encoding function F : Fm

q −→ F
m
k ×(n−1)
q , where m

k
is the number of rows of the MDS array code, and m is the
number of all data symbols of M. For example, subject to
q ≥ n− 1, we can let M be an MDS array code, where each
row of the code array is a codeword of the (n − 1, k) Reed-
Solomon (RS) code. Denote Fi ≜ F(xi). Then, {pi,j}i ̸=j∈[n]

defined in (9), as well as {Ai,j}i̸=j∈[n], can be characterized
via

pi,[(i+j−1) mod n]+1 = Ai,[(i+j−1) mod n]+1xi = (Fi)j , (75)

for any j ∈ [n], where (Fi)j is the j-th column of the matrix
Fi. This indicates that

Fi = [pi,i+1 . . . pi,n pi,1 . . . pi,i−1] ∀i ∈ [n]. (76)
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Next, we construct {Bi,j}i̸=j∈[n] of dimension p × m
k .

Choose a p × (n−1)m
k matrix V over Fq such that arbitrary

selection of p columns of V form an invertible matrix.
For example, V can be a Vandermonde matrix subject to
q ≥ (n−1)

k m. We then let

B[(i+j−1) mod n]+1,j = [(V)(i−1)m
k +1 (V)(i−1)m

k +2 . . . (V)im
k
],

(77)
for any i ∈ [n− 1] and j ∈ [n], which implies that

V = [Bj
n
+1,j Bj+1

n
+1,j . . .Bj+(n−2)

n
+1,j ], (78)

where j
n
≜ (j mod n) for any integer j. Note that the right-

hand-side of (78) remains constant regardless of j ∈ [n]. Thus,
we can obtain from (11) that

pj = V
[
pT
j
n
+1,j pT

j+1
n
+1,j . . . pT

j+(n−2)
n
+1,j

]T
.

(79)
We now prove the code so constructed is an MR-MUB code.

Theorem 8. CO is an (n, k,m11) MR-MUB code.

Proof. The proof requires verifying two properties, which are
i) CO being an (n, k,m11) array code, and ii) CO achieving
Rmin and γmin.

First, we justify i), i.e., CO satisfying that given any set
E ⊂ [n] with |E| = n − k, the codeword C of CO can be
reconstructed from CĒ . When CĒ is given, both XĒ and PĒ
are known, and so are {pēi,ēj}i̸=j∈[k] according to (9). We
can then establish from (11) that

pēj −
k∑

i=1,i̸=j

Bēi,ējpēi,ēj =

n−k∑
i=1

Bei,ējpei,ēj

=
[
Be1,ēj . . . Ben−k,ēj

]  pe1,ēj
...

pen−k,ēj

 ∀j ∈ [k],

(80)

Since pēj−
∑k

i=1,i̸=j Bēi,ējpēi,ēj is known and any p columns
of V, as defined in (78), forms an invertible matrix, we
can obtain {pei,ēj}i∈[n−k],j∈[k] by left-multiplying (80) by
[Be1,ēj . . . Ben−k,ēj ]

−1. With the knowledge of k columns
{pei,ēj}j∈[k] of Fei in (76), we can recover xei via the
decoding algorithm of the (n − 1, k) MDS array code M.
By this procedure, {xi}i∈[n] can all be recovered.

Next, we verify ii). From (76), we have pi,j ∈ F
m
k
q and

hence γi,j = m
k , which leads to γ = γmin as pointed out in

(68). In addition, (79) shows pj = (n−k)
k m for j ∈ [n], and

hence Rmin is achieved as addressed in (67). The justification
of the two required properties of CO is thus completed.

The (4, 2, 211) MR-MUB code in Fig. 2(b) can be con-
structed via the proposed procedure. First, with xi =
[xi,1 xi,2]

T, M is chosen as a (3, 2) parity-check code over
Fq , which gives

Fi =
[
xi,1 xi,2 xi,1 + xi,2

]
∀i ∈ [n]. (81)

Thus, from (76), we have p1,2 = x1,1, p1,3 = x1,2, p1,4 =
x1,1 +x1,2. The remaining pi,j can be similarly obtained and
are listed in Table II.

Next, we specify

V =

[
0 1 1
1 1 0

]
, (82)

which satisfies that the selection of any two columns forms an
invertible matrix. By (79), we have

p1 = V [pT
2,1 pT

3,1 pT
4,1]

T

=

[
0 1 1
1 1 0

] x2,1 + x2,2

x3,2

x4,1

 =

[
x3,2 + x4,1

x2,1 + x2,2 + x3,2

]
.

(83)
p2, p3 and p4 can be similarly obtained and can be found in
Fig. 2(b).

We now demonstrate via this example how erased nodes
can be systematically recovered based on the chosen M and
V. Suppose nodes 1 and 2 are erased. As knowing from (79)
that

p3 =

[
0 1 1
1 1 0

] p4,3

p1,3

p2,3

 , (84)

we perform (80) to obtain

p3 −
[
0
1

]
p4,3 =

[
1 1
1 0

] [
p1,3

p2,3

]
. (85)

Since p3 is known and p4,3 can be obtained from x4 via
p4,3 = A4,3x4, we can recover p1,3 and p2,3 via[

p1,3

p2,3

]
=

[
1 1
1 0

]−1(
p3 −

[
0
1

]
p4,3

)
. (86)

The recovery of p1,4 and p2,4 can be similarly done via[
p1,4

p2,4

]
=

[
0 1
1 1

]−1(
p4 −

[
1
0

]
p3,4

)
. (87)

We then note from (76) that F1 = F(x1) = [p1,2 p1,3 p1,4]
is a codeword of M, corresponding to x1, and its second
and third columns are just recovered via (86) and (87). By
equating the second and the third columns of F1 with (81), the
recovery of x1 is done. We can similarly recover x2 by using
the recovered p2,3 and p2,4 in (86) and (87). The recovery of
the two erased nodes is thus completed.

C. Construction of MUB codes with the smallest code redun-
dancy

We continue to propose a construction of (n, k,m) MUB
codes with the smallest code redundancy, and denote the code
to be constructed as CU for notational convenience. This can
be considered a generalization of the code construction in the
previous subsection.

TABLE II
{pi,j}i ̸=j∈[n] OF THE MR-MUB CODE PRESENTED IN FIG. 2(B), WHERE

THE ELEMENT IN THE i-TH ROW AND THE j-TH COLUMN IS pi,j .

null x1,1 x1,2 x1,1 + x1,2

x2,1 + x2,2 null x2,1 x2,2

x3,2 x3,1 + x3,2 null x3,1

x4,1 x4,2 x4,1 + x4,2 null
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For the construction of CU, we require xi ∈ Fmi
q and

pj ∈ Fpj
q with {pj}j∈[n] specified in (48) for i, j ∈ [n]. The

construction of {Ai,j}i ̸=j∈[n] and {Bi,j}i ̸=j∈[n] associated
with CU are then addressed as follows.

First, for i ̸= j ∈ [n], we construct Ai,j of dimension mi

k ×
mi. For each i ∈ [n], choose an (n − 1, k) MDS array code
Mi over Fq with encoding function Fi : Fmi

q −→ F
mi
k ×(n−1)

q ,
where mi

k is the number of rows of the MDS array code,
and mi is the number of all data symbols of Mi. Denote
Fi ≜ Fi(xi). Then, {pi,j}i̸=j∈[n] defined in (9), as well as
{Ai,j}i ̸=j∈[n], can be characterized via

pi,[(i+j−1) mod n]+1 = Ai,[(i+j−1) mod n]+1xi = (Fi)j (88)

for any j ∈ [n]. This indicates that

Fi = [pi,i+1 . . . pi,n pi,1 . . . pi,i−1] ∀i ∈ [n]. (89)

Next, for i ̸= j ∈ [n], we construct Bi,j of dimension
pj × mi

k . Choose a pj ×
∑

i∈[n]\{j}
mi

k matrix Vj over Fq

such that arbitrary selection of pj columns of Vj form an
invertible matrix. We then get {Bi,j}i ̸=j∈[n] from

Vj =
[
Bj+1,j . . . Bn,j B1,j . . . Bj−1,j

]
∀j ∈ [n].

(90)
Thus, we can obtain from (11) that

pj = Vj

[
pT
j+1,j . . . pT

n,j pT
1,j . . . pT

j−1,j

]T
. (91)

We now prove the code so constructed is an MUB code
with the smallest code redundancy.

Theorem 9. CU is an (n, k,m) MUB code with the smallest
code redundancy.

Proof. For better readability, the proof is relegated to Ap-
pendix C.

We demonstrate that the (4, 2,m = [4 2 2 0]T) MUB code
in Fig. 3 can be constructed via the proposed procedure. First,
with x1 = [x1,1 . . . x1,4]

T, M1 is chosen as a (3, 2) MDS
array code, which encodes x1 into

F1 =

[
x1,1 x1,3 x1,1 + x1,3

x1,2 x1,4 x1,2 + x1,4

]
=
[
p1,2 p1,3 p1,4

]
.

(92)
For i = 2 and 3, Mi is chosen to be a (3, 2) parity check code
over Fq , as the one in (81). Since m4 = 0, {p4,j}j∈[4]\{4} are
null vectors. The resulting {pi,j}i̸=j∈[n] are listed in Table III.

TABLE III
{pi,j}i ̸=j∈[n] OF THE MUB CODE PRESENTED IN FIG. 3, WHERE THE

ELEMENT IN THE i-TH ROW AND THE j-TH COLUMN IS pi,j .

null

[
x1,1

x1,2

] [
x1,3

x1,4

] [
x1,1 + x1,3

x1,2 + x1,4

]
x2,1 + x2,2 null x2,1 x2,2

x3,2 x3,1 + x3,2 null x3,1

null null null null

Next, we obtain from (48) that p1 = 2 and p2 = p3 = p4 =
3, and specify

V1 =

[
1 0
0 1

]
, V2 = V3 =

1 0 0
0 1 0
0 0 1

 ,

and V4 =

1 0 0 1
0 1 0 1
0 0 1 1

 ,

(93)

where the selection of any pi columns from Vi forms an
invertible matrix. By (91) and Table III, we have

p1 =

[
x2,1 + x2,2

x3,2

]
, p2 =

 x1,1

x1,2

x3,1 + x3,2

 ,

p3 =

x1,3

x1,4

x2,1

 , and p4 =

x1,1 + x1,3 + x3,1

x1,2 + x1,4 + x3,1

x2,2 + x3,1

 ,

(94)

as presented in Fig. 3.
Based on this example, the systematic recovery of erased

nodes can be demonstrated as follows. Suppose nodes 1 and 2
are erased. Then, through (91) and (93), we have

p3 =

[
p1,3

p2,3

]
, and p4 −

11
1

 p3,4 =

1 0 0
0 1 0
0 0 1

 [p1,4

p2,4

]
.

(95)
We can thus obtain p1,3, p1,4, p2,3 and p2,4. By noting
p1,3 = [x1,3 x1,4]

T and p1,4 = [x1,1 + x1,3 x1,2 + x1,4]
T,

the recovery of x1 is done via the erasure correcting of M1.
We can similarly recover x2 from p2,3 and p2,4. The recovery
of the two erased nodes is therefore completed.

VI. UPDATE COMPLEXITY OF MR-MUB CODES

The update complexity of an array code, denoted as θ,
is defined as the average number of parity symbols affected
by updating a single data symbol [13]. For an (n, k,m)
irregular array code, a definition-implied lower bound for
update complexity is θ ≥ n − k. This lower bound can be
easily justified by contradiction. If θ < n − k, then at most
(n− k− 1) nodes are affected when updating a data symbol,
which leads to a contradiction that this data symbol cannot be
reconstructed by the remaining k unaffected nodes.

Previous results on update complexity indicate that the
lower bound n−k is not attainable by (n, k) binary horizontal
MDS array codes with 1 < k < n−1 [13], while existence of
(n, k = n− 2) binary vertical MDS array codes that achieve
the lower bound θ = n−k = 2 has been confirmed [15], [30].
Then, we consider whether or not the update complexity of
MR-MUB codes can reach the definition-implied lower bound.
Unfortunately, we found the answer is negative under k > 1,
and will show in Theorem 10 that the update complexity of
MR-MUB codes is lower-bounded by n− k + k−1

k .
In order to facilitate the presentation of the result in The-

orem 10, five lemmas are addressed first. The first lemma
indicates it suffices to consider the MR-MUB codes with
{Mi,i}i∈[n] being zero matrices; hence, we do not need to
consider {Mi,i}i∈[n] in the calculation of update complexity
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(cf. Lemma 6). The second lemma shows that for the determi-
nation of a lower bound of update complexity, we can focus on
the decomposition of Mi,j = B′

i,jA
′
i,j with A′

i,j containing
an γi,j×γi,j identity submatrix. As a result, B′

i,j is a submatrix
of Mi,j and the column weights of Mi,j are lower-bounded
by the column weights of B′

i,j (cf. Lemma 7). The next two
lemmas then study the column weights of general Bi,j that
is not necessarily a submatrix of Mi,j (cf. Lemmas 8 and 9).
The last lemma accounts for the number of non-zero columns
in M

(ℓ)
i ≜ [(Mi,1)ℓ . . . (Mi,i−1)ℓ (Mi,i+1)ℓ . . . (Mi,n)ℓ],

where (Mi,j)ℓ denotes the ℓ-th column of matrix Mi,j .

Lemma 6. For any (n, k,m) irregular array code C with
construction matrices {Mi,j}i,j∈[n], we can construct another
(n, k,m) irregular array code C′ with {M′

i,i = [0]}i∈[n] such
that both codes have the same code redundancy and update
bandwidth.

Proof. Let the construction matrices of C′ be defined as

M′
i,j =

{
Mi,j i ̸= j;

[0] i = j.
(96)

Then, there exists an invertible mapping between codewords
of C′ and C, i.e.,

c′j =

[
xj

p′
j

]
=

[
xj

pj −Mj,jxj

]
=

[
I [0]

−Mj,j I

] [
xj

pj

]
=

[
I [0]

−Mj,j I

]
cj for j ∈ [n],

(97)

where I denotes an identity matrix of proper size. A conse-
quence of (97) is that all data symbols can be retrieved by
accessing any k columns of the corresponding codeword of
C if, and only if, the same can be done by accessing any k
columns of the corresponding codeword of C′. As C is an
(n, k,m) irregular array code, we confirm that C′ is also an
(n, k,m) irregular array code. Since γ′

i,j = rank(M′
i,j) =

rank(Mi,j) = γi,j with i ̸= j ∈ [n], the update bandwidth of
C′ remains the same as that of C according to (8). The relation
of p′

j = pj−Mj,jxj indicates p′j = row(p′
j) = row(pj) = pj

for j ∈ [n], confirming C′ and C have the same code
redundancy. The lemma is therefore substantiated.

For an (n, k,m) irregular array codes, the number of
symbols affected by the update of the ℓ-th symbol in xi is

θ
(ℓ)
i =

∑
j∈[n]\i

wt((Mi,j)ℓ), (98)

and we can now omit Mi,i due to Lemma 6. The update
complexity θ of an irregular array code is therefore given by

θ =
1

B

∑
i∈[n]

∑
ℓ∈[mi]

θ
(ℓ)
i . (99)

Since the update complexity is only related to the column
weights of construction matrices, the next lemma provides a
structure to be considered in the calculation of θ in (99).

Lemma 7. There exists a full rank decomposition of con-
struction matrix Mi,j = B′

i,jA
′
i,j such that A′

i,j contains a
γi,j × γi,j identity submatrix.

Proof. The existence of a full rank decomposition Mi,j =
Bi,jAi,j has been confirmed in Section II-C. As Ai,j is with
full row rank, there exists an invertible matrix Ri,j such that
A′

i,j = Ri,jAi,j , where A′
i,j contains a γi,j × γi,j identity

submatrix. We can then obtain a new full rank decomposition
Mi,j = B′

i,jA
′
i,j with B′

i,j = Bi,jR
−1
i,j .

When A′
i,j contains a γi,j × γi,j identity submatrix, B′

i,j

must be a submatrix of Mi,j . Thus, the column weights of
Mi,j are lower-bounded by the column weights of B′

i,j .
This brings up the study of the next two lemmas, which

hold not just for a submatrix B′
i,j of Mi,j but for general

full-rank decomposition Bi,j .

Lemma 8. Given an (n, k,m11) MR-MUB code with con-
struction matrices {Mi,j = Bi,jAi,j}i̸=j∈[n], BE,j ≜
[Be1,j . . . Ben−k,j ] is an invertible matrix for every E ⊂ [n]
with |E| = n− k and for every j /∈ E .

Proof. First, we note respectively from (68) and (67) that
γi,j =

m
k and pj =

(n−k)m
k . Hence, Bei,j is an (n−k)m

k × m
k

matrix, implying BE,j is an (n−k)m
k × (n−k)m

k square matrix.
We then prove the lemma by contradiction.

Suppose BE,j is not invertible for some E with |E| = n−k

and some j ̸∈ E . Then, rank(BE,j) <
(n−k)m

k . According to
(9) and (11), we have

pj =
∑
ℓ∈Ē

Bℓ,jpℓ,j +
∑

i∈[n−k]

Bei,jpei,j (100)

=
∑
ℓ∈Ē

Bℓ,jAℓ,jxℓ +
∑

i∈[n−k]

Bei,jpei,j (101)

= [Bē1,jAē1,j · · · Bēk,jAēk,j ]XĒ +BE,jpE,j ,(102)

where pE,j ≜ [pT
e1,j

. . . pT
en−k,j

]T. This implies

H(pj | XĒ) = H(BE,jpE,j | XĒ)

≤ H(BE,jpE,j) ≤ rank(BE,j),
(103)

where the last inequality follows from Lemma 1. We then
derive based on (17) that

I(CĒ ;XE) = I(XE ;PĒ | XĒ) = H(PĒ | XĒ) (104)

≤
∑

ℓ∈Ē\{j}

H(pℓ | XĒ) +H(pj | XĒ) (105)

≤
∑

ℓ∈Ē\{j}

H(pℓ) +H(pj | XĒ) (106)

≤
∑

ℓ∈Ē\{j}

pℓ + rank(BE,j) (107)

< (n− k)m = H(XE), (108)

where the last strict inequality holds due to rank(BE,j) <
(n−k)m

k . The derivation in (108) indicates that XE cannot
be reconstructed from CĒ , leading to a contradiction to the
definition of (n, k,m11) array codes.

Lemma 9. For an (n, k,m11) MR-MUB code with construc-
tion matrices {Mi,j = Bi,jAi,j}i ̸=j∈[n],

Bj ≜ [B1,j . . .Bj−1,j Bj+1,j . . .Bn,j ] (109)
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must contain at least (k−1)m
k columns whose weight is no less

than 2.

Proof. Lemma 8 shows BE,j is invertible for arbitrary E with
|E| = n−k; hence, Bj in (109) contains no zero column, and
also has no identical columns. As each column of Bj consists
of (n−k)m

k components, the number of weight-one columns of
Bj must be at most (n−k)m

k . We thus conclude that there are
at least

col(Bj)−
(n− k)m

k
=

(n− 1)m

k
− (n− k)m

k
=

(k − 1)m

k
(110)

columns of Bj with weights no less than 2. This completes
the proof.

As previously mentioned, since the above two lemmas hold
for the full-rank submatrix B′

i,j of Mi,j , a lower bound of
update complexity can thus be established.

Corollary 3. The construction matrices {Mi,j}i ̸=j∈[n] of
an (n, k,m11) MR-MUB code must have at least (k−1)mn

k
columns with weights no less than 2.

Proof. Lemma 9 holds for those full-rank submatrices
{B′

i,j}i ̸=j∈[n] of {Mi,j}i ̸=j∈[n]. Thus, there are at least
(k−1)m

k columns in [M1,j . . .Mj−1,j Mj+1,j . . .Mn,j ],
which have weights larger than 1. Consequently, the number
of columns with weights no less than 2 in {Mi,j}i ̸=j∈[n] is at
least (k−1)mn

k .

Lemma 10. Fix an (n, k,m11) MR-MUB code. For ev-
ery i ∈ [n] and every ℓ ∈ [m], there are at
least n − k columns with non-zero weights in M

(ℓ)
i ≜

[(Mi,1)ℓ . . . (Mi,i−1)ℓ (Mi,i+1)ℓ . . . (Mi,n)ℓ].

Proof. Denote the data symbol in the ℓ-th row of xi as xi,ℓ. If
there were k zero columns in M

(ℓ)
i , then we can find k parity

vectors that are functionally independent of xi,ℓ according to
(6), which implies we can find k nodes that cannot be used to
reconstruct xi,ℓ. A contradiction to the definition of (n, k,m11)
MR MUB codes is obtained.

Considering Lemma 10 holds for every i ∈ [n] and ℓ ∈ [m],
an immediate consequence is summarized in the next corollary.

Corollary 4. For an (n, k,m11) MR-MUB code, there are
at least (n − k)mn columns with nonzero weights in all
construction matrices {Mi,j}i ̸=j∈[n].

Corollaries 3 and 4 then lead to the main result in this
section.

Theorem 10. The update complexity θ of (n, k,m11) MR-
MUB codes is lower-bounded by n− k + k−1

k .

Proof. Denote by θ(ℓ) the number of columns exactly with
weight ℓ in all construction matrices {Mi,j}i ̸=j∈[n]. Since
row(Mi,j) = (n−k)m

k , it is obvious that θ(ℓ) = 0 for

ℓ > (n−k)m
k . Let Θ(ℓ) ≜

∑ (n−k)m
k

i=ℓ θ(i). We then derive from
(99) that

θ =
1

nm

∑
ℓ∈[

(n−k)m
k ]

ℓ · θ(ℓ) = 1

nm

∑
ℓ∈[

(n−k)m
k ]

Θ(ℓ)

≥ Θ(1) + Θ(2)

nm
.

(111)

As Corollaries 3 and 4 imply Θ(2) ≥ (k−1)mn
k and Θ(1) ≥

(n − k)mn, respectively, (111) indicates that θ ≥ n − k +
k−1
k .

VII. A CLASS OF MR-MUB CODES WITH THE OPTIMAL
REPAIR BANDWIDTH

A. Generic transformation for code construction

Consider (n, k) MDS regular array codes with each node
having exactly the same number of symbols, denoted as α.
Hence, mi + pi = α for every i ∈ [n]. Let βi be the amount
of symbols that needs to be downloaded from all other n− 1
nodes when repairing node i. Then, it is known [3] that for all
(n, k) MDS regular array code designs, βi ≥ (n−1)α

(n−k) for every
i ∈ [n]. As a consequence of this universal lower bound for
every βi, an (n, k) MDS regular array code is said to be with
the optimal repair bandwidth for all nodes if βi =

(n−1)α
(n−k) for

every i ∈ [n].
In 2018, Li et al. [28] proposed a generic transformation

that converts a nonbinary (n, k) MDS regular array code with
node size α into another (n, k) MDS regular array code with
node size α′ = (n− k)α over the same field Fq such that 1)
some chosen (n−k) nodes have the optimal repair bandwidth
(n−1)α′

(n−k) = (n− 1)α, and 2) the normalized repair bandwidth5

of the remaining k nodes are preserved. Additionally, after
applying the transformation ⌈ n

n−k ⌉ times, a nonbinary (n, k)
MDS regular array code can be converted into an (n, k) MDS
regular array code with all nodes achieving the optimal repair
bandwidth.

In this section, using the transformation in [28], an
(n, n− 2, 2⌈

n
n−k ⌉m11) regular array code that achieves the

optimal repair bandwidth for all nodes is constructed
from an (n, n− 2,m11) MR-MUB code under k | m.
We will then prove in Theorem 12 that the transformed
(n, n− 2, 2⌈

n
n−k ⌉m11) regular array code also have the min-

imum code redundancy and the minimum update bandwidth
and hence is an MR-MUB code.

For completeness, we restate the generic transform in [28]
in the form that is necessary in this paper in the following
theorem. Similar to [28], the symbols of the codes we construct
are over Fq with q > 2, where the elements of Fq are denoted
as {0, 1, g, . . . , gq−2} and g is a primitive element of Fq .

Theorem 11. (Generic transform for (n = k + 2, k) regular
array codes [28]) Let C(0) ≜ [c

(0)
1 . . . c

(0)
n ] and C(1) ≜

[c
(1)
1 . . . c

(1)
n ] be codewords of a nonbinary (n = k + 2, k)

5The normalized repair bandwidth for a node is defined as

the number of symbols downloaded for repairing this node
the number of symbols repaired

. (112)
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MDS regular array code C over Fq with node size α, where the
data symbols used to generate C(0) and C(1) can be different.
Denote by βi the repair bandwidth of C for node i. Then,

C′ =

[
c
(0)
1 . . . c

(0)
k c

(0)
k+1 c

(0)
k+2 + c

(1)
k+2

c
(1)
1 . . . c

(1)
k c

(0)
k+2 + g c

(1)
k+2 c

(1)
k+1

]
∈ F2α×(k+2)

q ,
(113)

are codewords of an (n = k + 2, k) MDS regular array code
C′ with node size α′ = 2α, and its repair bandwidth for node
i satisfies

β′
i =

{
2βi, for i ∈ [k]
(n−1)α′

n−k = (n− 1)α, for k < i ≤ n = k + 2.
(114)

It is worth noting that the last two nodes of the transformed
code C′ have achieved the universal lower bound and therefore
is with the optimal repair bandwidth. Furthermore, it can be
inferred from (114) that if the code C before transformation
is already with the optimal repair bandwidth for every node,
then the repair bandwidths of C′ are also optimal for all nodes.

B. MR-MUB code construction with the optimal repair band-
width

According to Theorem 11, given an (n, k = n−2,m11) MR-
MUB code C under k | m, we can construct an (n, n−2, 2m11)
regular array code C′ that satisfies 1) the last two nodes are
with the optimal repair bandwidth, and 2) the remaining k
nodes preserve the same normalized repair bandwidths as their
corresponding nodes of C. In order to distinguish between the
codewords before and after transformation, we will use{

yi =

[
y
(0)
i

y
(1)
i

]}
i∈[n]

and

{
qi =

[
q
(0)
i

q
(1)
i

]}
i∈[n]

(115)

to denote the data vectors and the parity vectors of the
transformed code C′, respectively. Data vectors and par-
ity vectors of the base code C are respectively denoted
as {x(ℓ)

i }i∈[n],ℓ∈{0,1} and {p(ℓ)
i }i∈[n],ℓ∈{0,1}. We then have

the following correspondence between {y(ℓ)
i ,q

(ℓ)
i }i∈[n],ℓ∈{0,1}

and {x(ℓ)
i ,p

(ℓ)
i }i∈[n],ℓ∈{0,1}:

C′ =


y
(0)
1 . . . y

(0)
k y

(0)
k+1 y

(0)
k+2

q
(0)
1 . . . q

(0)
k q

(0)
k+1 q

(0)
k+2

y
(1)
1 . . . y

(1)
k y

(1)
k+1 y

(1)
k+2

q
(1)
1 . . . q

(1)
k q

(1)
k+1 q

(1)
k+2



=


x
(0)
1 . . . x

(0)
k x

(0)
k+1 x

(0)
k+2 + x

(1)
k+2

p
(0)
1 . . . p

(0)
k p

(0)
k+1 p

(0)
k+2 + p

(1)
k+2

x
(1)
1 . . . x

(1)
k x

(0)
k+2 + gx

(1)
k+2 x

(1)
k+1

p
(1)
1 . . . p

(1)
k p

(0)
k+2 + gp

(1)
k+2 p

(1)
k+1

 ,

(116)
which implies{

x
(1)
k+1 = y

(1)
k+2

x
(0)
k+1 = y

(0)
k+1

and{
x
(1)
k+2 = (g− 1)−1

(
y
(1)
k+1 − y

(0)
k+2

)
x
(0)
k+2 = y

(0)
k+2 − (g− 1)−1

(
y
(1)
k+1 − y

(0)
k+2

) (117)

We then present the main theorem in this section.

Theorem 12. C′ (whose codewords are defined in (116)) is
an (n, k = n− 2, 2m11) MR-MUB code over Fq .

Proof. For better readability, the proof is relegated to Ap-
pendix D.

By Theorems 11 and 12, we can optimize the repair
bandwidth of two selected nodes at a time, and reapply the
transformation ⌈n

2 ⌉ times to obtain an (n, n− 2, 2⌈n/2⌉m11)
MR-MUB code with optimal repair bandwidth for all nodes
as long as k | m.

Although the transformation in [28] holds for general k, a
further generation of Theorem 12 to general k satisfying, e.g.,
k < n − 2, cannot be done by following a similar procedure
to the current proof, and the transformed code may not be
an MR-MUB code. Hence, what we have proven in Theorem
12 is a particular case that guarantees the transformed code
is an MR-MUB code if the code before transformation is an
MR-MUB code.

VIII. CONCLUSION

In this paper, we introduced a new metric, called the update
bandwidth, which measures the transmission efficiency in the
update process of (n, k,m) irregular array codes in DSSs.
It is an essential measure in scenarios where updates are
frequent. The closed-form expression of the minimum update
bandwidth γmin was established (cf. Theorem 3), and the
code parameters, using which the minimum update band-
width (MUB) can be achieved, were identified. These code
parameters then constitute the class of MUB codes. As code
redundancy is also an important consideration in DSSs, we
next investigated the smallest code redundancy attainable by
MUB codes (cf. Theorems 4 and 5).

We then seek to construct a class of irregular array codes
that achieves both the minimum code redundancy and the
minimum update bandwidth, named MR-MUB codes. The
code parameters for MR-MUB codes are therefore determined
(cf. Theorem 6). An interesting result is that under 1 < k <
n − 1 and k | mi for i ∈ [n], MR-MUB codes can only
be vertical MDS codes unless m = [m1 · · · mn] containing
only a single non-zero component. The explicit construction
of MR-MUB codes was thus focused on (n, k) vertical MDS
codes, i.e., (n, k,m11) MR-MUB codes (cf. Section V-B). A
further generalization of the MR-MUB code construction was
subsequently proposed for a class of MUB codes with the
smallest code redundancy (cf. Section V-C).

At last, we studied the update complexity and repair
bandwidth of MR-MUB codes. Through the establishment
of a lower bound for the update complexity of MR-MUB
codes (cf. Theorem 10), we found MR-MUB codes may
not simultaneously achieve the minimum update complexity.
However, an (n, k = n − 2,m11) MR-MUB code with the
optimal repair bandwidth for all nodes can be constructed via
the transformation in [28] (cf. Theorem 12).

There are some challenging issues remain unsolved.
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1) Determine the smallest update bandwidth attainable by
irregular MDS array codes [27], defined as the irregular
array codes with the minimum code redundancy.

2) Determine the smallest code redundancy attainable by
MUB codes when the condition of k | mi for i ∈ [n] is
violated.

3) Examine whether k | m is also a necessary condition for
vertical MDS array codes being MUB codes, provided
k ∤ n.

4) Check whether the lower bound for the update complex-
ity of (n, k,m11) MR-MUB codes in Theorem 10 can
be improved or achieved.

5) Study the optimal repair bandwidth of MR-MUB codes
under n− k ≥ 3.

6) Investigate whether the exponentially growing node size
of MR-MUB codes with optimal repair bandwidth in
Section VII-B can be reduced, e.g., by considering near
optimal repair bandwidth [31], [32].

APPENDIX A
THE PROOF OF THEOREM 1

We first prove that row(Ai,j) = γi,j implies rank(Ai,j) =
rank(Bi,j) = row(Ai,j), and both Ai,j and Bi,j have full
rank, which in turns validates γi,j = rank(Mi,j).

Assuming that row(Ai,j) is with the minimum value, i.e.,
row(Ai,j) = γi,j , we show by contradiction that row(Ai,j) =
rank(Ai,j). Suppose rank(Ai,j) < row(Ai,j). Then, there
is an invertible matrix Ri,j satisfying Ri,jAi,j =

[
A′

i,j
[0]

]
,

where [0] is a (row(Ai,j) − rank(Ai,j)) × mi zero matrix,
and rank(A′

i,j) = row(A′
i,j) = rank(Ai,j). We thus have

Mi,j = Bi,jR
−1
i,j Ri,jAi,j = Bi,jR

−1
i,j

[
A′

i,j
[0]

]
, which implies

Mi,j = B′
i,jA

′
i,j with B′

i,j being the first rank(Ai,j) columns
of Bi,jR

−1
i,j . However, rank(A′

i,j) = rank(Ai,j) < γi,j con-
tradicts to the definition of γi,j . We therefore confirm that if
row(Ai,j) = γi,j , then row(Ai,j) = rank(Ai,j). Similarly, we
can show that if col(Bi,j) = γi,j , then col(Bi,j) = rank(Bi,j).
As row(Ai,j) = col(Bi,j), we conclude that row(Ai,j) = γi,j
implies rank(Ai,j) = rank(Bi,j) = row(Ai,j) = col(Bi,j),
and both Ai,j and Bi,j have full rank. An immediate conse-
quence of the above proof is that this pair of Ai,j and Bi,j is
a minimizer of (7). By Sylvester’s rank inequality, we have

rank(Bi,j) + rank(Ai,j)− row(Ai,j) = γi,j ≤ rank(Mi,j).

It can also be inferred that

rank(Mi,j) ≤ min{rank(Bi,j), rank(Ai,j)} = γi,j .

Hence,
γi,j = rank(Mi,j).

We next show the converse statement, i.e., if both Ai,j and
Bi,j are full rank and rank(Ai,j) = rank(Bi,j) = row(Ai,j),
then row(Ai,j) = γi,j . Given rank(Bi,j) = row(Ai,j), we
obtain by Sylvester’s rank inequality that

rank(Bi,j) + rank(Ai,j)− row(Ai,j)

=rank(Ai,j) ≤ rank(Mi,j) = γi,j ,

which, together with γi,j = rank(Mi,j) ≤ rank(Ai,j),
establishes row(Ai,j) = rank(Ai,j) = γi,j . This completes
the proof.

APPENDIX B
THE PROOF OF THEOREM 3

The proof is divided into four steps. First, we show all
choices of {γi,j}i̸=j∈[n] satisfying (39) yield an update band-
width no less than the γmin given in (40). Second, we verify
(41) can achieve γmin. Third, we prove that (41) is the only
assignment that can achieve γmin under k < n − 1. Last, we
complete the proof by considering separately the situation of
k = n− 1.

Step 1. Fix a set of {γi,j}i ̸=j∈[n] satisfying (39). Since
(39) holds for arbitrary E , we can let Ē =
{j1(i), . . . , jk(i)} and obtain∑

u∈[k]

γi,ju(i) ≥ mi. (118)

Noting that {γi,ju(i)}u∈[n−1] is in ascending order
(cf. (42)), and that γi,j is a non-negative integer, we
obtain from (118) that

γi,jk(i) ≥
⌈mi

k

⌉
. (119)

We continue to derive∑
j∈[n]\{i}

γi,j =
∑
u∈[k]

γi,ju(i) +
∑

u∈[n−1]\[k]

γi,ju(i)

≥
∑
u∈[k]

γi,ju(i) + (n− k − 1)γi,jk(i).

(120)
Combining (118), (119) and (120) gives

∑
j∈[n]\{i}

γi,j ≥ mi + (n− k − 1)
⌈mi

k

⌉
, (121)

which implies

γ =
1

n

∑
i∈[n]

∑
j∈[n]\{i}

γi,j

≥B

n
+

(n− k − 1)

n

∑
i∈[n]

⌈mi

k

⌉
=γmin.

Step 2. Next, we confirm (41) is a valid choice of
{γi,j}i ̸=j∈[n] that achieves γmin. The validity of (39)
can be confirmed by

wi = k
⌈mi

k

⌉
−mi < k

(mi

k
+ 1
)
−mi = k (122)
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and ∑
j∈Ē

γi,j ≥
∑
i∈[k]

γi,ju(i)

=wi

⌊mi

k

⌋
+ (k − wi)

⌈mi

k

⌉
=k
⌈mi

k

⌉
−
(
k
⌈mi

k

⌉
−mi

)(⌈mi

k

⌉
−
⌊mi

k

⌋)
=

{
k
⌈
mi

k

⌉
− 0, k | mi

k
⌈
mi

k

⌉
−
(
k
⌈
mi

k

⌉
−mi

)
, k ∤ mi

=mi. (123)

Hence, we can derive based on (42) and (123) that∑
j∈[n]\{i}

γi,j =
∑
u∈[k]

γi,ju(i) +
∑

u∈[n−1]\[k]

γi,ju(i)

=mi + (n− k − 1)
⌈mi

k

⌉
,

which immediately gives

γ =
1

n

∑
i∈[n]

∑
j∈[n]\{i}

γi,j

=
B

n
+

(n− k − 1)

n

∑
i∈[n]

⌈mi

k

⌉
= γmin.

Step 3. It remains to show by contradiction that no other
assignment of {γi,j}i ̸=j∈[n] can achieve γmin. The
task will be done under k < n− 1 in this step. The
situation of k = n− 1 will be separately considered
in the next step.

Suppose {γ′
i,j}i ̸=j∈[n] also achieves γmin. We

then differentiate among four cases.
Case 1: If there is i′ ∈ [n] such that

γ′
i′,jw

i′+1(i′)
>
⌈mi′

k

⌉
, then we obtain from

(42) and (122) that γ′
i′,jk(i′)

>
⌈mi′

k

⌉
, which

together with (118) implies∑
j∈[n]\{i′}

γ′
i′,j

=
∑
u∈[k]

γ′
i′,ju(i′)

+
∑

u∈[n−1]\[k]

γ′
i′,ju(i′)

>mi′ + (n− k − 1)
⌈mi′

k

⌉
.

(124)
Because {γ′

i,j}i ̸=j∈[n] fulfills (39) and hence
validates (121), we have

γ =
1

n

∑
i∈[n]

∑
j∈[n]\{i}

γ′
i,j

=
1

n
(
∑

j∈[n]\{i′}

γ′
i′,j +

∑
i∈[n]\{i′}

∑
j∈[n]\{i}

γ′
i,j)

>
1

n

((
mi′ + (n− k − 1)

⌈mi′

k

⌉)
(125)

+
∑

i∈[n]\{i′}

(
mi + (n− k − 1)

⌈mi

k

⌉))
= γmin,

contradicting to the assumption of
{γ′

i,j}i ̸=j∈[n] achieving γmin.
Case 2: If there is i′ ∈ [n] such that

γ′
i′,jw

i′+1(i′)
<
⌈mi′

k

⌉
and wi′ +1 = k, then

we can infer from (42) that

γ′
i′,jw

i′
(i′) ≤

⌊mi′

k

⌋
, (126)

and hence∑
u∈[k]

γ′
i′,ju(i′)

=
∑

u∈[wi′ ]

γ′
i′,ju(i′)

+ γ′
i′,jw

i′+1(i′)

+
∑

u∈[k]\[wi′+1]

γ′
i′,ju(i′)︸ ︷︷ ︸

=0

< wi′

⌊mi′

k

⌋
+
⌈mi′

k

⌉
(127)

+(k − wi′ − 1)
⌈mi′

k

⌉
︸ ︷︷ ︸

=0

= mi′

where the first strict inequality in (127) is
due to γ′

i′,jw
i′+1(i′)

<
⌈mi′

k

⌉
, and the last

equality follows from a similar derivation to
(123). The inequality (127) then contradicts
to (118).

Case 3: If there is i′ ∈ [n] such that
γ′
i′,jw

i′+1(i′)
<
⌈mi′

k

⌉
and wi′ + 1 < k,

then we must have γ′
i′,jk(i′)

>
⌈mi′

k

⌉
. This

is because in case γ′
i′,jk(i′)

≤
⌈mi′

k

⌉
under

γ′
i′,jw

i′+1(i′)
<
⌈mi′

k

⌉
and wi′ + 1 < k, we

can obtain from (42) that

γ′
i′,jw

i′
(i′) ≤

⌊mi′

k

⌋
, (128)

and hence a similar derivation to (127) gives∑
u∈[k]

γ′
i′,ju(i′)

=
∑

u∈[wi′ ]

γ′
i′,ju(i′)

+ γ′
i′,jw

i′+1(i′)

+
∑

u∈[k]\[wi′+1]

γ′
i′,ju(i′)

< wi′

⌊mi′

k

⌋
+
⌈mi′

k

⌉
(129)

+(k − wi′ − 1)
⌈mi′

k

⌉
= mi′ .

The inequality (129) then contradicts to
(118), and therefore γ′

i′,jk(i′)
>
⌈mi′

k

⌉
. We

continue to derive based on (118) that∑
j∈[n]\{i′}

γ′
i′,j

=
∑
u∈[k]

γ′
i′,ju(i′)

+
∑

u∈[n−1]\[k]

γ′
i′,ju(i′)

>mi′ + (n− k − 1)
⌈mi′

k

⌉
,

(130)
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based on which the same contradiction as
(125) can be resulted.

Case 4: The previous three cases indicate that
γ′
i′,jw

i′+1(i′)
=
⌈mi′

k

⌉
for all i′ ∈ [n]. Now

if there is i′ ∈ [n] and wi′ < u′ ≤ n − 1
such that γ′

i′,ju′ (i′)
< γ′

i′,ju′+1(i
′), then we

again use (118) to obtain∑
j∈[n]\{i′}

γ′
i′,j

=
∑
u∈[k]

γ′
i′,ju(i′)

+
∑

u∈[n−1]\[k]

γ′
i′,ju(i′)

> mi′ + (n− k − 1)
⌈mi′

k

⌉
,

based on which the same contradiction as
(125) can, again, be resulted.

The above four cases conclude that γ′
i,ju(i)

=
⌈
mi

k

⌉
for u ∈ [n − 1] \ [wi] and i ∈ [n]. Finally, (121)
implies∑
j∈[n]\{i}

γ′
i,j =

∑
u∈[wi]

γ′
i,ju(i)

+ (n− wi − 1)
⌈mi

k

⌉
≥ mi + (n− k − 1)

⌈mi

k

⌉
.

(131)
Since the sum of the left-hand-side of (131) is equal
to the sum of the right-hand-side of (131), which is
exactly γmin, we must have∑

u∈[wi]

γ′
i,ju(i)

+ (n− wi − 1)
⌈mi

k

⌉
=mi + (n− k − 1)

⌈mi

k

⌉
,

which in turn gives∑
u∈[wi]

γ′
i,ju(i)

= mi + (wi − k)
⌈mi

k

⌉
= wi

⌊mi

k

⌋
,

where the last equality can be confirmed similarly as
(123).

Step 4. Last, we prove (43). Note that the proofs in Steps 1
and 2 remain valid under k = n−1, but some deriva-
tions in Step 3, e.g., (124), may not be applied when
k = n−1. In fact, when k = n−1, a larger class of
assignments on {γi,j}i ̸=j∈[n] can achieve γmin. We
show (43) by contradiction. Suppose {γ′

i,j}i̸=j∈[n]

achieves γmin but satisfies
∑

j∈[n]\{i′} γ
′
i′,j > mi′

for some i′ ∈ [n]. Then,

γ =
1

n

 ∑
i∈[n]\{i′}

∑
j∈[n]\{i}

γ′
i,j +

∑
j∈[n]\{i′}

γ′
i′,j


>

1

n

 ∑
i∈[n]\{i′}

mi +mi′


=

B

n
= γmin,

which leads to a contradiction.

APPENDIX C
THE PROOF OF THEOREM 9

Similar to the proof of Theorem 8, the substantiation of this
theorem requires verifying two properties: i) CU is an (n, k,m)
array code, and ii) CU achieves Rsma and γmin.

First, we justify i), i.e., CU satisfying that given any set
E ⊂ [n] with |E| = n − k, the codeword C of CU can be
reconstructed from CĒ . When CĒ is given, both XĒ and PĒ
are known, and so are {pēi,ēj}i ̸=j∈[k] according to (9). We
can then establish from (11) that

pēj −
k∑

i=1,i̸=j

Bēi,ējpēi,ēj

=
[
Be1,ēj . . . Ben−k,ēj

]  pe1,ēj
...

pen−k,ēj

 ∀j ∈ [k].

(132)

According to (48), we have

row([Be1,ēj . . . Ben−k,ēj ]) = pj ≥
∑

i∈[n−k]

mei

k

=
∑

i∈[n−k]

col(Bei,ēj ).
(133)

Since any pj columns of Vj , as defined in (90),
forms an invertible matrix, we obtain from (133) that
[Be1,ēj . . . Ben−k,ēj ] is of full column rank, and hence
{pei,ēj}i∈[n−k],j∈[k] can be solved via (132). With the knowl-
edge of k columns {pei,ēj}j∈[k] of Fei in (89), we can recover
xei via the decoding algorithm of the (n − 1, k) MDS array
code Mei . By this procedure, {xi}i∈[n] can all be recovered.

Next, we verify ii). From (89), we have pi,j ∈ F
mi
k

q

and hence γi,j = mi

k , which leads to γ = γmin as pointed
out in (46a). In addition, (91) shows {pj}j∈[n] follows (48),
and hence Rsma is achieved as addressed in Theorem 4.
The justification of the two required properties of CU is thus
completed.

APPENDIX D
THE PROOF OF THEOREM 12

Recall from (67) that each node of C has α = m + p =
m+ (n−k)

k m = nm
k symbols. Thus, from (116), each node of

C′ contains α′ = 2α = 2nm
k symbols.

Since each node of the transformed code C′ has p′ = 2p
parity symbols, its code redundancy achieves the minimum
value given in (35). It remains to show C′ also achieves the
minimum update bandwidth.

Using the notations in Section II-C, where the encoding
matrices of C are denoted as {Ai,j}i,j∈[n] and {Bi,j}i,j∈[n],
we consider the update of node i of C′ for i ∈ [k]. From (116),
we need to compute

∆y
(ℓ)
i = y

(ℓ)∗
i − y

(ℓ)
i for ℓ = 1, 2, (134)

where we add a star in the superscript to denote the value
of a vector after this updating. Then, we must renew q

(ℓ)
j for

j ∈ [k]\{i} based on ∆y
(ℓ)
i according to q

(ℓ)
j +Bi,jAi,j∆y

(ℓ)
i ,
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since the correspondence in (116) indicates q
(ℓ)
j = p

(ℓ)
j and

∆y
(ℓ)
i = ∆x

(ℓ)
i , i.e.,

q
(ℓ)∗
j = p

(ℓ)∗
j = p

(ℓ)
j +Bi,jAi,j∆x

(ℓ)
i

= q
(ℓ)
j +Bi,jAi,j∆x

(ℓ)
i .

Accordingly, node i shall send both Ai,j∆y
(0)
i = Ai,j∆x

(0)
i

and Ai,j∆y
(1)
i = Ai,j∆x

(1)
i to node j ∈ [k] \ {i}, which

implies γ′
i,j = 2γi,j for i ̸= j ∈ [k]. The renew of qk+1

requires sending Ai,k+1∆x
(0)
i and Ai,k+2

(
∆x

(0)
i + g∆x

(1)
i

)
to node k + 1 since

q
(0)∗
k+1 = q

(0)
k+1 +Bi,k+1Ai,k+1∆y

(0)
i

= p
(0)
k+1 +Bi,k+1Ai,k+1∆x

(0)
i ,

and

q
(1)∗
k+1 =p

(0)∗
k+2 + gp

(1)∗
k+2

=
(
p
(0)
k+2 +Bi,k+2Ai,k+2∆x

(0)
i

)
+ g

(
p
(1)
k+2 +Bi,k+2Ai,k+2∆x

(1)
i

)
=p

(0)
k+2 + gp

(1)
k+2 +Bi.k+2Ai,k+2

(
∆x

(0)
i + g∆x

(1)
i

)
=q

(1)
k+1 +Bi.k+2Ai,k+2

(
∆x

(0)
i + g∆x

(1)
i

)
.

Thus, γ′
i,k+1 = γi,k+1 + γi,k+2 for i ∈ [k]. We can similarly

obtain γ′
i,k+2 = γi,k+1 + γi,k+2 for i ∈ [k] when concerning

the adjustment of qk+2 due to the update of yi.
We next consider the update of yk+1. Again, we compute

∆y
(ℓ)
k+1 = y

(ℓ)∗
k+1 − y

(ℓ)
k+1 for ℓ = 0, 1. Note that all of x

(0)
k+1,

x
(0)
k+2 and x

(1)
k+2 are involved in this update. Since y

(0)
k+2 =

x
(0)
k+2+x

(1)
k+2 remains unchanged, we have ∆y

(0)
k+2 = ∆x

(0)
k+2+

∆x
(1)
k+2 = 0, which together with (117) implies ∆x

(0)
k+1 =

∆y
(0)
k+1 and ∆x

(1)
k+2 = (g− 1)−1∆y

(1)
k+1. As a result, for j ∈

[k], the new parity vectors q∗
j are renewed according to

q
(0)∗
j =p

(0)∗
j

=p
(0)
j +Bk+1,jAk+1,j∆x

(0)
k+1 +Bk+2,jAk+2,j∆x

(0)
k+2

=q
(0)
j +Bk+1,jAk+1,j∆x

(0)
k+1 +Bk+2,jAk+2,j∆x

(0)
k+2

=q
(0)
j +Bk+1,jAk+1,j∆y

(0)
k+1

− (g− 1)−1Bk+2,jAk+2,j∆y
(1)
k+1

and

q
(1)∗
j =p

(1)∗
j

=p
(1)
j +Bk+2,jAk+2,j∆x

(1)
k+2

=q
(1)
j +Bk+2,jAk+2,j∆x

(1)
k+2

=q
(1)
j + (g− 1)−1Bk+2,jAk+2,j∆y

(1)
k+1,

which indicates node k + 1 should send Ak+1,j∆y
(0)
k+1 and

Ak+2,j∆y
(1)
k+1 to node j to renew its parity vector; hence,

γ′
k+1,j = γk+1,j + γk+2,j for j ∈ [k]. Concerning the renew

of qk+2, we derive

q
(0)∗
k+2 =p

(0)∗
k+2 + p

(1)∗
k+2

=p
(0)
k+2 + p

(1)
k+2 +Bk+1,k+2Ak+1,k+2∆x

(0)
k+1

+Bk+2,k+2Ak+2,k+2∆x
(0)
k+2

+Bk+2,k+2Ak+2,k+2∆x
(1)
k+2

=q
(0)
k+2 +Bk+1,k+2Ak+1,k+2∆x

(0)
k+1

+Bk+2,k+2Ak+2,k+2∆x
(0)
k+2

+Bk+2,k+2Ak+2,k+2∆x
(1)
k+2

=q
(0)
k+2 +Bk+1,k+2Ak+1,k+2∆y

(0)
k+1

and

q
(1)∗
k+2 =p

(1)∗
k+1

=p
(1)
k+1 +Bk+2,k+1Ak+2,k+1∆x

(1)
k+2

=q
(1)
k+2 +Bk+2,k+1Ak+2,k+1∆x

(1)
k+2

=q
(1)
k+2 + (g− 1)−1Bk+2,k+1Ak+2,k+1∆y

(1)
k+1,

which indicates node k+1 should send Ak+1,k+2∆y
(0)
k+1 and

Ak+2,k+1∆y
(1)
k+1 to node k+2; hence, γ′

k+1,k+2 = γk+1,k+2+
γk+2,k+1.

Last, we consider the update of yk+2, and can similarly
obtain γ′

k+2,j = γk+1,j + γk+2,j for j ∈ [k] and γ′
k+2,k+1 =

γk+1,k+2 + γk+2,k+1.
We summarize the matrix of γ′

i,j for i ̸= j ∈ [n] in (135) at
the top of next page. Since C is an (n = k + 2, k,m11) MR-
MUB code, we know from (68) that γi,j = m

k for i ̸= j ∈ [n].
We then conclude from (135) that γ′

i,j =
2m
k for i ̸= j ∈ [n].

Consequently, C′ is an (n, n − 2, 2m11) MR-MUB code over
Fq , which can be confirmed by Theorem 3.
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