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Abstract—Real-world distributed storage systems (DSSs) are
heterogeneous because storage nodes may have unequal per-
symbol storage costs, and network links may have unequal per-
symbol transmission costs. For some general classes of hetero-
geneous DSSs, the optimal tradeoff between storage and repair
costs achievable by functional repair codes is known (at least
numerically). However, it is unclear whether exact-repair codes
can achieve any point of such an optimal storage-repair tradeoff
curve, especially at the point of the minimum storage cost. In
this paper, we provide an affirmative answer to the question
by constructing the so-called heterogeneous minimum storage
repair (HMSR) codes for both the average and worst-case repair
costs. To optimize storage and repair costs, a heterogeneous DSS
may need to adopt irregular array codes and repair a node
by downloading unequal numbers of symbols from helper nodes.
However, our results show that for almost all heterogeneous DSSs,
exact-repair HMSR codes are regular array codes covering an
adequately chosen set of nodes. Specifically, exact-repair HMSR
codes are designed by stacking conventional MSR codes and
applying different repair schemes to different layers. Still, this
does not work for every heterogeneous DSS. It is proven that
using regular or linear irregular array codes for constructing
exact-repair HMSR codes is insufficient in some cases.

I. INTRODUCTION

The distributed storage system (DSS) is widely used to
achieve high reliability, where data is encoded by some erasure
code and stored in many connected unreliable storage nodes.
In a DSS, a failed node can be repaired by downloading
symbols from other available nodes, incurring a nonnegligible
transmission cost. The minimization of the transmission cost
has become a popular research topic in the last decade. In
2010, Dimakis et al. [2] introduced a new metric known as
repair bandwidth, which can represent the transmission cost
incurred by a single-node repair process and characterized the
tradeoff curve between the storage capacity and the repair
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bandwidth by using the network coding theory [3]. In par-
ticular, the erasure codes corresponding to the two extreme
points of the tradeoff curve are called minimum storage repair
(MSR) codes and minimum bandwidth repair (MBR) codes,
respectively. The two extreme points are called the MSR point
and the MBR point, respectively. Besides MSR and MBR
points, all points along the tradeoff curve can be achieved by
leveraging network coding [3]. But network codes can only
guarantee the functional repair of a failed node, which means
that the new node (newcomer) replacing the failed node may
have a different content from the failed node. Under functional
repair, after getting the content of the newcomer, additional
communication overheads among all nodes are required to
update the repair schemes involving the newcomer. This may
cause a significant delay. Additionally, in some applications
requiring systematic codes, the functional repair will jeopar-
dize the systematic form whenever a systematic node fails.
Motivated by the limitations of functional repair, researchers
started to consider exact-repair codes [4], especially the exact-
repair MSR codes [5]–[9]. It has been proven that, between
the functional and exact repair tradeoff curves, there is a gap
for a wide range of parameters [10], but their MSR and MBR
points coincide.

The research on the transmission cost of a repair process has
been conducted under many different system models. Dimakis
et al. [2] proposed the most prevalent model. This distributed
storage system model, referred to as the homogeneous model,
consists of n nodes with capacity α and allows (a) recovering
any r failed nodes and (b) repairing a single failed node with
the help of any d available nodes (called the helper nodes)
by downloading β symbols from each helper node. Under the
homogeneous model, the key issue is to optimize the per-
node storage capacity α and the repair bandwidth defined as
the number of symbols downloaded from helper nodes, i.e.,
βd. However, there are some limitations to the real-world
applications of this model. In a real-world DSS, nodes may
have unequal capacities, and the storage cost per symbol may
vary from one node to another. That means we should not
restrict different nodes to the same capacity to minimize the
storage cost. Likewise, helper nodes can transmit different
numbers of symbols to the newcomer, and the links from
helper nodes to the newcomer can have unequal per-symbol
transmission costs. That means if we want to minimize the
transmission cost of a repair process, we should not restrict
different helper nodes to transmitting the same number of
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symbols to the newcomer.
Researchers have proposed different storage system mod-

els to relax such limitations of the homogeneous model
and capture the heterogeneity of different real-world DSSs.
References [11] and [12] allow the nodes to have unequal
capacities. Reference [13] allows the nodes to have unequal
per-symbol storage costs. Reference [14] allows the links to
have unequal per-symbol transmission costs. References [11],
[12], [14] allow the helper nodes to transmit different numbers
of symbols to the newcomer. References [15] and [16] relax all
the restrictions above of the homogeneous model and propose
a model encompassing the models in [11]–[14] as special
cases. Considering the unequal per-symbol storage costs and
transmission costs of links, reference [16] generalizes storage
capacity and repair bandwidth in the homogeneous model to
the so-called storage cost and repair cost, respectively, and
discusses their tradeoff. This model and the corresponding
metrics have been followed by researchers [17], [18] in recent
years. In all the storage system models mentioned above, the
transmission from a helper node to the newcomer only involves
a single hop. The storage system models allowing multi-hop
transmissions have also been investigated in the literature [19]–
[22]. We restrict our attention to the single-hop transmission
in this paper.

This paper considers a more general model than that in [16].
We consider a fully connected DSS with n nodes, which
can recover any r failed nodes. In this DSS, the nodes can
have unequal per-symbol storage costs, and the links can have
unequal per-symbol transmission costs. Such a DSS is denoted
as an (n, k, s, t) DSS, where k , n−r, s is a vector consisting
of the per-symbol storage costs of all nodes, and t is a vector
consisting of the per-symbol transmission costs of all links.1 If
the per-symbol transmission cost only depends on the source
node, this storage system model becomes the model in [16].
If nodes and links have uniform costs, this model becomes
homogeneous. In this DSS, a file can be encoded by any
erasure code, which allows retrieving the data file by accessing
any k out of n nodes. Such erasure codes can be represented
as irregular array codes [23]. For a file encoded by an irregular
array code, one can easily get the storage cost from the size of
the coded block in each node and the per-symbol storage cost
of each node. Furthermore, the storage cost of the irregular
array code is defined as the storage cost of the file normalized
by the file size. As for the node failure issue of the DSS,
we focus on the single-node failure and the single-node repair
process, where the transmission from any helper node to the
failed node involves one hop only. For an irregular array code,
we define two types of repair costs: average repair cost and
worst-case repair cost. The average repair cost of an irregular
array code represents the average transmission cost to repair
a node, and the worst-case repair cost represents the highest
transmission cost among all transmissions from a helper node
to a single failed node.

Note that the average repair cost of an erasure code is also
defined in [16], [22], [24]. Reference [16] defines the storage
cost as the same as in this paper and focuses on the average

1s and t will be formally defined in Section II.

repair cost. By analyzing the min-cut of the information flow
graph, Reference [16] derives the min-cut condition. The
cut-set bound for functional-repair codes can be derived by
formulating the problem of the storage-repair cost tradeoff
as a bi-objective optimization problem subject to the min-cut
condition. However, there is no polynomial time algorithm to
solve this optimization problem. Whether this tradeoff curve,
especially the minimum storage cost point, is achievable by
an exact-repair code is also unknown. For our heterogeneous
storage system model, the min-cut conditions are still valid
and can be used to obtain the storage-repair tradeoff curve, at
least numerically.

This paper focuses on the minimum storage cost point on
the storage-repair tradeoff curve for our heterogeneous storage
system model, called the heterogeneous minimum storage
repair (HMSR) point, and the problem for constructing exact-
repair codes to achieve this point. The contributions are as
follows:

1) For any DSS, we divide all nodes into high-cost,
moderate-cost, and low-cost nodes. It is shown that a
DSS almost surely2 has no moderate-cost node, and a
DSS with at least one moderate-cost node almost surely
has only one moderate-cost node. This motivates us to
consider a DSS with no moderate-cost node and only
one moderate-cost node.

2) Consider a DSS with no moderate-cost node. We show
that for such a DSS, an HMSR code must be an MDS
array code that only covers all low-cost nodes. For
this case, exact-repair HMSR codes regarding either
the average or worst-case repair cost are constructed.
Our constructions leverage the conventional MSR codes,
but the repair schemes need to be specially designed
to download unequal numbers of symbols from helper
servers according to the unequal link costs. These results
demonstrate that by properly using conventional MSR
codes and designing repair schemes, one can construct
HMSR codes regarding either the average or worst-case
repair cost for almost all heterogeneous DSS.

3) Consider a DSS with only one moderate-cost node. We
show that for such a DSS, an HMSR code must be a
two-valued array code3 that only covers the moderate-
cost and low-cost nodes. For such a DSS with t being
an all-one vector, we obtain the HMSR point regarding
the average repair cost and prove that any linear exact-
repair code can not achieve it. On the other hand, we
derive the HMSR point regarding the worst-case repair
cost for such a DSS. It is shown that, for some t, an
HMSR code regarding the worst-case repair cost, which
must be an MDS array code covering the moderate-cost
and low-cost nodes, can be constructed. While for the
other t, the HMSR point cannot be achieved by regular
array codes. These results demonstrate that for both
repair costs, there exist some cases where the HMSR
point cannot be achieved by regular array codes or linear

2“Almost surely” is a notion in probability theory. A property holds almost
surely means the set that the property holds takes up nearly all possibilities.

3The two-valued array code is formally defined in Section V.
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exact-repair codes.

The rest of the paper is organized as follows. Section II
formally defines the storage system model and introduces
the considered problem. Section III defines the high-cost,
moderate-cost, and low-cost nodes and divides DSSs into
categories according to the number of moderate-cost nodes.
Section IV obtains HMSR codes for a DSS with no moderate-
cost node. Section V investigates HMSR codes for a DSS with
only one moderate-cost node. Section VI concludes this work.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a distributed storage system represented by a fully
connected storage network of n nodes. Each node i ∈ [n]
has associated storage costs si > 0, representing the cost of
storing one symbol. We can assume s1 ≥ · · · ≥ sn due to
the symmetry of the system. Let i → j denote the network
link from node i to node j. Each link i → j, with i, j ∈
[n] and i 6= j, has an associated transmission cost ti,j > 0
representing the cost of transmitting one symbol. To maintain
data integrity, the DSS encodes every file and stores the coded
symbols distributively so that one can retrieve every file by
accessing any k out of n nodes. Let s , [s1 . . . sn], ti ,
[tj,i]j∈[n]\{i}, and t , [t1 . . . tn]. Such a DSS is called an
(n, k, s, t) DSS.

Consider storing a file with B data symbols in an (n, k, s, t)
DSS. After being encoded by an erasure code, αiB coded
symbols are allocated in each node i for i ∈ [n]. Since the
erasure code should enable us to retrieve the original file from
any k out of n nodes, we can obtain some necessary conditions
of {αi}i∈[n], which are∑

i∈S
αi ≥ 1 ∀S ⊂ [n] with |S| = k. (1)

As different nodes may store unequal numbers of coded
symbols, such a code is called an (n, k) irregular array code
with data size B and a data allocation vector α , [α1 . . . αn].
Specifically, if α = [ 1k . . .

1
k ], an (n, k) irregular array code

is an (n, k) MDS array code. We define the storage cost of an
(n, k) irregular array code with a data allocation vector α as

CS(α) ,
∑
i∈[n]

siαi,

which can be seen as the per-data-symbol storage cost of the
file.

When a single node fails, we focus on the repair process that
only allows one-hop transmission from a helper node to the
newcomer. Unless otherwise stated, we allow the functional
repair. For an (n, k) irregular array code with data size B, let
βj,iB denote the number of symbols transmitted to a single
failed node i from node j for all j ∈ [n] \ {i}. Let βi ,
[βj,i]j∈[n]\{i} and β , [βi]i∈[n]. We define two types of repair
costs for an (n, k) irregular array code.

1) We define the total repair cost of node i as

CtotRi (βi) ,
∑

j∈[n]\{i}

tj,iβj,i,

which is the total transmission cost of the repair process
of node i normalized by the data file size B. We define
the average repair cost of the code as

CaveR (β) ,
1

n

∑
i∈[n]

CtotRi (βi).

2) Considering the highest transmission cost from helper
nodes, we define the worst-case repair cost of node i as

CworRi (βi) , max
j∈[n]\{i}

tj,iβj,i.

Furthermore, to characterize the worst performance of
all single-node repair processes, we define the worst-
case repair cost of the code as

CworR (β) , max
i∈[n]

CworRi (βi).

This paper focuses on the problem of constructing exact-repair
HMSR codes for an (n, k, s, t) DSS. For an (n, k, s, t) DSS,
HMSR codes are the (n, k) irregular array codes with the
minimum storage cost and the optimal repair cost subject to
the minimum storage cost. Note that both average and worst-
case repair costs are considered. Thus, we consider two types
of HMSR codes regarding the average and worst-case repair
cost, respectively.

Table I presents the main symbols and definitions related
to a DSS. Some of these symbols and definitions will be
introduced in Sections III and IV.

III. DATA ALLOCATION VECTORS OF HMSR CODES AND
CATEGORIES OF DSSS

This section characterizes α of HMSR codes by minimizing
the storage cost of an (n, k) irregular array code in an
(n, k, s, t) DSS. For an (n, k, s, t) DSS, α leading to the
minimum storage cost is called an optimal data allocation
vector. The complete characterization of the optimal data
allocation vectors is important because the HMSR codes are
the ones with the optimal repair cost among the codes with
an optimal data allocation vector. Different s may lead to
different types of optimal data allocation vectors. Specifically,
for some s, the optimal data allocation vector is unique, which
means the data allocation vector of an HMSR must be it. Thus,
one can obtain an HMSR code by optimizing the repair cost
subject to this data allocation vector. For some s, since there
are many optimal data allocation vectors, the data allocation
vector of an HMSR code is not fixed, which makes finding
HMSR codes more difficult. This motivates us to divide DSSs
into several categories according to different types of optimal
data allocation vectors (cf. subsection B).

A. Optimal data allocation vectors

The minimum storage cost of an (n, k) irregular array code
is determined by the following problem.



4

TABLE I
MAIN NOTATION RELATED TO A DSS

Symbol Definition
si The per-symbol storage cost of node i
tj,i The per-symbol transmission cost from node j to node i
Helper node j for node i The node whose link to node i has the j-th highest per-symbol transmission cost
t̄j,i The per-symbol transmission cost from helper node j for node i to node i
αi The normalized number of symbols stored in node i
βj,i The normalized number of symbols transmitted to the failed node i from node j
β̄j,i The normalized number of symbols transmitted to the failed node i from helper node j for node i
NH ,NM ,NL The index sets of the high-cost, moderate-cost, and low-cost nodes, respectively
H(i)

H ,H(i)
M ,H(i)

L The index sets of the high-cost, moderate-cost, and low-cost helper nodes for the failed node i, respectively

Problem 1: Given n, k, and s = [s1 . . . sn],

min
α∈Rn

∑
i∈[n]

siαi

s.t. αi ≥ 0 ∀i ∈ [n] (2)∑
i∈S

αi ≥ 1 ∀S ⊆ [n] with |S| = k. (3)

It is proven in [25] that conditions (2) and (3) form a sufficient
and necessary condition to make α a data allocation vector of
an (n, k) irregular array code. Hence, the optimal value to
Problem 1 is the minimum storage cost of (n, k) irregular
array codes, and the optimal solutions of Problem 1 are all
optimal data allocation vectors.

Next, we derive the optimal data allocation vectors. Since
an (n, k, s, t) DSS can tolerate any n − k node failures, the
system should have at least n − k + 1 non-empty nodes. To
minimize the storage cost, the non-empty nodes should have
smaller per-symbol storage costs. Therefore, as s1 ≥ · · · ≥ sn,
node i with i = k, . . . , n must be a non-empty node. For a
node i with i ∈ [k − 1], we define

yi(n, k, s) , (k − i)si −
n∑

t=i+1

st. (4)

Based on yi(n, k, s) for all i ∈ [k − 1], we divide all nodes
into three sets.

NH , {i ∈ [k − 1]|yi(n, k, s) > 0}, (5)

NM , {i ∈ [k − 1]|yi(n, k, s) = 0}, (6)

NL , {i ∈ [k − 1]|yi(n, k, s) < 0} ∪ ([n] \ [k − 1]). (7)

The following theorem, which is obtained by solving Prob-
lem 1, provides a complete characterization of the optimal data
allocation vectors.

Theorem 1: For an (n, k, s, t) DSS, α = [α1 . . . αn] is an
optimal data allocation vector if and only if

αi = 0 ∀i ∈ NH , (8)
0 ≤ αi ≤ αk ∀i ∈ NM , (9)
αi = αk ∀i ∈ NL, (10)∑
i∈[k]

αi = 1. (11)

Theorem 1 indicates that to minimize the storage cost, (a)
node i for all i ∈ NH must store no symbols; (b) node i

for all i ∈ NL must store the same number of symbols; (c)
node i for all i ∈ NL can store symbols no more than that in
any node i with i ∈ NL. To improve readability, we use the
following terminology: node i for all i ∈ NH is referred to
as a high-cost node, node i for all i ∈ NM is referred to as a
moderate-cost node, node i for all i ∈ NL is referred to as a
low-cost node.

Consider a DSS with n = 6, k = 4, and s = [4 3 2 2 1 1]. For
this DSS, y1(6, 4, s) = 3s1 −

∑6
t=2 st = 3 > 0, y2(6, 4, s) =

2s2−
∑6
t=3 st = 0, and y3(6, 4, s) = s3−

∑6
t=4 st = −2 < 0,

which leads to NH = {1}, and NM = {2}, NL = {3, 4, 5, 6}.
Thus, node 1 is a high-cost node, node 2 is a moderate-cost
node, and nodes 3 to 6 are low-cost nodes. To minimize the
storage cost, node 1 must be an empty node, nodes 3, . . . , 6
must store the same number of symbols, and node 2 must
store symbols no more than that in node 3. Furthermore,
the optimal data allocation vectors must satisfy (11). Thus,
[0 0 1

2
1
2

1
2

1
2 ], [0 1

4
3
8

3
8

3
8

3
8 ], and [0 1

3
1
3

1
3

1
3

1
3 ] are all optimal

data allocation vectors. To illustrate how to solve Problem 1
and obtain the optimal data allocation vectors (cf. Theorem 1),
we give a data allocation vector α and show how to modify
this α to reduce the storage cost and eventually obtain an α
satisfying the condition given in Theorem 1. To minimize the
storage cost, we should store more symbols in a node with
a smaller per-symbol storage cost, which means we should
focus on the solutions with α1 ≤ · · · ≤ αn. Thus, we choose
α = [1 2 3 4 5 6] and show how to modify this α to reduce the
storage cost while meeting condition (3).

1) Condition (3) can be rewritten as min
S⊆[n],|S|=k

∑
i∈S αi ≥

1. Given α = [1 2 3 4 5 6], we have
min

S⊆[6],|S|=4

∑
i∈S αi =

∑4
i=1 αi = 10, which is

larger than 1. To reduce the storage cost, we can let∑4
i=1 αi be 1 by dividing each αi by 10. The data

allocation vector becomes α = [ 1
10

2
10

3
10

4
10

5
10

6
10 ]

satisfying (11). The storage cost can be further reduced
by letting α5 and α6 be 4

10 . Thus, the data allocation
vector becomes α = [ 1

10
2
10

3
10

4
10

4
10

4
10 ] satisfying (11),

and αi = αk for all i ∈ [n] \ [k − 1].
2) For high-cost node 1, we have y1(6, 4, s) = 3s1 −∑6

t=2 st > 0, which means s1 > 1
3

∑6
t=2 st. If we

reduce α1 by 1
10 and increase the other αi by 1

30 , α
becomes [0 7

30
10
30

13
30

13
30

13
30 ], which still satisfies condi-

tion (3). Since s1 > 1
3

∑6
t=2 st, this new α has smaller
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storage cost. Additionally, this new α satisfies (8).
3) For low-cost node 3, we have y3(6, 4, s) = s3 −∑6

t=4 st < 0, which means s3 <
∑6
t=4 st. If we

increase α3 by 3
60 and reduce αi with i = 4, 5, 6 by

3
60 , α = [0 7

30
10
30

13
30

13
30

13
30 ] becomes [0 7

30
23
60

23
60

23
60

23
60 ],

which still satisfies condition (3). Since s3 <
∑6
t=4 st,

this new α has smaller storage cost. Additionally, this
new α satisfies (10).

4) α = [0 7
30

23
60

23
60

23
60

23
60 ] satisfies the condition given

in Theorem 1, but is not the unique optimal α. For
moderate-cost node 2, we have y2(6, 4, s) = 2s2 −∑6
t=3 st = 0, which means s2 = 1

2

∑6
t=3 st. If we

reduce α2 by x and increase αi with i = 3, 4, 5, 6
by x

2 , the α becomes [0 7
30 − x 23

60 + x
2

23
60 +

x
2

23
60 + x

2
23
60 + x

2 ], which still meets condition (3).
Since s2 = 1

2

∑6
t=3 st, this new α has the same optimal

storage cost. Thus, if we increase α2 by x and reduce
αi for all i = 3, 4, 5, 6 by x

2 , we still obtain an optimal
α as long as we guarantee α2 ≤ α3.

The detailed proof of Theorem 1 is given in Appendix A.

B. Categories of DSSs

Theorem 1 indicates that if there is no moderate-cost node,
the optimal data allocation vector is unique; while if there
are more moderate-cost nodes, there are more optimal data
allocation vectors. Different numbers of moderate-cost nodes
lead to different cases of optimal data allocation vectors, which
lead to different problems for obtaining HMSR codes (cf.
Sections IV and V). Note that there are at most k−1 moderate-
cost nodes. To distinguish different cases, we divide (n, k)
DSSs into k categories: DSSs with t moderate-cost nodes with
t = 0, . . . , k − 1.

Among the k categories, DSS with no moderate-cost node
is the most important one because almost all DSSs have
no moderate-cost node. Before explaining why, we suggest
readers recall the definition of the moderate-cost node and
NM (cf. (6)). For an (n, k) DSS, we can set the value of si
for all i ∈ [n] freely4. The dimension of s space is n. But if
there is one moderate-cost node, for example node 1, s must
satisfy one equation y1(n, k, s) = (k − 1)s1 −

∑n
t=2 st = 0,

which means we can only set the values of s2, . . . , sn freely,
and s1 will be determined accordingly. The dimension of the
corresponding s space is n − 1. Furthermore, if there are
two moderate-cost nodes, s must satisfy two equations, which
means the dimension of the corresponding s space is n − 2.
Like a line has no area and a plane has no volume, a space of
dimension n−1 has zero measure [26] in a space of dimension
n. Thus, we have

Theorem 2: A DSS almost surely has no moderate-cost
node. A DSS with at least one moderate-cost node almost
surely has only one moderate-cost node.

Proof: The set of all possible s is denoted as S ,
{[s1 . . . sn] ∈ Rn|s1 ≥ · · · ≥ sn > 0}. Let Si , {s ∈
S||NM | = i} for i = 0, 1. We will prove s ∈ S0 is almost

4Although we assume s1 ≥ · · · ≥ sn, we can first choose s′i ≥ 0 for all
i ∈ [n], and then obtain sn = s′n and si = si+1 + s′i for all i ∈ [n − 1].
Thus, in this sense, si can be chosen freely.

everywhere in the set S. Similarly, one can prove that s ∈ S1

is almost everywhere in the set S1. “Almost everywhere”
is a notion in measure theory [26] and is analogous to the
notion of almost surely in probability theory. A property
holding almost everywhere means the set that the property
holds takes up nearly all possibilities. Note that a property
holds almost everywhere if it holds for all elements in a set
except a subset of measure zero [26]. That means we only
need to prove that S \ S0 is a set of measure zero in S.
Next, we show that the dimension of S \ S0 is less than
that of S, which implies S \ S0 has zero measure. Note that
S = {[s1 . . . sn] ∈ Rn+|s1 ≥ · · · ≥ sn}. Clearly, S∪{[0 . . . 0]}
is an n-dimensional convex cone. In S, |NM | = 0 happens
unless [s1 . . . sn] satisfies isk−i =

∑n
t=k−i+1 st for some

i ∈ [k− 1]. Let Ci = {[s1 . . . sn] ∈ S|isk−i =
∑n
t=k−i+1 si}.

Consider Di = {[s1 . . . sn] ∈ Rn|isk−i =
∑n
t=k−i+1 si},

which is apparently an (n − 1)-dimensional subspace of Rn.
Thus, Di has measure 0 in Rn. As Ci ⊆ Di, Ci has measure
0, which implies ∪i∈[k−1]Ci also has measure 0. Thus, in the
n-dimensional convex cone S∪{[0 . . . 0]}, |NM | = 0 happens
except on the set (∪i∈[k−1]Ci)∪{[0 . . . 0]} of measure 0, which
means |NM | = 0 is almost everywhere in S.

Theorem 2 motivates us to discuss the two most important
cases in the rest of the paper: a DSS with no moderate-cost
node and a DSS with only one moderate-cost node.

Remark 1: Consider an (n, k) DSS and an (|NL| +
|NM |, |NL|+ |NM |−n+k) DSS induced by all low-cost and
moderate-cost nodes in the (n, k) DSS. In the (n, k) DSS,
if the high-cost nodes are empty, they do not need to be
protected, and the system only needs to tolerate any n − k
node failures among the low-cost and moderate-cost nodes.
Consequently, a code that is designed for the (n, k) DSS
but only covers the low-cost and moderate-cost nodes can be
seen as a code for the (|NL|+ |NM |, |NL|+ |NM | − n+ k)
DSS, and vice versa. Theorem 1 has shown that an HMSR
code C for the (n, k) DSS only covers the low-cost and
moderate-cost nodes. This implies that C can be seen as a
code for the (|NL| + |NM |, |NL| + |NM | − n + k) DSS.
Furthermore, it is easy to show by contradiction that an HMSR
code for the (n, k) DSS is also an HMSR code for the
(|NL| + |NM |, |NL| + |NM | − n + k) DSS, and vice versa.
That means we only need to find the HMSR code for the
(|NL|+ |NM |, |NL|+ |NM | −n+ k) DSS. Additionally, it is
easy to verify that the moderate-cost nodes in (n, k) DSS are
still moderate-cost nodes in the (|NL|+ |NM |, |NL|+ |NM |−
n + k) DSS, and the low-cost nodes in (n, k) DSS are still
low-cost nodes in the (|NL| + |NM |, |NL| + |NM | − n + k)
DSS. Therefore, we only need to find the HMSR code for the
(|NL|+|NM |, |NL|+|NM |−n+k) DSS, which only contains
low-cost and moderate-cost nodes.

IV. HMSR CODES FOR A DSS WITH NO MODERATE-COST
NODE

A DSS with no moderate-cost node has been proven to be
the most important case (cf. Theorem 2). Remark 1 indicates
that HMSR codes for this DSS are equivalent to the HMSR
codes for the sub-DSS induced by low-cost nodes. Thus,
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WLOG, we consider an (n, k) DSS with only low-cost nodes.
From Theorem 1, this DSS has the unique optimal data
allocation vector, which has αi = 1

k for all i ∈ [n]. This
unique optimal data allocation vector indicates that HMSR
codes are (n, k) MDS array codes with the optimal repair cost.
Before discussing such codes, we introduce more definitions
related to a DSS for the convenience of the discussion. Given
an arbitrarily failed node i, we index the n−1 helper nodes as
helper nodes 1 to n−1 so that the per-symbol transmission cost
from helper nodes 1 to n−1 to the failed node is in descending
order. Thus, helper node j for node i is the node whose link
to node i has the j-th highest per-symbol transmission cost,
which implies that helper node j may not be node j. The
per-symbol transmission cost associated with helper node j
for node i is denoted as t̄j,i. Thus, t̄1,i ≥ · · · ≥ t̄n−1,i > 0.
Let t̄i , [t̄j,i]j∈[n−1], and t̄ , [̄t1 . . . t̄n]. Note that given
t = [t1 . . . tn], t̄ = [̄t1 . . . t̄n] can be obtained by reorder-
ing the elements in each ti in descending order. Moreover,
let β̄j,iB denote the number of symbols transmitted to the
failed node i from helper node j with j ∈ [n − 1]. Let
β̄i , [β̄j,i]j∈[n−1] and β̄ , [β̄i]i∈[n]. Thus, the total and
worst-case repair costs of node i are

∑
j∈[n−1] t̄j,iβ̄j,i and

max
j∈[n−1]

t̄j,iβ̄j,i, respectively. For (n, k) MDS array codes, the

min-cut condition in [16] can be equivalently simplified to

β̄j,i ≥ 0 ∀i ∈ [n], j ∈ [n− 1],∑
j∈S

β̄j,i ≥
1

k
∀i ∈ [n], ∀S ⊆ [n− 1] with |S| = n− k.

(12)
This β̄ condition for MDS codes is also shown in [21], [27]
via different approaches. From the network coding theory,
if allowing functional repair, the min-cut condition, which
is (12) for (n, k) MDS array codes, is a sufficient and
necessary condition of β̄. Thus, optimizing repair cost subject
to this min-cut condition leads to the optimal repair cost for
MDS array codes, i.e., the repair cost of HMSR codes for
the considered DSS. Specifically, the average and worst-case
repair costs are considered in the following two subsections.
Each subsection first fully characterizes β̄ of an HMSR code
and then constructs an exact-repair HMSR code with such β̄.

A. HMSR codes regarding the average repair cost

1) Characterization of β̄: From the min-cut condition (12),
the optimal average repair cost for an (n, k) MDS array code,
i.e., the repair cost for an HMSR code regarding the average
repair cost, is given by the following optimization problem.

Problem 2.A: Given n, k, and t̄,

min
β̄∈Rn(n−1)

1

n

∑
i∈[n]

∑
j∈[n−1]

t̄j,iβ̄j,i

s.t. β̄j,i ≥ 0 ∀i ∈ [n], j ∈ [n− 1], (13)∑
j∈S

β̄j,i ≥
1

k
∀i ∈ [n], ∀S ⊆ [n− 1] with |S| = n− k.

(14)

In Problem 2.A, the objective function is a summation of∑
j∈[n−1] t̄j,iβ̄j,i for all i ∈ [n] and each constraint is only

related to one β̄i. For example, the constraints β̄2,1 ≥ 0 and∑n−k
j=1 β̄j,1 ≥ 1/k are only related to β̄1. Thus, Problem 2.A

can be decoupled into n optimization problems associated with
n nodes as follows.

Problem 2.B: Given n, k, a node index i, and t̄i,

min
β̄i∈Rn−1

∑
j∈[n−1]

t̄j,iβ̄j,i

s.t. β̄j,i ≥ 0 ∀j ∈ [n− 1], (15)∑
j∈S

β̄j,i ≥
1

k
∀S ⊆ [n− 1] with |S| = n− k. (16)

The optimal value of Problem 2.B associated with node i is the
optimal total repair cost for node i. Since there is no common
variable in Problem 2.B associated with different nodes, the
optimal total repair cost for node i for all i ∈ [n] can be
achieved simultaneously. That implies that the average of the
optimal total repair cost for all nodes is the optimal average
repair cost. Conversely, to achieve the optimal average repair
cost, each node must have the optimal total repair cost. Thus,
β̄ for MDS array codes with optimal average repair cost can
be fully characterized by the optimal solutions to Problem 2.B
associated with all nodes. Surprisingly, Problem 2.B and Prob-
lem 1 are equivalent and can be solved similarly. The reasons
are as follows: (a) Both the objective function of Problem 1
and the objective function of Problem 2.B are weighted sums
of all variables. (b) Both the first constraint (cf. (2)) of
Problem 1 and the first constraint (cf. (15)) of Problem 2.B
require the variables to be non-negative numbers. (c) Both
the second constraint (cf. (3)) of Problem 1 and the second
constraint (cf. (16)) of Problem 2.B require that the sum of a
certain number of variables must be at least some constant.
Thus, optimizing the storage cost and optimizing the total
repair cost for a node are equivalent problems. To optimize
the storage cost, each storage node is labeled as a high-
cost, moderate-cost, or low-cost node, and the system treats
different types of nodes differently (cf. Theorem 1). Likewise,
each helper node can be labeled as a high-cost, moderate-
cost, or low-cost helper node according to the associated per-
symbol transmission cost. To optimize the total repair cost for
node i, the system must treat different types of helper nodes
differently. For example, the system must not download any
symbols from a high-cost helper node. Specifically, for any
i ∈ [n], let

H(i)
L ,{j ∈ [n− k − 1] | yj(n− 1, n− k, t̄i) < 0}

∪ ([n− 1] \ [n− k − 1]),
(17)

H(i)
M ,{j ∈ [n− k − 1] | yj(n− 1, n− k, t̄i) = 0}, (18)

H(i)
H ,{j ∈ [n− k − 1] | yj(n− 1, n− k, t̄i) > 0}, (19)

which are referred to as the set of low-cost, moderate-cost, and
high-cost helper nodes for node i, respectively. Formally, from
Theorem 1, we have the following theorem fully characterizing
β̄ for MDS array codes with optimal average repair cost, i.e.,
HMSR codes regarding the average repair cost.

Theorem 3: For an (n, k, s, t) DSS with only low-cost
nodes, HMSR codes regarding average repair cost must be
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an (n, k) MDS array code, and the β̄ of HMSR codes can be
fully characterized by

β̄j,i = 0 ∀i ∈ [n], j ∈ H(i)
H ,

0 ≤ β̄j,i ≤ β̄n−k,i ∀i ∈ [n], j ∈ H(i)
M ,

β̄j,i = β̄n−k,i ∀i ∈ [n], j ∈ H(i)
L ,∑

j∈[n−k]

β̄j,i =
1

k
∀i ∈ [n].

(20)

Proof: Eq. (20) is obtained by solving Problem 2.B. We
have roughly shown that Problem 2.B and Problem 1 are
equivalent. Thus, the solution to Problem 1 can be transformed
into the solution to Problem 2.B. This proof demonstrates
the details of this transforming process. Problem 2.B has the
same optimal solution set as a new problem that minimizes
k
∑
j∈[n−1] t̄j,iβ̄j,i subject to

kβ̄j,i ≥ 0 ∀j ∈ [n− 1], (21)∑
j∈S

kβ̄j,i ≥ 1 ∀S ⊆ [n− 1] with |S| = n− k, (22)

since the objective function of the new problem is k times
the objective function of Problem 2.B and the constraints (21)
and (22) are equivalent to the constraints (15) and (16). By
comparing this new problem with Problem 1, we conclude
that one can convert Problem 1 into this problem by replacing
the parameters n, k, s, and the variable vector α with n− 1,
n− k, t̄i, and kβ̄i. As such, the solution to Problem 1 can be
converted to the solution to Problem 2.B. By replacing n, k,
s, and α in the optimal solution to Problem 1 (cf. Theorem 1)
with n−1, n−k, t̄i and kβ̄i, NL, NM , and NH become H(i)

L ,
H(i)
M , and H(i)

H . Furthermore, from Theorem 1, we obtain the
optimal solution to Problem 2.B as follows:

β̄j,i = 0 ∀j ∈ H(i)
H ,

0 ≤ β̄j,i ≤ β̄n−k,i j ∈ H(i)
M ,

β̄j,i = β̄n−k,i ∀j ∈ H(i)
L ,∑

j∈[n−k]

β̄j,i =
1

k
.

(23)

This completes the proof.
Before describing general code construction and repair

schemes, we give an example showing how to achieve the
optimal average repair cost for MDS array codes. Consider
(n = 6, k = 3) MDS array codes in a (6, 3, s, t) DSS with
t̄i = [3 2 1 1 1]. From (4), we can obtain yj(n − 1, n − k, t̄i)
for helper node j. Note that helper node j for node i is
the node whose link to node i has the j-th highest per-
symbol transmission cost, which means helper node j for
node i may not be node j. For helper nodes 1 and 2, we
have y1(5, 3, t̄6) = (3 − 1)3 − (2 + 1 + 1 + 1) > 0 and
y2(5, 3, t̄6) = (3− 2)2− (1 + 1 + 1) < 0. That means helper
node 1 is a high-cost helper node, and helper nodes 2 to 5 are
low-cost helper nodes. Theorem 3 indicates that we should
avoid using high-cost helper nodes. Specifically, from (20),
the β̄ leading to the optimal average repair cost has β̄1,i = 0
and β̄2,i = · · · = β̄6,i = 1

6 . That means node i should be

repaired by downloading B
6 symbols from helper nodes j for

all j = 2, . . . , 5, where B is file size.
2) Code construction and repair schemes: In Theorem 3,

each helper node for node i is labeled as a high-cost, moderate-
cost, and low-cost helper node. From (20), an HMSR code
can have β̄j,i = 0 for all node i and corresponding moderate-
cost helper node j. Furthermore, an HMSR code can have β̄
satisfying

β̄j,i =

{
1
k ·

1

|H(i)
L |−k+1

∀i ∈ [n], j ∈ H(i)
L ,

0 ∀i ∈ [n], j ∈ [n− 1] \ H(i)
L .

(24)

Next, we consider an HMSR code with β̄ satisfying (24),
i.e., an (n, k) MDS array code with β̄ satisfying (24). If β̄
satisfies (24), any node i ∈ [n] can be repaired by downloading
the same number of symbols from each low-cost helper node
j, which is the kind of repair schemes considered in the
homogeneous model [2]. Hence, some MDS array codes
designed for the homogeneous model can be used to design
HMSR codes.

Definition 1: Given an (n, k, s, t) DSS and a set S ⊆ [n−1],
a repair scheme for an (n, k) MDS array code of data size B
can be denoted as a repair scheme RiS if the repair scheme
repairs node i by downloading B

k
1

|S|−k+1 symbols from helper
node j for all j ∈ S. For an (n, k, s, t) DSS, an (n, k) MDS
array code is said to have the optimal repair property if it
is equipped with a repair scheme RiS for all i ∈ [n] and
S ⊆ [n− 1] with k ≤ |S| ≤ n− 1. Note that given an (n, k)
MDS array code with the optimal repair property, one can
choose many repair schemes for a failed node i, such as Ri[k]
and Ri[k+1].
From this definition and (24), an (n, k) MDS array code that
uses a repair scheme Ri

H(i)
L

for node i for all i ∈ [n] is an

HMSR code. Furthermore, since |H(i)
L | ≥ k, an (n, k) MDS

array code with the optimal repair property has a repair scheme
Ri
H(i)
L

for all i ∈ [n], which leads to the following theorem.

Theorem 4: For an (n, k, s, t) DSS with only low-cost
nodes, an (n, k) MDS array code with the optimal repair
property, which has been explicitly constructed in [6] for all
n and k, can be an HMSR code regarding the average repair
cost if it chooses to use the repair scheme Ri

H(i)
L

to repair

node i for all i ∈ [n].
Example 1: An (n = 6, k = 3) MDS array code with the

optimal repair property can be an HMSR code regarding the
average cost for a (6, 3, s, t) DSS with only low-cost nodes.
For any node i, this code can choose many repair schemes,
such as Ri[3], R

i
[4], and Ri{2,...,5}. But this code cannot achieve

the optimal average repair cost unless it chooses the right
one. Given t̄i = [3 2 1 1 1] as an example, from (17), the low-
cost helper nodes for node i are helper nodes 2 to 5. Thus,
the code must use the corresponding repair scheme Ri{2,...,5};
otherwise, it cannot achieve the optimal average repair cost.

Remark 2: For an (n, k) DSS with only low-cost nodes and
time-varying t, we can still encode the system by an (n, k)
MDS array code with the optimal repair property. If node i
fails, given the current t, since this code has a repair scheme
RiS for all i ∈ [n] and S ⊆ [n − 1] with k ≤ |S| ≤ n − 1,
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the system can calculate H(i)
L for the current t and call the

repair scheme Ri
H(i)
L

. Thus, this code can achieve the optimal
average repair cost for the time-varying t.

Remark 3: In this part, we focus on constructing an HMSR
code with β̄ satisfying (24). In fact, for any β̄ satisfying (20),
the corresponding HMSR code can be constructed by lever-
aging the MDS array code with the optimal repair property.
The code construction and corresponding repair schemes are
introduced in the next subsection. Please refer to Remark 4
for details.

B. HMSR codes regarding the worst-case repair cost

1) Characterization of β̄: Similar to Problem 2.A, the
optimal worst-case repair cost of (n, k) MDS array codes,
i.e., the repair cost for an HMSR code regarding the worst-
case repair cost, is the optimal value of the following problem.

Problem 3.A: Given n, k, and t̄,

min
β̄∈Rn(n−1)

max
i∈[n]

max
j∈[n−1]

t̄j,iβ̄j,i

s.t. β̄j,i ≥ 0 ∀i ∈ [n], j ∈ [n− 1],∑
j∈S

β̄j,i ≥
1

k
∀i ∈ [n], ∀S ⊆ [n− 1] with |S| = n− k.

Similar to Problem 2.A, Problem 3.A can also be decomposed
into n subproblems, which minimize the worst-case repair cost
for all node i ∈ [n], respectively.

Problem 3.B: Given n, k, a node index i, and t̄i,

min
β̄i∈Rn−1

max
j∈[n]\{i}

t̄j,iβ̄j,i

s.t. β̄j,i ≥ 0 ∀j ∈ [n] \ {i}, (25)∑
j∈S

β̄j,i ≥
1

k
∀S ⊆ [n− 1] with |S| = n− k. (26)

If an (n, k) MDS array code has the optimal worst-case repair
cost for all node i ∈ [n], this (n, k) MDS array code clearly
has the optimal worst-case repair cost for the system. Our
results show that such an (n, k) MDS array code exists. By
solving Problem 3.B associated with all nodes, β̄ for such
an (n, k) MDS array code is characterized in the following
theorem.

Theorem 5: Considering an (n, k, s, t) DSS with only low-
cost nodes, an HMSR code regarding the worst-case repair
cost can be an (n, k) MDS array code with optimal worst-
case repair cost for all node i ∈ [n], whose β̄ can be fully
characterized by

β̄j,i = Gi/t̄j,i ∀i ∈ [n], j ∈ [n− k]

β̄n−k,i ≤ β̄j,i ≤ Gi/t̄j,i ∀i ∈ [n], j ∈ [n− 1] \ [n− k],
(27)

where Gi, which is defined by

Gi , 1/(
k

t̄1,i
+ · · ·+ k

t̄n−k,i
),

is the optimal worst-case repair cost for node i ∈ [n].
Note that t̄1,i ≥ · · · ≥ t̄n−1,i for all i ∈ [n]. Theorem 5

indicates that to achieve the optimal worst-case repair cost
for node i, we must let (a) the n − k helper nodes with the

n − k largest per-symbol transmission costs (t̄j,i) have the
same transmission cost (the same t̄j,iβ̄j,i), which is the optimal
worst-case repair cost for node i; (b) β̄j,i for the k− 1 helper
nodes with the k − 1 smallest per-symbol transmission cost
are at least β̄n−k,i. Consider (n = 6, k = 3) MDS array codes
in a (6, 3, s, t) DSS with t̄i = [3 2 2 2 2] for some i ∈ [n]. To
illustrate how we solve Problem 3.B and obtain Theorem 5,
we will choose some β̄i and show how to modify this β̄i to
reduce the repair cost and eventually get a β̄i satisfying (27).
To achieve the optimal worst-case repair cost for node i, the
system should download fewer symbols from a helper node
with a higher cost. Thus, we first choose β̄i = [1 2 3 4 5] and
show how to modify it to reduce repair cost.

1) For β̄i = [1 2 3 4 5], we have
min

S⊆[n−1] with |S|=n−k

∑
j∈S β̄j,i =

∑
j∈[3] β̄j,i = 6.

For a feasible β̄i (cf. (26)), we only need
min

S⊆[n−1] with |S|=n−k

∑
j∈S β̄j,i to be 1/k. Thus,

we can multiply the considered β̄i by 1
6k and obtain

[ 1
18

2
18

3
18

4
18

5
18 ], which leads to less repair cost.

Futhermore, we can let β̄4,i and β̄5,i be the same
as β̄3,i. Thus, β̄i becomes [ 1

18
2
18

3
18

3
18

3
18 ], which

satisfies (26) and leads to less repair cost.
2) Now we have a β̄i with β̄n−k,i = · · · = β̄n−1,i.

Since t̄1,i ≥ · · · ≥ t̄n−1,i, helper node n − k has the
largest repair cost among the last k helper nodes. Thus,
to reduce the worst-case repair cost, we only need to
consider the transmission cost for the first n− k helper
nodes. In the considered DSS with t̄i = [3 2 2 2 2], given
β̄i = [ 1

18
2
18

3
18

3
18

3
18 ], the first three helper nodes of

the failed node i correspond to different transmission
costs (different t̄j,iβ̄j,i). If we can reduce the high
transmission cost and increase the low transmission
cost, the worst-case repair cost will be reduced. For
example, for β̄i = [ 1

18
2
18

3
18

3
18

3
18 ], if we increase β̄2,i

by 1
36 and reduce β̄j,i by 1

36 for all j = 3, . . . , 5, β̄i
becomes [ 1

18
5
36

5
36

5
36

5
36 ] leading to less repair cost. If

we continue to balance the transmission cost for the first
three helper nodes while guaranteeing

∑
j∈[3] β̄j,i = 1

k

and β̄3,i = · · · = β̄5,i, the worst-case repair cost will
continue to decrease. Eventually, the first three helper
nodes will have the same transmission cost, β̄i will
become [ 1

12
1
8

1
8

1
8

1
8 ], which satisfies (27).

The formal proof of Theorem 5 will be given in Appendix B.
2) Code construction and repair schemes: If we can con-

struct an (n, k) MDS array code with β̄ satisfying

β̄j,i =

{
Gi/t̄j,i ∀i ∈ [n], j ∈ [n− k],

β̄n−k,i ∀i ∈ [n], j ∈ [n− 1] \ [n− k],
(28)

we can construct an (n, k) MDS array code with any β̄
satisfying (27). Next, we aim to construct an (n, k) MDS array
code with β̄ satisfying (28), which is an HMSR code regarding
the worst-case repair cost for a DSS with only low-cost nodes.
To have β̄ satisfying (28), repairing a node needs to download
different numbers of symbols from different helper nodes,
which is no longer possible for the conventional MSR codes.
However, by stacking an (n, k) MDS array code with the
optimal repair property (cf. Definition 1) for several times, we
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Fig. 1. This figure illustrates a repair scheme of the failed node 6 for C(4). The 4 layers of a codeword are divided into two parts, colored white and gray,
respectively. The repair schemes R6

S1,6 and R6
S2,6 (cf. Definition 1) are applied on the layers of the white and gray parts, respectively. Thus, the failed white

part is repaired by downloading B
12

symbols from helper nodes 1, . . . , 5, where B is the file size, and the failed gray part is repaired by downloading B
24

symbols from helper nodes 2, . . . , 5.

can obtain an (n, k) MDS array code with β̄ satisfying (28).
Specifically, given any positive integer W and an (n, k) MDS
array code Cbase with the optimal repair property, by stacking
W code instances of Cbase, we obtain the (n, k) MDS array
code C(W ) defined as

C(W ) ,

{ c1,1 . . . c1,n
...

. . .
...

cW,1 . . . cW,n

 ∣∣∣∣∣[ci,j ]j∈[n] ∈ Cbase, ∀i ∈ [W ]

}
.

(29)
Note that a codeword of C(W ) has W layers which are
W codewords of Cbase. Since Cbase has the optimal repair
property, many different repair schemes leveraging different
helper nodes exist for a single failed node. For a failed node
of C(W ), we can apply different repair schemes to different
layers to accomplish download different numbers of symbols
from different helper nodes. For a clearer explanation, we first
present an example.

Example 2: Consider (n = 6, k = 3) MDS array codes in
a (6, 3, s, t) DSS with t̄1,6 = 3, t̄2,6 = · · · = t̄5,6 = 2, t̄1,1 =
t̄2,1 = 5, and t̄3,1 = t̄4,1 = t̄5,1 = 2. With these parameters,
β̄ given in (28) has β̄1,6 = 1

12 , β̄2,6 = · · · = β̄5,6 = 1
8 ,

β̄1,1 = β̄2,1 = 2
27 , and β̄3,1 = β̄4,1 = β̄5,1 = 5

27 . Thus, to
achieve the optimal worst-case repair cost of node 6, we want
to construct a (6, 3) MDS array code with data size B that
can repair node 6 by downloading B

12 symbols from helper
node 1 and B

8 symbols from each helper node j = 2, . . . , 5.
First, choose a (6, 3) MDS array code Cbase with data size B′

and the optimal repair property. The codeword of Cbase can
be written as an array [c1 . . . c6] where cj is a column vector
of length B′ for all j ∈ [6]. From the optimal-repair property,
c6 can be repaired by downloading B′

9 symbols from 5 helper
nodes, or B′

6 symbols from any 4 helper nodes, or B′

3 symbols
from any 3 helper nodes. By stacking 4 instances of Cbase, we
can obtain a (6, 3) MDS array code C(4) given by

C(4) =

{c1,1 . . . c1,6
...

. . .
...

c4,1 . . . c4,6

 ∣∣∣∣∣[ci,j ]j∈[6] ∈ Cbase,∀i ∈ [4]

}
.

(30)

Clearly, the data size associated with C(4) is B = 4B′. Note
that the codeword of C(4) has four layers which are four
codewords of Cbase. We divide the four layers into two groups.
The first group contains the first three layers, and the second
group contains the fourth layer. We then apply different repair
schemes of Cbase to different layer groups to constitute a repair
scheme of C(4) (cf. Fig. 1). For the layers in the first layer
group, using the repair scheme R6

{1,...,5}, we repair {ct,6}t∈[3]
by downloading 3 · B

′

9 = B′

3 symbols from helper node j for
all j ∈ [5]. For the layer in the second group, using the repair
scheme R6

{2,...,5}, we repair c4,6 by downloading B′

6 symbols
from helper node j for all j = 2, . . . , 5. Overall, this repair
scheme downloads B′

3 = 4B′

12 = B
12 symbols from helper node

1 and 3B′

9 + B′

6 = B′

2 = 4B′

8 = B
8 from each helper node

j with j ∈ [5] \ {1}. Thus, C(4) with this repair scheme for
node 6 has β̄6 satisfying (28). Furthermore, C(W ) with W
divisible by 4 can also have β̄6 satisfying (28) by similarly
dividing W layers into two groups consisting of 3W

4 and W
4

layers, respectively, and applying R6
{1,...,5} and R6

{2,...,5} on
the layers of the two groups accordingly.

Next, we consider the repair of node 1. From the given t, β̄
given in (28) has β̄1,1 = β̄2,1 = 2

27 , and β̄3,1 = β̄4,1 = β̄5,1 =
5
27 . Thus, we want to construct a (6, 3) MDS array code with
data size B that can repair node 1 by downloading 2B

27 symbols
from each helper node j = 1, 2 and 5B

27 symbols from each
helper node j = 3, 4, 5. C(3) with data size B = 3B′ can
have such a repair scheme for node 1. In the first two layers
of C(3), using the repair scheme R1

{1,...,5}, we repair node 1

by downloading 2 · B
′

9 symbols from all helper nodes. In the
third layer, using the repair scheme R1

{3,4,5}, we can repair
node 1 by downloading B′

3 symbols from each helper node
j = 3, 4, 5. Overall, this repair scheme of node 1 downloads
2
27 · 3B

′ symbols from each helper node j = 1, 2 and 2 ·
B′

9 + B′

3 = 5
27 · 3B

′ symbols from each helper node j =
3, 4, 5. Thus, C(3) with this repair scheme for node 1 has β̄1

satisfying (28). We have mentioned that C(W ) with W divisible
by 4 can have β̄6 satisfying (28). Likewise, C(W ) with W
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TABLE II
NOTATION RELATED TO THE REPAIR SCHEME OF NODE i FOR C(W )

Symbol Definition
mi The number of groups that the W layers are divided into
Et,i The number of layers in the t-th layer group normalized by the number of all layers
St,i The index set of the helper nodes involved in the repair of the layers in the t-th layer group
Ri
St,i The repair scheme applied on the layers of the t-th layer group

divisible by 3 can have β̄1 satisfying (28). Thus, C(12) can
achieve the optimal worst-case repair costs for both nodes 1
and 6 since 12 is divisible by both 3 and 4. This implies that
by stacking the base code Cbase, we may obtain an MDS code
with optimal worst-case repair costs for multiple nodes and
even all nodes.

This example implies that by properly choosing W and
designing repair schemes, C(W ) can be an MDS array code
with optimal worst-case repair cost for all nodes, which is an
HMSR code regarding the worst-case repair cost for a DSS
with only low-cost nodes. The repair scheme of C(W ) can
be formally described as follows. If node i fails, the system
separates the W layers into mi groups such that the t-th
group consists of Et,iW layers. Then, a repair scheme RiSt,i
(cf. Definition 1) is applied on each layer in the t-th group.
Thus, the repair scheme of C(W ) can be characterized by
W , {mi}i∈[n], {St,i}i∈[n],t∈[mi], and {Et,i}i∈[n],t∈[mi]. These
new symbols and definitions related to the repair scheme are
summarized in Table II for clarity. The question that needs to
be answered is how to choose W , {mi}i∈[n], {St,i}i∈[n],t∈[mi],
and {Et,i}i∈[n],t∈[mi] to let C(W ) have β̄ satisfying (28).
Before formally answer that by Theorem 6, we revisit the
case considered in Example 2 to illustrate how to choose these
parameters.

Example 2 (continued): For a (6, 3, s, t) DSS with t̄1,6 = 3
and t̄2,6 = · · · = t̄5,6 = 2, it has been shown in Example 2 that
C(W ) can have [β̄j,6]j∈[5] satisfying (28) by selecting specific
values for W , m6, S1,6, S2,6, E1,6, and E2,6. Specifically,
we can choose W = 4, m6 = 2, S1,6 = {1, . . . , 5},
S2,6 = {2, . . . , 5}, E1,6 = 3

4 , and E2,6 = 1
4 . Next, we

explain how to determine these parameters. Let β̄∗j,6 for all
j ∈ [5] denote the β̄j,6 satisfying (28). It has been shown in
Example 2 that β̄∗1,6 = 1

12 , β̄∗2,6 = · · · = β̄∗5,6 = 1
8 . Note that

β̄∗1,6 < β̄∗2,6 = · · · = β̄∗5,6. Let us first design a repair scheme
with β̄1,6 < β̄2,6 = · · · = β̄5,6. First, divide all layers into 2
groups: one containing E1,6W layers and the other containing
E2,6W layers. Then, apply R6

{1,...,5} and R6
{2,...,5} onto the

layers of groups 1 and 2, respectively (cf. Fig. 2). This scheme
leads to β̄1,6 < β̄2,6 = · · · = β̄5,6. This implies that (a) m6

should be 2, which is the number of different positive values
in [β̄∗j,6]j∈[5]; (b) S1,6 should be {j ∈ [n − 1]|β̄∗j,6 ≥ β̄∗(1),6},
where β̄∗(1),6 be the smallest positive value in [β̄∗j,6]j∈[5];
(c) S2,6 should be {j ∈ [n − 1]|β̄∗j,6 ≥ β̄∗(2),6}, where
β̄∗(2),6 be the second smallest positive value in [β̄∗j,6]j∈[5].
Next, our objective is to achieve β̄1,6 = β̄∗(1),6 = 1

12 and
β̄2,6 = · · · = β̄5,6 = β̄∗(2),6 = 1

8 by designing the dividing
ratios E1,6 and E2,6. One can tell from Fig. 2 that the
repair scheme downloads E1,6B

k(|S1,6|−k+1) =
E1,6B

9 symbols

from helper node 1, where B is the file size. If this repair
scheme achieves β̄1,6 = β̄∗1,6 = β̄∗(1),6, E1,6 should satisfy

E1,6B
k(|S1,6|−k+1) = β̄∗(1),6B, which indicates that E1,6 should be
β̄∗(1),6k(|S1,6| − k + 1). Next, we want to guarantee β̄2,6 =

β̄∗2,6 = β̄∗(2),6. Since the number of symbols downloaded from
helper node 2 is E1,6B

k(|S1,6|−k+1) +
E2,6B

k(|S2,6|−k+1) (cf. Fig. 2), E1,6

and E2,6 should satisfy E1,6

k(|S1,6|−k+1) +
E2,6

k(|S2,6|−k+1) = β̄∗(2),6.

Since we have already let E1,6

k(|S1,6|−k+1) = β̄∗(1),6, E2,6 only

need to satisfy E2,6

k(|S2,6|−k+1) = β̄∗(2),6− β̄
∗
(1),6, which indicates

that E2,6 should be k(β̄∗(2),6− β̄
∗
(1),6)(|S2,6|−k+ 1). One last

thing we need to verify is whether E1,6 + E2,6 = 1. Since
E1,6 = β̄∗(1),6k(|S1,6| − k + 1) = 3(5−3+1)

12 = 3
4 and E2,6 =

k(β̄∗(2),6−β̄
∗
(1),6)(|S2,6|−k+1) = 3( 1

8−
1
12 )(4−3+1) = 1

4 , we
have E1,6 +E2,6 = 1. It is worth mentioning that the equation∑2
t=1Et,6 = 1 holds because of some structure (cf. (31)

and (32)) of the [β̄j,i]j∈[n−1] satisfying (28), which will be
discussed in the proof of Theorem 6. As for the number of
layers W , we only need to guarantee that E1,6W and E2,6W
are integers, which indicates that W should be a multiple of
4.

Example 2 (continued) illustrates how to determine
{mi}i∈[n], {St,i}i∈[n],t∈[mi], {Et,i}i∈[n],t∈[mi], and W to let
C(W ) have β̄ satisfying (28). Formally, we have the following
theorem.

Theorem 6: Given an (n, k, s, t) DSS with only low-cost
nodes, let

β̄∗j,i ,

{
Gi/t̄j,i ∀i ∈ [n], j ∈ [n− k],

β̄n−k,i ∀i ∈ [n], j ∈ [n− 1] \ [n− k],

β̄∗(0),i , 0, and β̄∗(t),i be the t-th smallest positive value in
[β̄∗j,i]j∈[n−1]. For this DSS, C(W ) has β̄ satisfying (28) and
hence is an HMSR code regarding the worst-case repair cost
if mi is the number of different positive values in [β̄∗j,i]j∈[n−1]
for all i ∈ [n],

St,i = {j ∈ [n− 1]|β̄∗j,i ≥ β̄∗(t),i} ∀i ∈ [n], t ∈ [mi],

Et,i = k(β̄∗(t),i − β̄
∗
(t−1),i)(|St,i| − k + 1) ∀i ∈ [n], t ∈ [mi],

Et,iW ∈ Z ∀i ∈ [n], t ∈ [mi].

Proof: First, we show
∑
t∈[mi]Et,i = 1. From the

definition of β̄∗j,i, we have

β̄∗1,i ≤ · · · ≤ β̄∗n−k,i = · · · = β̄∗n−1,i ∀i ∈ [n], (31)
n−k∑
j=1

β̄∗j,i =
1

k
∀i ∈ [n], (32)
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Fig. 2. This figure illustrates the code C(W ) and corresponding repair scheme of node 6 discussed in Example 2 (continued). The W layers of a codeword
are divided into m6 = 2 parts colored by white and gray, respectively. The white and gray parts have E1,6W and E2,6W layers, respectively. Then, the
repair schemes R6

S1,6 and R6
S2,6 are applied on the layers of the white and gray parts, respectively, where S1,6 = {1, . . . , 5} and S2,6 = {2, . . . , 5}. Thus,

from the definition of the repair schemes R6
S1,6 and R6

S2,6 (cf. Definition 1), the failed white part is repaired by downloading E1,6B

9
symbols from helper

nodes 1, . . . , 5, where B is the file size, and the failed gray part is repaired by downloading E2,6B

6
symbols from helper nodes 2, . . . , 5.

which indicates 0 < β̄∗(1),i < · · · < β̄∗(mi),i = β̄∗n−k,i and
mi ≤ n− k. From the definition of St,i, we have

∑
j∈[n−1]

β̄∗j,i = |Smi,i|β̄∗(mi),i +

mi−1∑
t=1

(|St,i| − |St+1,i|)β̄∗(t),i,

which, together with β̄∗(mi),i = β̄∗n−k,i = · · · = β̄∗n−1,i,
implies

∑
j∈[n−k]

β̄∗j,i = (|Smi,i| − k+ 1)β̄∗(mi),i +

mi−1∑
t=1

(|St,i| − |St+1,i|)β̄∗(t),i.

(33)
Furthermore, from (31) and (32), we have∑
t∈[mi]

Et,i =
∑
t∈[mi]

(k(β̄∗(t),i − β̄
∗
(t−1),i)(|St,i| − k + 1))

=k
(
(|Smi,i| − k + 1)β̄∗(mi),i

+

mi−1∑
t=1

(|St,i| − |St+1,i|)β̄∗(t),i
)

=k
∑

j∈[n−k]

β̄∗j,i = 1.

(34)

Next, we prove that C(W ) considered in the theorem repairs
node i by downloading β̄∗j,iB symbols from each helper node
j ∈ [n − 1], where B is the data size. Note that the system
applies the repair scheme RiSt,i on the layers in the t-th group.
That means, for the repair of each layer in the t-th group, the
system downloads B

Wk(|St,i|−k+1) from helper node j for all

j ∈ St,i. Thus, as Et,i = k(β̄∗(t),i − β̄
∗
(t−1),i)(|St,i| − k + 1),

the system downloads BEt,iW
Wk(|St,i|−k+1) = (β̄∗(t),i − β̄

∗
(t−1),i)B

from helper node j for all j ∈ St,i for the repair of all Et,iW
layers in t-th group. Next, consider a helper node j′. From the
definition of St,i, we obtain that [n−1] can be partitioned into
mi + 1 subsets: [n− 1] \S1,i, S1,i \S2,i, . . . , Smi,i \Smi+1,i,
where Smi+1,i , ∅. Thus, j′ must be in one of these subsets.
If j′ ∈ [n − 1] \ S1,i, from the definition of St,i, we obtain
that the repair scheme downloads β∗j′,iB symbol from helper
node j′, where β∗j′,i = 0. If j′ ∈ St′,i \ St′+1,i for some
t′ ∈ [mi], from the definition of St,i, we have j′ ∈ St,i for
all t ≤ t′ and j 6∈ St,i for all t > t′. Thus, helper node
j′ is only involved in the repair of the layers in the t-th
group for all t ≤ t′. That means the repair scheme downloads∑t′

t=1 (β̄∗(t),i − β̄
∗
(t−1),i)B = (β̄∗(t′),i − β̄∗(0),i)B = β̄∗(t′),iB

from helper node j′. Since j′ ∈ St′,i \ St′+1,i, from the
definition of St,i and β̄∗(t),i, we obtain β̄∗j′,i ≥ β̄∗(t′),i and
β̄∗j′,i < β̄∗(t′+1),i, which leads to β̄∗(t′),i = β̄∗j′,i. As such, the
repair scheme downloads β̄∗j′,iB symbols from helper node j′.
This completes the proof.

Remark 4: Theorem 6 shows that C(W ) with properly
designed {mi}i∈[n], {St,i}i∈[n],t∈[mi], {Et,i}i∈[n],t∈[mi], and
W can have β̄ satisfying (28). In fact, one can tell from
the proof of Theorem 6 that C(W ) with properly chosen
parameters can have β̄ satisfying (31) and (32), which are
more general conditions than (28). In particular, given any β̄
satisfying (20), by reindexing the moderate-cost helper node
for each failed node, this β̄ can be equivalently transformed
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into one satisfying (31) and (32). Thus, C(W ) with properly
chosen parameters (cf. Theorem 6) can achieve this β̄, which
leads to an HMSR code regarding the average repair cost for a
DSS with only low-cost nodes. Specifically, the HMSR code
give in Theorem 4 is a C(W ) with W = 1, mi = 1, and
S1,i = H(i)

L for all i ∈ [n].
Remark 5: The code array of the HMSR code C(W ) can be

much larger than the homogeneous MSR array code. However,
this larger code array will not jeopardize the decoding speed
because a decoder does not need to process the whole array
but only processes one layer at a time, which is a codeword of
the homogeneous MSR code. In fact, if a real-world system
is encoded by an MDS array code Cbase with the optimal
repair property, it can be seen as encoded by C(W ) with some
very large W because the system must have tons of files
and hence store many codewords of Cbase. Thus, for such a
system, to achieve optimal worst-case repair cost of node i, we
need to divide the stored codewords of Cbase into mi groups
according to the ratios {Et,i}t∈[mi] and apply corresponding
repair schemes RiSt,i for all t ∈ [mi]. This means that to
achieve optimal worst-case repair cost, a system does not need
to implement C(W ); it just needs to implement Cbase and the
proposed repair scheme according to t.

V. HMSR CODES FOR A DSS WITH ONE MODERATE-COST
NODE

HMSR codes for a DSS with no moderate-cost node have
been obtained in the previous section. This section considers
a DSS with only one moderate-cost node, which is the most
important case among DSSs with at least one moderate-cost
node (cf. Theorem 2). Remark 1 indicates that HMSR codes
for a DSS are equivalent to the HMSR codes for the sub-
DSS induced by the low-cost and moderate-cost nodes. Thus,
WLOG, we consider an (n, k) DSS with one moderate-cost
node and n − 1 low-cost nodes. To characterize the HMSR
codes for this DSS, we define two-valued array codes as
follows.

Definition 2: An (n, k) irregular array code is called an
(n, k) two-valued array code if the associated α satisfies

α1 ≤ α2 = α3 = · · · = αn, (35)
α1 + (k − 1)α2 = 1. (36)

From Theorem 1 and Definition 2, an HMSR code for
the considered (n, k, s, t) DSS must be a two-valued array
code that only covers the moderate-cost and low-cost nodes.
Furthermore, HMSR codes are the (n, k) two-valued array
codes with the optimal repair cost. The average and worst-
case repair costs are considered respectively in the following
two subsections.

Note that we can also define t-valued array codes to
characterize the HMSR codes for a DSS with t− 1 moderate-
cost nodes for t ≥ 3. However, DSSs with multiple moderate-
cost nodes are rare in comparison to the DSSs investigated in
this paper, and therefore, they are beyond the scope of this
paper.

A. HMSR codes regarding the average repair cost

In this subsection, we mainly focus on a DSS with one
moderate-cost node, n − 1 low-cost nodes, and t being an
all-one vector. Since t is an all-one vector, the repair cost
becomes the repair bandwidth defined for the homogeneous
model [2]. For such a DSS, we first characterize α and β of
an HMSR code regarding the average repair cost and discuss
the construction for an exact-repair HMSR code with such α
and β.

1) Characterization of α and β: HMSR codes for the
considered DSS are the (n, k) two-valued array codes with
the optimal repair cost. To obtain the optimal repair cost, we
need to study the min-cut condition for α and β. As we
have mentioned before, [16] has already found the min-cut
condition for α and β as presented in the next theorem.

Theorem 7 (cf. Theorems 1 and 2 in [16]): Let F be the
set of k-vectors f = [f1 . . . fk] whose components are chosen
from [n] and fi 6= fj for i 6= j. In an (n, k, s, t) DSS, the α
and β of an (n, k) irregular array code satisfy

min
f∈F

k∑
i=1

min{αfi ,
∑

j∈[n]\{f1,...,fi}

βj,fi} ≥ 1. (37)

Conversely, if allowing functional repair, there exists an (n, k)
irregular array code with α and β as long as the condition (37)
holds.

The min-cut condition in (37) is for general (n, k) irregular
array codes. For (n, k) two-valued array codes, α needs to
satisfy (35) and (36). Combining (37) with (35) and (36), the
min-cut condition for (n, k) two-valued array codes was shown
in the following lemma.

Lemma 1: α and β of an (n, k) two-valued array code
satisfy

βj,i ≥ 0 ∀i, j ∈ [n] with i 6= j, (38)∑
j∈S

βj,1 ≥ α1 ∀S ⊆ [n] \ {1} with |S| = n− k, (39)

∑
j∈S

βj,i ≥ α2
∀i ∈ [n] \ {1},∀S ⊆ [n] \ {1, i}
with |S| = n− k, (40)

β1,i +
∑
j∈S

βj,i ≥ α1
∀i ∈ [n] \ {1},∀S ⊆ [n] \ {1, i}
with |S| = n− k − 1.

(41)

Conversely, there exists an (n, k) functional-repair irreg-
ular array code with α and β as long as the condi-
tions (38), (39), (40), and (41) hold.

The detailed proof of Lemma 1 is given in Appendix C.
Based on the simplified min-cut condition derived in Lemma 1,
we formulate the following optimization problem whose opti-
mal solutions fully characterize α and β for the HMSR codes
regarding the average repair cost for the considered DSS.

Problem 4: Given n, k, and t,

min
β∈Rn(n−1)

CaveR (β)

s.t. 0 ≤ α1 ≤ α2, (k − 1)α2 + α1 = 1 (42)
(38), (39), (40), and (41)
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Let us compare the average repair cost optimization prob-
lems for MDS array codes (cf. Problem 2.A) and two-valued
array codes (cf. Problem 4). In Problem 2.A, node capacity αi
is not involved because it is a constant; while in Problem 4,
αi becomes variables. For MDS array codes, the optimal total
repair cost for each node can be achieved simultaneously, and
the optimal average repair cost can be achieved accordingly.
While for (n, k) two-valued array codes, the optimal repair
cost for each node cannot be achieved simultaneously because
the repair cost for node i depends on αi, which is not a
constant for (n, k) two-valued array codes, and the node
capacities cannot be minimized simultaneously. Specifically,
for node 1, the optimal total repair cost is zero achieved by
letting α1 = 0. If α1 increases, α2 and the repair cost for
node 2 will decrease; however, the repair cost for node 1
will increase and is no longer optimal. Thus, it is unclear
whether the average repair cost will increase or decrease. To
see how the average repair cost changes as α1 changes, we
first derive the optimal average repair cost for an (n, k) two-
valued array code with fixed α1. If α1 is fixed, Problem 4 can
be decoupled into repair cost optimization problems for all
nodes. By solving these sub-problems, we obtain the following
theorem.

Theorem 8: For a DSS with t being an all one vector and
an (n, k) two-valued array code with fixed α1,

1) if α1 ≤ (n−k−1)α2

n−k , the optimal average repair
cost is 1

n ( (n−1)α1

n−k + (n−1)(n−2)α2

n−k ) = 1
n ((n−1n−k −

(n−1)(n−2)
(n−k)(k−1) )α1 + (n−1)(n−2)

(n−k)(k−1) ). Furthermore, if k ≥ 3,
the optimal average repair cost can be achieved if and
only if β satisfies

βj,1 =
α1

n− k
∀j ∈ [n] \ {1},

β1,i = 0 ∀i ∈ [n] \ {1},

βj,i =
α2

n− k
∀i ∈ [n] \ {1},∀j ∈ [n] \ {1, i}.

(43)

2) If α1 >
(n−k−1)α2

n−k , the optimal average repair cost is
1
n ( (n−1)α1

n−k + (n− 1)(α1 + (k−1)α2

n−k )) = 1
n ((n− 1)α1 +

n−1
n−k ), which can be achieved if and only if β satisfies

βj,1 =
α1

n− k
∀j ∈ [n] \ {1},

β1,i = α1 −
(n− k − 1)α2

n− k
∀i ∈ [n] \ {1},

βj,i =
α2

n− k
∀i ∈ [n] \ {1},∀j ∈ [n] \ {1, i}.

(44)

The detailed proof is given in Appendix D. Theorem 8
shows that if α1 ≤ (n−k−1)α2

n−k , the optimal average repair cost
for a two-valued array code with this α1 is a monotonically
decreasing function of α1; while α1 >

(n−k−1)α2

n−k , the optimal
average repair cost for a two-valued array code with this α1

is a monotonically increasing function of α1; That means that
if α1 increases from 0, the optimal average repair cost for a
two-valued array code with this α1 will first decrease and
then increase. Thus, Theorem 8 indicates that the optimal
average repair cost for a two-valued array code will appear
when α1 = (n−k−1)α2

n−k as shown in the following theorem.

Theorem 9: In an (n, k, s, t) DSS with one moderate-cost
node and n−1 low-cost nodes, the HMSR codes regarding the
average repair cost are the (n, k) two-valued array codes with
the optimal average repair cost. If k ≤ n−2 and t is an all-one
vector, the optimal average repair cost among all (n, k) two-
valued array codes is 1

n ((n− 1) n−k−1
k(n−k)−1 + n−1

n−k ), which can
be achieved if and only if an (n, k) two-valued array code has
α and β satisfying α1 = (n−k−1)α2

n−k = n−k−1
k(n−k)−1 , and (43).

Proof: For a two-valued data allocation vector α, we
have (42). Thus, α2 = 1−α1

k−1 . If α1 <
(n−k−1)α2

n−k , we have
α1 <

(n−k−1)
n−k · 1−α1

k−1 , which implies 0 ≤ α1 <
n−k−1

k(n−k)−1 .

Define a function of α1 as g1(α1) , (n−1)α1

n−k + (n−1)(n−2)α2

n−k ,
where α2 = 1−α1

k−1 . From Theorem 8, if α1 < (n−k−1)α2

n−k ,
we have nCaveR (β) ≥ g1(α1) = (n−1)α1

n−k + (n−1)(n−2)
n−k ·

1−α1

k−1 = (n−1n−k −
(n−1)(n−2)
(n−k)(k−1) )α1 + (n−1)(n−2)

(n−k)(k−1) . Since 0 ≤
α1 < n−k−1

k(n−k)−1 and n−1
n−k −

(n−1)(n−2)
(n−k)(k−1) < 0, we have

nCaveR (β) ≥ g1(α1) > g1( n−k−1
k(n−k)−1 ). If (n−k−1)α2

n−k ≤ α1 ≤
α2, we have n−k−1

k(n−k)−1 ≤ α1 ≤ 1
k . Define a function of

α1 as g2(α1) , (n−1)α1

n−k + (n − 1)(α1 + (k−1)α2

n−k ), where
α2 = 1−α1

k−1 . From Theorem 8, if α1 ≥ (n−k−1)α2

n−k , we have
nCaveR (β) ≥ g2(α1) = (n−1)α1

n−k + (n − 1)(α1 + (k−1)
n−k ·

1−α1

k−1 ) = (n − 1)α1 + n−1
n−k . Since n−k−1

k(n−k)−1 ≤ α1 ≤ 1
k and

n − 1 > 0, we have nCaveR (β) ≥ g2(α1) ≥ g2( n−k−1
k(n−k)−1 ) =

(n − 1) n−k−1
k(n−k)−1 + n−1

n−k , and the equality holds if and only

if α and β satisfy α1 = (n−k−1)α2

n−k = n−k−1
k(n−k)−1 and (44).

When α1 = n−k−1
k(n−k)−1 , we have α1 = (n−k−1)α2

n−k and

g2(α1) = (n−1)α1

n−k + (n − 1)(α1 + (k−1)α2

n−k ) = (n−1)α1

n−k +

(n− 1) (n−2)α2

n−k = g1(α1). In conclusion, if α1 <
(n−k−1)α2

n−k ,
we have nCaveR (β) > g1( n−k−1

k(n−k)−1 ) = g2( n−k−1
k(n−k)−1 ). If

α1 ≥ (n−k−1)α2

n−k , we have nCaveR (β) ≥ g2( n−k−1
k(n−k)−1 ). Thus,

nCaveR (β) ≥ g2( n−k−1
k(n−k)−1 ) = (n−1) n−k−1

k(n−k)−1 + n−1
n−k and the

equality holds if α1 = (n−k−1)α2

n−k = n−k−1
k(n−k)−1 and (44). Note

that, when α1 = (n−k−1)α2

n−k , conditions (44) and (43) are the
same. As (43) has a simpler form, we use (43) in the theorem.

2) Non-existence of linear exact-repair codes: The optimal
average repair cost derived in Theorem 9 is for functional-
repair codes. If restricting to the linear exact-repair codes, we
will show that this optimal average repair cost is unachievable
when k ≥ 3, which means there are no linear exact-repair
HMSR codes for this case. Assuming there is an (n, k) linear
exact-repair two-valued array code CO achieving the optimal
CaveR (β) in Theorem 9. It is shown in Theorem 9 that CO has
α and β satisfying α1 = (n−k−1)α2

n−k = n−k−1
k(n−k)−1 and (43).

Assume CO is over a finite field F and has data size B. Let
ci denote the coded vector in node i. Clearly, c1 ∈ Fα1B and
ci ∈ Fα2B for all i ∈ [n] \ {1}. Then, ck+1, . . . , cn can all be
written as linear combinations of c1, . . . , ck. Formally,

ci =

k∑
j=1

Ai,jcj ∀i ∈ [n] \ [k]. (45)
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Note that Ai,1 ∈ Fα2B×α1B for all i ∈ [n] \ [k] and Ai,j ∈
Fα2B×α2B for all i ∈ [n] \ [k] and j ∈ [k] \ {1}. Since CO
enables us to reconstruct the file from any k out of n nodes,
we have the following lemma showing every Ai,j has full
rank.

Lemma 2: rank(Ai,1) = α1B for all i ∈ [n] \ [k] and
rank(Ai,j) = α2B for all i ∈ [n] \ [k] and j ∈ [k] \ {1}.

Proof: For any i ∈ [n] \ [k] and any j ∈ [k], we have

Ai,jcj = ci −
∑

t∈[k]\{j}

Ai,tct. (46)

Given {ct}t∈[k]\{j} and ci, cj should be recovered from (46).
However, if rank(Ai,j) < αjB, we cannot obtain a unique
cj by (46). Thus, rank(Ai,j) ≥ αjB, which, together with
Ai,j ∈ FαiB×αjB , implies rank(Ai,j) = αjB. This completes
the proof.

Note that the β of CO satisfies (43). Thus, for any single
failed node i with i ∈ [k] \ {1}, node 1 transmits nothing. Let
Si,jcj denote the transmission symbols from node j for all
j ∈ [n] \ {1, i} to the failed node i. Thus, Si,j is an α2B

n−k -by-
α2B matrix. Via the concept of interference alignment [4], we
obtain the following lemma about Si,j .

Lemma 3:

1) rank(Si,j) = α2B
n−k for all i ∈ [n]\{1} and j ∈ [n]\{1, i}.

2) Si,jAj,1 is zero matrix for all i ∈ [k] \ {1} and j ∈
[n] \ [k].

3) For all i ∈ [k] \ {1}, we have rank(

Si,k+1Ak+1,i

...
Si,nAn,i

) =

α2B and rank(

Si,k+1Ak+1,j

...
Si,nAn,j

) = α2B
n−k for all j ∈

[k] \ {1, i}.

Proof:

1) For an i ∈ [n]\{1}, let us assume there is t ∈ [n]\{1, i}
such that rank(Si,t) 6= α2B

n−k . Since Si,t ∈ F
α2B
n−k×α2B ,

we have rank(Si,t) <
α2B
n−k . Let T = rank(Si,t). Si,t can

be decomposed into Si,t = LR where L is an α2B
n−k -by-

T matrix and R is a T -by-α2B full rank matrix. Thus,
we can repair node i by downloading Si,jcj from node
j for all j ∈ [n] \ {1, i, t} and downloading Rct from
node t. That means this code has β satisfying βt,i =
T
B < α2

n−k and βj,i = α2

n−k for all j ∈ [n] \ {1, i, t},
which violates (43). Thus, we have rank(Si,j) = α2B

n−k
for all i ∈ [n] \ {1} and j ∈ [n] \ {1, i}.

2) To repair node i with i ∈ [k] \ {1}, we download Si,jcj
for all j ∈ [n] \ {1, i}. From (45), we have

Si,jcj = Si,j

k∑
t=1

Aj,tct ∀j ∈ [n] \ [k]. (47)

To repair ci with i ∈ [k] \ {1} from (47), we need to
eliminate the interference of cj for j ∈ [k]\{i} by using

Si,jcj for j ∈ [k] \ {1, i}. Thus, since we can repair ci
using Si,jcj for all j ∈ [n] \ {1, i} via (47), we have

rank(

Si,k+1Ak+1,1

...
Si,nAn,1

) ≤ rank(Si,1) = 0, (48)

rank(

Si,k+1Ak+1,i

...
Si,nAn,i

) = α2B, (49)

rank(

Si,k+1Ak+1,j

...
Si,nAn,j

) ≤ rank(Si,j)∀j ∈ [k] \ {1, i}.

(50)

From (48), we obtain that Si,jAj,1 is zero matrix for all
i ∈ [k] \ {1} and j ∈ [n] \ [k].

3) From Lemma 2, we know that At,j is invertible for all
t ∈ [n] \ [k] and for all j ∈ [k] \ {1, i}. Furthermore,
since we have proven Lemma 3.(1), we obtain that
rank(Si,tAt,j) = α2B

n−k for all t ∈ [n] \ [k] and for all
j ∈ [k] \ {1, i}. Thus, from (50), we derive α2B

n−k ≤

rank(

Si,k+1Ak+1,j

...
Si,nAn,j

) ≤ rank(Si,j) = α2B
n−k for all j ∈

[k]\{1, i}, which means rank(

Si,k+1Ak+1,j

...
Si,nAn,j

) = α2

n−k

for all j ∈ [k] \ {1, i}.

From Lemmas 2 and 3, the next theorem shows that CO
does not exist.

Theorem 10: Consider an (n, k, s, t) DSS with one
moderate-cost node and n−1 low-cost nodes. If 3 ≤ k ≤ n−2
and t is an all-one vector, the optimal average repair cost
among all (n, k) two-valued array codes cannot be achieved
by an (n, k) linear exact-repair two-valued array code. That
means no linear exact-repair code can achieve the HMSR point
regarding the average repair cost for such a DSS.

Proof: We must prove that CO does not exist. For CO,
we already prove Lemmas 2 and 3. From Lemma 3, S2,jAj,1

and S3,jAj,1 are zero matrices for all j ∈ [n] \ [k]. Given
a matrix A, let < A > and < A >⊥ denote the vector
space spanned by all the column vectors in A and the
corresponding orthogonal space. Then, we have < ST

2,j >⊆<
Aj,1 >⊥ for all j ∈ [n] \ [k]. From Lemma 2, we know
rank(Aj,1) = α1B, which, together with Aj,1 is an α2B-
by-α1B matrix, leads to dim(< Aj,1 >

⊥) = α2B − α1B.
As α1 = (n−k−1)α2

n−k = n−k−1
k(n−k)−1 , we have dim(< Aj,1 >

⊥

) = α2B − α1B = α2B
n−k . From Lemma 3, we have

rank(S2,j) = α2B
n−k , which implies dim(< ST

2,j >) = α2B
n−k .

Since < ST
2,j >⊆< Aj,1 >

⊥ for all j ∈ [n] \ [k], we obtain
< ST

2,j >=< Aj,1 >⊥ for all j ∈ [n] \ [k]. Similarly, we
have < ST

3,j >=< Aj,1 >⊥, which implies < ST
2,j >=<

ST
3,j > for all j ∈ [n] \ [k]. Then, S2,j can be written as

S2,j = UjS3,j where Uj is an α2B
n−k -by-α2B

n−k invertible matrix
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for all j ∈ [n] \ [k]. Thus, we have rank(

S2,k+1Ak+1,2

...
S2,nAn,2

) =

rank(

Uk+1S3,k+1Ak+1,2

...
UnS3,nAn,2

) = rank(

S3,k+1Ak+1,2

...
S3,nAn,2

).

However, from Lemma 3, we have rank(

S2,k+1Ak+1,2

...
S2,nAn,2

) =

α2B 6= α2B
n−k = rank(

S3,k+1Ak+1,2

...
S3,nAn,2

), which is a contradic-

tion.

B. HMSR codes regarding the worst-case repair cost

A DSS with one moderate-cost node and n − 1 low-cost
nodes is considered. For the considered DSS, the HMSR codes
regarding the worst-case repair cost are the (n, k) two-valued
array codes with optimal worst-case repair cost. Similar to
the last subsection, it is important to discuss how the repair
cost changes as α1 increases. If α1 = 0, the repair cost for
node 1 is zero, which is optimal. However, the capacities of
the other nodes are large, which leads to high repair costs.
To reduce the worst-case repair cost for the whole system, we
should increase the repair cost for node 1 and reduce the repair
cost for the other nodes by increasing α1. The following two
lemmas fully characterize how the repair cost for each node
changes as α1 increases.

Lemma 4: For an (n, k, s, t) DSS, there exists τ1 : [n−1]→
[n] \ {1} such that tτ1(1),1 ≥ · · · ≥ tτ1(n−1),1 In this DSS, the
optimal worst-case repair cost for node 1 of (n, k) two-valued
array codes with fixed α1 is J1(α1) , α1/(

1
tτ1(1),1

+ · · · +
1

tτ1(n−k),1
).

Proof: From Lemma 1, for an (n, k) irregular array code
with α, we have

βτ1(j),1 ≥ 0 ∀j ∈ [n− 1] (51)∑
j∈S

βτ1(j),1 ≥ α1 ∀S ⊆ [n− 1] with |S| = n− k. (52)

The minimization of CworR1
(β) = maxj∈[n−1] tτ1(j),1βτ1(j),1

subject to (51) and (52) has the same problem form as
Problem 3.B. From Theorem 5, which gives the optimal value
Gi to Problem 3.B, the optimal worst-case repair cost for
node 1 of (n, k) two-valued array codes with fixed α1 is
α1/(

1
tπi(1),i

+ · · ·+ 1
tπi(n−k),i

).
Lemma 5: For an (n, k, s, t) DSS and all i ∈ [n] \ {1},

there exists τi : [n − 2] → [n] \ {1, i} such that tτi(1),i ≥
· · · ≥ tτi(n−2),i. For all i ∈ [n]\{1}, let α∗1,i be the largest α1

that satisfies (42) and α1 ≤ α2

t−1
τi(1),i

+···+t−1
τi(n−k−1),i

+t−1
1,i

t−1
τi(1),i

+···+t−1
τi(n−k),i

. The

optimal worst-case repair cost for node i for all i ∈ [n] \ {1}
of (n, k) two-valued array codes with fixed α1 is

Ji(α1) ,

{
1−α1

k−1 /K 0 ≤ α1 ≤ α∗1,i,
α1/L α∗1,i < α1 ≤ 1

k ,
(53)

where K = ( 1
tτi(1),i

+· · ·+ 1
tτi(n−k),i

) and L = ( 1
t1,i

+ 1
tτi(1),i

+

· · ·+ 1
tτi(n−k−1),i

).
Proof: The proof of Lemma 5 is given in Appendix E.

Lemma 4 shows that the optimal worst-case repair cost for
node 1 will increase as α1 increases. Lemma 5 indicates that
if α∗1,i <

1
k , the optimal worst-case repair cost for node i will

first decrease then increase as α1 increases; while if α∗1,i = 1
k ,

the optimal worst-case repair cost for node i will decrease as
α1 increases. Note that α∗1,i depends on t and there exists t
such that α∗1,i = 1

k for all i ∈ [n] \ {1}. If α∗1,i = 1
k for all

i ∈ [n] \ {1}, the optimal worst-case repair cost for node i for
all i ∈ [n] \ {1} will decrease as α1 increase. Furthermore, if
the repair cost of node 1 is always smaller than the repair costs
for the other nodes, the worst-case repair cost for the whole
system can be minimized only if α1 = 1

k . That means an (n, k)
two-valued array code with the optimal worst-case repair cost
must have α1 = 1

k , which leads to an (n, k) MDS array code.
Thus, in this case, the HMSR code regarding the worst-case
repair cost is an (n, k) MDS array code with the optimal worst-
case repair cost, which has been constructed in Section IV-B.
However, for some other cases, an (n, k) two-valued array
code with the optimal worst-case repair cost cannot have α1 =
1
k , which implies that a regular array code cannot achieve the
HMSR point. Specifically, the α1 for the (n, k) two-valued
array code with the optimal worst-case repair cost, which is
the HMSR code regarding the worst-case repair cost for a
DSS with only one moderate-cost node, is characterized in
the following theorem.

Theorem 11: In an (n, k, s, t) DSS with one moderate-cost
node and n−1 low-cost nodes, the HMSR codes regarding the
worst-case repair cost are the (n, k) two-valued array codes
with the optimal worst-case repair cost. The optimal worst-
case repair cost of an (n, k) two-valued array code is

min
0≤α1≤ 1

k

max{J1(α1), . . . , Jn(α1)}.

There is a unique α1, denoted as α∗1, that minimizes
max{J1(α1), . . . , Jn(α1)}. Thus, an HMSR code regarding
the worst-case repair cost must be an (n, k) two-valued array
code with α1 = α∗1.

VI. CONCLUSION

In this paper, we consider a general class of heterogeneous
DSSs, denoted as (n, k, s, t) DSSs. We consider the average
and worst-case repair costs and investigate whether an exact-
repair code can achieve the HMSR point. We show that a
DSS almost surely has no moderate-cost node and a DSS
with at least one moderate-cost node almost surely has only
one moderate-cost node. Thus, we focus on the DSSs with
no moderate-cost node or only one moderate-cost node. For a
DSS with no moderate-cost node, it is shown that an HMSR
code must be an MDS array code. Furthermore, an exact-
repair HMSR code regarding the average repair cost has been
constructed. Also, an exact-repair HMSR code regarding the
worst-case repair cost has been constructed. For a DSS with
only one moderate-cost node, an HMSR code must be a two-
valued MDS array code. For the worst-case repair cost and
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some t, the exact-repair HMSR code can be constructed. For
the average repair cost and t being an all-one vector, we show
that a linear exact-repair code cannot achieve the HMSR point.

There are some challenging issues that remain unsolved:
1) For a DSS with only one moderate-cost node, the

HMSR point for some t cannot be achieved by regular
array codes. How do we construct exact-repair codes to
achieve such an HMSR point?

2) The HMSR point for some (s, t) cannot be achieved by
linear exact-repair codes. What is the “HMSR” point for
linear exact-repair codes for such (s, t)?

3) We only consider one-hop repair schemes. What is the
HMSR point if allowing multi-hop transmissions in a
repair process?

APPENDIX A
PROOF OF THEOREM 1

In this section, we explicitly obtain the set of optimal
solutions to Problem 1,

Problem 1: Given n, k, and s = [s1 . . . sn],

min
α∈Rn

CS(α)

s.t. αi ≥ 0 ∀i ∈ [n], (54)∑
i∈S

αi ≥ 1 ∀S ⊆ [n] with |S| = k. (55)

First, we simplify this problem by analyzing the characteris-
tics of optimal solutions. It is obvious that if s1 = s2, two data
allocation vectors [α1 α2 α3 . . . αn] and [α2 α1 α3 . . . αn]
lead to the same storage cost. Thus, given an optimal solution
α = [α1 . . . αn], [α2 α1 α3 . . . αn] is also an optimal solution.
This means whether there exists i, j ∈ [n] satisfying si = sj
affects the set of optimal solutions. Based on this considera-
tion, given s, we define an equivalence relation on the set [n]:
i ∼ j if and only if si = sj . A permutation φ on [n] is said
to preserve the equivalence if φ(i) ∼ i for all i ∈ [n]. Given
a permutation φ on [n] and a vector α ∈ Rn satisfying (54)
and (55), it is easy to show that αφ , [αφ(1) . . . αφ(n)] also
satisfies (54) and (55). Furthermore, if φ preserves equiva-
lence, we have CS(α) = CS(αφ), which means if α is
an optimal solution, so is αφ. Based on this, we obtain the
following lemma, revealing more properties about the optimal
solutions.

Lemma 6: There exists an optimal solution α to Problem 1
satisfying α1 ≤ · · · ≤ αk = αk+1 = · · · = αn and∑
i∈[k] αi = 1. Let Z denote the set of optimal solutions

satisfying the conditions above. Let Φ denote the set of the
permutations preserving the equivalence. The optimal solution
set V of Problem 1 is

V =

{
αφ

∣∣∣∣α ∈ Z, φ ∈ Φ

}
. (56)

Proof: Given an optimal solution α = [α1 . . . αn] to
Problem 1, there exists a permutation φ ∈ Φ such that αφ(i) ≤
αφ(j) if φ(i) ∼ φ(j) and φ(i) ≤ φ(j). Thus, αφ is also an
optimal solution. Let α′ = [α′1 . . . α

′
n] = αφ, and we have

α′i ≤ α′j if i ∼ j and i ≤ j. Then, we prove by contradiction
that α′i ≤ α′j also holds if i ≤ j and i 6∼ j. Let us assume

there exist i, j ∈ [n] such that i ≤ j, i 6∼ j, and α′i > α′j .
Since i ≤ j and s1 ≥ · · · ≥ sn, we have si ≥ sj . As i 6∼ j, we
further have si > sj . Consider the permutation ψ on [n] that
only swaps i and j. Then, α′ψ , [α′ψ(1) . . . α

′
ψ(n)], which is

obtained from α′ by swapping the value of α′i and α′j , is also a
solution to Problem 1. From the relation between α′ and α′ψ ,
we have CS(α′ψ) = CS(α′)− siα′i − sjα′j + siα

′
j + sjα

′
i =

CS(α′) + (si − sj)(α′j − α′i) < CS(α′), which implies that
α′ is not an optimal solution. This is a contradiction. Thus,
α′i ≤ α′j if i ≤ j and i 6∼ j. Furthermore, α′i ≤ α′j if i ≤ j,
which means α′ satisfies α′1 ≤ · · · ≤ α′n.

Next, we will prove that if
∑
i∈[k] α

′
i 6= 1 or α′t 6= α′k

for some t ∈ [n] with t > k, we can obtain another feasible
solution α∗ with CS(α∗) < CS(α′), which is a contradiction.

1) Assume α′t 6= α′k for some t > k. As α′1 ≤ · · · ≤
α′n, we have α′t > α′k. Let α∗ = [α∗1 . . . α

∗
n] =

[α′1 . . . α
′
k α
′
k . . . α

′
k], where α∗i = α′i for all i ∈ [k]

and α∗i = α′k for all i ∈ [n] \ [k]. Based on the
fact that α′ is a feasible solution, it is easy to verify
that α∗ is also a feasible solution to Problem 1. First,
α∗ clearly satisfies (54). Second, as α′1 ≤ · · · ≤ α′n,
we have

∑
i∈S α

∗
i ≥

∑
i∈[k] α

∗
i =

∑
i∈[k] α

′
i for all

S ⊆ [n] with |S| = k. Since α′ satisfies (55), we obtain∑
i∈[k] α

′
i ≥ 1, which leads to

∑
i∈S α

∗
i ≥ 1 for all

S ⊆ [n] with |S| = k. Thus, α∗ is a solution to Prob-
lem 1 with CS(α∗) = CS(α′)−

∑n
i=k+1 si(α

′
i − α′k) ≤

CS(α′)−st(α′t−α′k) < CS(α′). This is a contradiction.
2) Assume

∑
i∈[k] α

′
i 6= 1. Let X ,

∑
i∈[k] α

′
i. Since α′

satisfies (55), X > 1. Consider α∗ = 1
X · α

′. Clearly,
α∗ satisfies (54). Then, for all S ⊆ [n] with |S| = k, we
have

∑
i∈S α

∗
i ≥

∑
i∈[k] α

∗
i = 1

X ·
∑
i∈[k] α

′
i = 1. Thus,

α∗ is a feasible solution to Problem 1 with CS(α∗) =
1
X · CS(α′) < CS(α′). This is a contradiction.

Given an optimal solution α = [α1 . . . αn] ∈ Rn to Prob-
lem 1, we have proven that there exists a permutation φ ∈ Φ
such that αφ ∈ Z . Since there definitely exists an optimal
solution to Problem 1, there exists an optimal solution α
satisfying α1 ≤ · · · ≤ αk = αk+1 = · · · = αn and∑
i∈[k] αi = 1.
Next, we discuss the relation between V and Z . Note

that V is defined to be the optimal solution set of Prob-
lem 1. Given any element α in V , we have proven that
there exists a permutation φ ∈ Φ such that αφ ∈ Z .
Let α′ = [α′1 . . . α

′
n] = [αφ(1) . . . αφ(n)]. Then, we have

α′i = αφ(i) and further α′φ−1(i) = αφ(φ−1(i)) = αi. Thus, we
have α′φ−1 = [α′φ−1(1) . . . α

′
φ−1(n)] = [α1 . . . αn] = α. As

α′ = αφ ∈ Z and φ−1 ∈ Φ, there are α′ ∈ Z and φ−1 ∈ Φ

such that α = α′φ−1 ∈
{
αφ

∣∣∣∣α ∈ Z, φ ∈ Φ

}
for any given

α ∈ V . Thus, V ⊆
{
αφ

∣∣∣∣α ∈ Z, φ ∈ Φ

}
. Conversely, given

any α ∈ Z and any φ ∈ Φ, as α is an optimal solution
and φ preserves equivalence, αφ is also an optimal solution

and thus in V . Thus,
{
αφ

∣∣∣∣α ∈ Z, φ ∈ Φ

}
⊆ V and further

V =

{
αφ

∣∣∣∣α ∈ Z, φ ∈ Φ

}
.
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Lemma 6 demonstrates that to obtain the optimal solution
set V , we only need to obtain Z . For the optimal solutions
in Z , the objective function of Problem 1 can be written as
CS(α) =

∑
i∈[k−1] siαi + αk

∑n
i=k si. Hence, to obtain Z ,

we turn to the following problem.
Problem 5: Given n, k, and s = [s1 . . . sn] with s1 ≥

s2 · · · ≥ sn > 0,

min
[α1...αk]∈Rk

∑
i∈[k−1]

siαi + αk

n∑
i=k

si

s.t. 0 ≤ α1 ≤ · · · ≤ αk, (57)∑
i∈[k]

αi = 1. (58)

Clearly, Z is the optimal solution set of Problem 5. Before
showing the optimal solutions to Problem 5, we prove some
properties of yp(n, k, s) (cf. (4)) for all p ∈ [k − 1].

Lemma 7:
1) y1(n, k, s) ≥ y2(n, k, s) ≥ · · · ≥ yk−1(n, k, s).
2) Given p ∈ [k − 1] \ {1}, yp(n, k, s) = yp−1(n, k, s) if

and only if sp−1 = sp.
Proof: Since s1 ≥ · · · ≥ sn, yp(n, k, s)−yp−1(n, k, s) =

(k − p)sp −
∑n
i=p+1 si − ((k − p + 1)sp−1 −

∑n
i=p si) =

(k − p)(sp − sp−1) − sp−1 −
∑n
i=p+1 si +

∑n
i=p si = (k −

p)(sp− sp−1)− sp−1 + sp = (k− p+ 1)(sp− sp−1) ≤ 0, and
the equality holds if and only if sp−1 = sp.
With Lemma 7, we can solve Problem 5.

Theorem 12: [α1 . . . αk] is an optimal solution to Problem 5
if and only if

0 ≤ α1 ≤ · · · ≤ αk, (59)∑
i∈[k]

αi = 1, (60)

αi = 0 if yi(n, k, s) > 0, (61)
αi = αk if yi(n, k, s) < 0. (62)

Proof: The Lagrangian [28] associated with Problem 5
is defined as L =

∑
i∈[k−1] siαi + αk

∑n
i=k si + λ1(−α1) +

λ2(α1−α2)+· · ·+λk(αk−1−αk)+u(α1+· · ·+αk−1) where
u and λi for all i ∈ [k] are dual variables associated with the
constraints. The Karush-Kuhn-Tucker (KKT) conditions [28]
besides the constraints (57) and (58) are as follows:

si − λi + λi+1 + u = 0, ∀i ∈ [k − 1] (63)
n∑
i=k

si − λk + u = 0 (64)

λ1α1 = 0 (65)
λi(αi−1 − αi) = 0, ∀i ∈ [k] \ {1} (66)
λi ≥ 0 i ∈ [k]. (67)

Note that [α1 . . . αk] is an optimal solution to Problem 5
if and only if there exists [uλ1 . . . λk] that, together with
[α1 . . . αk], satisfies the KKT conditions.

Given an optimal solution [α1 . . . αk] and some p ∈ [k−1],
from the KKT conditions, we prove that (a) if yk−p(n, k, s) >
0, αk−p = 0; (b) if yk−p(n, k, s) < 0, αk−p = αk.

1) Suppose yk−p(n, k, s) > 0. From (63) and (64), if p ∈
[k − 1] \ {1}, we have

(

n∑
i=k

si − λk + u) +

k−1∑
i=k−p+1

(si − λi + λi+1 + u)

=

n∑
i=k−p+1

si − λk−p+1 + pu = 0.

If p = 1, from (64), we also have
∑n
i=k−p+1 si −

λk−p+1 + pu = 0. Thus, as p ∈ [k − 1], we have

n∑
i=k−p+1

si − λk−p+1 + pu = 0. (68)

From (63), we have

psk−p − pλk−p + pλk−p+1 + pu = 0. (69)

From (68) and (69), we have

pλk−p − (p+ 1)λk−p+1 = psk−p −
n∑

i=k−p+1

si

= yk−p(n, k, s).

(70)

Since yk−p(n, k, s) > 0, we have pλk−p > (p +
1)λk−p+1. From (67), we obtain λk−p > p+1

p λk−p+1 ≥
0. When p = k−1, from (65), λk−p > 0 means α1 = 0.
When p < k−1, from (66), λk−p > 0 means αk−p−1 =
αk−p. Since yk−(k−1)(n, k, s) ≥ yk−(k−2)(n, k, s) ≥
. . . yk−p(n, k, s) > 0 (cf. Lemma 7), we have αk−p =
αk−p−1 = · · · = αk−(k−1) = 0.

2) Suppose yk−p(n, k, s) < 0. From (70), we derive
pλk−p < (p + 1)λk−p+1, which, together with (67),
leads to λk−p+1 > 0. From (66) and λk−p+1 > 0,
we obtain αk−p = αk−p+1. Since yk−1(n, k, s) ≤
yk−2(n, k, s) ≤ . . . yk−p(n, k, s) < 0 (cf. Lemma 7),
we have αk−p = αk−p+1 = · · · = αk.

Thus, we obtain the necessary conditions to make [α1 . . . αk]
an optimal solution, as follows:

αi = 0 if yi(n, k, s) > 0, (71)
αi = αk if yi(n, k, s) < 0, (72)
0 ≤ α1 ≤ · · · ≤ αk, (73)∑
i∈[k]

αi = 1. (74)

Next, to prove that the solutions satisfying these necessary
conditions ((71), (72), (73), and (74)) are optimal, we show
that these solutions lead to the same value that must be
optimal. If there is no i satisfying yi(n, k, s) = 0, there is a
unique solution satisfying (71), (72), (73), and (74). Since the
optimal solution exists, this solution is the optimal solution.
Next, we consider the case that there exists i satisfying
yi(n, k, s) = 0. Suppose yi(n, k, s) > 0 for all i ∈ [p1],
yi(n, k, s) = 0 for all i ∈ [p2]\ [p1], and yi(n, k, s) < 0 for all
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i ∈ [k − 1] \ [p2]. Given a solution satisfying (71), (72), (73),
and (74), the value of the objective function is∑

i∈[k−1]

siαi + αk

n∑
i=k

si

(a)
=

p2∑
i=p1+1

siαi +

n∑
i=p2+1

siαk (75)

(b)
=sp2

p2∑
i=p1+1

αi +

n∑
i=p2+1

siαk (76)

(c)
=sp2(1− (k − p2)αk) +

n∑
i=p2+1

siαk (77)

=sp2 − αk((k − p)sp −
n∑

i=p+1

si) (78)

=sp2 − αkyp2(n, k, s) = sp2 , (79)

where (a) is due to (72), (b) is due to the second claim
of Lemma 7, and (c) is due to (72) and (73). Thus, for all
solutions satisfying (71), (72), (73), and (74), the values of the
objective function are the same, which implies these solutions
are all optimal.

Theorem 12 derives all optimal solutions to Problem 5,
which leads to

Z =

{
[α1 . . . αn]

∣∣∣∣(59), (60), (61), (62), αi = αk ∀i ∈ [n] \ [k]
}
.

(80)
With the derived Z , from Lemma 6, we can obtain that α =

[α1 . . . αn] is an optimal solution to Problem 1 if and only if

αi = 0 ∀i ∈ NH , (81)
0 ≤ αi ≤ αk ∀i ∈ NM , (82)
αi = αk ∀i ∈ NL, (83)∑
i∈[k]

αi = 1. (84)

The proof is as follows. Since y1(n, k, s) ≥ y2(n, k, s) ≥
· · · ≥ yk−1(n, k, s) (cf. Lemma 7), one can derive that, if
i1 ∈ NH , i2 ∈ NM , and i3 ∈ NL, i1 < i2 < i3. As
s1 ≥ · · · ≥ sn, si1 ≥ si2 ≥ si3 . Assuming si1 = si2 , we
have si = si2 for all i with i1 ≤ i ≤ i2. From Lemma 7,
we have yi1(n, k, s) = · · · = yi2(n, k, s) that contradicts to
yi1(n, k, s) > 0 = yi2(n, k, s). Thus, si1 6= si2 . Similarly, one
can prove si2 6= si3 . As such,

si1 > si2 > si3 ∀i1 ∈ NH ,∀i2 ∈ NM ,∀i3 ∈ NL. (85)

Given a permutation φ ∈ Φ and an optimal solution α ∈ Z
(cf. (80)), let us consider αφ = [αφ(1) . . . αφ(n)]. If i1 ∈ NH ,
by assuming φ(i1) /∈ NH , we have φ(i1) ∈ NM ∪ NL. As
i1 ∈ NH and φ(i1) ∈ NM ∪NL, from (85), we have sφ(i1) 6=
si1 , which implies that i1 6∼ φ(i1). This contradicts to φ ∈ Φ.
Thus, if i1 ∈ NH , φ(i1) ∈ NH . Similarly, one can prove that,
if i2 ∈ NM and i3 ∈ NL, φ(i2) ∈ NM and φ(i3) ∈ NL. Note
that k ∈ NL, which implies φ(k) ∈ NL and αφ(k) = αk.
Thus, we derive (a) αφ(i) = 0 if i ∈ NH ; (b) 0 ≤ αφ(i) ≤
αk = αφ(k) if i ∈ NM ; (c) αi = αk = αφ(k) if i ∈ NL; (d)∑
i∈[k] αφ(i) =

∑
i∈[k] αi = 1. Thus, given a permutation φ ∈

Φ and an optimal solution α ∈ Z , αφ satisfies (81), (82), (83),
and (84). From (56), we conclude that any optimal solution
to Problem 1 satisfies (81), (82), (83), and (84). Furthermore,
by using similar proof to that of Theorem 12, we can show
that all solutions satisfying (81), (82), (83), and (84) have the
same storage cost (one needs to verify that Eq. (75) to (79)
also hold for this case). This completes the proof.

APPENDIX B
PROOF OF THEOREM 5

We only need to solve Problem 3.B. In order to simplify
the notation, we use bj and γj to represent t̄j,i and β̄j,i,
respectively. Thus, Problem 3.B can be written as

Problem 6: Given n, k, and {bj}j∈[n−1] with b1 ≥ · · · ≥
bn−1 > 0,

min
γj∈R ∀j∈[n−1]

max
j∈[n−1]

bjγj

s.t. γj ≥ 0 ∀j ∈ [n− 1], (86)∑
j∈S

γj ≥
1

k
∀S ⊆ [n− 1] with |S| = n− k. (87)

Similar to Lemma 6, we can prove that there exists a special
optimal solution to Problem 6 and then find this optimal
solution from a subdomain of the feasible domain.

Lemma 8: There exists an optimal solution to Problem 6
satisfying

0 ≤ γj ≤
1

k
∀j ∈ [n− k], (88)

γj = γn−k ∀j ∈ [n− 1] \ [n− k], (89)
n−k∑
j=1

γj =
1

k
. (90)

Proof: Given a variable vector γ , [γ1 . . . γn−1] ∈
Rn−1, the objective function to Problem 6 is
G(γ) , maxj∈[n−1] bjγj . Given an optimal solution
γ∗ = [γ∗1 . . . γ

∗
n−1] to Problem 6. If there are e ∈ [n − 2]

such that γ∗e > γ∗e+1, we can obtain γ′ , [γ′j ]j∈[n−1]
from γ∗ by swapping the values of γ∗e and γ∗e+1, i.e.,
letting γ′e = γ∗e+1, γ′e+1 = γ∗e , and γ′j = γ∗j for all
j ∈ [n − 1] \ {e, e + 1}. Clearly, as γ∗ is a feasible
solution to Problem 6, γ′ is also a feasible solution. As
be ≥ be+1, we have beγ

′
e = beγ

∗
e+1 < beγ

∗
e ≤ G(γ∗) and

be+1γ
′
e+1 = be+1γ

∗
e ≤ beγ

∗
e ≤ G(γ∗). Furthermore, as

bjγ
′
e = bjγ

∗
e ≤ G(γ∗) for all j ∈ [n− 1] \ {e, e+ 1}, we have

G(γ′) ≤ G(γ∗), which means γ′ is also an optimal solution.
In conclusion, given an optimal solution γ∗ with γ∗e > γ∗e+1

for some e ∈ [n− 2], we can obtain another optimal solution
by swapping the values of γ∗e and γ∗e+1. Thus, by applying
the bubble sorting algorithm to the given optimal solution
vector, we can obtain a new optimal solution vector with
elements in ascending order.

Consider an optimal solution γ∗ with γ∗1 ≤ · · · ≤ γ∗n−1.
Let α ,

∑n−k
j=1 γ

∗
j . From (87), α ≥ 1

k . Let γ′′ = 1
kαγ

∗.
Clearly, γ′′ = [γ′′1 . . . γ

′′
n−1] is a feasible solution with

G(γ′′) = 1
kαG(γ∗). Since γ∗ is an optimal solution, we

have 1
kαG(γ∗) ≥ G(γ∗), which, together with α ≥ 1

k and
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G(γ∗) > 0, implies α = 1
k . Thus,

∑n−k
j=1 γ

∗
j = α = 1/k.

Let γ′′′ = [γ′′′1 . . . γ′′′n−1], where γ′′′j = γ∗j for all j ∈ [n − k]
and γ′′′j = γ∗n−k for all j ∈ [n− 1] \ [n− k]. Clearly, γ′′′ is a
feasible solution. Since γ∗n−k ≤ γ∗j for all j ∈ [n−1]\ [n−k],
we have γ′′′j ≤ γ∗j for all j ∈ [n − 1], which implies
G(γ′′′) ≤ G(γ∗). Thus, γ′′′ is an optimal solution with∑n−k
i=1 γ

′′′
j =

∑n−k
i=1 γ

∗
j = 1

k and γ′′′j = γ∗n−k = γ′′′n−k
for all j ∈ [n − 1] \ [n − k]. From γ′′′j ≥ 0 for all
j ∈ [n − 1] and

∑n−k
j=1 γ

′′′
j = 1

k , we have 0 ≤ γ′′′j ≤ 1
k

for all j ∈ [n− k]. In conclusion, given any optimal solution
γ∗ with γ∗1 ≤ · · · ≤ γ∗n−1, we can obtain an optimal solution
γ′′′j which satisfies (88), (89), and (90).

If a variable vector γ ∈ Rn−1 satisfies (88), (89) and (90), γ
satisfies (86) and (87), which means the conditions (88), (89)
and (90) characterize a subdomain of the feasible domain to
Problem 6. Lemma 8 implies that Problem 6 has an optimal
solution in this subdomain, which means we can minimize the
objective function in this subdomain (cf. Problem 7) and get
the same optimal value. In this subdomain, as b1 ≥ · · · ≥
bn−1 > 0 and γj = γn−k for all j ∈ [n − 1] \ [n − k], the
original objective function can be written as maxj∈[n−k] bjγj ,
which leads us to the following problem.

Problem 7: Given n, k, and {bj}j∈[n−1] with b1 ≥ · · · ≥
bn−1 > 0,

min
γj∈R,∀j∈[n−k]

max
j∈[n−k]

bjγj

s.t. 0 ≤ γj ≤
1

k
∀j ∈ [n− k], (91)∑

j∈[n−k]

γj =
1

k
. (92)

Clearly, the optimal value to Problem 7 is the optimal value
to Problem 6. Equivalently, Problem 7 can be converted to a
standard linear programming problem as follows:

min
γj∈R,∀j∈[n−k]

x

s.t. bjγj ≤ x ∀j ∈ [n− k],

0 ≤ γj ≤
1

k
∀j ∈ [n− k], (93)∑

j∈[n−k]

γj =
1

k
. (94)

The associated Lagrangian is

L =x+

n−k∑
j=1

λj(bjγj − x) +

n−k∑
j=1

νj(0− γj)

+

n−k∑
j=1

µj(γj −
1

k
) + u(

n−k∑
j=1

γj −
1

k
).

Accordingly, the KKT conditions, besides the original con-

straints, are

λj , νj , µj ≥ 0 ∀j ∈ [n− k], (95)
λj(bjγj − x) = 0 ∀j ∈ [n− k], (96)

νjγj = µj(γj −
1

k
) = 0 ∀j ∈ [n− k], (97)

1−
∑

j∈[n−k]

λj = 0, (98)

λjbj − νj + µj + u = 0. (99)

Given an optimal solution [γ1 . . . γn−k], there exist x, u, and
{λi, νi, µi}i∈[n−k] that, together with the optimal solution,
satisfy the KKT condition and x is the optimal value. Clearly,
x > 0. From (95) and (98), we know that there exists
j′ ∈ [n − k] such that λj′ > 0. From (96), we have
bj′γj′ − x = 0. Since bj′ > 0 and x > 0, we obtain

γj′ > 0, (100)

which, together with (95) and (97), implies νj′ = 0 and µj′ ≥
0. From (99), we have λj′bj′ − νj′ + µj′ + u = 0, which,
together with λj′ > 0, bj′ > 0, νj′ = 0, and µj′ ≥ 0, leads
to u < 0. Let us assume there is j′′ ∈ [n− k] with λj′′ = 0.
From (99), we can derive that νj′′ − µj′′ = u < 0, which,
together with (95), implies that µj′′ > 0. From (97), we have

γj′′ =
1

k
. (101)

From (93), (100), and (101), we have
∑
j∈[n−k] γj ≥ γj′′ +

γj′ >
1
k , which contradicts to (94). Thus, we have λj > 0 for

all j ∈ [n− k]. From (96), we have

x = bjγj ∀j ∈ [n− k]. (102)

From (94) and (102), we have x = 1
k (b−11 + · · · + b−1n−k)−1

and γj = x
bj

. Since an optimal solution exists, this must be
an optimal solution to Problem 7 and the optimal value is
G , 1

k (b−11 + · · ·+ b−1n−k)−1, which is also the optimal value
to Problem 6.

Next, we fully characterize the optimal solutions to Prob-
lem 6. Consider an optimal solution [γ∗1 . . . γ

∗
n−1]. Since

G = 1
k (b−11 + · · · + b−1n−k)−1 is the optimal value, we

derive γ∗j ≤ G/bj for all j ∈ [n − 1]. If γ∗j < G/bj
for some j ∈ [n − k], we have

∑
j∈[n−k] γ

∗
j < 1

k , which
is a contradiction. Thus, γ∗j = G/bj for all j ∈ [n − k].
Furthermore, if γ∗t < γ∗n−k for some t ∈ [n − 1] \ [n − k],
we have γ∗t +

∑
j∈[n−k−1] γ

∗
j <

1
k , which is a contradiction.

Thus, we have γ∗n−k ≤ γ∗j ≤ G/bj for all j ∈ [n−1]\ [n−k].
This completes the proof.

APPENDIX C
PROOF OF LEMMA 1

All we need to prove is that (37) is equivalent to condi-
tions (39), (40), and (41). First, we prove (39), (40), and (41)
lead to (37). For any i ∈ [k−1], as |[n]\{f1 . . . fi}| ≥ n−k+1,
there exists S ⊆ [n] \ {f1 . . . fi} such that S ⊆ [n] \ {1, fi}
and |S| = n − k. From (35), (39) and (40), we have
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∑
j∈[n]\{f1,...,fi} βj,fi ≥

∑
j∈S βj,fi ≥ αfi . Thus, for all

i ∈ [k − 1], we have

min{αfi ,
∑

j∈[n]\{f1,...,fi}

βj,fi} = αfi . (103)

If fk = 1, from (39), we have
∑
j∈[n]\{f1,...,fk} βj,fk ≥ αfk ,

which, together with (103), leads to
k∑
i=1

min{αfi ,
∑

j∈[n]\{f1,...,fi}

βj,fi} =

k∑
i=1

αfi ≥ 1.

If fk 6= 1 and 1 ∈ {f1, . . . , fk−1}, we have
[n] \ {f1, . . . , fk} ⊆ [n] \ {1, fk}. From (40)
and (35),

∑
j∈[n]\{f1,...,fk} βj,fk ≥ α2 = αfk ,

which, together with (103), leads to (37). If fk 6= 1
and 1 6∈ {f1, . . . , fk−1}, from (41), we have∑
j∈[n]\{f1,...,fk} βj,fk ≥ α1. Since 1 6∈ {f1, . . . , fk−1},

(103) implies min{αfi ,
∑
j∈[n]\{f1,...,fi} βj,fi} = α2. Thus,

from (36), we have
∑k
i=1 min{αfi ,

∑
j∈[n]\{f1,...,fi} βj,fi} =

(k − 1)α2 + α1 = 1. Thus, for all f ∈ F , we have proven∑k
i=1 min{αfi ,

∑
j∈[n]\{f1,...,fi} βj,fi} ≥ 1, which means

(37) holds.
Conversely, given (37), we respectively prove (39), (40),

and (41) by contradictions.
1) Assume there exists S ′ ⊆ [n] \ {1} with |S ′| = n − k

such that
∑
j∈S′ βj,1 < α1. Consider f ∈ F such

that fi ∈ [n] \ S ′ for all i ∈ [k] and fk = 1.
Note that fi 6= 1 for all i ∈ [k − 1] that means
αfi = α2 for all i ∈ [k − 1]. Then, we have∑k
i=1 min{αfi ,

∑
j∈[n]\{f1,...,fi} βj,fi} ≤

∑k−1
i=1 αfi +∑

j∈[n]\{f1,...,fk} βj,fk = (k − 1)α2 +
∑
j∈S′ βj,1 <

(k−1)α2+α1 = 1, which contradicts to (37). Thus, (39)
holds.

2) Assume there exist i′ ∈ [n] \ {1} and S ′ ⊆ [n] \
{1, i′} with |S ′| = n − k such that

∑
j∈S′ βj,i′ <

α2. Consider f ∈ F such that fi ∈ [n] \ S ′
for all i ∈ [k] and fk = i′. As 1 ∈ [n] \ S ′
and fi ∈ [n] \ S ′ for all i ∈ [k], there exists
t ∈ [k − 1] such that αft = α1. Then, we have∑k
i=1 min{αfi ,

∑
j∈[n]\{f1,...,fi} βj,fi} ≤

∑k−1
i=1 αfi +∑

j∈[n]\{f1,...,fk} βj,fk = (k−2)α2+α1+
∑
j∈S′ βj,i′ <

(k − 2)α2 + α1 + α2 = 1, which contradicts to (37).
Thus, (40) holds.

3) Assume there exist i′ ∈ [n] \ {1} and S ′ ⊆ [n] \
{1, i′} with |S ′| = n − k − 1 such that β1,i′ +∑
j∈S′ βj,i′ < α1. Consider f ∈ F such that fi ∈

[n] \ (S ′ ∪ {1}) for all i ∈ [k] and fk = i′.
Note that fi 6= 1 for all i ∈ [k − 1] that means
αfi = α2 for all i ∈ [k − 1]. Then, we have∑k
i=1 min{αfi ,

∑
j∈[n]\{f1,...,fi} βj,fi} ≤

∑k−1
i=1 αfi +∑

j∈[n]\{f1,...,fk} βj,fk = (k−1)α2+
∑
j∈S′∪{1} βj,i′ <

(k−1)α2+α1 = 1, which contradicts to (37). Thus, (41)
holds.

APPENDIX D
PROOF OF THEOREM 8

We first present a helpful lemma from [27] for clarity.

Lemma 9: [Lemma 3 in [27]] Given a set S with |S| = m,
if
∑
s∈S′ s ≥ c for all S ′ ⊂ S with |S ′| = m′ < m, we have∑

s∈S s ≥
mc
m′ and the equality holds if and only if s = c

m′

for all s ∈ S.
The following two lemmas show the optimal CtotRi (βi) for

all i ∈ [n].
Lemma 10: For an (n, k) two-valued array code with α, we

have CtotR1
(β1) ≥ (n−1)α1

n−k , and the equality holds if and only
if

βj,1 =
α1

n− k
∀j ∈ [n] \ {1}. (104)

Proof: From Lemma 1, the constraints on β1 are βj,1 ≥ 0
for all j ∈ [n]\{1} and

∑
j∈S βj,1 ≥ α1 for all S ⊆ [n]\{1}

with |S| = n − k. Then, we can minimize
∑
j∈[n]\{1} βj,1

subject to these constraints. Note that this problem has the
same form as Problem 2.B, whose optimal solution has been
given. However, it is tedious to discuss the whole optimal
solution set. Alternatively, this lemma can be directly given
by Lemma 9.

Lemma 11: Given any (n, k) two-valued array code and
i ∈ [n] \ {1}, we have the following results:

1) If α1 ≤ (n−k−1)α2

n−k , we have CtotR (βi) ≥ (n−2)α2

n−k .
Furthermore, if k ≥ 3, the equality holds if and only
if β1,i = 0 and βj,i = α2

n−k for all j ∈ [n] \ {1, i}.
2) If α1 >

(n−k−1)α2

n−k , we have CtotRi (βi) ≥ α1 + (k−1)α2

n−k ,
and the equality holds if and only if β1,i = α1 −
(n−k−1)α2

n−k and βj,i = α2

n−k for all j ∈ [n] \ {1, i}.
Proof: Given i ∈ [n]\{1}, from Lemma 1, the constraints

on βi are βj,i ≥ 0 for all j ∈ [n]\{i},
∑
j∈S βj,i ≥ α2 for all

S ⊆ [n] \ {1, i} with |S| = n− k, and β1,i +
∑
j∈S βj,i ≥ α1

for all S ⊆ [n] \ {1, i} with |S| = n − k − 1. Note that
an (n, k) two-valued array code has k ≥ 2. From k ≥ 2

and Lemma 9, we have
∑
j∈[n]\{1,i} βj,i ≥

(n−2)α2

n−k . When
k ≥ 3, the equality holds if and only if βj,i = α2

n−k for all
j ∈ [n] \ {1, i}. Thus, we have

CtotRi (βi) = β1,i +
∑

j∈[n]\{1,i}

βj,i

≥ β1,i +
(n− 2)α2

n− k
≥ (n− 2)α2

n− k
.

(105)

When k ≥ 3, the equality holds if and only if β1,i = 0 and
βj,i = α2

n−k for all j ∈ [n] \ {1, i}.
Given i ∈ [n] \ {1}, we can create a sequence q1,i ≤
· · · ≤ qn−2,i by arranging the elements in {βj,i}j∈[n]\{1,i} in
ascending order. Since

∑
j∈S βj,i ≥ α2 for all S ⊆ [n]\{1, i}

with |S| = n − k, we have
∑n−k
t=1 qt,i ≥ α2, which im-

plies qn−k,i ≥ α2

n−k and the equality holds if and only if
q1,i = · · · = qn−k,i = α2

n−k . Also, as β1,i +
∑
j∈S βj,i ≥ α1

for all S ⊆ [n] \ {1, i} with |S| = n − k − 1, we have
β1,i +

∑n−k−1
t=1 qt,i ≥ α1. Thus, we obtain

CtotRi (βi) = β1,i +
∑

j∈[n]\{1,i}

βj,i = β1,i +

n−2∑
t=1

qt,i

= β1,i +

n−k−1∑
t=1

qt,i +

n−2∑
t=n−k

qt,i

≥ α1 +
(k − 1)α2

n− k
,

(106)
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and the equality holds if and only if βj,i = α2

n−k for all j ∈
[n]\{1, i} and β1,i = α1− (n−k−1)α2

n−k . (105) and (106) present
two lower bounds of CtotRi (βi). If α1 ≤ (n−k−1)α2

n−k , β′i, with
β′1,i = 0 and β′j,i = α2

n−k for all j ∈ [n] \ {1, i}, satisfies
all constraints on βi. Since CtotR (β′i) = (n−2)α2

n−k , the lower
bound in (105) can be achieved if α1 ≤ (n−k−1)α2

n−k . If α1 >
(n−k−1)α2

n−k , β′′i , with β′′1,i = α1 − (n−k−1)α2

n−k and β′′j,i = α2

n−k
for all j ∈ [n] \ {1, i}, satisfies all constraints on β. Since
CtotR (β′′i ) = α1 + (k−1)α2

n−k , the lower bound in (106) can be
achieved if α1 >

(n−k−1)α2

n−k .
From Lemmas 10 and 11, we can directly obtain that

1) If α1 ≤ (n−k−1)α2

n−k , we have nCaveR (β) ≥ (n−1)α1

n−k +
(n−1)(n−2)α2

n−k . Furthermore, if k ≥ 3, the equality holds
if and only if β satisfies (104) and

β1,i = 0, βj,i =
α2

n− k
∀i ∈ [n]\{1},∀j ∈ [n]\{1, i}.

(107)
2) If α1 >

(n−k−1)α2

n−k , we have nCaveR (β) ≥ (n−1)α1

n−k +

(n − 1)(α1 + (k−1)α2

n−k ), and the equality holds if and
only if β satisfies (104) and

β1,i = α1 −
(n− k − 1)α2

n− k
βj,i =

α2

n− k
∀i ∈ [n] \ {1},∀j ∈ [n] \ {1, i}.

(108)

Furthermore, since α2 = 1−α1

k−1 , we can obtain (n−1)α1

n−k +
(n−1)(n−2)α2

n−k = (n−1n−k −
(n−1)(n−2)
(n−k)(k−1) )α1 + (n−1)(n−2)

(n−k)(k−1) and
(n−1)α1

n−k + (n− 1)(α1 + (k−1)α2

n−k ) = (n− 1)α1 + n−1
n−k , which

completes the proof.

APPENDIX E
PROOF OF LEMMA 5

Let Wi(α1) , 1−α1

k−1 /(
1

tτi(1),i
+ · · · + 1

tτi(n−k),i
) and

Qi(α1) , α1/(
1
t1,i

+ 1
tτi(1),i

+ · · · + 1
tτi(n−k−1),i

). Thus,
Ji(α1) = Wi(α1) if α1 ≤ α∗1,i and Ji(α1) = Qi(α1) if
α1 > α∗1,i. Given any α for a two-valued array code, we
have α2 = 1−α1

k−1 , which implies that Wi(α1) = α2/(
1

tτi(1),i
+

· · ·+ 1
tτi(n−k),i

).
Consider the case that the given α satisfies α1 ≤ α∗1,i.

We have α2

t−1
τi(1),i

+···+t−1
τi(n−k−1),i

+t−1
1,i

t−1
τi(1),i

+···+t−1
τi(n−k),i

≥ α1. From Lemma 1,

for an (n, k) irregular array code with the given α and all
i ∈ [n] \ {1}, we have,

βτi(j),i ≥ 0 ∀j ∈ [n− 2], (109)∑
j∈S

βτi(j),i ≥ α2 ∀S ⊆ [n− 2] with |S| = n− k. (110)

The minimization of maxj∈[n]\{1,i} tj,iβj,i =
maxj∈[n−2] tτi(j),iβτi(j),i subject to (109) and (110) has
the same problem form as Problem 3.B. From Theorem 5,
which gives the optimal value of Problem 3.B, we have

maxj∈[n]\{1,i} tj,iβj,i ≥ α2/(
1

tτi(1),i
+ · · · + 1

tτi(n−k),i
) =

Wi(α1) and the equality holds if

βj,i =

{
Wi(α1)/tj,i ∀j with τ−1i (j) ∈ [n− k],

βτi(n−k),i ∀j with τ−1i (j) ∈ [n− 2] \ [n− k].
(111)

Thus, CworRi
(βi) = maxj∈[n]\{i} tj,iβj,i ≥

maxj∈[n]\{1,i} tj,iβj,i ≥ Wi(α1) and the equality holds
if

βj,i =


Ji(α1)/tj,i ∀j with τ−1i (j) ∈ [n− k],

βτi(n−k),i ∀j with τ−1i (j) ∈ [n− 2] \ [n− k],

Ji(α1)/t1,i j = 1.
(112)

Next, we show that there exists an (n, k) two-valued ar-
ray codes with α and β satisfying (112). From Lemma 1,
we only need to show that for all i ∈ [n] \ {1}, βi
satisfying (112) satisfies (38), (40), and (41). Given any
i ∈ [n] \ {1}, consider βi satisfying (112). Clearly, it sat-
isfies (38) and (40). We still need to check if (41) holds.
Since tτi(1),i ≥ · · · ≥ tτi(n−2),i, we have βτi(1),i ≤ · · · ≤
βτi(n−2),i. For all S ⊆ [n] \ {1, i} with |S| = n − k −

1, as α2

t−1
τi(1),i

+···+t−1
τi(n−k−1),i

+t−1
1,i

t−1
τi(1),i

+···+t−1
τi(n−k),i

≥ α1, we have β1,i +∑
j∈S βj,i ≥ β1,i+

∑n−k−1
j=1 βτi(j),i = Wi(α1)(t−11,i+t

−1
τi(1),i

+

· · ·+t−1τi(n−k−1),i) = α2

t−1
τi(1),i

+···+t−1
τi(n−k−1),i

+t−1
1,i

t−1
τi(1),i

+···+t−1
τi(n−k),i

≥ α1. This

completes the proof for this case.
Consider the case that given α satisfies

α2

t−1
τi(1),i

+···+t−1
τi(n−k−1),i

+t−1
1,i

t−1
τi(1),i

+···+t−1
τi(n−k),i

< α1. First, we show that

there exists an (n, k) two-valued array codes with α
and β satisfying (112). From Lemma 1, we only need
to show that for all i ∈ [n] \ {1}, βi satisfying (112)
satisfies (38), (40), and (41). Consider βi satisfying (112).
Clearly, βi satisfies (38). For all S ⊆ [n] \ {1, i} with
|S| = n − k − 1, as βτi(1),i ≤ · · · ≤ βτi(n−2),i, we
have β1,i +

∑
j∈S βj,i ≥ β1,i +

∑n−k−1
j=1 βτi(j),i =

Ji(α1)(t−11,i + t−1τi(1),i + · · · + t−1τi(n−k−1),i) =

Qi(α1)(t−11,i + t−1τi(1),i + · · · + t−1τi(n−k−1),i) = α1,
which means βi satisfies (41). Similarly, for all
S ⊆ [n] \ {1, i} with |S| = n − k, we derive

∑
j∈S βj,i ≥∑n−k

j=1 βτi(j),i = Qi(α1)(t−1τi(1),i + · · · + t−1τi(n−k),i). As

α2

t−1
τi(1),i

+···+t−1
τi(n−k−1),i

+t−1
1,i

t−1
τi(1),i

+···+t−1
τi(n−k),i

< α1, we have Qi(α1) >

Wi(α1). Thus, for all S ⊆ [n] \ {1, i} with |S| = n − k, we
have

∑
j∈S βj,i > Wi(α1)(t−1τi(1),i + · · · + t−1τi(n−k),i) = α2,

which means βi satisfies (40). To conclude, there
exists an (n, k) two-valued array codes with α and β
satisfying (112), which means the optimal worst-case repair
cost of node i is at most Qi(α1). Assume Qi(α1) is
not the optimal worst-case repair cost of node i. There
exists an (n, k) two-valued array code with given α and
CworRi

, Qi(α1)′ < Qi(α1). Let β′i , [β′j,i]j∈[n]\{i} be
the βi of this code. Thus, t1,iβ′1,i ≤ Qi(α1)′, which leads
to β′1,i ≤ Qi(α1)′/t1,i. Furthermore, from (41), we have∑
j∈S β

′
j,i ≥ α1 − Qi(α1)′/t1,i for all S ⊆ [n] \ {1, i}

with |S| = n − k − 1. From Qi(α1) = α1/(t
−1
1,i + t−1τi(1),i +
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· · · + t−1τi(n−k−1),i) and Qi(α1)′ < Qi(α1), we have
α1 − Qi(α1)′/t1,i > α1 − Qi(α1)/t1,i > 0. Now we have∑
j∈S β

′
j,i ≥ α1 − Qi(α1)′/t1,i > 0 for all S ⊆ [n] \ {1, i}

with |S| = n − k − 1 and β′j,i ≥ 0 for all j ∈ [n] \ {i, 1}.
Furthermore, from Problem 3.B and Theorem 5, we
can obtain CworRi

(β′i) ≥ maxj∈[n]\{i,1} tj,iβ
′
j,i ≥

(α1 − Qi(α1)′/t1,i)/(t
−1
τi(1),i

+ · · · + t−1τi(n−k−1),i) >

(α1 − Qi(α1)/t1,i)/(t
−1
τi(1),i

+ · · · + t−1τi(n−k−1),i) =

α1/(t
−1
1,i + t−1τi(1),i + · · ·+ t−1τi(n−k−1),i) = Qi(α1) > Qi(α1)′,

which is a contradiction. This completes the proof.
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