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International Data Encryption Algorithm (IDEA) is one of the most popular cryp-

tography algorithms in date since the characteristic of IDEA is suitable for hardware im-
plementation. This study presents an efficient hardware structure for the modulo (2n + 1) 
multiplier, which is the most time and space consuming operation in IDEA. The pro-
posed modulo multiplier saves more time and area cost than previous designs. With 
16-bit input length, the proposed structure is 9.1% faster than that proposed by 
Zimmermann in 1999, and reduces the area about 35.22%. The proposed design enables 
IDEA to be implemented on hardware with high performance and low cost. Simulation 
results obtained from CPLD system developed by Altera indicate that the new design has 
66Mb/sec encryption/decryption rate under 8.25MHz system clock rate with four pipe-
line stages for each round. 
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1. INTRODUCTION 
 

Data security is increasingly important given the popularity of the Internet. As a 
conventionally adopted symmetric cryptography algorithm, International Data Encryp-
tion Algorithm (IDEA) is wildly adopted in Internet security systems [10]. The popular-
ity of IDEA makes the speed a significant issue for its hardware and software implemen-
tations. 

The three major operations of IDEA are XOR, modulo addition, and modulo multi-
plication. Modulo addition sums up two inputs of n-bit length, and mods the result by 2n. 
Modulo multiplication multiplies two inputs of n-bit length, and mods the result by (2n + 
1). Notably, an input value of zero is considered as 2n. Therefore, the input length of 
modulo multiplication is n + 1 when the input value is zero. The encryption/decryption 
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process of IDEA comprises eight rounds with the same structure and a final output trans-
formation. Encryption and decryption both adopt the same process, but different subkeys. 
A single round adopts four modulo multipliers, of which three are on the critical path. 
Reducing the circuit complexity for modulo multiplier significantly improves the per-
formance of the entire IDEA chip when implementing IDEA in hardware. 

Many studies have been proposed to improve the performance of modulo multipli-
ers [1-3, 6, 7, 11-15]. These works can be roughly divided into three categories: look-up 
table method, (n + 1) × (n + 1)-bit multiplier method, and modulo carry-save addition 
multiplier method. Look-up table is the fastest and easiest way to implement modulo (2n 
+ 1) multiplier, but it is also the most space consuming one. Although a method is pro-
posed to downsize the table significantly to 2 Mbits by a number theoretic transformation 
[6], the memory space is still too large to be implemented in an IDEA chip. Due to the 
space problem, Curiger et al. first proposed a modulo multiplier that adopts (n + 1) × (n + 
1)-bit multiplier and modulo (2n + 1) adders [3]. Bahrami and Sadeghiyan also presented 
a similar method in [1]. An (n + 1) × (n + 1)-bit multiplier is adopted because the modulo 
multiplier takes input value of zero as 2n. However, while the input length it has to deal 
with increases, the gate count of multiplier increases. Therefore, the methods proposed in 
[7, 11-14] all try to reduce the input length it has to take care from n + 1 to n by lowering 
the original partial product matrix of size (2n + 1) × (n + 1) to n × n. Due to high-speed 
requirement, the carry-save adder (CSA) with Wallace tree [4] and Booth algorithm [8, 9] 
are the most commonly adopted adder structure for summing up the partial product ma-
trix in these works. The basic idea of modulo CSA is to push down the carry propagation 
for each bit position of the current level to the next. Conversely, Booth algorithm accel-
erates the summation by lowering the partial products from the beginning. 

This study proposes an efficient circuit structure for modulo multiplication based on 
[13] and [14]. The improvements of the proposed modulo 2n + 1 multiplier consider three 
factors: the handling of zero input values, the procedure for summing up the partial prod-
uct matrix with the constant value for getting correct result, and the final modulo addition 
used to sum up the sum and carry vectors generated from the carry-save adder. The part 
for taking care of zero input value is extracted from the partial product matrix. This can 
downsize the matrix and shorten the time delay on the critical path. The CSA with the 
Wallace tree structure [5] is adopted to sum up the partial product matrix and the con-
stant without any extra stage of adder for decreasing the time delay on the critical path. 
Finally, an efficient modulo CLA structure is proposed based on the carry-look-ahead 
adder (CLA) in [14]. This modulo CLA adds the carry-vector and sum-vector produced 
by the previous modulo CSA and modulates the results by (2n + 1). In other words, no 
extra modulo adder stage is required. These improvements give the proposed modulo (2n 
+ 1) multiplier the best time delay performance and the best product cost of area and time 
delay among all methods compared. The rest of this paper is organized as follows. Sec-
tion 2 describes the proposed structure of modulo multiplier and modulo CLA. Section 3 
then compares the proposed method with existing implementations. Section 4 shows the 
simulation results. Conclusions are finally drawn in section 5. 

2. PROPOSED MODULO MULTIPLIER 

Since the modulo multiplier takes zero as 2n, the circuits can be divided into two 
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parts, those whose inputs have no zero value, and those with zero value inputs. The pro-
posed improvements simply aim on these two parts. Some works propose designing a 
circuit that can handle both cases with the same circuit [12, 13]. However, this study rec-
ommends separating the zero-case handler from those handling non-zero values, since 
zero inputs cannot always occur, and extracting it outside the critical path improves the 
overall chip performance. For non-zero inputs, the circuit includes partial product matrix 
generation and summation circuit for partial product matrix. Figs. 1 and 2 show the ma-
jor components of the proposed modulo (2n + 1) multiplier for the case of non-zero and 
zero inputs respectively. The time delay and the area cost of each component are identi-
fied on the side. Each two-input monotonic cell counts as one gate area and delay, and a 
XOR cell counts as two gates area and delay for computing the time delay (T) and area 
cost (A). This is the same evaluation methods used in [1] and [11]. Any gate with more 
than two inputs is transformed to a multiple two-input monotonic gate in this paper. For 
example, a four-input AND is transformed into using three two-input AND gates. 
 
2.1 Improvements on Non-zero Inputs Case 
 

The first improvement we made was for the non-zero inputs case. This case is di-
vided into two parts namely partial product matrix generation and summation circuit for 
partial product matrix. The design of partial product matrix generation is based on that 
proposed in [13]. It takes advantage of the concept of the redundancy in the binary rep-
resentation of numbers in the finite integer ring, R(2n + 1). The partial product matrix we 
use is shown in Fig. 1 (a), where Pi,j denotes the product of ith and jth positions of the 
two inputs, and equals to the result of a logical AND of the two bits. Comparing with the 
one proposed in [13], the part for taking care of input having zero value was extracted 
from the matrix. Because the zero case does not always occur, placing a zero-case han-
dler on the critical path increases the time delay, and then degrades the performance of 
the entire IDEA chip. The constant that should be added on the result of CSAs to obtain 
correct result is summed in partial product matrix. However, no extra adder stage is in-
cluded in the process. Therefore, the time delay on critical path is shortened. 

The implementation on summing up the partial product matrix uses the carry-save 
adder (CSA) with Wallace tree structure [5], which performs the modulation while sum-
ming up the matrix by adding the inverted carry out to the least significant bit of the next 
stage as described in [13]. Since CSA pushes down the carry propagation to the next 
level, a final adder for summing up the carry-vector and sum-vector is generated from the 
partial product matrix summation. 

Based on carry-look-ahead adder (CLA) [4], this study presents an efficient modulo 
CLA structure similar to that in [14]. This modulo CLA has two functions: adding carry- 
vector and sum-vector together and modulating the summation of them by (2n + 1). 

Let ci+1 (ci) be the carry out (carry in) of ai and bi, which respectively denote the ith 
bit of the two inputs A and B. Let gi = aibi and pi = ai + bi, where gi and pi are traditionally 
called generate and propagate, and are the predictions of carry out generated and propa-
gated at ith bit position, respectively. The following equation is obtained:  

 
ci+1 = gi + pici.                                                      (1) 
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(a) 

  

 
(b) 

 
(c) 

Fig. 1. Major components of the architecture of modulo (2n + 1) multiplier. (a) Partial product matrix. 
(b) Detail circuit of modulo (2n + 1) adder. (c) Modulo CLA structure for 16-bit input. In (c), 
the operation (•) in third level is for figuring out the carry in for each bit after modulating. 
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The complexity of calculation rises as the bit position increases when calculating 
the carry out of each bit position by the above equation. To reduce the complexity, an 
intermediate level of generate and propagate is usually incorporated, despite the resulting 
increase in time delay. Let k denote the base bit position and i denote the highest bit posi-
tion of the intermediate group from kth bit to ith bit for calculating group generate and 
group propagate, the equations for calculating group generate g(i,k), group propagate p(i,k), 
and each bit’s carry out ci+1 are given as follows: 

 
g(i,k) = g(i,j)p(j,k) + g(j,k), where i ≥ j ≥ k                                     (2) 

p(i,k) = p(i,j)p(j,k), where i ≥ j ≥ k                                         (3) 

ci+1 = g(i,k) + p(j,k)ck, where i ≥ j ≥ k.                                     (4) 
 
Notably, g(i,i) = gi and p(i,i) = pi. Eq. (2) (Eq. (3)) shows that a group generate (a 

group propagate) can be determined from two subgroup generates and one subgroup 
propagate (two subgroup propagates). Eq. (4) indicates that ci+1 = g(i,0) + p(j,0)c0. That is, 
the carry out of any bit can be calculated by group generate, group propagate, and carry 
in of the CLA. Fig. 1 (b) shows an example of group generate and propagate generation 
of a 16-bit input length. Since the group generate and propagate are calculated for every  
4-bit group, ⎡log4 n⎤ levels of calculation would be required, where n is the input length. 
Here, the intermediate generate and propagation are calculated for every 4-bit, while the 
method proposed in [14] calculates group generate and propagate for every 2-bit. 

The modulation can be performed by inverting the carry out of most significant bit 
and adding the resultant to the least significant bit as adopted in modulo CSA. Therefore, 
only a modification for the carry in on each bit position obtained from original CLA is 
needed. Each bit’s carry in after modulation can be generated from the information of the 
inverted carry out of the most significant bit. The detail circuit of each modulo adder 
component and the structure of modulo adder for a 16-bit input are shown in Figs. 1 (b) 
and (c), respectively. Since the generate and propagate are calculated for every 4-bit 
group, two steps are required to calculate the final carry-in for each bit as shown in Fig. 1 
(c). In Figs. 1 (b) and (c), gi and pi (g(i,k) and p(i,k)) respectively denote the generate and the 
propagate (the group generate and the group propagate) of each bit position as defined 
before, and si is the summation result of ith position. The output after the second level is 
the carry in for each bit without modulation. To obtain the modulated result, the carry in 
after modulation for each bit position must be calculated. This can be done by inverting 
the carry out of most significant bit from the second level and by feeding it into (•) op-
eration, which is defined according to Eq. (4). The carry in after modulation for each bit 
can then be figured out. The summation after modulation can be obtained by XORing the 
actual carry in and propagate of each bit position (□ operation). 
 
2.2 Improvement on Zero-case Handler 
 

Another improvement is to deal with inputs with zero values outside the partial 
product matrix, i.e., outside the critical path of the modulo multiplier. The modulo (2n + 
1) multiplication of inputs with zero values can be calculated as follows: 
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(2n × a) mod (2n + 1) = ((− 1) × a) mod (2n + 1) = 2n + 1 − a  
= ā + 2, where a ∈ {0, 1, …, 2n + 1}.                  (5) 

 
The implementation of the zero-case handler is similar to that of the modulo adder 

for non-zero case. Fig. 2 shows the equations of the special adder for 16-bit input that 
realizes Eq. (5), and Fig. 3 shows the entire structure of zero-case handler. Since one of 
the inputs of Eq. (5) is the constant 2, the circuit of the adder for zero-case handler can be 
significantly reduced. Eqs. (2), (3), and (4) clearly indicate that ci+1 = p(i,0), for i ≥ 3. No-
tably, the special adder does not require a modulation, and also requires no (•) operations 
that is required in Fig. 1 (c). 

     

 
Fig. 2. The special adder for zero-case handler with a 16-bit input. This handler does not require 

modulation and CLA is designed to predict carry out of each bit position in advance ac-
cording to inputs. 

          
Fig. 3. The structure of the zero-case handler with n OR gates with NOT gates before the inputs of 

the special adder and n AND gates after the outputs of the special adder, where n denotes 
the input length. 
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Fig. 4. The complete structure of modulo (2n + 1) multiplier. The two inputs enter the zero-case 

handler and conventional multiplier for non-zero value concurrently, and n OR gates are 
used in the end to select the desired output. 

 
Fig. 3 shows the structure of zero case handler. The two inputs are first bit-wise 

NORed such that any input other than zero is inverted as the input for special adder. XOR 
and YOR in Fig. 3 denote the results of ORing all the bits of the two inputs. The output of 
NAND gate with XOR and YOR as its inputs would be 1, and the output of special adder 
would be passed, when one of the inputs is zero. Consequently, the AND gates at the end 
acts as a multiplexer for selecting the output of the zero case handler, and the NAND 
gate on the left side is adopted to select the desired result for the output. 

Fig. 4 shows the complete structure of the proposed modulo (2n + 1) multiplier. The 
circuit on the right is the modulo multiplier for non-zero inputs, and the circuit on the left 
is the zero-case handler. The two inputs X and Y are executed concurrently by the two 
circuits. If none of the inputs is zero, then every output of the zero-case handler is zero. 
Additionally, the output of modulo multiplier is all zero if one or more inputs is zero. 
This property means that the multiplexer can be simplified to using n OR gates. 

3. COMPARISON 

The time delay and area cost of the circuits proposed in [7, 11-14], which all use 
modulo carry save adders with Wallace tree structure for their partial product matrix 
summations, were first formulated. Table 1 shows the stage number of Wallace tree un-
der n-bit length input. Notably, d(n) denotes the stage number of the Wallace tree struc-
ture with n-bit input length and end-around-carry, and d'(n) denotes the stage number 
without end-around carry. Table 2 shows the time delays of the critical path of each 
method. The time delay T of the proposed architecture comprises the delay from partial 
product matrix (TPPM), carry-save adders (TCSA), modulo adder (TMA), and final selection 
(TSEL). Additionally, the time delay of the other four circuits all comprise the same com-
ponents of the critical path of the proposed circuits in addition to zero case handler 
(TZERO). Table 3 shows the area cost of each method. The term ni denotes the number of 
full adders in the Wallace tree of ith stage, and n0 = n, where n denotes the input length,  



YI-JUNG CHEN, DYI-RONG DUH AND YUNGHSIANG SAM HAN 

 

914 

 

Table 1. Stage number of Wallace tree d(n) (under modulo CSA) with different input lengths. 

Input 
Length 1-3 4 5-6 7-9 10-13 14-19 20-28 29-42 43-63 64 

d(n) 1 2 3 4 5 6 7 8 9 10 

Table 2. Formulated time delay equation for each method with n-bit input length. 

 Components Time Delay n = 16 

Our Method 
TPPM + TCSA + TMA 

+ TSEL 
{1} + {4 × d(n + 1)} +  

{2 + 4 × ⎡log4 n⎤ + 2 + 2} + {1} 
40 

Zimmermann
TPPM + TCSA + TCOR 

+ TMA 
{5} + {4 × d(⎣n/2⎦)} +  

{4 + 4 + 1} + {2 × ⎡log2 n⎤ + 6} 
44 

Wrzyszcz et al.
TPPM + TCSA + TCOR 

+ TMA + TSEL 
{4} + {4 × d(n) + 4(n − 1) + 2)} +  

{2 × n} + {2 × n} + {2} 
156 

Wang et al. TPPM + TCSA + TMA
{2 × ((n − 1) + 2) + 4 × d′(n − 1)} +  
{4 × d(⎣n/2⎦)} + {2 × ⎡log2 n⎤ + 6} 

86 

Ma et al. 
TPPM + TCSA + TCOR 

+ TMA 
{6} + {4 × d(⎣n/2⎦)} + {4 + 4} +  

{2 × ⎡log2 n⎤ + 6}  
44 

Bahrami et al.
TPPM + TCSA + TSEL 

+ TMA 
{2 × ((n − 1) + 2) + 4 × d′(n − 1)} +  

{4 × d(n + 1)} + {2} + {2 × ⎡log2 n⎤ + 6} 
92 

Sousa 
TPPM + TCSA + TCOR 

+ TMA 
{6} + {4 × d(⎣n/2⎦)} + {4} + {2 × ⎡log2 n⎤ + 6} 40 

 
and ni = ni-1 − 3⎣ni-1/3⎦ + 2⎣ni-1/3⎦. C′(n) denotes the number of full adders of a Wallace 
tree structure without end-around carry [1, 12]. The area costs of all circuits comprise 
partial product matrix (APPM), carry-save adders (ACSA), modulo adders (AMA) and circuits 
for zero case (AZERO). A final selection (ASEL) unit is required for the proposed architec-
ture, while correction (ACOR) units are required in the other schemes. Both Tables 2 and 3 
have a column for the delay and cost with 16-bit long input. 

The modules on the critical path in the proposed architecture are the partial product 
matrix, carry save adder, modulo adder, and a final selection to specify the final output 
from zero case handler and modulo adder. The time delay of the partial product matrix 
comprises a single gate. Compared with the partial product matrix in [13], the time delay 
of the proposed partial product matrix is reduced from 4 to 1 because the zero-case han-
dling is extracted from the critical path. Since the constant is added, the CSA needs d(n + 
1) layers of full adder, where each full adder contributes a delay of four gates. The time 
delay of modulo adder is as described in Fig. 1 (c). Compared with the modulo adder 
proposed by Zimmermann [14], the number of stages for calculating group generate and  
propagate is reduced from ⎡log2 n⎤ to ⎡log4 n⎤ with a small increase in the time delay of a 
single stage. The final selection is an OR gate for each bit position and therefore contrib-
utes a delay of only one gate. 

The time delay of the architecture proposed by Zimmermann, Sousa, and Ma [7, 11, 
14] are formulated according to [11]. The time delay of the one proposed by Wrzyszcz et 
al. [13] is similar in the partial product matrix and CSA. The correction and modulo  
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Table 3. Formulated area cost equation for each method with n-bit input length. 

 Components Area Cost n = 16 

Our Method 
APPM + ACSA + AMA 

+ ASEL + AZERO 

⎡ ⎤

⎡ ⎤ ⎡ ⎤ }1
2

2)2(2log
4

8{}{

}22log
4

302{}
3

7{}{

2log

14

4
)1(

1
12

++×+−×+×⎥⎥
⎤

⎢⎢
⎡×++

++×⎥⎥
⎤

⎢⎢
⎡×++⎥⎦

⎥
⎢⎣

⎢×+

∑

∑

=

+

=
−

nnnnnn

nnnnn
n

nn

n

i i

nd

i
i  

2467 

Zimmermann 
APPM + ACSA + ACOR 

+ AMA ⎡ ⎤ }8log
2
3{}45{

}
3

7{})1
2

(9{

2

)2/(

1
1

nnnn

nnnn nd

i
i

×+××+×+

⎥⎦
⎥

⎢⎣
⎢×+×+× ∑ =

−  
3808 

Wrzyszcz et al. 
APPM + ACSA + ACOR 

+ AMAR + ASEL }3{}3{}3{

)}3)1(7(
3

7{}3{ )(

1
12

nnn

nnnnn nd

i
i

×+×++

+−×+⎥⎦
⎥

⎢⎣
⎢×++ ∑ =

−  
2124 

Wang et al. APPM + ACSA + AMA ⎡ ⎤ }8log
2
3{}

3
7{

)}1('7)7)1(3(2{

2
)1('

1
1 nnnnn

nCn
nd

i
i ++⎥⎦
⎥

⎢⎣
⎢×+

−×++−××

∑ +

=
−

 
1987 

Ma et al. 
APPM + ACSA + ACOR 

+ AMA 
⎡ ⎤ }72log

2
3{}45{}

3
7{}

2
9{ 2

)2/(

1
1

2

nnnnnnn nd

i
i ×+++⎥⎦
⎥

⎢⎣
⎢×+× ∑ =

−
 

3760 

Bahrami et al. 
APPM + ACSA + AMA 

+ ASEL + AZERO 

'( 1) 1
1

2

{2 (3 ( 1) 7) 7 '( 1)} {7 }
3

3{ log 8 } {2 3 } {2 3 }
2

d n i
i

n
n C n n

n n n n n

+ −
=

⎢ ⎥× × − + + × − + × ⎢ ⎥⎣ ⎦

+ + + × × + × ×⎡ ⎤⎢ ⎥

∑  
2179 

Sousa 
APPM + ACSA + ACOR 

+ AMA ⎡ ⎤ }8log
2
3{})721{(

}
3

7{})1
2

(9{

2

)21(/

1
1

nnnn

nnnn d

i
i

++×++

⎥⎦
⎥

⎢⎣
⎢×+×+× ∑ =

−  
3536 

 
adder circuit proposed in [13] comprise a special ripple adder, where each adder com-
prises the structure of half adder. The selection unit in [13] is a 2-to-1 multiplexer for 
each bit position on the critical path. The architectures proposed in [1] and [12] are simi-
lar. The CSA and modulo adder of [1] and [12] are the same as those in [7, 11, 14]. Sig-
nificantly, the partial product matrices in [1] and [12] need to convert the input into di-
minished-1 representation and thus need a subtractor for the matrix. Finally, the selection 
unit of [1] comprises a 2-to-1 multiplexer. 

The area cost of the proposed multiplier is contributed by five major components: 
the partial product matrix, CSA, modulo adder, zero case handler, and final selection unit. 
The area cost of partial product matrix and modulo adder is described in Figs. 1 (b) and  
(c). The modulo adder needs ⎡log4 n⎤ layers of operation, each needing ⎡n/4⎤ operations.  
Thus, the modulo adder needs ⎡n/4⎤ × ⎡log4 n⎤ operations, each costing (12 + 28 + 48)/3  
≈ 30 in area cost. The CSA is constructed from a Wallace tree structure and each bit po-  

sition would need 
( 1)

1
1

/ 3
d n

i
i

n
+

−
=

⎢ ⎥⎣ ⎦∑  full adders, which contributes 7 in area cost for each  

adder. The zero case handler comprises the special adder, n NOR gates for input selec-
tion, two n-bit OR gates to ORed all the bits of the two inputs, a NAND for selection line 
production, and n AND gates for the final output selection. Fig. 2 shows the area cost of  
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the special adder, which needs ⎡n/4⎤ × ⎡log4 n⎤ operations, each costing 24/3 = 8 in area 
cost. 

As mentioned earlier, the area cost of the architecture proposed by Ma, Sousa, and 
Zimmermann [7, 11, 14] is formulated according to [11]. The circuit proposed by 
Wrzyszcz [13] has the same partial product matrix and CSA architecture as the circuits 
presented herein. The modulo adder and correction comprise two n-bit ripple half adders, 
where each half adder contributes an area cost of 3. The selection unit of [13] comprises 
n 2-to-1 multiplexers, each contributing 3 to the area cost. The area cost of the architec-
ture proposed by Bahrami [1] and Wang [12] are almost the same as the architecture just 
described, but the one in [1] has zero case handler. The partial product generation in [1] 
and [12] is constructed by an n-bit substractor as described in time delay. The CSA and 
modulo adder are the same as those in other proposed architectures. The zero case han-
dler and selection unit in [1] are both constructed from n 2-to-1 multiplexers. 

Fig. 5 compares the time delay and area cost of different modulo multiplier archi-
tecture with input lengths ranging from 1 bit to 32 bits. The two charts in Fig. 5 are esti-
mated according to the equations shown in Tables 2 and 3. Fig. 5 indicates that the pro-
posed scheme and Sausa’s scheme have the best time delays. Although Sausa’s scheme 
has a small time delay, it has a much larger area cost because it has a large circuit for 
partial product reduction. Fig. 6 shows the relationship between the area-delay product 
and the input length and indicate that the time delay of the proposed modulo multiplier is 
smallest in all input lengths, while the area cost is slightly higher than those of Wrizyszcz’s 
and Wang’s. Fig. 6 also indicates that the proposed multiplier has the lowest area-delay 
product for all input lengths. 
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Fig. 5. The comparison of time delay and area cost within input lengths of 1 bit to 32 bits. 

4. SIMULATION RESULT 

Validity of the proposed design was verified to use CPLD to design an IDEA chip 
with the proposed modulo multiplier structure. The CPLD chip used for simulation was 
an Altera EPF10K200SFC672-1 of FLEX10K series with Max+PlusII as the design soft-
ware. This chip was used because the authors intend to design an IDEA chip with a PCI  
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Fig. 6. The comparison of area-delay product of the proposed circuits with the others. 

 
interface in the near future, and only the PCI development kit produced by Altera has this 
CPLD in its package. 

A simulation of our IDEA chip with the proposed new modulo multiplier design 
was performed. The timing simulation reveals that the proposed structure has a time de-
lay of 59.5ns. An IDEA chip with single round of circuit was implemented, and each 
round was partitioned into four pipeline stages. To complete encryption/decryption proc-
ess, the circuit was reused for 8.5 times. Although taking more time to process data, this 
implementation has a lower area cost than fully implementing 8.5 rounds of circuits. The 
clock rate of the proposed modulo multiplier can be up to 8.25 MHz, and the encryption/ 
decryption rate is approximately 66Mb/sec. 

5. CONCLUSION 

This study presents an efficient modulo multiplier structure with improvements in 
the partial product matrix, modulo adder for modulo CSA, and zero-case handler. Com-
paring this structure with existing methods demonstrates that this structure not only has 
the best time delay performance but also the best product cost of area and time delay 
among the seven methods compared. A simulation on implementing IDEA chip with the 
proposed modulo multiplier structure was also developed on CPLD. Simulation results 
indicate that the IDEA chip with one round implemented and cut into four pipeline stages 
can achieve frequency of 8.25 MHz, and the encryption (decryption) rate is approxi-
mately 66Mb/sec. The clock rate of the simulation structure can be further improved in 
the near future. Additionally, the practical implementation of the proposed method will 
be performed in the near future. 
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