
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 23, 907-919 (2007)

907

Short Paper___

Improved Modulo (2n + 1) Multiplier for IDEA*

YI-JUNG CHEN1, DYI-RONG DUH2 AND YUNGHSIANG SAM HAN3

1Department of Computer Science and Information Engineering
National Taiwan University

Taipei, 106 Taiwan
2Department of Computer Science and Information Engineering

National Chi Nan University
Nantou, 545 Taiwan

3Graduate Institute of Communication Engineering
National Taipei University

Taipei, 237 Taiwan

International Data Encryption Algorithm (IDEA) is one of the most popular cryp-

tography algorithms in date since the characteristic of IDEA is suitable for hardware im-
plementation. This study presents an efficient hardware structure for the modulo (2n + 1)
multiplier, which is the most time and space consuming operation in IDEA. The pro-
posed modulo multiplier saves more time and area cost than previous designs. With
16-bit input length, the proposed structure is 9.1% faster than that proposed by
Zimmermann in 1999, and reduces the area about 35.22%. The proposed design enables
IDEA to be implemented on hardware with high performance and low cost. Simulation
results obtained from CPLD system developed by Altera indicate that the new design has
66Mb/sec encryption/decryption rate under 8.25MHz system clock rate with four pipe-
line stages for each round.

Keywords: modulo (2n + 1) multiplier, logic design, IDEA, security, cryptography

1. INTRODUCTION

Data security is increasingly important given the popularity of the Internet. As a
conventionally adopted symmetric cryptography algorithm, International Data Encryp-
tion Algorithm (IDEA) is wildly adopted in Internet security systems [10]. The popular-
ity of IDEA makes the speed a significant issue for its hardware and software implemen-
tations.

The three major operations of IDEA are XOR, modulo addition, and modulo multi-
plication. Modulo addition sums up two inputs of n-bit length, and mods the result by 2n.
Modulo multiplication multiplies two inputs of n-bit length, and mods the result by (2n +
1). Notably, an input value of zero is considered as 2n. Therefore, the input length of
modulo multiplication is n + 1 when the input value is zero. The encryption/decryption

Received May 31, 2005; revised September 16 & December 30, 2005; accepted February 22, 2006.
Communicated by Liang-Gee Chen.
* This paper was partially supported by the National Science Council of Taiwan, R.O.C., under grant No. NSC

90-2219-E-260-001.

YI-JUNG CHEN, DYI-RONG DUH AND YUNGHSIANG SAM HAN

908

process of IDEA comprises eight rounds with the same structure and a final output trans-
formation. Encryption and decryption both adopt the same process, but different subkeys.
A single round adopts four modulo multipliers, of which three are on the critical path.
Reducing the circuit complexity for modulo multiplier significantly improves the per-
formance of the entire IDEA chip when implementing IDEA in hardware.

Many studies have been proposed to improve the performance of modulo multipli-
ers [1-3, 6, 7, 11-15]. These works can be roughly divided into three categories: look-up
table method, (n + 1) × (n + 1)-bit multiplier method, and modulo carry-save addition
multiplier method. Look-up table is the fastest and easiest way to implement modulo (2n
+ 1) multiplier, but it is also the most space consuming one. Although a method is pro-
posed to downsize the table significantly to 2 Mbits by a number theoretic transformation
[6], the memory space is still too large to be implemented in an IDEA chip. Due to the
space problem, Curiger et al. first proposed a modulo multiplier that adopts (n + 1) × (n +
1)-bit multiplier and modulo (2n + 1) adders [3]. Bahrami and Sadeghiyan also presented
a similar method in [1]. An (n + 1) × (n + 1)-bit multiplier is adopted because the modulo
multiplier takes input value of zero as 2n. However, while the input length it has to deal
with increases, the gate count of multiplier increases. Therefore, the methods proposed in
[7, 11-14] all try to reduce the input length it has to take care from n + 1 to n by lowering
the original partial product matrix of size (2n + 1) × (n + 1) to n × n. Due to high-speed
requirement, the carry-save adder (CSA) with Wallace tree [4] and Booth algorithm [8, 9]
are the most commonly adopted adder structure for summing up the partial product ma-
trix in these works. The basic idea of modulo CSA is to push down the carry propagation
for each bit position of the current level to the next. Conversely, Booth algorithm accel-
erates the summation by lowering the partial products from the beginning.

This study proposes an efficient circuit structure for modulo multiplication based on
[13] and [14]. The improvements of the proposed modulo 2n + 1 multiplier consider three
factors: the handling of zero input values, the procedure for summing up the partial prod-
uct matrix with the constant value for getting correct result, and the final modulo addition
used to sum up the sum and carry vectors generated from the carry-save adder. The part
for taking care of zero input value is extracted from the partial product matrix. This can
downsize the matrix and shorten the time delay on the critical path. The CSA with the
Wallace tree structure [5] is adopted to sum up the partial product matrix and the con-
stant without any extra stage of adder for decreasing the time delay on the critical path.
Finally, an efficient modulo CLA structure is proposed based on the carry-look-ahead
adder (CLA) in [14]. This modulo CLA adds the carry-vector and sum-vector produced
by the previous modulo CSA and modulates the results by (2n + 1). In other words, no
extra modulo adder stage is required. These improvements give the proposed modulo (2n
+ 1) multiplier the best time delay performance and the best product cost of area and time
delay among all methods compared. The rest of this paper is organized as follows. Sec-
tion 2 describes the proposed structure of modulo multiplier and modulo CLA. Section 3
then compares the proposed method with existing implementations. Section 4 shows the
simulation results. Conclusions are finally drawn in section 5.

2. PROPOSED MODULO MULTIPLIER

Since the modulo multiplier takes zero as 2n, the circuits can be divided into two

IMPROVED MODULO (2n + 1) MULTIPLIER

909

parts, those whose inputs have no zero value, and those with zero value inputs. The pro-
posed improvements simply aim on these two parts. Some works propose designing a
circuit that can handle both cases with the same circuit [12, 13]. However, this study rec-
ommends separating the zero-case handler from those handling non-zero values, since
zero inputs cannot always occur, and extracting it outside the critical path improves the
overall chip performance. For non-zero inputs, the circuit includes partial product matrix
generation and summation circuit for partial product matrix. Figs. 1 and 2 show the ma-
jor components of the proposed modulo (2n + 1) multiplier for the case of non-zero and
zero inputs respectively. The time delay and the area cost of each component are identi-
fied on the side. Each two-input monotonic cell counts as one gate area and delay, and a
XOR cell counts as two gates area and delay for computing the time delay (T) and area
cost (A). This is the same evaluation methods used in [1] and [11]. Any gate with more
than two inputs is transformed to a multiple two-input monotonic gate in this paper. For
example, a four-input AND is transformed into using three two-input AND gates.

2.1 Improvements on Non-zero Inputs Case

The first improvement we made was for the non-zero inputs case. This case is di-
vided into two parts namely partial product matrix generation and summation circuit for
partial product matrix. The design of partial product matrix generation is based on that
proposed in [13]. It takes advantage of the concept of the redundancy in the binary rep-
resentation of numbers in the finite integer ring, R(2n + 1). The partial product matrix we
use is shown in Fig. 1 (a), where Pi,j denotes the product of ith and jth positions of the
two inputs, and equals to the result of a logical AND of the two bits. Comparing with the
one proposed in [13], the part for taking care of input having zero value was extracted
from the matrix. Because the zero case does not always occur, placing a zero-case han-
dler on the critical path increases the time delay, and then degrades the performance of
the entire IDEA chip. The constant that should be added on the result of CSAs to obtain
correct result is summed in partial product matrix. However, no extra adder stage is in-
cluded in the process. Therefore, the time delay on critical path is shortened.

The implementation on summing up the partial product matrix uses the carry-save
adder (CSA) with Wallace tree structure [5], which performs the modulation while sum-
ming up the matrix by adding the inverted carry out to the least significant bit of the next
stage as described in [13]. Since CSA pushes down the carry propagation to the next
level, a final adder for summing up the carry-vector and sum-vector is generated from the
partial product matrix summation.

Based on carry-look-ahead adder (CLA) [4], this study presents an efficient modulo
CLA structure similar to that in [14]. This modulo CLA has two functions: adding carry-
vector and sum-vector together and modulating the summation of them by (2n + 1).

Let ci+1 (ci) be the carry out (carry in) of ai and bi, which respectively denote the ith
bit of the two inputs A and B. Let gi = aibi and pi = ai + bi, where gi and pi are traditionally
called generate and propagate, and are the predictions of carry out generated and propa-
gated at ith bit position, respectively. The following equation is obtained:

ci+1 = gi + pici. (1)

YI-JUNG CHEN, DYI-RONG DUH AND YUNGHSIANG SAM HAN

910

(a)

(b)

(c)

Fig. 1. Major components of the architecture of modulo (2n + 1) multiplier. (a) Partial product matrix.
(b) Detail circuit of modulo (2n + 1) adder. (c) Modulo CLA structure for 16-bit input. In (c),
the operation (•) in third level is for figuring out the carry in for each bit after modulating.

IMPROVED MODULO (2n + 1) MULTIPLIER

911

The complexity of calculation rises as the bit position increases when calculating
the carry out of each bit position by the above equation. To reduce the complexity, an
intermediate level of generate and propagate is usually incorporated, despite the resulting
increase in time delay. Let k denote the base bit position and i denote the highest bit posi-
tion of the intermediate group from kth bit to ith bit for calculating group generate and
group propagate, the equations for calculating group generate g(i,k), group propagate p(i,k),
and each bit’s carry out ci+1 are given as follows:

g(i,k) = g(i,j)p(j,k) + g(j,k), where i ≥ j ≥ k (2)

p(i,k) = p(i,j)p(j,k), where i ≥ j ≥ k (3)

ci+1 = g(i,k) + p(j,k)ck, where i ≥ j ≥ k. (4)

Notably, g(i,i) = gi and p(i,i) = pi. Eq. (2) (Eq. (3)) shows that a group generate (a

group propagate) can be determined from two subgroup generates and one subgroup
propagate (two subgroup propagates). Eq. (4) indicates that ci+1 = g(i,0) + p(j,0)c0. That is,
the carry out of any bit can be calculated by group generate, group propagate, and carry
in of the CLA. Fig. 1 (b) shows an example of group generate and propagate generation
of a 16-bit input length. Since the group generate and propagate are calculated for every
4-bit group, ⎡log4 n⎤ levels of calculation would be required, where n is the input length.
Here, the intermediate generate and propagation are calculated for every 4-bit, while the
method proposed in [14] calculates group generate and propagate for every 2-bit.

The modulation can be performed by inverting the carry out of most significant bit
and adding the resultant to the least significant bit as adopted in modulo CSA. Therefore,
only a modification for the carry in on each bit position obtained from original CLA is
needed. Each bit’s carry in after modulation can be generated from the information of the
inverted carry out of the most significant bit. The detail circuit of each modulo adder
component and the structure of modulo adder for a 16-bit input are shown in Figs. 1 (b)
and (c), respectively. Since the generate and propagate are calculated for every 4-bit
group, two steps are required to calculate the final carry-in for each bit as shown in Fig. 1
(c). In Figs. 1 (b) and (c), gi and pi (g(i,k) and p(i,k)) respectively denote the generate and the
propagate (the group generate and the group propagate) of each bit position as defined
before, and si is the summation result of ith position. The output after the second level is
the carry in for each bit without modulation. To obtain the modulated result, the carry in
after modulation for each bit position must be calculated. This can be done by inverting
the carry out of most significant bit from the second level and by feeding it into (•) op-
eration, which is defined according to Eq. (4). The carry in after modulation for each bit
can then be figured out. The summation after modulation can be obtained by XORing the
actual carry in and propagate of each bit position (□ operation).

2.2 Improvement on Zero-case Handler

Another improvement is to deal with inputs with zero values outside the partial
product matrix, i.e., outside the critical path of the modulo multiplier. The modulo (2n +
1) multiplication of inputs with zero values can be calculated as follows:

YI-JUNG CHEN, DYI-RONG DUH AND YUNGHSIANG SAM HAN

912

(2n × a) mod (2n + 1) = ((− 1) × a) mod (2n + 1) = 2n + 1 − a
= ā + 2, where a ∈ {0, 1, …, 2n + 1}. (5)

The implementation of the zero-case handler is similar to that of the modulo adder

for non-zero case. Fig. 2 shows the equations of the special adder for 16-bit input that
realizes Eq. (5), and Fig. 3 shows the entire structure of zero-case handler. Since one of
the inputs of Eq. (5) is the constant 2, the circuit of the adder for zero-case handler can be
significantly reduced. Eqs. (2), (3), and (4) clearly indicate that ci+1 = p(i,0), for i ≥ 3. No-
tably, the special adder does not require a modulation, and also requires no (•) operations
that is required in Fig. 1 (c).

Fig. 2. The special adder for zero-case handler with a 16-bit input. This handler does not require

modulation and CLA is designed to predict carry out of each bit position in advance ac-
cording to inputs.

Fig. 3. The structure of the zero-case handler with n OR gates with NOT gates before the inputs of

the special adder and n AND gates after the outputs of the special adder, where n denotes
the input length.

IMPROVED MODULO (2n + 1) MULTIPLIER

913

Fig. 4. The complete structure of modulo (2n + 1) multiplier. The two inputs enter the zero-case

handler and conventional multiplier for non-zero value concurrently, and n OR gates are
used in the end to select the desired output.

Fig. 3 shows the structure of zero case handler. The two inputs are first bit-wise

NORed such that any input other than zero is inverted as the input for special adder. XOR
and YOR in Fig. 3 denote the results of ORing all the bits of the two inputs. The output of
NAND gate with XOR and YOR as its inputs would be 1, and the output of special adder
would be passed, when one of the inputs is zero. Consequently, the AND gates at the end
acts as a multiplexer for selecting the output of the zero case handler, and the NAND
gate on the left side is adopted to select the desired result for the output.

Fig. 4 shows the complete structure of the proposed modulo (2n + 1) multiplier. The
circuit on the right is the modulo multiplier for non-zero inputs, and the circuit on the left
is the zero-case handler. The two inputs X and Y are executed concurrently by the two
circuits. If none of the inputs is zero, then every output of the zero-case handler is zero.
Additionally, the output of modulo multiplier is all zero if one or more inputs is zero.
This property means that the multiplexer can be simplified to using n OR gates.

3. COMPARISON

The time delay and area cost of the circuits proposed in [7, 11-14], which all use
modulo carry save adders with Wallace tree structure for their partial product matrix
summations, were first formulated. Table 1 shows the stage number of Wallace tree un-
der n-bit length input. Notably, d(n) denotes the stage number of the Wallace tree struc-
ture with n-bit input length and end-around-carry, and d'(n) denotes the stage number
without end-around carry. Table 2 shows the time delays of the critical path of each
method. The time delay T of the proposed architecture comprises the delay from partial
product matrix (TPPM), carry-save adders (TCSA), modulo adder (TMA), and final selection
(TSEL). Additionally, the time delay of the other four circuits all comprise the same com-
ponents of the critical path of the proposed circuits in addition to zero case handler
(TZERO). Table 3 shows the area cost of each method. The term ni denotes the number of
full adders in the Wallace tree of ith stage, and n0 = n, where n denotes the input length,

YI-JUNG CHEN, DYI-RONG DUH AND YUNGHSIANG SAM HAN

914

Table 1. Stage number of Wallace tree d(n) (under modulo CSA) with different input lengths.

Input
Length 1-3 4 5-6 7-9 10-13 14-19 20-28 29-42 43-63 64

d(n) 1 2 3 4 5 6 7 8 9 10

Table 2. Formulated time delay equation for each method with n-bit input length.

 Components Time Delay n = 16

Our Method
TPPM + TCSA + TMA

+ TSEL
{1} + {4 × d(n + 1)} +

{2 + 4 × ⎡log4 n⎤ + 2 + 2} + {1}
40

Zimmermann
TPPM + TCSA + TCOR

+ TMA
{5} + {4 × d(⎣n/2⎦)} +

{4 + 4 + 1} + {2 × ⎡log2 n⎤ + 6}
44

Wrzyszcz et al.
TPPM + TCSA + TCOR

+ TMA + TSEL
{4} + {4 × d(n) + 4(n − 1) + 2)} +

{2 × n} + {2 × n} + {2}
156

Wang et al. TPPM + TCSA + TMA
{2 × ((n − 1) + 2) + 4 × d′(n − 1)} +
{4 × d(⎣n/2⎦)} + {2 × ⎡log2 n⎤ + 6}

86

Ma et al.
TPPM + TCSA + TCOR

+ TMA
{6} + {4 × d(⎣n/2⎦)} + {4 + 4} +

{2 × ⎡log2 n⎤ + 6}
44

Bahrami et al.
TPPM + TCSA + TSEL

+ TMA
{2 × ((n − 1) + 2) + 4 × d′(n − 1)} +

{4 × d(n + 1)} + {2} + {2 × ⎡log2 n⎤ + 6}
92

Sousa
TPPM + TCSA + TCOR

+ TMA
{6} + {4 × d(⎣n/2⎦)} + {4} + {2 × ⎡log2 n⎤ + 6} 40

and ni = ni-1 − 3⎣ni-1/3⎦ + 2⎣ni-1/3⎦. C′(n) denotes the number of full adders of a Wallace
tree structure without end-around carry [1, 12]. The area costs of all circuits comprise
partial product matrix (APPM), carry-save adders (ACSA), modulo adders (AMA) and circuits
for zero case (AZERO). A final selection (ASEL) unit is required for the proposed architec-
ture, while correction (ACOR) units are required in the other schemes. Both Tables 2 and 3
have a column for the delay and cost with 16-bit long input.

The modules on the critical path in the proposed architecture are the partial product
matrix, carry save adder, modulo adder, and a final selection to specify the final output
from zero case handler and modulo adder. The time delay of the partial product matrix
comprises a single gate. Compared with the partial product matrix in [13], the time delay
of the proposed partial product matrix is reduced from 4 to 1 because the zero-case han-
dling is extracted from the critical path. Since the constant is added, the CSA needs d(n +
1) layers of full adder, where each full adder contributes a delay of four gates. The time
delay of modulo adder is as described in Fig. 1 (c). Compared with the modulo adder
proposed by Zimmermann [14], the number of stages for calculating group generate and
propagate is reduced from ⎡log2 n⎤ to ⎡log4 n⎤ with a small increase in the time delay of a
single stage. The final selection is an OR gate for each bit position and therefore contrib-
utes a delay of only one gate.

The time delay of the architecture proposed by Zimmermann, Sousa, and Ma [7, 11,
14] are formulated according to [11]. The time delay of the one proposed by Wrzyszcz et
al. [13] is similar in the partial product matrix and CSA. The correction and modulo

IMPROVED MODULO (2n + 1) MULTIPLIER

915

Table 3. Formulated area cost equation for each method with n-bit input length.

 Components Area Cost n = 16

Our Method
APPM + ACSA + AMA

+ ASEL + AZERO

⎡ ⎤

⎡ ⎤ ⎡ ⎤ }1
2

2)2(2log
4

8{}{

}22log
4

302{}
3

7{}{

2log

14

4
)1(

1
12

++×+−×+×⎥⎥
⎤

⎢⎢
⎡×++

++×⎥⎥
⎤

⎢⎢
⎡×++⎥⎦

⎥
⎢⎣

⎢×+

∑

∑

=

+

=
−

nnnnnn

nnnnn
n

nn

n

i i

nd

i
i

2467

Zimmermann
APPM + ACSA + ACOR

+ AMA ⎡ ⎤ }8log
2
3{}45{

}
3

7{})1
2

(9{

2

)2/(

1
1

nnnn

nnnn nd

i
i

×+××+×+

⎥⎦
⎥

⎢⎣
⎢×+×+× ∑ =

−
3808

Wrzyszcz et al.
APPM + ACSA + ACOR

+ AMAR + ASEL }3{}3{}3{

)}3)1(7(
3

7{}3{)(

1
12

nnn

nnnnn nd

i
i

×+×++

+−×+⎥⎦
⎥

⎢⎣
⎢×++ ∑ =

−
2124

Wang et al. APPM + ACSA + AMA ⎡ ⎤ }8log
2
3{}

3
7{

)}1('7)7)1(3(2{

2
)1('

1
1 nnnnn

nCn
nd

i
i ++⎥⎦
⎥

⎢⎣
⎢×+

−×++−××

∑ +

=
−

1987

Ma et al.
APPM + ACSA + ACOR

+ AMA
⎡ ⎤ }72log

2
3{}45{}

3
7{}

2
9{ 2

)2/(

1
1

2

nnnnnnn nd

i
i ×+++⎥⎦
⎥

⎢⎣
⎢×+× ∑ =

−

3760

Bahrami et al.
APPM + ACSA + AMA

+ ASEL + AZERO

'(1) 1
1

2

{2 (3 (1) 7) 7 '(1)} {7 }
3

3{ log 8 } {2 3 } {2 3 }
2

d n i
i

n
n C n n

n n n n n

+ −
=

⎢ ⎥× × − + + × − + × ⎢ ⎥⎣ ⎦

+ + + × × + × ×⎡ ⎤⎢ ⎥

∑
2179

Sousa
APPM + ACSA + ACOR

+ AMA ⎡ ⎤ }8log
2
3{})721{(

}
3

7{})1
2

(9{

2

)21(/

1
1

nnnn

nnnn d

i
i

++×++

⎥⎦
⎥

⎢⎣
⎢×+×+× ∑ =

−
3536

adder circuit proposed in [13] comprise a special ripple adder, where each adder com-
prises the structure of half adder. The selection unit in [13] is a 2-to-1 multiplexer for
each bit position on the critical path. The architectures proposed in [1] and [12] are simi-
lar. The CSA and modulo adder of [1] and [12] are the same as those in [7, 11, 14]. Sig-
nificantly, the partial product matrices in [1] and [12] need to convert the input into di-
minished-1 representation and thus need a subtractor for the matrix. Finally, the selection
unit of [1] comprises a 2-to-1 multiplexer.

The area cost of the proposed multiplier is contributed by five major components:
the partial product matrix, CSA, modulo adder, zero case handler, and final selection unit.
The area cost of partial product matrix and modulo adder is described in Figs. 1 (b) and
(c). The modulo adder needs ⎡log4 n⎤ layers of operation, each needing ⎡n/4⎤ operations.
Thus, the modulo adder needs ⎡n/4⎤ × ⎡log4 n⎤ operations, each costing (12 + 28 + 48)/3
≈ 30 in area cost. The CSA is constructed from a Wallace tree structure and each bit po-

sition would need
(1)

1
1

/ 3
d n

i
i

n
+

−
=

⎢ ⎥⎣ ⎦∑ full adders, which contributes 7 in area cost for each

adder. The zero case handler comprises the special adder, n NOR gates for input selec-
tion, two n-bit OR gates to ORed all the bits of the two inputs, a NAND for selection line
production, and n AND gates for the final output selection. Fig. 2 shows the area cost of

YI-JUNG CHEN, DYI-RONG DUH AND YUNGHSIANG SAM HAN

916

the special adder, which needs ⎡n/4⎤ × ⎡log4 n⎤ operations, each costing 24/3 = 8 in area
cost.

As mentioned earlier, the area cost of the architecture proposed by Ma, Sousa, and
Zimmermann [7, 11, 14] is formulated according to [11]. The circuit proposed by
Wrzyszcz [13] has the same partial product matrix and CSA architecture as the circuits
presented herein. The modulo adder and correction comprise two n-bit ripple half adders,
where each half adder contributes an area cost of 3. The selection unit of [13] comprises
n 2-to-1 multiplexers, each contributing 3 to the area cost. The area cost of the architec-
ture proposed by Bahrami [1] and Wang [12] are almost the same as the architecture just
described, but the one in [1] has zero case handler. The partial product generation in [1]
and [12] is constructed by an n-bit substractor as described in time delay. The CSA and
modulo adder are the same as those in other proposed architectures. The zero case han-
dler and selection unit in [1] are both constructed from n 2-to-1 multiplexers.

Fig. 5 compares the time delay and area cost of different modulo multiplier archi-
tecture with input lengths ranging from 1 bit to 32 bits. The two charts in Fig. 5 are esti-
mated according to the equations shown in Tables 2 and 3. Fig. 5 indicates that the pro-
posed scheme and Sausa’s scheme have the best time delays. Although Sausa’s scheme
has a small time delay, it has a much larger area cost because it has a large circuit for
partial product reduction. Fig. 6 shows the relationship between the area-delay product
and the input length and indicate that the time delay of the proposed modulo multiplier is
smallest in all input lengths, while the area cost is slightly higher than those of Wrizyszcz’s
and Wang’s. Fig. 6 also indicates that the proposed multiplier has the lowest area-delay
product for all input lengths.

Comparison of Time Delay

0

50

100

150

200

250

300

350

1 5 9 13 17 21 25 29
n -bit

tim
e

Proposed

Zimmermann

Wrzyszcz

Wang

Ma

Sousa

Bahrami

Comparison of Area Cost

0

2000

4000

6000

8000

10000

12000

14000

16000

1 5 9 13 17 21 25 29
n -bit

ar
ea

Proposed

Zimmermann

Wrzyszcz

Wang

Ma

Sousa

Bahrami

Fig. 5. The comparison of time delay and area cost within input lengths of 1 bit to 32 bits.

4. SIMULATION RESULT

Validity of the proposed design was verified to use CPLD to design an IDEA chip
with the proposed modulo multiplier structure. The CPLD chip used for simulation was
an Altera EPF10K200SFC672-1 of FLEX10K series with Max+PlusII as the design soft-
ware. This chip was used because the authors intend to design an IDEA chip with a PCI

IMPROVED MODULO (2n + 1) MULTIPLIER

917

 Comparison of Area × Delay

0

500

1000

1500

2000

2500

3000

1 5 9 13 17 21 25 29

× 1000

n -bit

A
re

a
×

D
el

ay

Proposed

Zimmermann

Wrzyszcz

Wang

Ma

Sousa

Bahrami

Fig. 6. The comparison of area-delay product of the proposed circuits with the others.

interface in the near future, and only the PCI development kit produced by Altera has this
CPLD in its package.

A simulation of our IDEA chip with the proposed new modulo multiplier design
was performed. The timing simulation reveals that the proposed structure has a time de-
lay of 59.5ns. An IDEA chip with single round of circuit was implemented, and each
round was partitioned into four pipeline stages. To complete encryption/decryption proc-
ess, the circuit was reused for 8.5 times. Although taking more time to process data, this
implementation has a lower area cost than fully implementing 8.5 rounds of circuits. The
clock rate of the proposed modulo multiplier can be up to 8.25 MHz, and the encryption/
decryption rate is approximately 66Mb/sec.

5. CONCLUSION

This study presents an efficient modulo multiplier structure with improvements in
the partial product matrix, modulo adder for modulo CSA, and zero-case handler. Com-
paring this structure with existing methods demonstrates that this structure not only has
the best time delay performance but also the best product cost of area and time delay
among the seven methods compared. A simulation on implementing IDEA chip with the
proposed modulo multiplier structure was also developed on CPLD. Simulation results
indicate that the IDEA chip with one round implemented and cut into four pipeline stages
can achieve frequency of 8.25 MHz, and the encryption (decryption) rate is approxi-
mately 66Mb/sec. The clock rate of the simulation structure can be further improved in
the near future. Additionally, the practical implementation of the proposed method will
be performed in the near future.

REFERENCES

1. M. Bahrami and B. Sadeghiyan, “Efficient modulo 2n + 1 multiplication schemes for
IDEA,” in Proceedings of IEEE International Symposiums on Circuits and Systems,
2000, pp. 653-656.

YI-JUNG CHEN, DYI-RONG DUH AND YUNGHSIANG SAM HAN

918

2. A. Curiger, H. Bonnenberg, R. Zimmermann, N. Felber, H. Kaeslin, and W. Fichtner,
“VINCI: VLSI implementation of the new secret-key block cipher IDEA,” in Pro-
ceedings of IEEE Custom Integrated Circuits Conference, 1993, pp. 15.5.1-15.5.4.

3. A. V. Curiger, H. Bonnenberg, and H. Kaeslin, “Regular VLSI architecture for multi-
plication modulo (2n + 1),” IEEE Journal of Solid-State Circuits, Vol. 26, 1991, pp.
990-994.

4. D. D. Gajski, Principles of Digital Design, Prentice Hall, 1997.
5. J. L. Hennessy and D. A. Patterson, Computer Architecture – A Quantitative Ap-

proach, 2nd ed., Morgan Kaufmann, 1996.
6. F. A. Jullien, “Implementation of multiplication, modulo a prime number, with ap-

plications to number theoretic transforms,” IEEE Transactions on Computers, Vol.
C-29, 1980, pp. 899-905.

7. Y. Ma, “A simplified architecture for modulo 2n + 1 multiplication,” IEEE Transac-
tions on Computers, Vol. 47, 1998, pp. 333-337.

8. P. E. Madrid, B. Millar, and E. E. Swartzlander Jr., “Modified booth algorithm for
high radix multiplication,” in Proceedings of IEEE Computer Design: VLSI in
Computer and Processors, 1992, pp. 118-121.

9. D. A. Patterson and J. L. Hennessy, Computer Organization & Design, The Hard-
ware/Software Interface, 2nd ed., Morgan Kaufmann, 1998.

10. W. Stallings, Cryptography and Network Security – Principles and Practice, 2nd ed.,
Prentice Hall, 1999.

11. L. Sousa, “A universal architecture for designing efficient modulo 2n + 1 multipli-
ers,” IEEE Transactions on Circuits and Systems, Vol. 52, 2005, pp. 1166-1178.

12. Z. Wang, G. A. Jullien, and W. C. Miller, “An algorithm for multiplication modulo
(2n + 1),” in Proceedings of IEEE ASILMAR-29, 1995, pp. 956-960.

13. A. Wrzyszcz and D. Milford, “A new modulo 2a + 1 multiplier,” in Proceedings of
IEEE International Conference on Computer Design: VLSI in Computers and Proc-
essors, 1993, pp. 614-617.

14. R. Zimmermann, “Efficient VLSI implementation of modulo (2n ± 1) addition and
multiplication,” in Proceedings of the 14th IEEE Symposium on Computer Architec-
ture, 1999, pp. 158-167.

15. R. Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N. Felber, and W. Fichtner,
“A 177mb/s VLSI implementation of the international data encryption algorithm,”
IEEE Journal of Solid-State Circuits, Vol. 29, 1994, pp. 303-307.

Yi-Jung Chen (陳依蓉) received her B.S. and M.S. degrees in Computer Science

and Information Engineering from National Chi Nan University, Nantou, Taiwan, in
2000 and 2002, respectively. She is currently working towards the Ph.D. at the Depart-
ment of Computer Science and Information Engineering at National Taiwan University.
Her research interests are in the area of computer architecture and high-level synthesis in
memory hierarchy.

Dyi-Rong Duh (杜迪榕) received the B.S. degree in Electronics Engineering from

the National Taiwan Institute of Technology, the M.S. degree in Computer Engineering

IMPROVED MODULO (2n + 1) MULTIPLIER

919

from the Tamkang University, and the Ph.D. degree in Computer Science and Informa-
tion Engineering from the National Taiwan University, in 1983, 1988, and 1994, respec-
tively. He worked for the Sysgration Ltd Taiwan as the R&D manager of the computer
peripherals division from June 1988 to July 1989. He was a teaching assistant from Au-
gust 1989 to July 1990 in the Department of Computer Science and Information Engi-
neering at the National Taiwan University. From August 1990 to July 1994, he was a
lecturer in the Department of Electronics Engineering at Hwa Hsia Institute of Technol-
ogy, Taipei Hsien, Taiwan. He is currently an associate professor in the Department of
Computer Science and Information Engineering at the National Chi Nan University,
Nantou Hsien, Taiwan. His research interests include graph-theoretic interconnection
networks, graph theory, embedded systems, and computer architectures.

Yunghsiang S. Han (韓永祥) was born in Taipei, Taiwan, on April 24, 1962. He

received the B.S. and M.S. degrees in Electrical Engineering from the National Tsing
Hua University, Hsinchu, Taiwan, in 1984 and 1986, respectively, and the Ph.D. degree
from the School of Computer and Information Science, Syracuse University, Syracuse,
NY, in 1993. From 1986 to 1988 he was a lecturer at Ming-Hsin Engineering College,
Hsinchu, Taiwan. He was a teaching assistant from 1989 to 1992 and from 1992 to 1993
a research assistant in the School of Computer and Information Science, Syracuse Uni-
versity. He is a winner of 1994 Syracuse University Doctoral Prize. From 1993 to 1997
he was an Associate Professor in the Department of Electronic Engineering at Hua Fan
College of Humanities and Technology, Taipei Hsien, Taiwan. From 1997 to 2004 he
was with the Department of Computer Science and Information Engineering at National
Chi Nan University, Nantou, Taiwan. He was promoted to Full Professor in 1998. From
June to October 2001 he was a visiting scholar in the Department of Electrical Engineer-
ing at University of Hawaii at Manoa, HI, and from September 2002 to January 2004 he
was the SUPRIA visiting research scholar in the Department of Electrical Engineering &
Computer Science and CASE center at Syracuse University, NY. He is now with the
Graduate Institute of Communication Engineering at National Taipei University, Taipei,
Taiwan. His research interests are in wireless networks, security, and error-control cod-
ing.

