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Abstract—In 2021, Tang et al. proposed an improved construction of Reed-Solomon (RS) erasure codes with four parity symbols to
accelerate the computation of Reed-Muller (RM) transform-based RS algorithm. The idea is to change the original Vandermonde
parity-check matrix into a systematic Vandermonde parity-check matrix. However, the construction relies on a computer search and
requires that the size of the information vector of RS codes does not exceed 52. This paper improves its idea and proposes a purely
algebraic construction. The proposed method has a more explicit construction, a wider range of codeword lengths, and competitive
encoding/erasure decoding computational complexity.
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1 INTRODUCTION

R EED-Solomon (RS) codes are a well-known class of max-
imum distance separable (MDS) codes. With better stor-

age efficiency than replication schemes, they have been used
in many prevalent storage systems, such as Redundant Ar-
ray of Independent Disks (RAID) [1], Google ColossusFS [2],
Facebook HDFS [3], Swift [4], Ceph [5] and so on. In recent
years, with the development of distributed technologies,
a large number of erasure codes based on RS codes or
utilizing generalization of RS codes have been developed,
such as locally recoverable codes [6], regenerating codes [7],
and partial-MDS codes [8]. They are used to meet different
requirements of distributed storage systems. In distributed
computing systems, RS codes as polynomial codes can also
be explored to mitigate the impact of stragglers [9] or
guarantee privacy, resiliency, and security [10]. As an imple-
mentation basis of all the applications mentioned above, this
paper focuses on improving the computational efficiency of
RS codes.

An (N+T,N) RS code can encode an information vector
of size N into a codeword of N + T symbols, such that
N information symbols can be decoded (recovered) from
any N symbols in the codeword. If all information symbols
always appear precisely in the codeword, then such code is
called a systematic (N+T,N) RS code, and the T additional
symbols are called parity symbols. This paper focuses on the
systematic RS codes and defaults the mentioned decoding
to erasure decoding. In particular, RS codes are constructed
over finite fields with complicated algebraic operations,
so conventional implementations cannot meet low latency
needs. Studies have shown that if each parity symbol is
calculated independently, the complexity lower bound is
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T − T
N XORs per data bit in encoding [11]. However, this

bound is not true anymore when the intermediate results of
calculating parity symbols can be reused. In 2017, [2] proved
that for MDS codes with two and three parity symbols, the
encoding that can share intermediate results requires at least
two XORs per bit. In addition, [2] proposed an algorithm
that asymptotically achieves the complexity of two XORs
per bit. Subsequently, [12] proposed an algorithm with an
asymptotic complexity of three XORs per bit for RS codes
with the number of parity symbols between four and seven.
It can be seen from the above that even with the addition
of up to four parity symbols, the asymptotic complexity
of RS algorithm requires only one extra XOR per bit. In
2023, [13] generalized the work in [12] to support the RS
codes with any number of parity symbols, and obtained the
RS algorithm with the asymptotic complexity of ⌊lg T ⌋ + 1
XORs per data bit, where lg denotes the binary logarithm.
The above algorithms are fast computations based on Reed-
Muller (RM) transform [13], providing the lowest known
asymptotic complexities of RS codes when the information
length N approaches infinity.

In practical applications, especially storage systems, the
RS codes with small T are often used. For instance, RAID-
6 uses the RS code with T = 2 to ensure data reliabil-
ity [1], Google ColossusFS and Facebook HDFS use (9, 6) RS
code [2] and (14, 10) RS code [3] to tolerate three and four
failed nodes, respectively. The RS codes with four parity
symbols are considered in this paper. In 2021, based on
[12], [14] presented an improved RM-based algorithm for
the RS codes with four parity symbols. The main idea
is to find a systematic Vandermonde parity-check matrix
composed of an identity matrix and a Vandermonde matrix
to replace the original parity-check matrix of RS codes.
Thanks to the presence of the identity matrix, the algorithm
proposed in [14] eliminates the operation of solving linear
equations in encoding and reduces the input size of all
RM transforms. However, the method in [14] relies on a
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computer search and does not explicitly give the final result
of the searched parity-check matrices. Furthermore, the size
N of the information vector in [14] cannot exceed 52. This
motivates us to present in this paper a clear and regular
result from the perspective of algebraic construction. The
main contributions of this paper are listed as follows:
1) From a purely algebraic perspective, we construct a

systematic Vandermonde parity-check matrix for the RS
codes with four parity symbols.

2) Based on the constructed parity-check matrix, we pro-
pose a new RM-based RS encoding/erasure decoding
algorithm.

3) We show that the proposed algorithms are competitive
with other alternative RM-based RS algorithms regarding
the number of operations. In addition, the maximum
codeword length of the proposed algorithms for fast
execution on F2M is 2M + 4, where M is any power of
two. This is the codeword length of four symbols more
than the extended RS code over F2M [15].
It is worth noting that the RS algorithm applicable to any

number of parity symbols in [13] is also an improvement of
the RM-based algorithm in [12]. The difference between this
algorithm and the algorithms in this paper and [14] is that it
still uses the conventional Vandermonde matrix as a parity-
check matrix. This leads to a larger input size for the RM
transform required in [13]. In addition, the algorithm in [13]
has no improvement on RS decoding but only on encoding.
One can see from Sec. 5 that when T = 4 both encoding
and decoding proposed in this paper are superior to those
in [13]. The rest of this paper is organized as follows: Sec. 2
introduces the necessary knowledge of this paper. Sec. 3 and
Sec. 4 propose constructing the systematic Vandermonde
matrix and the corresponding RS algorithms, respectively.
Analysis and comparison are given in Sec. 5. Finally, Sec. 6
concludes this paper.

2 PRELIMINARIES

In this paper, the set of whole numbers is denoted by N.
In addition, the decoding mentioned in this paper refers to
erasure decoding rather than error-correction decoding [15].

2.1 Finite fields
The finite fields used in this paper come from the field tower
presented by Cantor in [16], that is,

F22 :=F2 [u0] /(u
2
0 + u0 + 1),

F22i+1 :=F22i [ui] /(u
2
i + ui + (ui−1 · · ·u1u0)),

(1)

where i ∈ N \ {0} and u0, u1, u2, · · · are a specific sequence
of elements from an algebraic closure of the binary field
F2. Unless otherwise specified, we suppose that M = 2m,
where m is a positive integer. The field tower above leads to
F2M = F2(u0, u1, · · · , um−1). Furthermore, the basis of F2M

can be denoted by vM = (v0, v1, · · · , vM−1), where vi =

ui0
0 ui1

1 · · ·uim−1

m−1 and (im−1 · · · i1i0) is the binary representa-
tion of i, i.e., i =

∑m−1
j=0 ij · 2j ,∀ij ∈ {0, 1}. For instance, the

basis of F28 is v8 = (1, u0, u1, u0u1, u2, u0u2, u1u2, u0u1u2).
From (1), it is not difficult to see that Lemma 1 holds.

Lemma 1. For any positive integer m, 0 = u2
m + um + v2m−1.

Since the characteristics of the finite fields above are
all two, addition and subtraction are equivalent operations,
and Lemma 2 always holds according to [17].

Lemma 2. For any i ∈ N and any two elements a, b that from
finite fields in (1), we have that (a+ b)2

i

= a2
i

+ b2
i

.

In addition, we have the following lemma.

Lemma 3. Multiplying a ∈ F22M by b ∈ F2M only requires two
multiplications over F2M .

Proof. From (1), let a = a0 + a1 · um, where a0 and a1 are
both in F2M . Then a · b = (a0 · b) + (a1 · b) · um. Since the
operations of multiplying a0 and a1 with b are performed in
F2M , this lemma holds.

2.2 Reed-Solomon codes and RM-based algorithm

RS codes can be typically constructed from a Vandermonde
parity-check matrix [12]. Formally, let H be a Vandermonde
parity-check matrix of (N + 4, N) RS code and r = (p|d)
a codeword of the RS code, where d is an N -element
information vector, and p is the corresponding 4-element
parity vector. All matrices and vectors are over the same
finite field, and N + 4 does not exceed the field size. Hence,
the identity 0T = H ·rT always holds [12], where 0 is a zero
row vector. In particular, the identity leads to the following
encoding/decoding:
Step C.1: Let r′ be the vector after setting four par-

ity/erased symbols in r to zero, then calculate
sT ≜ H · (r′)T.

Step C.2: Solve the linear system sT = He · eT, where e
denote the vector consisting of all parity/erased
symbols and He denote the sub-matrix of H
corresponding to e (it is clear that e = p in
encoding).

In 2020, [12] proposed an RM-based algorithm to quickly
calculate the following matrix-vector multiplication

V and4(w0, w1, · · · , wN+3) · xT, (2)

where x is a row vector, each wi =
∑

j∈N ij · vj with
i =

∑
j∈N ij · 2j , and V and4(w0, w1, · · · , wN+3) is a Van-

dermonde matrix defined by

V and4(w0, w1, · · · , wN+3) ≜


1 1 · · · 1
w0 w1 · · · wN+3

w2
0 w2

1 · · · w2
N+3

w3
0 w3

1 · · · w3
N+3

.

(3)
By setting H = V and4(w0, w1, · · · , wN+3), it is easy to see
that Step C.1 can be efficiently completed by the RM-based
algorithm presented in [12]. However, [12] does not develop
an efficient calculation for Step C.2.

In 2021, [14] proposed an algorithm that eliminates the
operation caused by Step C.2 to improve the performance
of the RM-based RS algorithm in [12]. The key idea in [14]
is to set an identity matrix on the leftmost side of H , such
that He in Step C.2 is always an identity matrix that does
not produce any operation during encoding. Note that the
idea makes some 4 × 4 sub-matrices of H potentially non-
invertible, which results in the decoding not guaranteeing
the recovery of any four erased symbols. To solve this
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Fig. 1: Construction of the elements in {hi}0≤i<N when
N = 8 and M = 4.

problem, [14] used computer search to aid in mathematical
construction and found some H where any 4×4 sub-matrix
is invertible under the new setting, and H is suitable for
the RM-based RS algorithm. However, the maximum value
of N in [14] does not exceed 52, which was obtained by
considering all possible constructions of F28 .

3 PROPOSED CONSTRUCTION

Following the idea in [14] but with a different method, this
section constructs a systematic Vandermonde parity-check
matrix in a purely algebraic manner. In our method, the size
N of the information vector can be of any value depending
only on the finite field. For simplicity, we assume that N is
a power of two.

To begin with, N distinct elements are selected from
F22M , where N = 2n ≤ 2M and n ∈ N. We specify that
all selected elements exactly form a set {hi}0≤i<N of each

hi = wi + um ∈ F22M , (4)

where the definition of each wi is the same as that in
(3). Furthermore, in the above formula, wi ∈ F2M and
um ∈ F22M \ F2M . Fig. 1 shows the setting of {hi}0≤i<N

in an example of N = 8 and M = 4, where 0-1 sequence
denotes the binary representation of the corresponding
field element. For example, the sequence 10110 denotes
h6 = v4 + v2 + v1, where v4 = u2.

Next, let a parity-check matrix of (N + 4, N) RS code be

H = (I4×4|V and4(h0, h1, · · · , hN−1)) , (5)

where I4×4 is an identity matrix of dimension 4 × 4. The
following is devoted to proving H satisfies the constraint
that any 4× 4 submatrix is invertible.

According to [14], any 4× 4 submatrix of H is invertible
as long as the following three submatrices have full rank:

M0 =

 1 1 1
h2
i0

h2
i1

h2
i2

h3
i0

h3
i1

h3
i2

 ,

M1 =

 1 1 1
hi0 hi1 hi2

h3
i0

h3
i1

h3
i2

 ,

M2 =

(
1 1
h3
i0

h3
i1

)
,

(6)

where i0, i1, i2 ∈ {0, 1, · · · , N − 1} are pairwise distinct. By
utilizing generalized Vandermonde determinants [18], it can
be computed that the determinants of the matrices above are

|M0| = (hi0hi1 + hi0hi2 + hi1hi2) ·Π0≤j0<j1≤2(hij0
+ hij1

),

|M1| = (hi0 + hi1 + hi2) ·Π0≤j0<j1≤2(hij0
+ hij1

),

|M2| = h3
i0 + h3

i1 .

Since hi + hj ̸= 0 with i ̸= j, one only needs to check if the
following three values are zeros.
1) hi0hi1 + hi0hi2 + hi1hi2 : This value equals∑

0≤j0<j1≤2

(wij0
+ um)(wij1

+ um)

=
∑

0≤j0<j1≤2

(
wij0

wij1
+ (wij0

+ wij1
)um + u2

m

)
=u2

m +
∑

0≤j0<j1≤2

wij0
wij1

=um +

vM−1 +
∑

0≤j0<j1≤2

wij0
wij1


︸ ︷︷ ︸

a∈F2M

,

(7)

where we use the identity u2
m = um + vM−1 that comes

from Lemma 1. In (7), a is in F2M and um is in F22M \F2M ,
thus the value is not zero.

2) hi0 + hi1 + hi2 : The value has the form of b+ um, where
b ∈ F2M . Thus, the value is also not zero.

3) h3
i0
+ h3

i1
: This value is equal to

(wi0 + um)3 + (wi1 + um)3

= (w3
i0 + w3

i1) + (w2
i0 + w2

i1) · um + (wi0 + wi1) · u2
m

= (wi0 + wi1)·(
(w2

i0 + w2
i1 + wi0wi1) + (wi0 + wi1) · um + u2

m

)
= (wi0 + wi1)·
((w2

i0 + w2
i1 + wi0wi1 + vM−1)︸ ︷︷ ︸

∈F2M

+(wi0 + wi1 + 1)︸ ︷︷ ︸
∈F2M

·um).

(8)
It is zero only when wi0 + wi1 + 1 = 0 and w2

i0
+ w2

i1
+

wi0wi1 + vM−1 = 0 at the same time. Equivalently, the
conditions can be converted into wi0 + wi1 = 1 and
wi0wi1 = vM−1 + 1. Assuming the conditions hold,
then wi0 and wi1 are two distinct roots of polynomial
f(x) = x2 + x + vM−1 + 1. However, the two dis-
tinct roots of f(x) are um + u0 ∈ F22M \ F2M and
um + u0 + 1 ∈ F22M \ F2M . This is contradictory. So this
value is not zero.
From the above, we conclude that any 4 × 4 submatrix

of H is invertible. When M = 8, the maximum feasible
N is 2M = 256. Note that H in the proposed construction
is over F22M , but the maximum feasible N is equal to the
size of F2M . Since the implementation efficiency of algebraic
operation over F22M is much slower than that over F2M , we
next propose an RS encoding/decoding algorithm that can
be efficiently performed in F2M .

4 FAST ENCODING/DECODING ALGORITHM

This section presents a fast RS encoding/decoding algo-
rithm for the proposed construction.
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4.1 Encoding
According to the encoding process described in Sec. 2.2, let
d = (d0, · · · , dN−1) ∈ FN

22M be an information vector and
p = (p0, p1, p2, p3) ∈ F4

22M the corresponding parity vector.
It can be seen from (5) that the formula for calculating all
parity symbols is

pℓ =
N−1∑
i=0

di · hℓ
i , ℓ = 0, 1, 2, 3. (9)

For convenience, we first calculate

p̂T = V and4(w0, · · · , wN−1) · dT, (10)

where p̂ = (p̂0, · · · , p̂3). In (10), the calculation of p̂ can be
completed by calling the RM-based algorithm proposed in
[12], as shown in (2). Importantly, Lemma 3 implies that the
above calculation can be simply performed in F2M , since
each p̂ℓ =

∑N−1
i=0 di · wℓ

i , where di ∈ F22M and wi ∈ F2M

Next, {pℓ}3ℓ=0 in (9) is calculated by using the result p̂ in
(10). Specifically,

• If ℓ = 0, then

p0 =
N−1∑
i=0

di = p̂0 (11)

• If ℓ = 1 or 2, we have from Lemma 2 that

pℓ =
N−1∑
i=0

di · (wℓ
i + uℓ

m) = p̂ℓ + uℓ
m · p̂0. (12)

• If ℓ = 3, then

p3 =
N−1∑
i=0

di · (wi + um)3

= p̂3 + um · p̂2 + u2
m · p̂1 + u3

m · p̂0
= p̂3 + um · (p̂2 + um · (p̂1 + um · p̂0)) .

(13)

Fig. 2 shows the detailed process of calculating p from
p̂. The four black circles located at the bottom represent
p̂0, p̂1, p̂2, and p̂3, respectively. According to (11), we have
p0 = p̂0. The other three black circles represent p1, p2 and p3,
respectively. All white circles in Fig. 2 denote intermediate
results that need to be calculated. In addition, each circle
is obtained by summing over all the circles pointing to
that circle, and the dashed arrows indicate that the circle
is multiplied by a constant upon summation. It can be
observed that when all elements in p̂ are known, calculating
all parity symbols requires a total of four additions and four
multiplications over F22M . Here all multiplication factors are
um. Lemma 4 gives the corresponding operation number
over F2M .

Lemma 4. For any a ∈ F22M , the calculation of multiplying um

by a only requires one addition and one multiplication over F2M .

Proof. Let a = a0 + a1 ·um where a0, a1 are both in F2M , we
have from Lemma 1 that um · (a0+a1 ·um) = (a1 · vM−1)+
(a0 + a1) · um, where a1 · vM−1 ∈ F2M , a0 + a1 ∈ F2M . It is
clear that only a1 · vM−1 and a0 + a1 need to be calculated.
Since these operations are performed in F2M , this completes
the proof.

In summary, the proposed encoding algorithm can be
organized as follows:

Fig. 2: Diagram of calculating p from p̂.

Step E.1: Calculate p̂ from (10) according to the RM-based
algorithm proposed in [12].

Step E.2: Calculate p via Fig. 2.
The proposed encoding simultaneously deals with 2N sym-
bols in F2M .

4.2 Decoding

This paper only considers the case of all erasure. The case of
non-all erasure can be derived from the case of all erasure.
When all erased symbols are in the parity vector p, the
proposed encoding can perform the decoding directly. In
the following, at least one symbol in the information vector
d is erased by default. Note that the proposed decoding
scheme also processes 2N symbols in F2M simultaneously,
corresponding to the codeword (generated in the previous
section) after deleting any four symbols.

Before describing the specific decoding process, we ob-
tain the following formula by summarizing the calculation
of (11)-(13):

0 = Ĥ · (p|d)T, (14)

where

Ĥ =


1 0 0 0
um 1 0 0
u2
m 0 1 0

u3
m u2

m um 1

V and4(w0, w1, · · · , wN−1)

 .

(15)
Clearly, Ĥ can be considered as a parity-check matrix equiv-
alent to H in (5), since they produce the same codeword
from d. According to the decoding process described in
Sec. 2.2, we then have two different parity-check matrix
options for decoding.

When the parity-check matrix H in Sec. 2.2 is replaced
by Ĥ for decoding, Step C.1 can be completed efficiently
through the RM-based algorithm in [12] and Lemma 4.
At this time, Step C.2 only operates in F2M if all erased
symbols are in d. However, if there are erased symbols in
p, Step C.2 may generate a large number of operations in
F22M . This can greatly reduce decoding efficiency. Although
the computational efficiency in Step C.2 has less effect on
the overall decoding as N increases, optimizing it when
N is small is necessary. Next, we give a detailed decoding
scheme for the case of erased symbols in p. Note that, in
this paper, any Vandermonde linear system is solved using
lower–upper LU factorization [19], which results in fewer
operations than the plain Gaussian elimination [13].
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Except when all erased symbols are in p (the encoding
can perform the decoding directly), there are 14 cases to be
analyzed. By using Lemma 3, Lemma 4 and Lemma 5 to
convert all operations to F2M for counting and comparison,
we summarized which parity-check matrix is better for
some cases. Thus, these 14 cases are split into two categories.
We refer to the decoding method using Ĥ and H as a parity-
check matrix as ”Ĥ-based” and ”H-based”, respectively.
In each case, there may exist a Vandermonde sub-linear
system which can be solved by using LU factorization [19].
This leads to a process that varies from case to case, and
it requires a combination of LU factorization and Gaussian
elimination. For simplicity, we classify those cases with sim-
ilar processes as one family. The detailed decoding scheme
is given below.

Lemma 5. Multiplying any a ∈ F22M by a fixed multiplication
factor b ∈ F22M requires three addition and three multiplication
over F2M .

Proof. Let a = a0 + a1 · um and b = b0 + b1 · um where
all a0, a1, b0, b1 are in F2M . Then we have from Lemma 1
that a · b = (a0 + a1 · um) · (b0 + b1 · um) = a0b0 +
a1b1vM−1+(a0b1+ a1b0+ a1b1) ·um = a0b0+ a1b1vM−1+
((a0 + a1)(b0 + b1)− a0b0) ·um. Since b and vM−1 are fixed,
only three multiplications and three additions over F2M are
required.

4.2.1 Ĥ-based

In this method, Step C.1 can be accelerated by using
Lemma 4, and the RM-based algorithm in [12], then Step C.2
is performed as follows: (in brackets are all erased symbols
in p.)
1) Case (p1, p2, p3): All erased symbols are solved by Gaus-

sian elimination. In this case,

He =


0 0 0 1
1 0 0 wi

0 1 0 wi

u2
m um 1 wi

 , where 0 ≤ i < N. (16)

One can obtain the last erased symbol based on the first
row of He and then use Gaussian elimination to calculate
the first, second, and third erased symbols in order from
the second row to the fourth row. Note that the operation
of multiplying wi needs to be performed only once.

2) Case (p0), (p3), (p0, p3), (p1, p3), (p2, p3), (p0, p1, p3),
(p0, p2, p3): Many erased symbols are first obtained by
solving a Vandermonde sub-linear subsystem, and then
all remaining erased symbols are obtained by Gaussian
elimination. For example, if p0 and p3 are erased, then

He =


1 0 1 1
um 0 wi wj

u2
m 0 w2

i w2
j

u3
m 1 w3

i w3
j

 , where 0 ≤ i < j < N.

(17)
One can obtain the first, third, and fourth erased symbols
based on the first three rows of He (forming a Vander-
monde sub-linear system), and then calculate the second
erased symbol by Gaussian elimination based on the last
row of He.

3) Case (p1), (p2): The solutions in these two cases are
similar. Taking the former as an example, we have that

He =


0
1 V ∈ F3×3

2M

0
u2
m a ∈ F3

2M

, where V is a Vandermonde

matrix. Further, He can be decomposed into

He =


0

V 0
0

0 0 0 1

 ·
(

c ∈ F3×1
2M I3×3

u2
m a

)
, (18)

where c = V −1 · (0, 1, 0)T. The above formula shows
that Step C.2 can be solved in two steps. The first step
is still to solve a Vandermonde linear system determined
by V in (18). The second step can be completed by using

Gaussian elimination on
(

c ∈ F3×1
2M I3×3

u2
m a

)
due to the

existence of I3×3. Specifically, in the second step, the first
erased symbol is first obtained based on the last row, and
then other erased symbols are obtained based on the first
three rows.

4.2.2 H-based
This method is used for all the remaining cases, i.e.
(p1, p2), (p0, p2), (p0, p1) and (p0, p1, p2). Step C.1 can be
performed quickly by calling the proposed encoding. For
Step C.2, some erased symbols are obtained by solving a
linear subsystem, and then all remaining erased symbols
are obtained by Gaussian elimination. For example, in the
case of (p1, p2), we have

He =


0 0 1 1
1 0 hi hj

0 1 h2
i h2

j

0 0 h3
i h3

j

 , where 0 ≤ i < j < N. (19)

One can obtain the last two erased symbols based on the first
and fourth rows of He (forming a Vandermonde sub-linear
system), and then calculate the first two erased symbols by
Gaussian elimination based on the second and third rows of
He.

5 ANALYSIS AND COMPARISON

In this section, we first analyze the computational complex-
ity of the proposed encoding/decoding, and then compare
them with other alternative algorithms.

For the proposed encoding, one can see from [12] that
Step E.1 requires 3N + n − 6 additions and n2+5n

2 − 3
multiplications over F22M . Note that N = 2n. According to
Lemma 3 and the fact that one addition over F22M is equiv-
alent to two additions over F2M . Thus, Step E.1 requires
6N+2n−12 additions and n2+5n−6 multiplications over
F2M . In addition, Step E.2 requires four additions and four
multiplications over F22M . From Lemma 4, this is equivalent
to 12 additions and four multiplications over F2M . In sum-
mary, the average numbers of additions and multiplications
over F2M are respectively (6N+2n−12)+12

2N = 3 + n
N and

(n2+5n−6)+4
2N = n2+5n−2

2N . Note that the information vector d
has 2N symbols in F2M , as shown in Sec. 4.1.
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TABLE 1: Average numbers of additions/multiplications
over F28 (all data are rounded)

N 8 16 32 64 128
Encoding

[12] 4.38/2.38 3.75/1.56 3.41/1.00 3.22/0.63 3.12/0.38
[14] 3.00/1.50 3.06/1.13 3.44/1.03 \ \
Our 3.38/1.38 3.25/1.06 3.16/0.75 3.09/0.5 3.05/0.32

Normalized with respect to [12]
[14] 0.68/0.63 0.82/0.72 1.01/1.03 \ \
Our 0.77/0.58 0.87/0.68 0.93/0.75 0.96/0.80 0.98/0.84

Average-case decoding
[12] 5.44/3.21 4.28/1.98 3.68/1.21 3.36/0.73 3.19/0.44
[14] 4.33/2.63 3.86/1.79 3.89/1.39 \ \
Our 5.13/2.66 4.20/1.79 3.65/1.13 3.35/0.69 3.18/0.42

Normalized with respect to [12]
[14] 0.80/0.82 0.90/0.90 1.05/1.15 \ \
Our 0.94/0.83 0.98/0.90 0.99/0.93 1.00/0.95 1.00/0.95

TABLE 1 lists the average number of operations for
different encoding/decoding algorithms, in which the finite
fields used are all set to be F28 . To facilitate comparison,
the numbers of operations in the last two algorithms are
normalized to that in [12]. It can be observed that the num-
ber of operations in the proposed encoding is significantly
less than that in [12], especially when N is small. This
is due to the fact that the size of the RM transform in
our scheme is smaller than that in [12], leading to fewer
operations. Moreover, Step E.2 requires fewer operations
than Step C.2. [14] has an encoding complexity close to
ours. However, it requires significantly more operations
than ours at N = 32. This is because the RM transform
of size more than 32 is needed in [14] to match a 32-column
Vandermonde matrix without singular sub-matrices instead
of the RM transform with size exactly 32 as in the proposed
scheme. Furthermore, the maximum feasible N in [14] is 52,
and the corresponding H is not explicitly given. In contrast,
the proposed construction can make N up to 2M = 256 in
this case, and H has an explicit construction.

For decoding, erasures are typically evenly distributed
among all symbols. TABLE 2 lists the number of operations
over F2M required by the proposed decoding in different
cases. Specifically, we split the decoding procedure into
two components: the first performs the RM-based algorithm
with size N , and the second performs all the remaining
operations. The first component produces the same number
of operations as Step E.1 in the proposed encoding, as
shown in the upper part of TABLE 2. In addition, the second
component produces the number of operations independent
of N , as shown in the lower part of TABLE 2. In partic-
ular, the lower part of TABLE 2 shows that the number
of operations in different cases can vary by almost twice,
which is caused by He containing different columns of
the identity matrix. Using the result in TABLE 2, we then
give the average-case complexity of the proposed decoding,
shown in the lower part of TABLE 1. It can be seen that
the proposed decoding also has less number of operations
than the algorithm in [12]. This is mainly caused by the RM
transform with a smaller size. The decoding comparison
between the proposed scheme and [14] is similar to that
of the encoding comparison. Again, the algorithm in [14]
requires N to be no more than 52 and does not give the

TABLE 2: Number of additions/multiplications over F2M

required by the proposed decoding in different cases

Component 1: # of operations generated by RM-based algorithm
(6N + 2n− 12)/(n2 + 5n− 6)

Component 2: # of other operations in different cases
() (p0) (p1) (p2) (p3)

45/29 45/29 42/30 43/31 39/23
(p2, p3) (p1, p3) (p0, p3) (p1, p2) (p0, p2)
29/17 29/17 37/23 46/22 43/21
(p0, p1) (p1, p2, p3) (p0, p2, p3) (p0, p1, p3) (p0, p1, p2)
43/21 24/12 27/15 27/15 33/13

explicit parity-check matrix H .
From TABLE 1, one can see that the advantages of

addition and multiplication complexities in the proposed
scheme do not always occur simultaneously. For a compre-
hensive comparison, we next follow the efficiency ratio η of
multiplication and addition realized by Single Instruction
Multiple Data (SIMD) technology, i.e., one multiplication
over F28 is equivalent to η additions over F28 . Based on
our experience in practice [12], η can be set to four. Then
we define the total computational complexity as the sum of
the average number of additions and η times the average
number of multiplications. Fig. 3 shows the comparisons
of different RM-based RS encoding over F28 , where η has
more possible values. It can be observed that the proposed
encoding always has the best total computational complex-
ity, regardless of the value of η. The ratio η only affects
the total computational complexity of each algorithm, not
the differences between algorithms. Note that, in Fig. 3,
we have added the general RS encoding proposed in [13],
which also improved the original RM transform-based RS
encoding. The difference between [14] and this paper is that
[14] uses a conventional Vandermonde matrix as the parity-
check matrix, so there is no identity matrix in its parity-
check matrix. This results in the size of the RM transform
in [13] being larger than ours. In the range of parameters
considered in Fig. 3, the computational complexity of the
proposed encoding is on average 25.8%, 13.6%, 6.9%, lower
than those in [12], [13], and [14], respectively.

Fig. 4 shows the comparisons of different RM-based
RS decoding over F28 . It provides the improvement of
different decoding algorithms over the algorithm in [12] in
the average and worst cases. The average-case decoding in
[13] always has the same computational complexity as its
worst-case decoding since it has no identity matrix in the
parity-check matrix. Hence, we only compare it with the
worst-case decoding in [12]. It can be observed from Fig. 4
that when N ≥ 32, the improvement of all algorithms is
not significant. When N < 32, the decoding in [14] has the
best improvement. However, its decoding performance is
much worse at N = 32. This is because the RM transform of
size more than 32 is needed in [14] to match a searched 32-
column Vandermonde matrix instead of the RM transform
with a size of exactly 32 as in the proposed scheme. Im-
portantly, the parity-check matrix in [14] is not explicit and
the feasible value of N cannot exceed 52, which was found
by computer search considering all possible (1050 different)
constructions of F28 [14]. Thus, the proposed scheme in this
paper is a good alternative to the one in [14]. Compared
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Fig. 3: Comparisons of different RM-based RS encoding over F28 (the total computational complexity defined as the sum
of the average number of additions and η times the average number of multiplications).

Fig. 4: Comparisons of different RM-based RS decoding over F28 (the vertical axis represents the proportion of
improvement in total computational complexity for each scheme compared to [12]).

with [13], the decoding scheme proposed in this paper is
always superior.

It is worth mentioning that the maximum feasible code-
word length of the proposed scheme is N + 4 = 2M + 4
when performing efficiently on F2M . This is the codeword
length of four symbols more than the extended RS code
over F2M [15]. When N = 2M , the algorithms in [12], [13]
must be performed on a larger finite field than F2M . Smaller
fields with simpler arithmetic implementations lead to the
obvious superiority of the proposed scheme.

6 CONCLUSION

In this paper, we first construct a systematic Vandermonde
matrix from the perspective of algebraic construction, and
then propose a new RM-based RS encoding/erasure decod-
ing algorithm. To highlight the advantages of the proposed
construction, we compare it with other RM-based RS codes
in terms of encoding/erasure decoding. The results show
the proposed construction is a good alternative to other
RM-based codes because of the more explicit construction,
a wider range of codeword lengths, and the competitive
encoding/erasure decoding performance.
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