
1

A New Construction and an Efficient Decoding
Method for Rabin-Like Codes
Hanxu Hou Member, IEEE and Yunghsiang S. Han, Fellow, IEEE

Abstract— Array codes have been widely used in communica-
tion and storage systems. To reduce computational complexity,
one important property of the array codes is that only exclusive
OR operations are used in the encoding and decoding processes.
Cauchy Reed-Solomon codes, Rabin-like codes and circulant
Cauchy codes are existing Cauchy maximum-distance separable
(MDS) array codes that employ Cauchy matrices over finite fields,
circular permutation matrices and circulant Cauchy matrices,
respectively. All these codes can correct any number of failures;
however, a critical drawback of existing codes is the high decoding
complexity. In this work, we propose a new construction of Rabin-
like codes based on a quotient ring with a cyclic structure.
The newly constructed Rabin-like codes have more supported
parameters (prime p is extended to an odd number) such that
the world sizes of them are more flexible than the existing
Cauchy MDS array codes. An efficient decoding method using
LU factorization of the Cauchy matrix can be applied to the
newly constructed Rabin-like codes. It is shown that the decoding
complexity of the proposed approach is less than that of existing
Cauchy MDS array codes. Hence, the Rabin-like codes based on
the new construction are attractive to distributed storage systems.

Index Terms—MDS array codes, Rabin-like codes, decoding,
storage systems.

I. INTRODUCTION

Array codes are error and burst correcting codes that have
been widely employed in communication and storage sys-
tems [1], [2], to enhance data reliability. A common property
of the array codes is that the encoding and decoding algorithms
use only XOR (exclusive OR) operations. A binary array code
consists of an array of size m × n, where each element in
the array stores a single bit. Among the n columns (or data
disks) in the array, the first k columns are information columns
that store information bits, and the last r columns are parity
columns that store parity bits. Note that n = r + k. When a
data disk fails, the corresponding column of the array code
is considered as an erasure. If the array code can tolerate
arbitrary r erasures, then it is called a maximum-distance
separable (MDS) array code. In other words, in an MDS

Hanxu Hou is with the School of Electrical Engineering & Intelligenti-
zation, Dongguan University of Technology and the Shenzhen Key Lab of
Information Theory & Future Internet Architecture, Future Network PKU
Lab of National Major Research Infrastructure, Peking University Shenzhen
Graduate School (E-mail: houhanxu@163.com), Yunghsiang S. Han is with
the School of Electrical Engineering & Intelligentization, Dongguan Uni-
versity of Technology (E-mail: yunghsiangh@gmail.com). This work was
partially supported by the National Natural Science Foundation of China (No.
61701115, 61671007, 61671001), National Keystone R&D Program of China
(No. 2017YFB0803204, 2016YFB0800101) and Shenzhen Research Program
(No. ZDSYS201603311739428).

array code, the information bits can be recovered from any
k columns.

Besides the MDS property, the performance of an MDS
array code also depends on encoding and decoding complex-
ities. Encoding complexity is defined as the number of XORs
required to construct the parities, and decoding complexity is
defined as the number of XORs required to recover the erased
columns from any surviving k ones.

A. Related Work

Row-diagonal parity (RDP) code [3], EVENODD code [4]
and Liber8Tion code [5] can tolerate two arbitrary disk
erasures. Due to increasing capacities of hard disks and the
requirements of low bit error rates, the protection offered
by double parities will soon be inadequate. The issue of
reliability is more pronounced in solid-state drives, which
have significant wear-out rates when the frequencies of disk
writes are high. The use of triple-parity Redundant Arrays
of Inexpensive Disks (RAID) has already been advocated in
storage technology [6]. Construction of array codes recovering
multiple disk erasures is relatively rare, in comparison to array
codes recovering double erasures. We name the existing MDS
array codes in [3], [4], [7]–[13] as Vandermonde MDS array
codes, because their constructions are based on Vandermonde
matrices.

Among the Vandermonde MDS array codes, the BBV
(Blaum, Bruck and Vardy) code [7], [14], which is an ex-
tension of EVENODD code with more parity columns, has
the best fault-tolerance. Blaum et al. proved that an extended
BBV code is always an MDS code for three parity columns,
but may not be an MDS code for four or more parity columns
[7]. A necessary and sufficient condition for the extended BBV
code with four parity columns to be an MDS code is given
by [7], and some results for no more than eight parity columns
are provided.

Another family of MDS array codes is called Cauchy
MDS array codes, which are constructed based on Cauchy
matrices. Cauchy Reed-Solomon (CRS) codes [15], Rabin-
like codes [13] and circulant Cauchy codes [16] are examples
of Cauchy MDS array codes. Blömer et al. constructed CRS
codes by employing a Cauchy matrix to perform encoding (and
upon failure, decoding) over a finite field instead of a binary
field [15]. In this approach, the isomorphism and companion
methods, converting a normal finite field operation to a binary
field XOR operation, are necessary. The idea is to replace
a field symbol with a matrix in another finite field. Schin-
delhauer and Ortolf [16] considered a special class of CRS

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

codes using circulant Cauchy matrices, called circulant Cauchy
codes, that have lower encoding and decoding complexities
than CRS codes. Based on the concept of a permutation matrix,
Feng et al. [13] gave a construction method to convert the
Cauchy matrix to a sparse matrix. Compared with the Van-
dermonde MDS array codes, Cauchy MDS array codes have
better fault-tolerance, but at a cost of higher computational
complexity. In this paper, we construct Rabin-like codes based
on a quotient ring with a cyclic structure and propose an
efficient decoding method for the newly constructed Rabin-
like codes.

B. Cauchy Reed-Solomon Codes

CRS code [15] is one variant of RS codes that has better
coding complexity by employing Cauchy matrices. The key
to constructing good CRS codes is the selection of Cauchy
matrices. Given k data symbols in a finite field F2w , we can
generate r encoded symbols of a CRS code with k+r ≤ 2w in
the following way. Let X = {x1, . . . , xr}, Y = {y1, . . . , yk},
where X∩Y = ∅, such that each xi and yi is a distinct element
in F2w . The entry (i, j) of the Cauchy matrix is calculated as
1/(xi+yj). Since each element of F2w can be represented by
a w × w binary matrix, we can transform the r × k Cauchy
matrix into an rw × kw binary distribution matrix using a
projection defined by a primitive polynomial of F2w [15]. Fig.
1 displays the encoding process of a CRS code with k =
4, r = 2 and w = 3. We divide each data symbol into w
strips; here, a strip is the minimum unit of a symbol. In Fig.
1, the first data symbol is divided into three strips a1, a2, a3.
The r encoded symbols are created by multiplying the rw ×
kw binary distribution matrix by the kw data strips. During
the multiplication process, when there exists “1” in every row
of the binary distribution matrix, we do XOR operations on
the corresponding data strips to obtain the strips of encoded
symbols. The first strip of the first encoded symbol and the
second strip of the second encoded symbol in Fig. 1 may be
calculated as

a2 + b3 + c1 + c3 + d1 and a1 + a2 + b1 + c1 + c3 + d2

respectively. The two strips can be calculated by nine XORs.
With a binary distribution matrix, it is possible to create a

strip of encoded symbol as the XOR of all data strips whose
corresponding columns of the binary distribution matrix have
all 1s. In this approach, the expensive matrix multiplication is
replaced by binary addition. Hence, this gives a good reduction
in the computational complexity. For more information about
the encoding and decoding process of CRS codes, please refer
to Plank and Lu [17].

There are two approaches for reducing the number of XORs
in the coding processes.

1) Choosing a “good” Cauchy matrix. Since the Cauchy
matrix dictates the number of XORs [17], many re-
searchers [17]–[19] have designed codes with low-
density Cauchy matrices. However, the way to find the
lowest-density Cauchy matrix is to enumerate all the
matrices and select the best one, where the number
of matrices is exponential in k and r. Therefore, this

1 5 2 7

5 1 3 4

Cauchy Matrix

1 0 0

0 1 0

0 0 1

1 1 0

0 0 1

1 0 0

1 1 0

0 0 1

1 0 0

0 0 1

1 0 1

0 1 0

1 1 1

1 0 0

1 1 0

1 0 0

0 1 0

0 0 1

1 0 1

1 1 1

0 1 1

0 1 0

0 1 1

1 0 1

*

b
2

b
3

c
1

c
2

c
3

d
1

d
2

d
3

=

a
1

a
2

a
3

b
1

a
2
+b

3
+c

1
+c

3
+d

1

a
1
+a

2
+b

1
+c

1
+c

3
+d

2

Binary Distribution Matrix
Data symbols

Coded symbols

Fig. 1: The encoding process of the CRS code with k = 4,
r = 2 and w = 3 over F8. The finite field is constructed with
the primitive polynomial 1 + x+ x3.

method is only feasible for small k and r. For example,
when the parameters k, r, w are small, the performance
of CRS is optimized [17], [20] by choosing the Cauchy
matrix of which the corresponding binary distribution
matrix has the fewest “1”s.

2) Encoding data using a schedule. The issue of exploit-
ing common sums in the XOR equations was addressed
in [21], [22]. However, finding a good schedule with
minimum XORs is still an open problem. Some heuristic
schedules were proposed in [23]–[26]. In the above
example, the two strips containing c1 + c3 are treated
as a subexpression. Therefore, if the bit c1 + c3 is
calculated before the calculation of two strips, then
the two strips can be computed recursively by x1 =
c1 + c3, x2 = a2 + b3, x3 = x2 + x1, x4 = x3 + d1 and
x5 = a1 +a2, x6 = x5 +b1, x7 = x6 +x1, x8 = x7 +d2
with eight XORs.

C. Contribution of This Work
In this paper, we propose a new construction of Rabin-

like codes based on a specific polynomial ring with a cyclic
structure. An efficient decoding algorithm is designed based
on LU factorization of the Cauchy matrix, which provides
significant simplification of the decoding procedure for the
Rabin-like codes. We demonstrate that the proposed decoding
algorithm has the lowest decoding complexity among the exist-
ing decoding methods of Cauchy array codes. Furthermore, the
word size, which constrains data in the disk, is more flexible
for the newly constructed Rabin-like codes than the existing
Cauchy array codes. Extension of the supported parameters is
made possible by using a specific polynomial ring to construct
the Rabin-like codes and by exploiting the characterization for
the specific polynomial ring. In addition, the new construction
has a slightly lower encoding complexity than that proposed
in [13].

Although polynomial rings have been employed in most
array codes (e.g. [7], [9], [10], [12], [27]), the polynomial

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

ring in this paper is different from those in other array codes.
In [7], [9], [10], [12], [27], the construction is based on a ring
of polynomials with binary coefficients modulo 1 + x+ · · ·+
xp−1 for some prime number p. The calculation of the division
1/(1 +xb) involves 2p XORs at most (see Lemma 1 in [27]),
and the computation is reduced to (3p− 5)/2 (see Lemma 13
in [28]). In this paper, the underlying polynomial ring consists
of polynomials in F2[x]/(1+xp) with an even number of non-
zero coefficients, where p is an odd number. Computing the
division 1/(1+xb) in the polynomial ring in this paper by the
simplified Algorithm 2 only takes p− 3 XORs, which is less
than that in [27], [28] (see the remark above Theorem 9).

Even though the newly constructed Rabin-like codes in
this paper are similar to Rabin-like codes [13] and circulant
Cauchy codes [16], there are several differences between them.
First, the word sizes of the newly constructed Rabin-like codes
are extended to be more flexible than the existing Cauchy
MDS array codes. Second, although LU factorization of the
Cauchy matrix is employed in the decoding in [13] and in
this paper, the detailed operations and the LU factorization
expressions are different. The decoding procedure of Rabin-
like codes [13] involves a specific number of XORs only for
r = 4, while the decoding complexity of the newly constructed
Rabin-like codes is a specific number of XORs for r ≥ 1,
and it is much less than that of Rabin-like codes [13]. Third,
in the coding process, the inverse computation and solving
the linear system of circulant Cauchy codes and those of the
newly constructed Rabin-like codes are different. The inverse
computation in circulant Cauchy codes can be computed with
2p − 3 XORs, while the inverse computation in the newly
constructed Rabin-like codes takes only p−1 XORs. The linear
system of Cauchy matrix form in this paper is solved by LU
factorization of the Cauchy matrix, but not in circulant Cauchy
codes.

The rest of paper is organized as follows. In Section II, we
give the new construction for Rabin-like codes. After proving
the MDS property of the newly constructed Rabin-like codes
in Section III, we give an efficient decoding method for any
number of erasures in Section IV. Section V compares the
computational complexity of encoding and decoding of the
newly constructed Rabin-like codes with those of existing
well-known MDS array codes, in terms of the number of
XORs in computation. Conclusions are given in Section VI.

II. NEW CONSTRUCTION OF RABIN-LIKE CODES

In this section, we give a new construction of Rabin-
like codes, which are based on a specific quotient ring. The
reduction on computational complexity is made possible by
exploiting the cyclic structure and efficient computation of a
division in the quotient ring.
A. Quotient Ring

Let p > 2 be an odd number and let Rp be the quotient
ring

Rp , F2[x]/(1 + xp), (1)

which is also called a cyclotomic ring in [29]. Every element
of Rp will be referred to as a polynomial in the sequel. The
vector (a0, a1, . . . , ap−1) ∈ Fp2 is the codeword corresponding

to the polynomial
∑p−1
i=0 aix

i. The indeterminate x represents
the cyclic-right-shift operator in the codewords.

Consider the specific quotient ring, Cp, which consists
of polynomials in Rp with an even number of non-zero
coefficients,

Cp = {a(x)(1 + x) mod (1 + xp)| a(x) ∈ Rp}. (2)

The check polynomial of Cp is h(x) = 1 + x + · · · + xp−1.
That is, ∀s(x) ∈ Cp and c(x) ∈ Rp, we have

s(x)(c(x) + h(x)) = s(x)c(x) mod (1 + xp), (3)

since

s(x)h(x) = (a(x)(1 + x) mod (1 + xp))h(x) mod (1 + xp)

= a(x)((1 + x)h(x)) mod (1 + xp)

= 0 mod (1 + xp).

Recall that, in a general ring R with identity, there exists
the identity e such that ue = eu = u, ∀u ∈ R. The identity
element of Cp is

e(x) , 1 + h(x) = x+ x2 + · · ·+ xp−1.

Note that the ring Cp is discussed in [28], [30] and is used
in regenerating codes for computational complexity reduction.
From Theorem 2 in [28], we have that Cp is isomorphic to
F2[x]/(h(x)). Note that Cp is isomorphic to a finite field F2p−1

if and only if 2 is a primitive element in Fp [31]. As far as
we know, Silverman was the first to use Rp for performing
computations in F2p−1 [29], when p is a prime such that 2 is
a primitive element in Fp. In addition, Blaum et al. [7], [14]
discussed the rings F2[x]/(h(x)) in detail.

A polynomial f(x) ∈ Cp is called invertible if we can find
a polynomial f̄(x) ∈ Cp such that f(x)f̄(x) is equal to e(x).
The polynomial f̄(x) is called the inverse of f(x). It can
be shown that the inverse is unique in Cp. The next lemma
demonstrates that xt + xt+b is invertible.

Lemma 1 (Lemma 9 in [28]). Let p > 2 be an odd number
such that all divisors of p except 1 are strictly larger than
k+ r− 1, then there exists a polynomial a(x) ∈ Cp such that

a(x)(xt + xt+b) = e(x) mod (1 + xp), (4)

where t, b ≥ 0 and 1 ≤ t+ b < p.

The result in Lemma 1 has been independently observed
in [32]. Hereafter, we represent the inverse of xt + xt+b as
1/(xt + xt+b). In the following, we present some properties
of the inverses, which will be used in the proof of the Cauchy
determinant over Cp.

Lemma 2. Let a, b, c, d be integers between 0 and p− 1 such
that a 6= b and c 6= d. For two polynomials s1(x), s2(x) ∈ Rp,
the following equations hold:

1

xa + xb
· 1

xc + xd
=

1

(xa + xb)(xc + xd)
, (5)

s1(x)

xa + xb
+

s2(x)

xa + xb
=
s1(x) + s2(x)

xa + xb
, (6)

1

xa + xb
+

1

xc + xd
=

xa + xb + xc + xd

(xa + xb)(xc + xd)
. (7)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4

Proof. Let p(x) and q(x) be inverses of xa +xb and xc +xd,
respectively. That is, (xa+xb)p(x) = e(x) mod (1 + xp) and
(xc + xd)q(x) = e(x) mod (1 + xp). Thus we have

(xa+xb)(xc+xd)p(x)q(x) = e(x)e(x) = e(x) mod (1 + xp).

Note that, (xa + xb)(xc + xd) ∈ Cp and p(x)q(x) ∈ Cp. By
definition, we have

1

(xa + xb)(xc + xd)
= p(x)q(x).

Therefore, (5) holds, and (6) follows from

p(x)s1(x) + p(x)s2(x) = p(x)(s1(x) + s2(x)).

The right-hand side of equation (7) is

(xa + xb) + (xc + xd)

(xa + xb)(xc + xd)

=
(xa + xb) + (xc + xd)

(xa + xb)
· 1

(xc + xd)
(by (5))

=(e(x) +
xc + xd

xa + xb
) · 1

(xc + xd)
(by (6))

=
1

xa + xb
+

1

xc + xd
.

For a square matrix in Cp, we define the inverse matrix as
follows.

Definition 1. An `×` matrixM`×` over Cp is invertible if we
can find an `× ` matrix M−1

`×` such that M`×` ·M−1
`×` = I`,

M−1
`×` is the inverse matrix of M`×`, I` is the `× ` identity

matrix

I` ,


e(x) 0 · · · 0

0 e(x) · · · 0
...

...
. . .

...
0 0 · · · e(x)

 . (8)

B. Construction of Rabin-like Codes

The newly constructed Rabin-like codes can be represented
by a (p − 1) × (k + r) array, which is denoted by C(k, r, p),
where p > 2 is an odd number such that all divisors of p except
1 are no less than k + r. Note that the newly constructed
Rabin-like codes have more flexible parameters than Rabin-
like codes, as the parameter p in Rabin-like codes should be
a prime. We index the columns by {0, 1, . . . , k + r − 1},
and the rows by {0, 1, . . . , p − 2}. Columns 0 to k − 1 are
called the information columns, which store the information
bits. Columns k to k + r − 1 are called the parity columns,
which store the redundant bits.

For i = 0, 1, . . . , p − 2 and j = 0, 1, . . . , k − 1, let the i-
th information bit in the j-th information column be denoted
by si,j . For each p − 1 information bits s0,j , s1,j , . . . , sp−2,j

stored in j-th information column, one extra parity-check bit
sp−1,j is computed as

sp−1,j , s0,j + s1,j + · · ·+ sp−2,j . (9)

We define a data polynomial for the j-th information column
as

sj(x) , s0,j + s1,jx+ · · ·+ sp−2,jx
p−2 + sp−1,jx

p−1. (10)

Note that the extra parity-check bit is not stored, and can be
computed when necessary. It is easy to see that each data
polynomial is an element in Cp.

Next, we present the method to compute the encoded
symbols in parity columns. For i = 0, 1, . . . , p − 2 and
j = 0, 1, . . . , r − 1, let the i-th redundant bit stored in the
j-th parity column be denoted by ci,j . We define a coded
polynomial for the j-th parity column as

cj(x) , c0,j + c1,jx+ · · ·+ cp−2,jx
p−2 + cp−1,jx

p−1. (11)

It will be clear later that

cp−1,j = c0,j + c1,j + · · ·+ cp−2,j .

The coded polynomial can be generated by[
c0(x) c1(x) · · · cr−1(x)

]T
, Cr×k ·

[
s0(x) s1(x) · · · sk−1(x)

]T
, (12)

where

Cr×k ,


1

1+xr
1

1+xr+1 · · · 1
1+xk+r−1

1
x+xr

1
x+xr+1 · · · 1

x+xk+r−1

...
...

. . .
...

1
xr−1+xr

1
xr−1+xr+1 · · · 1

xr−1+xk+r−1

 (13)

is a r×k rectangular Cauchy matrix. Each entry of the matrix
in (13) is the inverse of xt+xt+b and all arithmetic operations
in (12) are performed in Cp. The coded polynomials cj(x)
in (12), for 0 ≤ j ≤ r − 1, are in Cp. Hence, the (k + r)× k
generator matrix G(k+r)×k of the codewords

s0(x), s1(x), . . . , sk−1(x), c0(x), c1(x), · · · , cr−1(x)

is given by

G(k+r)×k =

[
Ik

Cr×k

]
,

where Ik is the k×k matrix given in (8). Note that all entries
in G(k+r)×k are in Cp.

The above encoding procedure can be summarized as three
steps: (i) given k(p−1) information bits, append k extra parity-
check bits as given in (9) and obtain the k polynomials

s0(x), s1(x), · · · , sk−1(x);

(ii) generate r coded polynomials as given in (12); and (iii)
ignore the terms with degree p− 1 of the coded polynomials
and store the coefficients of the terms in the coded polynomials
of degrees from 0 to p − 2. Next, we give an example to
demonstrate the procedure of encoding.

Example 1. Consider a code C(3, 2, 5) with two data poly-
nomials si(x) = s0,i + s1,ix + s2,ix

2 + s3,ix
3 + (s0,i +

s1,i + s2,i + s3,i)x
4, for i = 0, 1. Two coded polynomials

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

c0(x) = c0,0 + c1,0x + c2,0x
2 + c3,0x

3 + c4,0x
4, c1(x) =

c0,1 + c1,1x+ c2,1x
2 + c3,1x

3 + c4,1x
4 are computed by

c0(x) ,
1

1 + x2
s0(x) +

1

1 + x3
s1(x),

c1(x) ,
1

x+ x2
s0(x) +

1

x+ x3
s1(x).

s(x)
1+xb

can be solved with two XORs by the simplified Al-
gorithm 2 which is presented below in Section IV-C2. For
c(x) = s0(x)

1+x2 , we have s0,0 = c0 + c3, s1,0 = c1 + c4,
s2,0 = c2 + c0, s3,0 = c3 + c1 and s4,0 = c4 + c2. First,
we set c4 = 0, and have c1 = s1,0 and c2 = s4,0. Then,
we can compute c0 = s2,0 + s4,0 from c0 = s2,0 + c2, and
c3 = c0 + s0,0 = s2,0 + s4,0 + s0,0. The total number of XORs
involved in computing s0(x)

1+x2 is two.

TABLE I: The array code C(3, 2, 5).

Disk 0 Disk 1 Disk 2 Disk 3
s0,0 s0,1 (s2,0 + s4,0)+ (s0,0 + s1,0 + s3,0)+

(s1,1 + s3,1 + s4,1) (s0,1 + s3,1)
s1,0 s1,1 s1,0 + s4,1 s1,0 + s2,1
s2,0 s2,1 s4,0 + s2,1 s4,0 + s0,1
s3,0 s3,1 (s0,0 + s2,0 + s4,0)+ (s1,0 + s3,0)+

(s1,1 + s4,1) (s0,1 + s1,1 + s3,1)

s4,0 s4,1 0 0

The code given in the above example is shown in Table I.
The last row of the array code in Table I does not need to
be stored, as the last bit of each information column is the
parity-check bit of the first p− 1 bits and the last bit of each
parity column is 0.

Assume that two data polynomials s0(x), s1(x) are 1 + x
and x + x3 respectively, then the two coded polynomials are
computed as c0(x) = x and c1(x) = x+ x2 + x3.

Before we present a fast decoding algorithm, we first present
the MDS property of the newly constructed Rabin-like codes.

III. THE MDS PROPERTY

A (p−1)×n array code that encodes k(p−1) information
bits is said to be an MDS array code if the k(p−1) information
bits can be recovered by downloading any k columns.1 We
are going to prove that the newly constructed Rabin-like code
satisfies the MDS property for k + r ≤ p. The next lemma
shows a sufficient MDS property condition of the array code
C(k, r, p).

Lemma 3 (Theorem 2 in [28]). If any k × k sub-matrix
of G(k+r)×k, after reduction modulo h(x), is a nonsingular
matrix over F2[x]/(h(x)), then C(k, r, p) satisfies the MDS
property.

We need the following result about the Cauchy determinant
in ring Cp before giving a characterization of the MDS
property in terms of determinants.

Lemma 4. Let xa1 , xa2 , . . . , xa` , xb1 , xb2 , . . . , xb` be 2` dis-
tinct monomials, where 0 ≤ ai, bi < p for i = 1, 2, . . . , ` and

1In total, one needs to download k × (p− 1) bits.

p is an odd number. The determinant of the Cauchy matrix in
(15) is

D`(x) =

∏
`≥j>i≥1(xaj + xai)(xbi + xbj )∏

`≥j,i≥1(xai + xbj )
. (14)

C(xa1:` , xb1:`) ,


1

xa1+xb1
1

xa1+xb2
· · · 1

xa1+xb`
1

xa2+xb1
1

xa2+xb2
· · · 1

xa2+xb`
...

...
. . .

...
1

xa`+xb1
1

xa`+xb2
· · · 1

xa`+xb`

 .
(15)

Proof. Recall that the polynomial xi + xj is invertible in Cp
from Lemma 1 for 0 ≤ i < j < k + r, and 1

xi+xj is the
inverse of xi + xj . For the determinant of the Cauchy matrix
in (15), adding column 1 to each of columns 2 to `, we have
the entry in the i-th row and the j-th column as

1

xai + xbj
+

1

xai + xb1
=

(xai + xb1) + (xai + xbj )

(xai + xbj )(xai + xb1)
(by (7))

=
(xbj + xb1)

(xai + xb1)
· 1

(xai + xbj )
(by (5)),

where 1 ≤ i ≤ ` and 2 ≤ j ≤ `. There is no effect on the
value of the determinant from the multiple of a row added to
a row of the determinant. Thus, the determinant D`(x) is∣∣∣∣∣∣∣∣∣∣∣

1
xa1+xb1

(xb2+xb1 )
(xa1+xb1 )

· 1
(xa1+xb2 )

· · · (xb`+xb1 )
(xa1+xb1 )

· 1
(xa1+xb` )

1
xa2+xb1

(xb2+xb1 )
(xa2+xb1 )

· 1
(xa2+xb2 )

· · · (xb`+xb1 )
(xa2+xb1 )

· 1
(xa2+xb` )

...
...

. . .
...

1
xa`+xb1

(xb2+xb1 )
(xa`+xb1 )

· 1
(xa`+xb2 )

· · · (xb`+xb1 )
(xa`+xb1 )

· 1
(xa`+xb` )

∣∣∣∣∣∣∣∣∣∣∣
.

Extracting the factor 1
xai+xb1

from the i-th row for i =

1, 2, . . . , `, and the factor xbj + xb1 from the j-th column for
j = 2, 3, . . . , `, the determinant is(∏̀

i=1

1

xai + xb1

)
·

∏̀
j=2

(xbj + xb1)

 ·
∣∣∣∣∣∣∣∣∣∣
1 1

(xa1+xb2 )
· · · 1

(xa1+xb` )

1 1
(xa2+xb2 )

· · · 1
(xa2+xb` )

...
...

. . .
...

1 1
(xa`+xb2 )

· · · 1
(xa`+xb` )

∣∣∣∣∣∣∣∣∣∣
.

For i = 2, 3, . . . , `, adding the first row to rows 2 to `, the
determinant is∣∣∣∣∣∣∣∣∣∣

1 1
(xa1+xb2 )

· · · 1
(xa1+xb` )

0 (xa1+xa2 )
(xa1+xb2 )

· 1
(xa2+xb2 )

· · · (xa1+xa2 )

(xa1+xb` )
· 1
(xa2+xb` )

...
...

. . .
...

0 (xa1+xa` )
(xa1+xb2 )

· 1
(xa`+xb2 )

· · · (xa1+xa` )

(xa1+xb` )
· 1
(xa`+xb` )

∣∣∣∣∣∣∣∣∣∣
.

Again, extracting the factor xa1 + xai from the i-th row for
i = 2, 3, . . . , `, and the factor 1

xa1+xbj
from the j-th column

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

for j = 2, 3, . . . , `, the determinant is(∏̀
i=1

1

xai + xb1

)∏̀
j=2

1

xa1 + xbj

∏̀
j=2

(xbj + xb1)

 ·
(∏̀
i=2

(xa1 + xai)

)
·

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
0 1

(xa2+xb2 )
· · · 1

(xa2+xb` )

...
...

. . .
...

0 1
(xa`+xb2 )

· · · 1
(xa`+xb` )

∣∣∣∣∣∣∣∣∣∣
=

∏`
i=2(xai + xa1)(xbi + xb1)∏

1≤i,j≤`(x
ai + xb1)(xa1 + xbj )

·∣∣∣∣∣∣∣∣∣∣

1
(xa2+xb2 )

1
(xa2+xb3 )

· · · 1
(xa2+xb` )

1
(xa3+xb2 )

1
(xa3+xb3 )

· · · 1
(xa3+xb` )

...
...

. . .
...

1
(xa`+xb2 )

1
(xa`+xb3 )

· · · 1
(xa`+xb` )

∣∣∣∣∣∣∣∣∣∣
.

Repeating the above process for the remaining (`− 1)× (`−
1) Cauchy determinant, we can obtain the determinant given
in (14).

The next lemma gives a characterization of the MDS
property in terms of determinants.

Lemma 5. Let p > 2 be an odd number such that all divisors
of p except 1 are no less than k+ r. Then the determinant of
any k×k sub-matrix of the generator matrix G(k+r)×k, after
reduction modulo h(x), is invertible over F2[x]/(h(x)).

Proof. Note that the determinant of any square matrix of
G(k+r)×k after reduction modulo h(x) can be computed by
first reducing each entry of the square matrix by h(x), and then
computing the determinant by reducing h(x). It is sufficient
to show that the determinant of any ` × ` sub-matrix of
the matrix Cr×k, after reduction modulo h(x), is invertible
over F2[x]/(h(x)), for 1 ≤ ` ≤ min{k, r}. Considering the
matrix Cr×k given in (13), for any ` distinct rows indexed
by a1, a2, · · · , a` between 0 and r − 1 and any ` distinct
columns indexed by b1, b2, · · · , b` between r and k+r−1, the
corresponding ` × ` sub-matrix is of the form of the Cauchy
matrix given in (15). Hence, the determinant is the polynomial
given in (14). As the polynomial xi + xj is invertible in Cp
from Lemma 1, where 0 ≤ i < j < k+ r, (14) is invertible in
Cp. By the definition of an invertible, there exists a polynomial
a(x) ∈ Cp such that

D`(x)a(x) = e(x) mod (1 + xp)

holds. Therefore, we have

D`(x)a(x) + (1 + xp)b(x) = 1 + h(x)

for some polynomial b(x) ∈ Cp, and

D`(x)a(x) + h(x)((1 + x)b(x) + 1) = 1.

Hence, D`(x)a(x) = 1 mod h(x), and this proves that the
polynomial (D`(x) mod h(x)) is invertible in F2[x]/(h(x)).

By applying Lemma 3 and Lemma 5, we have the following
theorem.

Theorem 6. Let p > 2 be an odd number such that all
divisors of p except 1 are no less than k+ r. For any positive
integer r ≥ 1 and k ≥ 2, the code C(k, r, p) satisfies the MDS
property.

IV. AN EFFICIENT DECODING METHOD

In this section, we give a decoding method based on the
LU factorization of the Cauchy matrix in (15), which is very
efficient in decoding the newly constructed Rabin-like codes.
Expressing a matrix as a product of a lower triangular matrix L
and an upper triangular matrix U is called an LU factorization.
Some results of Cauchy matrix LU factorization over a field
can be found in [33]–[35]. We first give an LU factorization
of the Cauchy matrix over Cp, and then present the efficient
decoding algorithm based on the LU factorization.

A. LU Factorization of the Cauchy Matrix over Cp
Given 2` distinct variables a1, a2, . . . , a`, b1, b2, . . . , b` be-

tween 0 and p − 1, the ` × ` square Cauchy matrix
C(xa1:` , xb1:`) over ring Cp is of the form given in (15). By
Theorem 6, the matrix C(xa1:` , xb1:`) is invertible, and the
inverse matrix is denoted as C(xa1:` , xb1:`)−1. A factorization
of C(xa1:` , xb1:`)−1 is derived, which is stated in the following
theorem. No proof is given as it is similar to Theorem 3.1 in
[34].

Theorem 7. Let xa1 , xa2 , . . . , xa` , xb1 , xb2 , . . . , xb` be 2`
distinct monomials in Rp, where 0 ≤ ai, bi < p for
i = 1, 2, . . . , `. The inverse matrix C(xa1:` , xb1:`)−1 can be
decomposed as

C(xa1:` , xb1:`)−1 = U1
`U

2
` . . .U

`−1
` D`L

`−1
` . . .L2

`L
1
` , (16)

where

Li` =


Ii

1
xai+1+xa1

. . .
1

xa`+xa`−i



Ii−1

e(x) 0
xa1 + xbi xai+1 + xbi

. . .
. . .

xa`−i + xbi xa` + xbi

 ,

Ui
` =



Ii−1

e(x) xai + xb1

0 xai + xbi+1
. . .
. . . xai + xb`−i

xai + xb`



Ii

1
xb1+xbi+1

. . .
1

xb`−i+xb`

 ,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

for i = 1, 2, . . . , `− 1, and

D` = diag{xa1 + xb1 , xa2 + xb2 , . . . , xa` + xb`}. (17)

Considering ` = 2, the matrix C(xa1:2 , xb1:2)−1 can be
factorized into[
e(x) xa1 + xb1

0 xa1 + xb2

] [
e(x) 0

0 1
xb1+xb2

] [
xa1 + xb1 0

0 xa2 + xb2

]
[
e(x) 0

0 1
xa2+xa1

] [
e(x) 0

xa1 + xb1 xa2 + xb1

]
.

Based on the factorization in Theorem 7, we have a fast
algorithm for solving a Cauchy system of linear equations
over Cp. Given an `× ` linear system in Cauchy matrix form

C(xa1:` , xb1:`)s = c, (18)

where s = (s1(x), s2(x), . . . , s`(x))t and c =
(c1(x), c2(x), . . . , c`(x))t are two columns of length ` over
Cp. We can solve the equation for s, given C(xa1:` , xb1:`)
and c, by computing

U1
`U

2
` . . .U

`−1
` D`L

`−1
` . . .L2

`L
1
`c. (19)

The pseudocode is stated in Algorithm 1. In Algorithm 1,
Steps 4 and 5 are the computation of the right matrix of Lij
and the column vector c. Steps 6 and 7 calculate the left matrix
of Li` and the above resulting column vector c. Steps 8 and
9 compute the multiplication of D` and the vector. Steps 11
and 12 compute multiplication of the right matrix of Ui

` and
the vector, while Steps 13 to 18 calculate multiplication of the
left matrix Ui

` and the vector.

B. Decoding Algorithm of Erasures
We now describe the decoding procedure of any ρ ≤ r

erasures for C(k, r, p). Suppose that γ information columns
a1, . . . , aγ and δ parity columns b1, . . . , bδ are erased with
0 ≤ a1 < . . . < aγ ≤ k − 1 and 0 ≤ b1 < . . . < bδ ≤ r − 1,
where k ≥ γ ≥ 0, r ≥ δ ≥ 0 and γ + δ = ρ ≤ r. Let

A := {0, 1, . . . , k − 1} \ {a1, a2, . . . , aγ}

be a set of indices of the available information columns, and
let

B := {0, 1, . . . , r − 1} \ {b1, b2, . . . , bδ}

be a set of indices of the available parity columns. We
want to first recover the lost information columns by reading
k − γ information columns with indices i1, i2, . . . , ik−γ ∈ A,
and γ parity columns with indices `1, `2, . . . , `γ ∈ B, and
then recover the failure parity column by multiplying the
corresponding encoding vector and the k data polynomials.

We add the extra parity-check bit for information column
iτ to obtain the data polynomial

siτ (x) = s0,iτ +s1,iτx+ · · ·+sp−2,iτx
p−2 + (

p−2∑
j=0

sj,iτ )xp−1,

Algorithm 1 Solving a Cauchy linear system over Cp.
Inputs:

Integer `, odd number p > 2, the values of c =
(c1(x), . . . , c`(x))t, a1, . . . , a` and b1, . . . , b`.
Outputs:

The values of s = (s1(x), s2(x), . . . , s`(x))t.
Require: All 2` distinct non-negative integers

a1, . . . , a`, b1, . . . , b` are less than p.
1: for i = 1, 2, . . . , ` do
2: si(x) = ci(x).
3: for i = 1, 2, . . . , `− 1 do
4: for j = i+ 1, i+ 2, . . . , ` do
5: sj(x) = (xaj−i + xbi)sj−1(x) + (xaj + xbi)sj(x).
6: for j = i+ 1, i+ 2, . . . , ` do
7: sj(x) = 1

xaj+xaj−i
sj(x).

8: for i = 1, 2, . . . , ` do
9: si(x) = (xai + xbi)si(x).

10: for i = `− 1, `− 2, . . . , 1 do
11: for j = i+ 1, i+ 2, . . . , ` do
12: sj(x) = 1

xbj−i+xbj
sj(x).

13: for j = 1, 2, . . . , ` do
14: if j − i = 0 then
15: sj(x) = sj(x) + (xai + xbj−i+1)sj+1(x).
16: if `− 1 ≥ j − i ≥ 1 then
17: sj(x) = (xai+xbj )sj(x)+(xai+xbj−i+1)sj+1(x).
18: s`(x) = (xai + xb`)s`(x).

for τ = 1, 2, . . . , k − γ. For h = 1, 2, . . . , γ, since the coded
polynomial c`h(x) ∈ Cp, we have

c`h(x) = c0,`h +c1,`hx+ · · ·+cp−2,`hx
p−2 +(

p−2∑
j=0

cj,`h)xp−1.

Let p`1(x), p`2(x), . . . , p`γ (x) be the polynomials ob-
tained by subtracting the chosen k − γ data polynomi-
als si1(x), si2(x), . . . , sik−γ (x) from γ coded polynomials
c`1(x), c`2(x), . . . , c`γ (x), i.e.,

p`h(x) , c`h(x) +
k−r∑
j=1

1

x`h + x`h+ij+r−1
sij (x), (20)

for h = 1, 2, . . . , γ. The γ information erasures can be
recovered by solving the linear equations

1
x`1+xa1+r

1
x`1+xa2+r · · · 1

x`1+xaγ+r

1
x`2+xa1+r

1
x`2+xa2+r · · · 1

x`2+xaγ+r

...
...

. . .
...

1
x`γ+xa1+r

1
x`γ+xa2+r · · · 1

x`γ+xaγ+r



sa1(x)
sa2(x)

...
saγ (x)


=
[
p`1(x) p`2(x) · · · p`γ (x)

]T
. (21)

The above system of linear equations is of the form of (18)
such that Algorithm 1 can be applied to obtain the γ failure
data polynomials. Then, we can recover the δ coded polyno-
mials by multiplying the corresponding encoding vectors and
k data polynomials.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

C. Computation Complexity of the Linear System in a Cauchy
Matrix

1) Algorithm for division: In computing the coded polyno-
mial in (12) and in Algorithm 1, we should compute many
divisions of the form s(x)

xt+xt+b
, where s(x) ∈ Cp, b and t

are non-negative integers such that b + t < k + r. Let’s first
consider the calculation of

s(x)

xt + xt+b
= c(x) mod (1 + xp), (22)

where s(x) ∈ Cp and c(x) ∈ Rp. If c(x) 6∈ Cp, we can
take c(x) + h(x), which is in Cp, instead. Later we will
show that the above step is not necessary in encoding and
decoding processes if we allow some coded polynomials to be
of the form c(x) + h(x). The following lemma demonstrates
an efficient method to compute (22).

Algorithm 2 Solving the division given in (22).
Inputs:

Non-negative integers b, t and s0, s1, . . . , sp−1, where si ∈
{0, 1} for i = 0, 1, . . . , p− 1.
Outputs:
c0, c1, . . . , cp−1, where ci ∈ {0, 1} for i = 0, 1, . . . , p− 1.

Require: Both b + t < k + r and s0 + s1 + . . . + sp−1 = 0
hold.

1: cp−1 = 0.
2: cp−b−1 = s(t−1) mod p.
3: cb−1 = s(t+b−1) mod p.
4: for i = 2, 3, . . . , p− 2 do
5: c(p−ib−1) mod p = s(t−(i−1)b−1) mod p + cp−(i−1)b−1.
6: if

∑p−1
i=0 ci 6= 0 then

7: for i = 0, 1, . . . , p− 1 do
8: ci = ci + 1.

*Steps 6, 7 and 8 are deleted in the simplified version.

Lemma 8. The coefficients of c(x) in (22) can be computed
by Algorithm 2, where t, b ≥ 0, 0 < b + t < p, s(x) =∑p−1
i=0 six

i ∈ Cp, and c(x) =
∑p−1
i=0 cix

i ∈ Cp.

Proof. By (22) and Lemma 1, we have

s(x)
(
xp−t(1 + x2b + · · ·+ x(p−1)b)

)
= c(x) mod (1 + xp).

(23)
Multiplied by xt + xt+b, (23) becomes

s(x)(1 + h(x)) = c(x)(xt + xt+b) mod (1 + xp). (24)

By (3), (24) is equivalent to

s(x) = c(x)(xt + xt+b) mod (1 + xp). (25)

Then, the coefficients of s(x) and c(x) satisfy

st = c0 + cp−b,

st+1 = c1 + cp−b+1,

s(t+2) mod p = c2 + cp−b+2,

... (26)
s(t−1) mod p = cp−1 + cp−b−1.

Recall that, given s(x), t and b, there are two polynomials
c(x) =

∑p−1
i=0 cix

i and c(x) + h(x) =
∑p−1
i=0 (ci + 1)xi such

that( p−1∑
i=0

cix
i
)

(xt+xt+b) =
( p−1∑
i=0

(ci+1)xi
)

(xt+xt+b) = s(x).

We can choose one coefficient ci of c(x) to be 0, and all the
other coefficients can be computed iteratively. Specifically, in
Algorithm 2, we let cp−1 = 0. Then, we obtain cp−b−1 =
s(t−1) mod p and cb−1 = s(t+b−1) mod p. Substituting cp−b−1

into the corresponding equation in (26), we have

c(p−2b−1) mod p = s(t−b−1) mod p + cp−b−1.

In general,

c(p−ib−1) mod p = s(t−(i−1)b−1) mod p + c(p−(i−1)b−1) mod p

for 2 ≤ i ≤ p−2. Note that each coefficient can be calculated
iteratively with at most one XOR operation involved. Next,
we need to prove that

{(p− ib− 1) mod p|1 ≤ i ≤ p− 2} = {0, 1, 2, . . . , p− 2}.

First we prove that if i 6= j, then (p − ib − 1) mod p 6=
(p−jb−1) mod p. If (p−ib−1) mod p = (p−jb−1) mod p
for 1 ≤ j < i ≤ p− 2, then there exists an integer ` such that

p− jb− 1 = `p+ p− ib− 1.

The above equation can be further reduced to

(i− j)b = `p.

Since either b = 1 or b 6 |p, we have (i− j)|p. However, this is
impossible due to the fact that 1 ≤ j < i ≤ p− 2. Similarly,
we can prove that, for 1 ≤ i ≤ p− 2,

p− ib− 1 mod p 6= p− 1.

Hence, {(p− ib−1) mod p|1 ≤ i ≤ p−2} = {0, 1, 2, . . . , p−
2}. Finally, if

∑p−1
i=0 ci 6= 0, then c(x) 6∈ Cp; however, c(x) +

h(x) ∈ Cp.

2) Simplified algorithm for division: Next, we prove that
Steps 6, 7 and 8 in Algorithm 2 are not necessary. Hence,
the computation complexity of Algorithm 2 can be reduced
drastically. We call Algorithm 2 without Steps 6, 7 and 8 the
simplified Algorithm 2.

Remark. We remark that the calculation of division in (22)
is also given in Lemma 19 in [28] with (3p−5)/2 XORs. The
similar division of circulant Cauchy codes in [16] is 2p − 3
XORs, and the division over F2[x]/(h(x)) takes 2p XORs at
most in [7]. Computing the division in (22) by the simplified
Algorithm 2 takes p− 3 XORs, which is less than that in [7],
[16], [28].

Recall that, after dropping Steps 6, 7 and 8 in Algorithm 2,
the output of the algorithm might be c(x) + h(x) instead of
c(x); however, we will show that the data polynomials can be
recovered after performing the proposed decoding algorithm
no matter which algorithm is performed.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

Theorem 9. The proposed decoding algorithm outputs the
same data polynomials no matter if Algorithm 2 or the
simplified Algorithm 2 is performed.

Proof. According to Algorithm 1, there are two steps (7 and
12) in it that involve (simplified) Algorithm 2. In addition,
after encoding, c(x) might become c(x)+h(x) when we apply
the simplified Algorithm 2 for encoding. When applying the
simplified Algorithm 2 in the encoding process, the coded
polynomials might be c(x) + h(x) instead of c(x). Hence,
the input of Algorithm 1 becomes c1(x) + a1h(x), c2(x) +
a2h(x), . . . , c`(x) + a`h(x), where ai ∈ {0, 1} for 1 ≤ i ≤ `.
Note that since h(x) is the check polynomial of Cp, from (3),
we have

s(x)(c(x) + h(x)) = s(x)c(x) mod (1 + xp) (27)

∀s(x) ∈ Cp and c(x) ∈ Rp. Hence, after performing Step
5 in Algorithm 1, sj ∈ Cp for 2 ≤ j ≤ `. However, after
performing Step 7, sj(x) might become sj(x) + h(x) for
2 ≤ j ≤ ` due to performing the simplified Algorithm 2.
Again, after performing Step 9, the effect of h(x) has been
eliminated according to (27). A similar argument can be
applied for performing Step 12, Step 15 (or Step 17) and Step
18. Hence, we can conclude that the output of Algorithm 1
becomes the same no matter whether Algorithm 2 or the
simplified Algorithm 2 is applied.

3) Computation complexity: Recall that the coded polyno-
mial cj(x) is computed by

1

xj + xr
s0(x) + · · ·+ 1

xj + xk+r−1
sk−1(x), (28)

for j = 0, 1, . . . , r − 1. With Lemma 8, we have that the last
coefficient of 1

xj+xr+`
s`(x) is equal to 0, ` = 0, 1, . . . , k− 1.

Therefore, the last coefficient cp−1,j of cj(x) is equal to
0. Hence, there are p − 3 XORs involved in computing

1
xj+xr+`

s`(x) by the simplified Algorithm 2.
Note that, in Algorithm 1, we only need to compute three

different operations: (i) multiplication of ci(x) and xai , (ii)
division of the form ci(x)

xaj+xbj−i
and (iii) addition between ci(x)

and cj(x). Hence, in Algorithm 1, there are a total of 4`(`−
1) + 2` multiplications of the first type, `(`− 1) divisions of
the second type and `+ 3`(`− 1) additions.

The multiplication of xi and a polynomial s(x) over Rp
can be obtained by cyclically shifting the polynomial s(x)
by i bits, which takes no XORs. The second operation over
Rp requires p − 3 XORs when performing the simplified
Algorithm 2. One addition needs p XORs. In Algorithm 1,
Steps 4 and 5 are the computation of the right matrix of Li`
and the column vector c of length `, with each component
being a polynomial in Rp, of which the complexity is at most
3(` − i)p XORs. In the resultant column vector c, the first i
components are in Cp and the last ` − i components are in
Cp. Steps 6 to 7 calculate the left matrix of Li` and the above
resultant column vector c. As the last ` − i components are
in Cp, all the divisions of the form ci(x)

xj+xj−i can be computed
by the simplified Algorithm 2, which takes (` − i)(p − 3)

XORs. Recall that the last bit of polynomial ci(x)
xj+xj−i is 0,

and the multiplication of xi + xj and ci(x)
xj+xj−i thus requires

p − 2 XORs. Therefore, the total number of XORs involved
in Steps 4 to 7 is

3p`(`− 1)/2︸ ︷︷ ︸
Steps 4 to 5

+ (p− 3)`(`− 1)/2︸ ︷︷ ︸
Steps 6 to 7

.

Steps 8 and 9 compute the multiplication of diagonal matrix
D` and the above resultant column vector, where the number
of XORs involved are p + (p − 2)(` − 1). Steps 11 and 12
compute multiplication of the right matrix of Ui

` and the above
column vector, where (p − 3)`(` − 1)/2 XORs are required.
Steps 13 to 18 calculate multiplication of the left matrix Ui

`

and the above column vector, where (2(p− 2) + p)`(`− 1)/2
XORs are needed. Therefore, the total number of XORs
involved in Algorithm 1 over Rp is at most

3p`(`− 1)/2︸ ︷︷ ︸
Steps 4 to 5

+ (p− 3)`(`− 1)/2︸ ︷︷ ︸
Steps 6 to 7

+ p+ (p− 2)(`− 1)︸ ︷︷ ︸
Steps 8 to 9

+

(p− 3)`(`− 1)/2︸ ︷︷ ︸
Steps 11 to 12

+ (2(p− 2) + p)`(`− 1)/2︸ ︷︷ ︸
Steps 13 to 18

= 4`2p− 3`p− 5`2 + 3`+ 2.

Adding overall parity-checks to k − γ data polynomials
takes (k−γ)(p−2) XORs. Computing γ polynomials in (20)
requires γ((k−γ)(p−3)+(k−γ)(p−1)) = γ(k−γ)(2p−4)
XORs. The number of XORs involved in solving the γ × γ
Cauchy system is 4γ2p−3γp−5γ2+3γ+2. In recovering the
δ parity columns, there are δ(k(p−3)+(k−1)(p−1)) XORs
involved. Therefore, the decoding complexity of recovering γ
information erasures and δ parity erasures is

(k − γ)(p− 2) + γ(k − γ)(2p− 4) + 4γ2p− 3γp− 5γ2+

3γ + 2 + δ(k(p− 3) + (k − 1)(p− 1)) XORs.

When δ = 0, i.e., only the information column fails, the
decoding complexity is

(k−γ)(p−2)+γ(k−γ)(2p−4)+4γ2p−3γp−5γ2+3γ+2 XORs.

Although an LU factorization of the Cauchy matrix is also
employed in the decoding of Rabin-like codes, the explicit
expression is different from the LU factorization given in this
paper and the calculations in solving the Cauchy matrix of
the two codes are different. Using the LU factorization in this
paper, we only need to take three different types of operations
when solving the Cauchy linear system, which is more efficient
than the decoding method of Rabin-like codes.

Example 2. Continue from Example 1, by Theorem 7, the
inverse matrix of the 2 × 2 Cauchy matrix can be factorized
into

U1
2 ·D2 · L1

2 =

[
e(x) 1 + x2

0 1 + x3

] [
e(x) 0

0 1
x2+x3

]
·[

1 + x2 0
0 x+ x3

]
·
[
e(x) 0

0 1
1+x

] [
e(x) 0

1 + x2 x+ x2

]
.

We can check that the two data polynomials can be recovered
by

U1
2 ·D2 · L1

2 ·
[

x
x+ x2 + x3

]
=

[
1 + x
x+ x3

]
,

with 32 XORs involved.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

V. PERFORMANCE COMPARISONS

In this section, we evaluate the encoding/decoding complex-
ities for C(k, r, p) as well as other existing Cauchy family
array codes, such as Rabin-like codes [13], circulant Cauchy
codes [16] and CRS codes [15], which are widely employed in
many practical distributed storage systems such as Facebook
data centers [36].

CRS codes are constructed by Cauchy matrices [37]. It
uses projections that convert the operations of finite field
multiplication into XORs. This leads to a reduction in the
coding complexity because the standard RS algorithm [37]
consumes most of the time over finite field multiplications. As
the state-of-the-art works in correcting four or more erasures,
Rabin-like codes, circulant Cauchy codes and CRS codes are
used as the main comparison to the proposed codes. Note
that the coding algorithm of the CRS codes involves Cauchy
matrices, and it is hard to calculate the exact number of 1s in
the Cauchy matrices. We run simulations for CRS codes and
record the average numbers from simulations to estimate the
encoding/decoding complexity.

We determine the normalized encoding complexity as the
ratio of the encoding complexity to the number of information
bits, and normalized decoding complexity as the ratio of the
decoding complexity to the number of information bits.
A. Encoding Complexity

In the p− 1× (k + r) array of code C(k, r, p), there are k
information columns and r parity columns. First, we should
compute a parity-check bit for each information column to
obtain k data polynomials, with k(p−2) XORs being involved.
Second, we need to compute r coded polynomials by (12).
There are p− 3 XORs required to compute a division of the
form xt + xt+b by the simplified Algorithm 2. Each coded
polynomial is generated by computing k divisions of the form
1 + xb and k − 1 additions. As the last coefficient is 0 (by
Lemma 8), the k − 1 additions take (k − 1)(p − 1) XORs.
Therefore, k(p−3)+(k−1)(p−1) XORs are required to obtain
a coded polynomial. The total number of XORs required for
construction of r parity columns is k(p− 2) + r(2kp− 4k −
p+ 1), and the normalized encoding complexity is

k(p− 2) + r(2kp− 4k − p+ 1)

k(p− 1)
.

In Rabin-like code, a parity-check bit is computed for each
information column and the one division involved in the
encoding process takes p − 1 XORs. The normalized encod-
ing complexity can be computed as k(p−2)+r(k(p−1)+(k−1)p)

k(p−1) .
When we compare the encoding complexity for Rabin-like
code and C(k, r, p), we can see that C(k, r, p) has a slightly
lower encoding complexity, as the division takes less XORs.
The normalized encoding complexity circulant Cauchy codes
is 3r − 2 + k−r

k(p−1) [16].
We compare the encoding complexity of circulant Cauchy

codes, CRS codes and C(k, r, p) in the following. For fair
comparison, we set k = p − r for the three codes; we can
thus have the normalized encoding complexity of the proposed
C(p− r, r, p) as

(p− r)(p− 2) + r(2p(p− r)− 4(p− r)− p+ 1)

(p− r)(p− 1)
.

10 20 30 40 50 60
6

8

10

12

14

Parameter p

# 
of

 X
O

R
s/

in
fo

rm
at

io
n 

bi
ts

CRS (k=p−4,r=4)
Circulant Cauchy (r=4)
C(p−4,4,p)

(a) r = 4.

0 10 20 30 40 50 60
6

8

10

12

14

16

18

20

Parameter p

# 
of

 X
O

R
s/

in
fo

rm
at

io
n 

bi
ts CRS (k=p−5,r=5)

Circulant Cauchy (r=5)
C(p−5,5,p)

(b) r = 5.

Fig. 2: The normalized encoding complexity.

The normalized encoding complexities of circulant Cauchy
codes, CRS codes and C(p− r, r, p) for r = 4 and r = 5 are
shown in Fig. 2. For all the values of parameter p, the encoding
complexity of C(p−r, r, p) is less than that of circulant Cauchy
codes and CRS codes. Note that the differences between the
newly constructed Rabin-like codes and others becomes larger
when r increases. When r = 4, the reductions in the encoding
complexity of C(p− 4, 4, p) over circulant Cauchy codes and
CRS codes are 12.4%-22.3% and 23.6%-34.9%, respectively.
When r = 5, they increase to 17.7%-47.8% and 25.6%-44.4%,
respectively. In general, the encoding complexity of C(p −
r, r, p) is less than that of circulant Cauchy codes; the main
reason is that the division in (22) of C(p−r, r, p) involves less
XORs than that of circulant Cauchy codes.

B. Decoding Complexity

As pointed out in [13], circulant Cauchy codes have a
lower decoding complexity than Rabin-like codes. Therefore,
we evaluate the decoding complexity of the proposed array
codes C(k, r, p), CRS codes and circulant Cauchy codes in the
following. If no information column fails, then the decoding
procedure of parity column failure can be viewed as a special
case of the encoding procedure. Hence, we only consider the
case with at least one information column fail.

We let k = p − r for the three codes, and we have the
normalized decoding complexity of the newly constructed
C(p− r, r, p) as

(p− 2r)(p− 2) + r(p− 2r)(2p− 4) + 4r2p− 3rp− 5r2 + 3r + 2

(p− r)(p− 1)
.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

Schindelhauer and Ortolf [16] gave the normalized
decoding complexity of circulant Cauchy codes as
3r(p−1)(p−r)+6r2(p−1)−2(p−r)(p−1)−4r

(p−r)(p−1) = 3r − 2 + 6r2

p−r −
4r

(p−r)(p−1) .

10 20 30 40 50 60
5

10

15

20

25

Parameter p

# 
of

 X
O

R
s/

in
fo

rm
at

io
n 

bi
ts CRS (r=4)

Circulant Cauchy (r=4)
C(p−4,4,p)

(a) r = 4.

10 20 30 40 50 60
10

15

20

25

30

35

40

Parameter p

# 
of

 X
O

R
s/

in
fo

rm
at

io
n 

bi
ts

CRS (r=5)
Circulant Cauchy (r=5)
C(p−5,5,p)

(b) r = 5.

Fig. 3: The normalized decoding complexity.

The normalized decoding complexities of r = 4 and r = 5
are shown in Fig. 3. We observe that the decoding complexity
of CRS codes increases as p increases, and the decoding
complexity of circulant Cauchy codes decreases while p in-
creases, where r is fixed. However, the normalized decoding
complexity of C(p − r, r, p) is almost the same for different
values of p when r is constant. In general, the decoding
complexity of C(p−r, r, p) is much less than that of CRS codes
and circulant Cauchy codes, and the complexity difference
between C(p − r, r, p) and CRS codes becomes larger when
p increases. When r = 4, the percentage improvement over
CRS codes and circulant Cauchy codes varies between 15.4%
and 47.9%, and 22.1%-54.4%, respectively. When r = 5, the
percentage improvement over CRS codes and circulant Cauchy
codes varies between 6.5% and 47.1%, and 27.9%-59.0%,
respectively.

C(p − r, r, p) has a much lower decoding complexity than
that of circulant Cauchy codes, for two reasons. First, the di-
vision (22) of C(p−r, r, p) has less computational complexity.
Second, an LU factorization of the Cauchy matrix is employed
in the decoding of C(p−r, r, p), which is much more efficient
than the decoding method of circulant Cauchy codes.

VI. CONCLUSIONS

We present a new construction for Rabin-like codes over
a specific quotient ring that employ XOR and bit-wise cyclic
shifts. These codes have been proved with the MDS property.
This paper has two main contributions to the field of Cauchy
MDS array codes. First, the word size p− 1 is extended to be
more flexible, i.e., p should be an odd number and all divisors
of p except 1 are strictly larger than k+ r− 1. The extension
is important since it allows coding strips to fit evenly within
file system blocks. Second, the newly constructed Rabin-like
code improve the decoding complexity over existing codes. An
efficient decoding algorithm based on the LU factorization of
Cauchy matrix is proposed to reduce the decoding complexity.

We conclude with proposed future work. In the constructed
array codes, the parameter p is restricted to being an odd
number. It would be interesting to investigate whether there
exist MDS Cauchy array codes without this restriction. When
a single column fails, the total number of bits downloaded
from the surviving columns is termed a repair bandwidth. It
would also be interesting to study how to recover the failed
column with a repair bandwidth that is as low as possible.

REFERENCES

[1] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz, “Introduction
to Redundant Arrays of Inexpensive Disks (RAID),” in Proc. IEEE
COMPCON, vol. 89, 1989, pp. 112–117.

[2] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: high-performance, reliable secondary storage,” University of
California at Berkeley, Berkeley, Tech. Rep. CSD 03-778, 1993.

[3] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,” in
Proc. of the 3rd USENIX Conf. on File and Storage Technologies (FAST),
2004, pp. 1–14.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Computers, vol. 44, no. 2, pp. 192–202, 1995.

[5] J. S. Plank, “The RAID-6 liber8tion code.” International Journal of High
Performance Computing Applications, vol. 23, no. 3, pp. 242–251, 2009.

[6] A. H. Leventhal, “Triple-parity RAID and beyond,” Comm. of the ACM,
vol. 53, no. 1, pp. 58–63, January 2010.

[7] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent
parity symbols,” IEEE Trans. Information Theory, vol. 42, no. 2, pp.
529–542, 1996.

[8] L. Xiang, Y. Xu, J. Lui, and Q. Chang, “Optimal recovery of single
disk failure in RDP code storage systems,” in ACM SIGMETRICS
Performance Evaluation Rev., vol. 38, no. 1. ACM, 2010, pp. 119–130.

[9] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy, “The EVENODD
code and its generalization,” High Performance Mass Storage and
Parallel I/O, pp. 187–208, 2001.

[10] C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting
triple storage node failures,” IEEE Trans. Computers, vol. 57, no. 7, pp.
889–901, 2008.

[11] Y. Wang, G. Li, and X. Zhong, “Triple-Star: A coding scheme with
optimal encoding complexity for tolerating triple disk failures in RAID,”
International Journal of innovative Computing, Information and Control,
vol. 3, pp. 1731–1472, 2012.

[12] M. Blaum, “A family of MDS array codes with minimal number of
encoding operations,” in IEEE Int. Symp. on Inf. Theory, 2006, pp. 2784–
2788.

[13] G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New efficient MDS
array codes for RAID. Part II. Rabin-like codes for tolerating multiple
(≥ 4) disk failures,” IEEE Trans. Computers, vol. 54, no. 12, pp. 1473–
1483, 2005.

[14] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy, “The EVENODD
code and its generalization: An effcient scheme for tolerating multiple
disk failures in RAID architectures,” in High Performance Mass Storage
and Parallel I/O. Wiley-IEEE Press, 2002, ch. 8, pp. 187–208.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

[15] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuck-
erman, “An XOR-based erasure-resilient coding scheme,” Proc ACM
Sigcomm, 1999.

[16] C. Schindelhauer and C. Ortolf, “Maximum distance separable codes
based on circulant Cauchy matrices,” in Structural Information and
Communication Complexity. Springer, 2013, pp. 334–345.

[17] J. S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon codes
for fault-tolerant network storage applications.” in IEEE International
Symposium on Network Computing and Applications, 2006, pp. 173–
180.

[18] M. Blaum and R. M. Roth, “On lowest density MDS codes,” IEEE
Transactions on Information Theory, vol. 45, no. 1, pp. 46–59, 1999.

[19] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn, “A
performance evaluation and examination of open-source erasure coding
libraries for storage,” in Proccedings of Conference on File & Storage
Technologies, 2009, pp. 253–265.

[20] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in
C/C++ facilitating erasure coding for storage applications-version 1.2,”
University of Tennessee, Tech. Rep. CS-08-627, vol. 23, 2008.

[21] C. Huang, J. Li, and M. Chen, “On optimizing XOR-based codes for
fault-tolerant storage applications,” ITW07 Information Theory Work-
shop IEEE, pp. 218–223, 2005.

[22] J. S. Plank, “XOR’s, lower bounds and MDS codes for storage,” ITW07
Information Theory Workshop IEEE, pp. 503 – 507, 2011.

[23] J. L. Hafner, V. Deenadhayalan, K. K. Rao, and J. A. Tomlin, “Matrix
methods for lost data reconstruction in erasure codes,” in Conference on
Usenix Conference on File & Storage Technologies-volume, 2005, pp.
183–196.

[24] C. Yin, J. Wang, H. Lv, Z. Cui, L. Cheng, Q. Zhan, and T. Li,
“Acoustic emission testing research of composites bearing based on
neural network,” in Intelligent Human-Machine Systems and Cybernetics
(IHMSC), 2011 International Conference on, 2011, pp. 165–168.

[25] J. S. Plank, C. D. Schuman, and B. D. Robison, “Heuristics for opti-
mizing matrix-based erasure codes for fault-tolerant storage systems,” in
2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2012, pp. 1–12.

[26] G. Zhang, G. Wu, S. Wang, and J. Shu, “CaCo: An efficient cauchy
coding approach for cloud storage systems,” IEEE Transactions on
Computers, pp. 1–13, 2015.

[27] M. Blaum and R. M. Roth, “New array codes for multiple phased burst
correction,” IEEE Trans. Information Theory, vol. 39, no. 1, pp. 66–77,
January 1993.

[28] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC codes: Low-
complexity regenerating codes for distributed storage systems,” IEEE
Transactions on Information Theory, vol. 62, no. 6, pp. 3053–3069,
2016.

[29] J. H. Silverman, “Fast multiplication in finite fields GF(2n),” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems,
1999, pp. 122–134.

[30] K. W. Shum, H. Hou, M. Chen, H. Xu, and H. Li, “Regenerating
codes over a binary cyclic code,” in Proc. IEEE Int. Symp. Inf. Theory,
Honolulu, July 2014, pp. 1046–1050.

[31] S. T. J. Fenn, M. G. Parker, M. Benaissa, and D. Taylor, “Bit-serial
multiplication in GF(2m) using irreducible all-one polynomials,” IEEE
Proceedings on Computers and Digital Techniques, vol. 144, no. 6, pp.
391–393, 1997.

[32] C. Schindelhauer, A. Jakoby, and S. Koehler, “Cyclone codes,” in Proc.
IEEE Int. Symp. Inf. Theory, Aachen, June 2017, pp. 156–160.

[33] I. Gohberg, V. Olshevsky, and T. Kailath, “Fast Gaussian elimination
with partial pivoting for matrices with displacement structure,” Mathe-
matics of Computation, vol. 64, no. 212, pp. 1557–1576, 1995.

[34] T. Boros, T. Kailath, and V. Olshevsky, “A fast parallel Björck–Pereyra-
type algorithm for solving Cauchy linear equations,” Linear Algebra and
Its Applications, vol. 302, pp. 265–293, 1999.

[35] D. Calvetti and L. Reichel, “Factorizations of Cauchy matrices,” Journal
of Computational and Applied Mathematics, vol. 86, no. 1, pp. 103–123,
1997.

[36] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing elephants: Novel erasure
codes for big data,” in Proc. of the 39th Int. Conf. on Very Large Data
Bases, Trento, August 2013.

[37] J. S. Plank et al., “A tutorial on Reed-Solomon coding for fault-tolerance
in RAID-like systems,” Softw., Pract. Exper., vol. 27, no. 9, pp. 995–
1012, 1997.

Hanxu Hou (S’11-M’16) was born in Anhui, China,
1987. He received the B.Eng. degree in Information
Security from Xidian University, Xian, China, in
2010, and Ph.D. degrees in the Dept. of Information
Engineering from The Chinese University of Hong
Kong in 2015 and in the School of Electronic and
Computer Engineering, Peking University. He is now
an Assistant Professor with the School of Electrical
Engineering & Intelligentization, Dongguan Univer-
sity of Technology and part-time Research Fellow
with the Shenzhen Key Lab of Information Theory

& Future Internet Architecture, Future Network PKU Lab of National Major
Research Infrastructure, Peking University Shenzhen Graduate School. His
research interests include erasure coding and coding for distributed storage
systems.

Yunghsiang S. Han (S’90-M’93-SM’08-F’11) was
born in Taipei, Taiwan, 1962. He received B.Sc.
and M.Sc. degrees in electrical engineering from
the National Tsing Hua University, Hsinchu, Taiwan,
in 1984 and 1986, respectively, and a Ph.D. degree
from the School of Computer and Information Sci-
ence, Syracuse University, Syracuse, NY, in 1993.
He was from 1986 to 1988 a lecturer at Ming-Hsin
Engineering College, Hsinchu, Taiwan. He was a
teaching assistant from 1989 to 1992, and a research
associate in the School of Computer and Information

Science, Syracuse University from 1992 to 1993. He was, from 1993 to 1997,
an Associate Professor in the Department of Electronic Engineering at Hua
Fan College of Humanities and Technology, Taipei Hsien, Taiwan. He was
with the Department of Computer Science and Information Engineering at
National Chi Nan University, Nantou, Taiwan from 1997 to 2004. He was
promoted to Professor in 1998. He was a visiting scholar in the Department
of Electrical Engineering at University of Hawaii at Manoa, HI from June
to October 2001, the SUPRIA visiting research scholar in the Department of
Electrical Engineering and Computer Science and CASE center at Syracuse
University, NY from September 2002 to January 2004 and July 2012 to June
2013, and the visiting scholar in the Department of Electrical and Computer
Engineering at University of Texas at Austin, TX from August 2008 to June
2009. He was with the Graduate Institute of Communication Engineering at
National Taipei University, Taipei, Taiwan from August 2004 to July 2010.
From August 2010 to January 2017, he was with the Department of Electrical
Engineering at National Taiwan University of Science and Technology as
Chair Professor. Now he is with School of Electrical Engineering & Intelli-
gentization at Dongguan University of Technology, China. He is also a Chair
Professor at National Taipei University from February 2015. His research
interests are in error-control coding, wireless networks, and security.

Dr. Han was a winner of the 1994 Syracuse University Doctoral Prize and
a Fellow of IEEE. One of his papers won the prestigious 2013 ACM CCS
Test-of-Time Award in cybersecurity.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2766140

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


