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Abstract—Locally decodable codes (LDCs) and locally cor-
rectable codes (LCCs) have several important applications, such
as private information retrieval, secure multiparty computation,
and circuit lower bounds. Three major parameters are considered
in LCCs: query complexity, message length, and codeword length.
The most familiar LCCs in the regime of low query complexity
are the generalized Reed—Muller (GRM) codes. However, it has
not previously been determined whether there exist codes that
have shorter codeword lengths than GRM codes with the same
query complexity and message length. In this paper, we show that
projective Reed—Muller (PRM) codes are such LCCs for some
parameters. The GRM code is specified by the alphabet size ¢,
the number of variables m, and the degree d, where d < q — 2.
When d = ¢ — 2 and ¢ — 1 is a power of a prime, we prove that
there exists a PRM code with shorter codeword length than a
GRM code with the same query complexity and message length.
We also present for these PRM codes a perfectly smooth local
decoder to recover a symbol in a codeword by accessing no more
than ¢ symbols at the coordinates of the codeword.

I. INTRODUCTION

Locally decodable codes (LDCs) [1] are a class of error-
correcting codes that allow each message symbol in the
codeword to be corrected probabilistically. LDCs access a
low number of symbols in the codeword via a randomized
algorithm. If local decoding is available for both the message
symbols and the parity symbols, the code is called a locally
correctable code (LCC) [2]. LDCs and LCCs have several
important applications, such as private information retrieval,
secure multiparty computation, and circuit lower bounds.

To evaluate LDCs or LCCs, three metrics are considered: the
query complexity ~, the message length k, and the codeword
length n. The query complexity indicates the number of
codeword symbols that need to be accessed to recover a faulty
symbol in the codeword. The message length indicates the
number of message symbols to be encoded. The codeword
length is the number of symbols in the codeword. When the
query complexity and the message length are specified, one
important research problem is how to construct a code with
the shortest codeword length.

To date, a number of LDCs have been proposed for different
ratios between the query complexity and the message length.
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A typical family of LCCs is represented by the general-
ized Reed—Muller (GRM) codes [3] discovered in the 1960s.
GRM codes are obtained by generalizing binary Reed—Muller
codes [4], [5] to larger finite fields. GRM codes were the
first LCCs/LDCs to be constructed and all later codes of
LCCs/LDCs can be seen as generalizations of these. When
the coding rate, which is defined as k/n, is greater than %,
GRM codes lose their local decoding ability. In this regime,
the LCCs, termed as multiplicity codes [6] and the codes
from lifting [7], are available. Furthermore, when the query
complexity is very low, matching vector (MV) codes [8], [9]
form the known shortest codes in LDCs; however, they are
not LCCs. Until now, GRM codes are still the shortest codes
among LCCs in the regime of low query complexity. In [2,
Sec. 8.3], Yekhanin raised an open question regarding whether
there exist codes that are shorter than GRM codes. In this
work, we answer a relaxed version of this question by showing
that projective Reed—Muller (PRM) codes are LCCs and they
are shorter than GRM codes for some parameters.

Lachaud [10] introduced PRM codes by extending Reed-
Muller codes to projective spaces. Their dimensions and min-
imum distances were determined by Sgrensen [11]. Since then,
the properties of these codes have been intensively studied
[12], [13], [14], [15], [16]. However, the local correctability
of PRM codes has never been investigated. Apart from the
decoding approaches that have been previously proposed [17],
[18], we provide a decoder that presents local error-correcting
capability of the PRM codes for low query complexities. This
regime was previously occupied by GRM codes, and hence the
present results are compared with results obtained with these
codes. When we align the query complexity and the message
length of PRM codes and GRM codes, the proposed PRM
codes have better performance on codeword lengths and field
sizes.

We can summarize the main contributions of this work as
follows.

1) We show that the PRM codes form a class of LCCs.

2) Some proposed PRM codes have shorter code lengths
than GRM codes when the query complexity and mes-
sage length of the codes are set to be the same.

3) A perfectly smooth local decoder for a PRM code
is proposed. The decoder can recover a symbol in a
codeword by accessing no more than g symbols of the
codeword, where ¢ is the size of the finite field.

The rest of this paper is organized as follows. Section II
introduces the definitions of LCCs and a number of traditional
error-correcting codes. Section III presents the proposed local
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decoder for PRM codes. Section IV analyzes the local cor-
rectabilities of PRM codes and makes comparisons with other
codes. Section V concludes the paper.

II. PRELIMINARIES

A. Definitions and Notation

Let IF, denote a finite field with ¢ elements, where ¢ is a
prime power, and let Fy = IF, \ {0}. For ease of notation, X
can represent X = (X1,...X,,) or X = (Xop,...X,,) and
[m] ={1,2,...,m}. An m-dimensional affine space over F,
is defined as

Am(Fq) = {(a17"'aam)|aj € quj € [m]}

Further, an m-dimensional projective space is defined as

P™(Fy) = (A" (Fy) \ {0})/ ~,

where O is the origin on A™(F,) and ~ is the equiv-
alence relation defined as follows: given (ag,ai,...,an)
and (bo,b1,...,bm), if there exists A € F; such that
(a0, a1,...,am) = (Abg, Ab1,...,Aby,), then this can be
written as

,am) ~ (bo,bl, .. .,bm).

For simplicity, A™ and P are used to denote A™(F,) and
P™(IF,), respectively.
Let

(ag, a1, ...

H =Fq[Xq,...,Xm]la U{0},
where F,[X,..., X,,]q is a polynomial ring consisting of the
homogeneous polynomials of degree d. For any F(X) € H7",
it is known that
F(AX)=X'F(X)  VA€EF;. (1)
Let F'(P) be the evaluation of F' in some representative P =
[p1 : p2 : --- 1 pm] € P™. Equation (1) shows that F'(P)
depends on the choice of the representative of P. To avoid
confusion, it is necessary to specify the representative of the
elements in P, For P € P™, we define

D(P) = pi,

where ¢ is the smallest integer such that p; # 0. Then the
representative of P is defined by

N(P) := (0,...,0,1,p2+1,...7p;1),

where each p;- = p;/D(P), for j > i+ 1. In addition, let
N(P™) := {N(P)|P € P"}.

For x,y € F™, A(x,y) denotes the Hamming distance
between x and y, i.e., the number of positions where x and
y have distinct elements. For x € F*, x[i] denotes the ith
symbol of x, and x|g denotes x restricted to symbols indexed
by S C [m].
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B. Locally correctable codes

A class of codes of message length k& and codeword length
n is called (7,0, €)-locally correctable if for each received
codeword y with up to dn errors, each symbol y[i], i € [n],
can be recovered with probability 1 — € by accessing at most
~ symbols chosen by a randomized algorithm. The following
is a formal definition of locally correctable codes.

Definition 1. (Locally correctable code (LCC)) A code C C
Fy is (v, 8, €)-locally correctable if there exists a randomized
algorithm (local decoder) A such that for each pair (¢ €
C,y € Fy) and A(c,y) < dn,

PrA(y,i) = c[i]] > 1—¢

holds for each i € [n|. Furthermore, A accesses at most vy
symbols of y.

In Definition 1, if the local decoding property is available for
i € [k], such codes are called locally decodable codes (LDCs).
Clearly, LCCs are LDCs. Since this paper only considers
LCCs, details of LDCs are omitted.

A local decoder A consists of two parts: the random-
ized query algorithm @) and the deterministic reconstruction
algorithm R. A local decoder with query complexity - is
called perfectly smooth if the following requirements are satis-
fied [19], [20]. First, the deterministic reconstruction algorithm
can recover any codeword symbol by accessing at most other ~y
symbols within the codeword. Second, the randomized query
algorithm meets the requirement that, for each symbol, all
other symbols have an equal chance of being selected in the
set of queries (e.g. the second condition in the following
definition). The following is a formal definition.

Definition 2. (Perfectly smooth decoder) For a (7, §, €)-locally
correctable code C C Fy with a local decoder, A consists
of a randomized query algorithm ) and a deterministic
reconstruction algorithm R : F) x [n] — F,. For each c € C
and a point i € [n], Q reads i and generates a set of queries
Q(i) with |Q(i)| < . Next, R reads c|q(;y and i to recover
cli]. The local decoder is perfectly smooth if the following
conditions hold:

1) For each ¢ € C and i € [n],
Pr[R(c|gy,1) = cli]] > 1 —e.

2) For each i € [n], each query in Q(i) is uniformly
distributed over [n). That is, for the j-th query Q(i)[j]
and j € v,

PriQ()j] =k =1/(n—=1),  Vke [n]\{i}.

C. Error-correcting codes

A number of error-correcting codes are introduced in this
subsection.

1) Reed—Solomon (RS) codes: (n,d+1) RS codes [21] over
FF, treat the message as a single-variate polynomial of degree
less than or equal to d, and the codeword is generated by
evaluating this polynomial at n = ¢ fixed points. In addition,
an extended Reed—Solomon (ERS) code (also called a doubly
extended Reed—Solomon code) is constructed by appending an

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

extra symbol to the codeword of a (¢g,d + 1) RS code, where
the extra symbol is the coefficient of the polynomial at degree
d. The formal definition is as follows.

Definition 3. The Reed—Solomon code over ¥ of order d and
length n = q is defined by

RS (d) = {(F(A)aer, [F(X) € Fy[X], deg F' < d}.
The extended Reed—Solomon code is defined by

ERS,(d) ={(F(Xo), .-, F(Mg—1), F(\0))|
F(X) € F [X],deg F < d},

where F(\o) denotes the coefficient of X 1.

RS codes are maximum distance separable (MDS) codes,
which possess the optimal trade-off between the minimum
Hamming distance and the size of redundancy of the code.
(n,d+ 1) RS codes are able to correct up to E errors and .S
erasures, as long as 2F +.5 < n—d— 1. A number of typical
decoders, such as the Berlekamp—Welch algorithm [22], the
Berlekamp-Massey algorithm [23], and algorithms based on
the fast Fourier transform (FFT) [24], [25], can be used to
decode RS codes. In addition, efficient decoders for ERS codes
have been presented in [26], [27].

2) Generalized Reed—Muller (GRM) codes: GRM codes [3]
are a family of linear error-correcting codes obtained by con-
structing Reed—Muller codes [5] over an arbitrary finite field.
For a GRM code GRM(m, q), the message is determined
by an m-variate polynomial of degree at most d over [y, and
the codeword is defined by evaluations of the polynomial at
points from A™. The formal definition is as follows.

Definition 4. The generalized Reed—Muller code over F, of
order d and length n = q™ is defined by

GRM, (d,m) ={(F(A)) can
F(X) € F [X1,...

aXm]?degF S d}a

where F(X) is an m-variate polynomial of degree at most d
over .

The code dimensions and minimum distances of GRMs
were determined in [28, p. 72]. In particular, GRM,(d, 1) are
RS codes, and GRMS3(1, m) are punctured Hadamard codes.
Note that any vector A in A" represents a corresponding
coordinate in a codeword, where the symbol at this coordinate
is F(A).

When d < g — 2, GRM codes form a typical family of
locally correctable codes of query complexity d + 1, message
length k£ = (m;d), and code length n = ¢". To recover a
symbol at coordinate w € A™, the local decoder randomly
picks a coordinate v € A™ \ w and randomly selects d + 1

points falling on
L={w+Av[]AeF.}. ()

The local decoder queries those symbols evaluated by the
points in L. From (2), the set of symbols evaluated at the
points in L is given by

(POt € L} = {F(w+ AW) A € 2} = {Fu s (VA € FL),
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where Fy, (X) := F(w+Xv) is a single-variate polynomial,
and deg(Fw,v(X)) < d. By appending Fy, (0) to the set, we
obtain

{FauvNINeF,} U{Fov(0)} = {Fwv(A)X €Fg}. (3)

As deg(Fwv(\)) < d, from Definition 3, (3) forms a
codeword of RS, (d). If there is no error at the d+ 1 selected
symbols, then, by applying the RS decoding algorithm, one
can recover the single-variate polynomial Fy (X). Then
Fw~v(0) = F(w+0-v) = F(w) is the recovered symbol.
3) Projective Reed—Muller (PRM) codes: PRM codes [10]
are a variant of GRM codes. For a PRM code, PRM,(d, m),
the message is determined by an (m+1)-variate homogeneous
polynomial of degree d over Iy, and the codeword is obtained
by evaluating the polynomial in an (m + 1)-dimensional
projective space. The PRM codes are defined as follows.

Definition S ([11]). The projective Reed—Muller code over I
of order d and length n = (¢! —1)/(q — 1) is defined by

PRM, (d, m) = {(F(P)) penem) | F(X) € HJ '},

The code dimension and the minimum distance of PRM
were determined in [11]. Notably, PRMj(1,m) are reduced
to Hadamard codes. In this case, the proposed local decoder
given in the next section is the same as the local decoder for
Hadamard codes. In particular, when m = 1, we have

PRM,(d, 1) ={(F(P)) pene) [F(X) € H7}
={F0, D)} U{F (L, A)}rer,

where F(X1, X3) = Z?:o fa_iiX{7XY is a 2-variate ho-
mogeneous polynomial of degree d. Let

“4)

d
Fi(X) =) faiaX".
i=0
In (4), it can be see that F'(0,1) = fy 4 is the coefficient of
F1(X) at degree d, and F(1,\) = Fi(\), for A € F,. Thus,
by Definition 3, PRM,(d, 1) forms an ERS code.

III. PERFECTLY SMOOTH DECODER FOR PRM CODES

In this section, a (d+ 1)-query perfectly smooth decoder for
PRM,(d,m), d < g—1, is proposed. The approach is similar
to the local decoder for GRM codes. Following Definition 2,
the decoder A is denoted as a pair of algorithms (Q, R). Given
a codeword ((F(P))penm)) € PRM,(d,m) and a point
w € P, the value F'(w) can be recovered via the following
steps if the selected d + 1 symbols involving in the decoding
procedure have no error. First, the decoder randomly picks a
coordinate v € N(P™) \ w. Then, we consider a line passing
through w and v:

Luw(v) == {N(W + V)| € F,} U {v}. ©6)

Notably, L (v) includes v and w, which are not in the set
given in (2) for GRM codes. Let S denote an arbitrary subset
of F; U {oc}, and |S| = d + 1. The decoder queries d + 1
symbols at the corresponding coordinates

{N(w + \v)|A € S}.
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Algorithm 1: Randomized query algorithm for PRM
codes
Input: w € P™ and d
Output: A = ()\1 S F; U {OO})ie[d+1]7
L= (Ll € N(Pm))ie[d+1] and
D = (D; € Fg)ic[a+1)
1 Let S, |S| =d+ 1, be an arbitrary subset of
[y U {oo}, and let A be constructed by ordering the
elements of S in random permutation.
2 Choose v € P™ \ {w} randomly.
sfori=1,2,...,d+1do
. I — v if \; =
! N(w + \;v) otherwise

s D, — { 1 if A; = o0
! D(w + A\;v) otherwise

¢ end

7 return A, L and D.

Algorithm 2: Deterministic reconstruction algorithm
for PRM codes
Input: A, (e; = F(L;))ica+1]» D and w
Output: F(w)
1 Find a polynomial H(X), deg H < d, by an ERS
decoder, such that

H()\;) = Dle;,

i€ [d+1], (5)

where H(occ) denotes the coefficient of X .
2 return H(0).

We define N(w + Av) = v if A = co. The queried symbols
are then denoted as

{ex = F(N(w + Av))|A € S}. (7)

Second, the decoder solves a single-variate polynomial H (X),
deg H < d, by an ERS decoder such that

H(\) = Dfey, N€ES, (8)

where
Dy=D(w+v-)\)eF,. )

Furthermore, if co € S, (8) reduces to

H(oo) = Denn, (10)

where the coefficient of X¢ is equivalent to D% e,. After ob-
taining H (X)), the decoder returns H(0) = F'(w). The details
of the decoding procedure are summarized in Algorithms 1
and 2.

A toy example for d = 2, m = 2 and ¢ = 3 is given
to demonstrate the decoding procedure. In this case, the
arithmetic in F3 = {0, 1,2} is implemented with the modular
arithmetic. A codeword of PRMj3(2,2) is determined by a
homogeneous polynomial

F(X1, X2, X3) =fa00X? + fo20X3 + foo2 X3
+ fr10X1 X2 + f101 X1 X3 + fo11 X2 X3,
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and the codeword is given by

(F(P)|P €{(0,0,1),(0,1,0),(0,1,1),(0,1,2),(1,0,0),
(1,0,1),(1,0,2), (1,1,0), (1,1,1),(1,1,2),
(1,2,0),(1,2,1),(1,2,2)}).

Assuming that we want to recover F(w), w = (1,1,1) € P2
In Algorithm 1, the first step generates S = F5 U {0}, and a
permutation of .S is given by A = (2,00, 1). The second step
chooses v = (1,0,2) € P?\{w}. Then the third step generates
D = (0,1,2) and L = {L;}3_,, where L; = (0,1,2),
Ly, = (1,0,2) and L = (1,2,0). Then the decoder queries
(ei = F(L;))ie[3)» and the symbol F'(w) can be decoded by
Algorithm 2.

Next, we show that the decoder meets the requirements of
the perfectly smooth decoder given in Definition 2.

To verify the first requirement, we show that the set given
in (7) can be considered as an evaluation of a single-variate
polynomial. Thus, F'(w) can be recovered via a decoding
algorithm of an ERS code, and the first requirement holds.
To simplify the derivations, another formulation of (8) is pre-
sented as follows. Based on the fact that F' is a homogeneous
polynomial, we have

F(N(w+v-))
=D x F(Dy x N(w+v-)\))
=Dy x F(w+v-)),

(In

where D) is as defined in (9). Thus, (8) can be written as

H\) =F(w+v-\), Aes. (12)

Our goal is then to show that {F'(w+v-X)|A € F,}U{F(v)}
forms an evaluation of a single-variate polynomial.

Lemma 1. For any v,w € N(P™), v # w, and any F(X) €
Hdmﬂ, d < q — 1, there exists a single-variate polynomial
H(X), deg H < d, such that

HA=Fw+v-A),
H{(o0) = F(v),

where H(c0) denotes the coefficient of H(X) at degree d.

AEF,, (13)

(14)

Proof. The homogeneous polynomial F'(X) is written as

FX)= > vapan | [ X5 (15)
dot-+dm=d j=0
By plugging (wX, + vX;) into F(X), we obtain
FwXy+vXy)
=F(woXo +voX1, ..., wnXo +vmX1)
s 16
= Z Ydo,...,d H(ijo + ;X)) % (16)
do++++dm=d j=0
:Fw,v(X07X1)'

From (16), it can be observed that F, ,(Xo,X1) is also a
homogeneous polynomial of degree d in X, and X;. Note
that

(Fwv(P))pen) € PRMy(d, 1), (17)
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which is equivalently an ERS code. Next, we show that the set
of evaluation points in (17) are d + 1 symbols in a codeword
of the ERS code.

In (17), the set of evaluation points can be written as

N(B) = {(1L, )X € F,} U{(0.1)}. (1)
In the following, we show that
H(X)=Fov(1,X)
(19)

- ¥

Vdo,...,d H wj +v; X dj
do+-+dm=d j=0
satisfies (13) and (14). It can be seen that deg H < d. To
verify (14), (Xo, X1) = (0,1) is plugged into (16) to obtain
F(v) = F(vg,...

= Y Ya. H =

do+-++dm=d =0

Um)

wv 0 1) (20)

It can be verified that F'(v) is equivalent to the coefficient of
H(X) at degree d. Hence, (14) holds.
To verify (13), A € IF, is plugged into H(X) to give

H(A) = Foyny(1L,A) = F(w+v - A). Q1)

This completes the proof. O

Next, the second requirement of the perfectly smooth de-
coder is considered. First, we show the following result.

Lemma 2. Ly, (v) includes q+ 1 distinct elements of N(P™).

Proof. This is equivalent to showing the following two state-
ments:
v ¢ {N(w+ Av)|A e F,}, (22)

N(W + )\()V) 75 N(W + )\1V) Yo, A1 € Fq, Ao 75 A1 (23)

These two statements can be proved by contradiction. To verify
(22), assume that there exists Ao € F, such that

= N(w + Agv). (24)

Equation (24) implies that there exists a v € F; such that
(7 = Ao)v. (25)

Since v and w are in N(P™), we have v # 0 and w # 0.
Hence, (25) can be true only when v — \g = 1 and w =
v, which contradicts the assumption that w # v. Thus, the
assumption is false and (22) is proved.

To verify (23), assume that there exists do, 01 € Fy, do # 01,
such that

YW=wW+ N V=>w=

N(w + dov) = N(w + 61v). (26)

Equation (26) implies that there exists a 7 € Fy such that
W+ dgv = y(W + 01V)
= (1 =7y)w = (v61 — do)v.

Since v and w are in N(P™), we have (1 —
= (1 —7)"Y(y61 — do)v.

Similar to the argument for (25), (27) is false and hence the
assumption is not true. This completes the proof. O

(27
v) # 0 and
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With Lemma 2, the second requirement is shown as follows.

Lemma 3. For any w,p € N(P™) and w # p, if Lw (V) is
constructed by choosing v € N(P™) \ {w} uniformly, then

Prlp € Lw(v)] = (¢—1)/(¢™
Proof. From (6),

Lw(v)\ {w} = {N(w + Av)[A € Fy \ {0}} U {v}

—1).

= {N(w+Av)[]A e Fj} U {v}. %)
Thus, when p € Ly (v) \ {w}, we have
pP=V, (29)
or
P € {N(w + Av)|A € Fy }. (30)
Hence, it implies that there exist v, \g € IE‘; such that
P =W+ AV
= W-—7p=—AV
= N(w—9p)=v. 31
From (29) and (31), we have
v e {N(w—p)ly € Fi} U {p}
=V € Lw(p) \ {w}. (32)
Finally, from (32),
P € Lw(V)\{w} = v € Lw(p) \ {w}.
Similarly, we can show that
v € Lw(p) \{w} = p € Lw(v) \ {w}.
Hence, we have
Prp € Lu(v) \ {w}] = Pr[v € Ly (p) \ {W}].  (33)

From Lemma 2, |Ly(p) \ {w}| =
uniformly in N(P™) \ {w}, we have

Prlv € Lw(p) \{w}] =¢/(n—1) = (¢—1)/(¢" —1). (34)
From (33) and (34), the proof is completed. O

q. Since v is chosen

Lemma 3 indicates that each element of N(IP™) \ {w} has
equal probability to be chosen in Ly (v). In Algorithm 1,
the order of queries is randomly permuted, and hence the
jth query, j € [g], is uniformly distributed in N(P™) \ {w}.
Thus, the proposed decoder meets the second requirement for
a perfectly smooth decoder.

It is worth mentioning that permutation of queries (Step 1
of Algorithm 1) is necessary. If it is omitted, then the array
of queries will be given by

(Li = N(W + w;iv))ie[q (35)

where {w; };c[q denotes the ¢ elements of IF,. We prove that
the list in (35) cannot satisfy the second requirement for a
perfectly smooth decoder (Definition 2), although this problem
has not appeared in GRM codes. To see this, let V(X) =
N(w + AX) with domain/codomain N(P™). The notation w
denotes the smallest integer such that w{w] # 0, and ¥ denotes
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the smallest integer such that v[t] # 0. Then, when @ < 7,
there exists v/ # v such that V(v) = V(v'). That is, v/ =
w + (1 + A)v. Since V is not bijective, the image of V is
a proper subset of N(P™), and hence the query L; is not
uniformly distributed in N (P").

IV. DISCUSSION

In this section, the local correctabilities of PRM codes will
be proved and PRM codes will be compared with other codes
with similar parameters.

A. Local correctabilities of PRM codes

In this subsection, we assume that the received codewords
are corrupted, as opposed to the assumption in Section III,
where the codewords do not have any error.

Theorem 1. The PRM code PRM,(d,m), d < ¢ — 1, is
(d+ 1,6, (d+ 1)d)-locally correctable for all § < 1.

Proof. The algorithm is the same as for the decoder in
Section III, except that corrupted codewords are considered.
Given a codeword generated by a polynomial F'(X) with n
errors and a point w € N(IP™), the objective is to recover
F(w) by accessing at most d + 1 symbols of y. First, the
decoder calls Algorithm 1 to obtain the list of queries L. After
obtaining the symbol values corresponding to L, the decoder
calls Algorithm 2 to obtain the result. Since each query is
uniformly distributed, the probability that all queries are not
corrupted is at least 1 — (d 4 1)0. O

Theorem 2. The PRM code PRM,(d,m), d < oq — 1, is
(¢,9,26/(1 — o))-locally correctable for all § < 1.

Proof. The algorithm is a modification of the decoder in
Section III. In this case, the decoder queries all elements
corresponding to Ly (v) \ w, and employs an ERS decoding
algorithm to decode the symbol. More specifically, assume
that there exists a codeword generated by F'(X). The decoder
receives the codeword y with dn errors, and, at a point
w € N(P™), the decoder tries to recover F'(w) by accessing
at most ¢ symbols of y. The algorithm consists of two steps.
In the first step,

Ly(v) :={N(w + Av)|A € F, U {oo}}

is constructed by choosing v € N(P™) \ w in uniform distri-
bution. Then the codeword symbols indexed by the elements
in Ly (v) are queried, and the queried symbols are denoted as

{ex = F(N(w + Av))[A € Fj U {oc}}.

In the second step, the local decoder tries to find a univariate
polynomial H(X) with deg H < d such that

H(\) = Diey, A e F; U {oo},

can be satisfied for as many A as possible, where D) =
D(w + v - \). If H(X) can be determined, then the decoder
outputs H(0); otherwise it outputs decoding failure. For ERS
decoders, it is known that if the number of unsatisfied equa-
tions (errors) is less than | (1 —o0)g/2], the polynomial can be
uniquely determined.

http://dx.doi.org/10.1109/TCOMM.2019.2900039

As each query set is individual, the probability lower bound
of the successful decoding can be evaluated by the Markov
inequality. This shows that the probability that H(X) cannot
be determined is at most 26/(1 — o). O

B. Comparison

As shown in Table I, GRM codes and PRM codes are
specified by three parameters (g,d,m), where ¢ is the size
of the field, d is the degree of the polynomials, and m is the
number of variables. From the table, given any GRM code with
parameters (q,d,m), where d = ¢ — 2 and ¢ — 1 is a prime
power, we can construct a PRM code with (¢’ = ¢—1,d, m),
where d = ¢’ — 1, but a GRM code with (¢ — 1,d, m) would
violate the requirement d < ¢’ —2 = ¢ — 3 from LCCs. In this
case, it has been proved that the both codes have the same
query complexity d 4+ 1 and message length (mjd). However,
the code length of a GRM code is ¢, which is always greater
than the code length of a PRM code, given by ((g—1)™*1 —
D/@-2) < 1+(@-2"Yeg-D" = 6(q¢—-1m.
For a PRM code, when ¢ = 2 (and d = 1), the code is a
Hadamard code and the proposed algorithm is actually the
same as the well-known local decoder for Hadamard codes.
For example, the (¢ = 9,d = 7,m) GRM code over Fg has
query complexity 8, message length (™1®), and codeword
length 9™. In contrast, the (¢ = 8,d = 7,m) PRM code
over [Fg has query complexity 8, message length (m; 8), and
codeword length (7*! —1)/6 = ©(7™). In this case, the
improving ratio of the codeword length is ©((9/7)™).

The improvements obtained with our proposed codes are
even significant when the field size is small. By taking ¢ to

be a constant, the message length of both codes is
d
k= <m; ) — O(m?),

and hence m = O(k'/%). Table I shows that the codeword
length of a GRM code is ¢, and that of a PRM code is
about (¢ — 1)™. Thus, the improved ratio between the two
codes is given by

(a/(g—1)™ = O((g/ (g — D)) = exp(O(K'/)),

which is between polynomial and exponential.

As discussed previously, we compare PRM codes over a
field of size ¢ — 1 and GRM codes over a field of size ¢. It
might be argued that this comparison is unfair since the field
sizes are not the same. However, as stated in [2, Sec. 8.3],
the field size is not the major factor considered in the open
question. Hence, when we align the query complexity and the
message length of PRM codes and GRM codes, the proposed
PRM codes have better performance on codeword lengths.

For low query complexities, matching vector (MV)
codes [8], [9] have been invented that are shorter than GRM
codes as LDCs. However, MV codes are not LCCs, and MV
codes will be longer than GRM codes for query complexity
log® k with some ¢ > 1. For high query complexities, GRM
codes are not in this regime, since their coding rates cannot
exceed 1. In recent years, a number of codes have been

2
proposed in this regime [29], [6], [30]. Thus, our result
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TABLE I
PARAMETERS OF THE GENERALIZED REED—MULLER (GRM) CODES AND THE PROJECTIVE REED—-MULLER (PRM) CODES

Codes | Restriction [ Query complexity | Message length |

Code length

GRM | d<q-2 d+1

() "

PRM | d<gq-—1 d+1

("t -1)/(q—1)

G

improves the code lengths for LCCs and LDCs in the role
occupied by GRM codes for low/medium query complexities.

V. CONCLUSION

We have shown that PRM codes form a family of LCCs
in the regime of low query complexity. When ¢ = 2 and
d = 1, PRM codes are Hadamard codes, and the proposed
local decoder is the same as the known decoder for Hadamard
codes. Further, given a specified class of GRM codes, for some
parameters, we have shown that there exist PRM codes that are
shorter than GRM codes with the same query complexity and
message length. Considering that GRM codes were the first
LCCs/LDC:s to be constructed, we conclude that the proposed
local decoding algorithm shows that PRM codes break the
oldest bound on the codeword length of LCCs/LDCs.
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