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Abstract—Golomb coding is a type of entropy encoding scheme
for geometric distributions. It consists of two parts, and both
parts are coded with variable-length coding, which requires a
higher computational effort than fixed-length coding schemes.
To solve this issue, the first part of this paper presents a variant
of Golomb coding that uses fixed-length coding to code the first
part. The simulations show that the proposed coding scheme has
a higher throughput than Golomb coding, due to the reduction
of arithmetic complexity. In the second part, we discuss the =-ary
versions of Golomb coding and the proposed coding scheme.

Index Terms—Entropy encoding, Golomb coding, Geometric
distribution.

I. INTRODUCTION

W ITH the advent of the information age, data compres-
sion has become an indispensable part of data storage

and transmission due to the large amount of data and limited
computer storage and network bandwidth. Most compression
systems for images, speech and video use adaptive predictors
or decorrelation transforms to map blocks of the original data
into low-entropy blocks of integers to facilitate entropy coding
[1]. Typical entropy encodings used in such systems include
arithmetic coding [2], Huffman coding [3] and run-length
coding. Among them, run-length coding is a coding scheme
that records the number of successive symbols in a sequence.
In particular, when its alphabet is independent and identically
distributed (i.i.d.) with occurrence probability ?, the output
stream of run-length coding follows the geometric distribution
defined as

% (8) = ? (1 − ?)8−1 , (1)

for 0 < ? < 1 and 8 ≥ 1. Furthermore, the geometric distri-
bution also arises in other problems, such as when encoding
protocol information in data networks.

A sequence following a geometric distribution can be coded
by Golomb coding [4]–[7]. Golomb coding is a variable-to-
variable length coding scheme proposed by Golomb in the
1960s, and the code has been studied extensively for image
processing [8], [9], data compression [10]–[13] and systems
on a chip (SoCs) [14]–[16]. It has been proven optimal for
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integer sequences following a geometric distribution [17]. In
other words, it approximates the coding efficiency of Huffman
coding in such sources. However, compared to Huffman cod-
ing, the encoding/decoding of Golomb coding does not need
to maintain a codebook, and the coding process is performed
via integer arithmetic. These advantages make Golomb coding
attractive, as integer arithmetic is usually much faster than
memory accesses on modern processors.

The Golomb-Rice (GR) coding [18]–[21], introduced by
Rice in 1979, is a subset of Golomb coding. Currently, GR
coding is used in many audio/image formats, such as Shorten,
FLAC, Apple Lossless, MPEG-4 ALS, and FELICS. Golomb
coding has an adjustable parameter " that can be any positive
integer, and GR code requires " to be a power of two. The
requirement eases the implementations of GR coding since
multiplication and division by a power of two can be easily
implemented by logical operations. Golomb coding requires
several integer division operations that can be replaced with
bitwise operations in GR coding. Furthermore, Golomb coding
consists of two parts: a quotient part and a remainder part.
Golomb coding uses variable-length coding to code both parts.
In contrast, GR coding uses fixed-length coding to code the
remainder part.

The above two reasons show that, compared with GR
coding, Golomb coding has inferior throughput when "

is not a power of two. To solve this issue, we focus on
the coding algorithms for " that are not a power of two.
More precisely, this paper presents a class of prefix codes
for geometric probability distributions. First, similar to GR
coding, the proposed prefix codes use fixed-length coding to
code the remainder part. Second, we show that the integer
division operations in the encoding process can be replaced
with integer multiplication operations.

A code is called =-ary code when each codeword symbol
of it is in Z=. Although many prefix codes are binary = = 2, a
number of =-ary prefix codes are proposed. For example, the
variable-length quantity (VLQ) is a class of universal coding
defined in the standard MIDI file format. The VLQ can also be
seen as the 256-ary version of Exp-Golomb coding [22], [23],
and thus, each input integer is converted into a byte (8 bits) to
facilitate processing on modern computer systems. However,
to the best of our knowledge, there is no literature exploring
arbitrary =-ary Golomb coding. Thus, in the second part of
this paper, we discuss the =-ary versions of Golomb coding
and the proposed coding. The contributions of this work are
summarized as follows.

1) A variant of Golomb coding is proposed. The Golomb
coding uses variable-length coding to encode the quotient
and remainder parts. In contrast, the proposed coding uses
fixed-length coding to encode the remainder part and a
variable-length coding to encode another.
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2) The simulations are presented. The proposed coding
scheme involves approximately 20% fewer addition op-
erations, 40% fewer multiplication operations and 20%
more bitwise operations during encoding and 40% fewer
addition operations, 10% fewer multiplication operations,
50% fewer bitwise operations and 20% more branch
operations during decoding than Golomb coding.

3) The =-ary versions of Golomb coding and the proposed
coding scheme are presented.

The remainder of the paper is organized as follows. Section
II introduces Golomb coding, and Section III introduces the
proposed prefix codes. Section IV presents the implementation
considerations and the simulation results. Section V discusses
the details of =-ary codes. Finally, Section VI concludes this
work.

II. PRELIMINARIES

A. Notation

Let Z= = {0, 1, . . . , = − 1} denote the ring of integers
modulo =. Let bGc denote the largest integer that is less than
or equal to G. Let '4< (8, 9) = 8 −

( ⌊
8
9

⌋
+ B

)
9 , where B = 0 if

8 ≥ 0; otherwise, B = 1. Note that '4< (8, 9) < 0 when 8 < 0.1

Let
NC=9 (8) =

(
8 9−1, . . . , 81, 80

)
(2)

denote the 9-symbol =-ary natural code (NC) of 8 = 80 + 81 ×
= + · · · + 8 9−1 × = 9−1, where 8: ∈ Z=. Given an =-ary stream (,
we construct a FIFO queue accordingly. The operation

' ← Deque=( (8)

removes 8 symbols {(8}8−1
8=0 from the front terminal position in

the queue that contains (, and these 8 symbols form an integer
' = (0 + (1 × = + · · · + (8−1 × =8−1. Notably, this paper uses the
abbreviations NC 9 (8) and Deque( (8) when = = 2.

B. Golomb coding

Golomb coding is used to encode a sequence following
a geometric distribution. Precisely, each symbol # of the
sequence follows % (# = 8) = ? (1 − ?)8 , where ? ∈ (0, 1)
and 8 = 0, 1, 2, 3, . . .. During encoding, the input value # is
divided by " to obtain the quotient and the remainder. Then,
the quotient is coded by unary coding, and then, the remainder
is encoded by truncated binary encoding. The parameter " can
be determined by the inequality

(1 − ?)" + (1 − ?)"+1 ≤ 1 < (1 − ?)"−1 + (1 − ?)" . (3)

For a large " , there is very little penalty from selecting [5]

" =

⌊
−1

log2 (1 − ?)

⌋
. (4)

The details of encoding the input # are described below. Let

1 =
⌈
log2 "

⌉
, C = 21 − ". (5)

1When 8 ≥ 0 and 9 > 0, '4< (8, 9) is the ordinary remainder from integer
division; however, when 8 < 0, it is not.

TABLE I
THE GOLOMB CODING AND THE PROPOSED CODING FOR " = 6

N Golomb Length Proposed
Q R R Q

0 0 00 3 000
1 0 01 3 001
2 0 100 4 010 1
3 0 101 4 011 1
4 0 110 4 100 1
5 0 111 4 101 1
6 10 00 4 110 1
7 10 01 4 111 1
8 10 100 5 010 01
9 10 101 5 011 01

10 10 110 5 100 01
11 10 111 5 101 01
12 110 00 5 110 01
13 110 01 5 111 01

(a) (b)

Fig. 1. Golomb coding tree and the proposed coding tree for " = 6: (a) the
Golomb coding tree and (b) the proposed coding tree

1) # is divided by " to obtain the quotient @ =
⌊
#
"

⌋
and

the remainder A = Rem (#, ").
2) Let 〈&�>34〉 = (1, 1, · · · , 1︸      ︷︷      ︸

q

, 0) denote the unary coding

of @.
3) Let

〈'�>34〉 =
{

NC1−1 (A) if A < C,
NC1 (A + C) otherwise, (6)

denote the truncated binary encoding of A .
4) The codeword is given by 〈&�>34〉 〈'�>34〉.
When " = 1, Golomb coding is equivalent to unary coding.

Furthermore, when " = 21 (i.e., when " is a power of two),
it is known that the implementation can be further simplified
[24]. First, Step 1) does not require integer division operations,
and the results can be obtained via

@ = # � 1,

A = # � (" − 1) ,
(7)

where � denotes the bitwise right-shift operation and �
denotes the bitwise AND operation. Second, Step 3) does not
require the conditional statement (if A < C), and

〈'�>34〉 = NC1 (A) . (8)

To illustrate the above algorithm, Table I shows the Golomb
coding for " = 6 on the left-hand side. Figure 1(a) shows
the corresponding Golomb coding tree, and the value of # is
labeled at the bottom. In this case, we have 1 =

⌈
log2 6

⌉
= 3,

and C = 21 − " = 2. Thus, Table I includes C codewords of
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TABLE II
THE GOLOMB CODING AND THE PROPOSED CODING FOR " = 4

N Golomb Length Proposed
Q R R Q

0 0 00 3 00 1
1 0 01 3 01 1
2 0 10 3 10 1
3 0 11 3 11 1
4 10 00 4 00 01
5 10 01 4 01 01
6 10 10 4 10 01
7 10 11 4 11 01
8 110 00 5 00 001
9 110 01 5 01 001

10 110 10 5 10 001
11 110 11 5 11 001

length 3, " codewords of length 4, " codewords of length
5, and so on. Furthermore, Table II shows the Golomb coding
at " = 4 on the left-hand side. In this case, we have 1 =⌈
log2 4

⌉
= 2, and C = 21 − " = 0. Thus, Table II includes "

codewords of length 3, " codewords of length 4, and so on.
Next, we discuss the decoding of a code bitstream (, which

is a sequence of concatenated codewords. The receiver first
determines &, that is, the number of successive ones before a
zero occurs. Then, the receiver finds ', which has 1 or 1 − 1
bits in (. The details are given below.

1) Decode 〈&�>34〉:
a) & ← 0.
b) Read a bit 0 ← Deque( (1). If 0 = 1, & ← & + 1,

and repeat this step. The repetition stops when a zero
is read.

2) Decode 〈'�>34〉:
a) ' ← Deque( (1 − 1).
b) If ' ≥ C, then 0 ← Deque( (1), and

' ← (' � 1) + 0 − C, (9)

where � denotes the bitwise left-shift operation.
3) The value is # = & × " + '.

Notably, when " = 21 (i.e., when " is a power of two),
Step 2) directly reads 1 bits without the conditional statement,
and the value is denoted by '. In addition, Step 3) calculates
the value

# = (& � 1) + ' (10)

without integer multiplication operations.

C. The implementation of unsigned integer divisions with
constant divisors

Integer division is very time consuming on modern CPUs
and should be avoided as much as possible during implemen-
tation. It is known that unsigned division by a power of two
can be implemented by a logical right-shift operation and a
bitwise operation. When the divisor is a constant but not a
power of two, [25] presents a method to calculate the quotient
and the remainder with a multiplication operation and a shift
operation. The basic idea is to multiply by a sort of reciprocal
of the divisor 3, such as 2ℓ/3, and the quotient is obtained by
right-shifting the value by ℓ bits.

Let us first consider the unsigned division of = by 3 on a
32-bit machine. The calculation steps are as follows:

1) Let � =
(
233 + 1

)
/3.

2) The quotient and the remainder are given by

@ =
⌊
� × =/233⌋ , A = = − @ × 3. (11)

One can see that when 0 ≤ = < 232,

@ =

⌊
233 + 1

3
=

233

⌋
=

⌊=
3
+ =

3 × 233

⌋
=

⌊=
3

⌋
.

Notably, calculating (11) may overflow when using 32-bit
arithmetic. To solve this issue, the result � × = can be stored
in a 64-bit integer type. For example, the C implementation
of (11) is given by

u i n t 3 2 _ t q = ( ( u i n t 6 4 _ t )H*( u i n t 6 4 _ t ) n ) > >33.

The algorithm for unsigned division is described as follows.
Given a word size , ≥ 1 and a divisor 3, 1 ≤ 3 < 2, , the
following provides a way to determine a pair of integers (<,D),
0 ≤ < < 2, +1 and D ≥ , , such that⌊<=

2D
⌋
=

⌊ =
3

⌋
, (12)

for 0 ≤ = < 2, .
1) D is the smallest integer such that

2D > 2,−1 (3 − 1 − '4< (2D − 1, 3)) . (13)

2) Then,

< =
2D + 3 − 1 − '4< (2D − 1, 3)

3
. (14)

III. PROPOSED CODE

When " is a power of two, GR codes give implementation
modification to improve performance. First, the division and
multiplication operations in Golomb coding can be replaced
with the bitwise operations given in (7) and (10). Second,
〈'�>34〉 can be encoded with fixed-length coding as given
in (8). Golomb coding when " ≠ 21 is then much slower
than the coding when " = 21 . In this section, a class of
prefix codes for any " is proposed such that 〈'�>34〉 can be
encoded with fixed-length coding. First, a class of prefix codes
is proposed to encode the remainder part with fixed-length
encoding, rather than truncated binary encoding. Second, we
show that the codeword lengths of the proposed coding scheme
are equal to that of Golomb coding.

A. Code construction

First, the right-hand sides of Tables I and II show two
examples of the proposed coding for " = 6 and " = 4. Figure
1(b) shows the proposed coding tree for " = 6. These tables
show that the proposed coding scheme has the same codeword
lengths as with Golomb coding. Tables I and II show that there
are some differences between the two coding schemes. First,
when " = 6, Golomb coding takes two or three bits to encode
the remainder, and the proposed coding scheme always takes
three bits to encode it. Second, Golomb coding first encodes
the quotient, while the proposed coding scheme first encodes
the remainder. Furthermore, one can verify that the codeword
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Algorithm 1 Proposed encoding algorithm
Require: # and " .
Ensure: A codeword.

Let 1 =
⌈
log2 "

⌉
, C = 21 − "

1: if # < C then
2: 〈'�>34〉 ← #�1 (#)
3: return 〈'�>34〉
4: else
5: The quotient @ ←

⌊
#−C
"

⌋
6: The remainder A ← Rem (# − C, ") + C
7: 〈'�>34〉 ← #�1 (A)
8: 〈&�>34〉 ← (0, 0, · · · , 0︸      ︷︷      ︸

@

, 1)

9: return 〈'�>34〉 〈&�>34〉
10: end if

Algorithm 2 Proposed decoding algorithm
Require: The code stream (, "
Ensure: #

Let 1 =
⌈
log2 "

⌉
, C = 21 − "

1: if ( = =D;; then
2: return =D;;

3: else
4: ' ← Deque( (1)
5: & ← 0
6: if ' ≥ C then
7: : ← Deque( (1)
8: while : = 0 do
9: & ← & + 1

10: : ← Deque( (1)
11: end while
12: end if
13: # = ' +& × "
14: return #

15: end if

length is
⌊
#−2

6
⌋
+ 4 in Table I, and the codeword length is⌊

#
4
⌋
+ 3 in Table II.

The details of encoding the input # are described below.
Let 1 = dlog2 "e, and C = 21 − "; then, # − C is divided
by " to obtain the quotient @ =

⌊
#−C
"

⌋
if # ≥ C, and the

remainder A = Rem (# − C, ") + C. The quotient @ is encoded
by unary coding, and the remainder A is encoded by a 1-
bit binary representation of A. Table I shows some encoding
rules of the proposed coding scheme. First, the quotient is
encoded by unary coding when # ≥ 2. Second, the remainder
is encoded by a 1-bit binary code, and 1 = dlog2 "e = 3.
More precisely, the remainder is a 1-bit binary representation
of '4< (# − 2, 6) + 2. Note that '4< (8, 9) < 0 when 8 < 0.
Algorithm 1 describes the proposed encoding procedure. In
Algorithm 1, Lines 2–3 handle the case in which # < C, and
the codeword contains 〈'�>34〉 only. Lines 5–9 handle the
case # ≥ C. In particular, Lines 5–6 calculate the quotient and
the remainder of # − C. Lines 7–9 generate the codeword.

Additionally, a number of implementation modifications can
be applied to improve the throughput of Algorithm 1.

1) In Line 5, division with a constant " can be re-
placed with multiplication and a right-shift operation
(see Section II-C for more details). That is, the instruc-
tion @ ←

⌊
#−C
"

⌋
can be replaced with

@ ← < (# − C) � D, (15)

where < and D are determined by (14) and (13), re-
spectively. For example, when " = 6, the instruction
@ ←

⌊
#−C

6
⌋

can be replaced with @ ← 3 (# − C) � 4.
2) In Line 6, the instruction can be replaced with

A ← # − @ × ", (16)

considering that multiplication usually takes fewer CPU
cycles than a modulus operation.

3) From (16), one can avoid multiplication when @ ∈ {0, 1},
since

A =


# if @ = 0,
# − " if @ = 1,
# − @ × " otherwise.

(17)

Notably, we cannot conclude that the implementation of
(17) is always faster than (16), as (17) incurs an additional
cost with the if-else statement. However, Lemma 1 shows
that, in most cases of the proposed coding scheme, the
multiplication operation in (17) is not performed. These
cases include @ is not calculated, @ = 0, and @ = 1.
Lemma 1. % (@ ∈ {=D;;, 0, 1}) > 1 − 2 1−2"

"+1 ≥ 1
2 , where

@ = =D;; represents the case in which @ does not need to
be calculated.

Proof. From (4), we have

" + ℓ = −1
log2 (1 − ?)

,

where 0 ≤ ℓ < 1. Note that

0 ≤ C = 21 − "
= 2dlog2 "e − "
< 21+log2 " − "
= 2" − "
= ".

From the probability mass function of the geometric
distribution, we have

% (@ ∈ {=D;;}) = % (# < C) , and
% (@ ∈ {0, 1}) = % (C ≤ # < 2" + C) .

(18)

Thus,

% (@ ∈ {=D;;, 0, 1}) = % (1 ≤ # < 2" + C)

=

2"+C−1∑
#=1

? (1 − ?)#−1

= 1 − (1 − ?)2"+C−1

= 1 − 2
1−2"−C
"+ℓ

> 1 − 2
1−2"
"

≥ 1
2
.

(19)
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�

Note that the lemma is true only when the encoder exactly
knows the true distribution of the input; " is larger than
or equal to one. Moreover, as " increases, the probability
% (@ ∈ {=D;;, 0, 1}) also increases.

It is worth noting that when " is a power of two, the imple-
mentation can be further improved. First, as C = 21 − " = 0,
Lines 5–6 can be calculated via (7) without any integer divi-
sion operations. Second, Line 1 does not need the conditional
statement, since C = 0 and the statement “# < C” is always
false.

Next, we discuss the decoding of a code bitstream (, which
is a sequence of concatenated codewords. We first decode
〈'�>34〉, which has 1 =

⌈
log2 "

⌉
bits. Then, we decode

〈&�>34〉, that is, the number of successive zeros before a
one occurs. Algorithm 2 presents the details. In Algorithm 2,
Line 4 reads 1 bits from the code bitstream (. If ' ≥ C, Lines
7–11 try to decode 〈&�>34〉. Line 13 calculates the decoded
value.

Furthermore, when " = 21 (i.e., when " is a power of
two), Line 6 does not need the conditional statement, since
C = 0 and the statement “' ≥ C” is always true. Thus, we
count the number of zeros preceding the first occurrence of
a one, and the number is denoted by &. In addition, Line 13
can be computed via (10) without any integer multiplication
operations.

B. Code length

The following theorems show that the codeword lengths of
Golomb coding and the proposed coding scheme are the same.

Theorem 1. The codeword of # for Golomb coding is⌊
#−(21−" )

"

⌋
+ 1 + dlog2 "e bits.

Proof. When # < C = 21 − " , @ = 0, and the length of
the codeword is 1 +

⌊
log2 "

⌋
. When # ≥ C, we consider

# ∈
[
21 + (8 − 1) × ", 21 + 8 × "

)
for an integer 8 ≥ 0. The

following discussion divides the interval into two cases.
1) When # ∈

[
21 + (8 − 1) × ", (8 + 1) × "

)
, we have 8 =⌊

#−(21−")
"

⌋
. In this case, the quotient’s code is @ + 1 =

8 + 1 bits, and the remainder’s code is 1 bits. Therefore,
the codeword is (8 + 1) + 1 =

⌊
#−(21−")

"

⌋
+ 1+ dlog2 "e

bits.
2) When # ∈

[
(8 + 1) × ", 21 + 8 × "

)
, we have 8 =⌊

#−(21−")
"

⌋
. In this case, the quotient’s code is @ +

1 = 8 + 2 bits, and the remainder’s code is 1 − 1 bits.
Therefore, the codeword is (8 + 2) + (1 − 1) = 8 + 1 + 1 =⌊
#−(21−")

"

⌋
+ 1 +

⌈
log2 "

⌉
bits.

�

Theorem 2. The codeword of # with the proposed coding
scheme is

⌊
#−(21−")

"

⌋
+ 1 +

⌈
log2 "

⌉
bits.

Proof. In the proposed coding scheme, the remainder is coded
with 1 =

⌈
log2 "

⌉
bits. As the quotient’s codeword is null

when # < 21 − " , the following discusses the codeword
lengths in two cases.

1) When 0 ≤ # < 21 − " , the quotient’s codeword is null,
and the codeword is

⌈
log2 "

⌉
= 1 +

⌊
log2 "

⌋
bits, which

is equal to that of Golomb coding in the same range.
2) When # ≥ 21 − " , we have @ =

⌊
#−(21−")

"

⌋
, and

the remainder’s code is
⌈
log2 "

⌉
bits. Therefore, the

codeword is
⌊
#−(21−")

"

⌋
+ 1 +

⌈
log2 "

⌉
bits.

One can see that
⌊
#−(21−")

"

⌋
+ 1 +

⌈
log2 "

⌉
= 1 +

⌊
log2 "

⌋
when 0 ≤ # < 21 − " . Thus, the codeword length is⌊
#−(21−")

"

⌋
+ 1 +

⌈
log2 "

⌉
for # ≥ 0. �

IV. SIMULATION

In this section, we first give some instances to show the
number of arithmetic operations used in Golomb coding and
the proposed coding scheme. Then, we show the simulations
of both coding schemes. Finally, the results are discussed.

A. Arithmetic complexities

Due to the branches used during coding, it is difficult to
give the formulas for the exact complexities of Golomb coding
and the proposed coding scheme. Instead, we give the average
number of arithmetic operations for " = 2, 3, . . . , 32. We
implemented the proposed coding scheme and Golomb coding
in C and compiled with GCC 7.4.0 with optimization level -
O3. These programs are tested on a platform equipped with
an Intel(R) Core(TM) i7-7700K CPU @ 3.60 GHz and 8 GB
main memory on an Ubuntu 16.04 operating system. The input
sequence (1) is generated by gsl_ran_geometric() in the GNU
scientific library (GSL) 2.4, where

? = 1 − 2
−1

"+0.5 (20)

is deduced from (4).

Fig. 2. The average number of arithmetic operations in Golomb coding
and the proposed coding scheme during encoding for " = 2, 3, . . . , 32.
For simplicity, we abbreviate Addition and Multiplication as Add and Multi,
respectively

We first encode a sequence of 211 integers following distri-
bution (20); then, we count the number of operations required
in coding this sequence in running time. For each operation
Γ ∈ {Addition, Multiplication, Branch, Bitwise}, the average
number of operations required by an integer is defined as

Γ/integer =
The total times of Γ executed

The number of integers in the sequence
.

Table III lists the average number of operations used in each
symbol for " = 12, 16. Notably, the term Addition counts the
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TABLE III
NUMBER OF OPERATIONS IN GOLOMB CODING AND THE PROPOSED CODING SCHEME

Operations/integer " = 16 " = 12
(Enc./Dec.) Gol_A Our_A Gol_B Our_B Gol_A Our_A
Addition 8.57/11.77 6.38/6.77 6.57/6.77 5.57/6.77 7.78/10.59 6.05/6.12

Multiplication 2/1 1.28/1 0/0 0/0 2/1 1.23/0.85
Branch 1.19/1.19 1.19/1.19 0.19/0.19 0.19/0.19 1.18/0.80 1.18/1.03
Bitwise 2.57/7.19 3.57/3.19 4.57/5.19 4.57/4.19 2.54/6.05 3.39/3.03

Fig. 3. The average number of arithmetic operations in Golomb coding and
the proposed coding scheme during decoding for " = 2, 3, . . . , 32

Fig. 4. Encoding performance of Golomb coding and the proposed coding
scheme for " = 2, 3, . . . , 32

number of + and − operations, the term Multiplication counts
the number of × operations, and the term Bitwise counts the
number of logical operations �, �, & and ∼ used in the
algorithms. It can be seen that fewer arithmetic operations
are used in the proposed coding scheme than in Golomb
coding. Additionally, Figures 2–3 show the average number
of arithmetic operations required by an integer in both coding
schemes during encoding and decoding, respectively. The
simulation shows that the proposed coding scheme involves
approximately 20% fewer addition operations, 40% fewer mul-

Fig. 5. Decoding performance of Golomb coding and the proposed coding
scheme for " = 2, 3, . . . , 32

tiplication operations and 20% more bitwise operations during
encoding and 40% fewer addition operations, 10% fewer
multiplication operations, 50% fewer bitwise operations and
20% more branch operations during decoding than Golomb
coding.

Fig. 6. Encoding performance of Golomb coding and the proposed coding
scheme when " is a power of two

Fig. 7. Decoding performance of Golomb coding and the proposed coding
scheme when " is a power of two

Fig. 8. Performance of Exp-Golomb coding and the proposed coding scheme
for " = 2, 3, . . . , 32

B. Throughput

This subsection shows the simulations of Golomb coding
and the proposed coding scheme. We implemented both coding
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schemes in C, and each code has two implementations, �
and �, where implementation � is for any values of " ,
and implementation � is only for values of " that are a
power of two. In particular, implementation � adopts the
improvement given in (7) and (10). The input sequence follows
the geometric distribution given in (20). 2 Figure 4 and Figure
5 show the throughput of two implementations � and � during
encoding and decoding, respectively. The throughput is defined
as

Throughput =
Size of input data (MB)

Time consumed (Second) ,

where MB stands for a megabyte
(
8 × 220 bits

)
.

The simulation shows that the proposed coding has up to
a 30% (30%) better throughput than Golomb coding during
encoding (decoding). Additionally, Figure 6 and Figure 7
show the throughput during encoding and decoding, respec-
tively, for " = 2, 4, . . . , 1024. As implementation � uses
the optimization tricks given in (7) and (10), its throughput
is better than that of implementation �. In addition, Figure
8 shows the throughputs of Exp-Golomb coding and the
proposed coding scheme during encoding and decoding for
" = 2, 3, . . . , 32. It can be seen that the proposed coding
scheme has up to a 70% (35%) better throughput than Exp-
Golomb coding during encoding (decoding). Notably, the CPU
throughput measurements may vary across machines since
they depend on many CPU behaviors, such as CPU cache
or register transfers.

C. Discussion

Due to the fixed-length coding and the optimization mech-
anism given in (15)–(17), the proposed coding scheme has
higher throughput than Golomb coding in Figure 4 and Figure
5. As shown in Figure 4 and Figure 5, when " is not a power
of two, the throughput of the proposed coding scheme is much
better than that of Golomb coding during both encoding and
decoding, which is consistent with the results listed in Table
III.

Next, we discuss the peaks occurring in Figure 4 and Figure
5 when " is a power of two. For Golomb coding in Figure
4, we have C = 21 − " = 0 for an " that is a power of two;
thus, the second branch in (6) is always executed. Although in
Figure 2, Golomb coding performs more arithmetic operations
when " is a power of two than when " is not a power of two.
Due to the branch prediction technique used in CPU design
that attempts to guess the outcome of a conditional operation
and prepare for the most likely result, the local maximum
appears in “Enc_Gol_A”. In Figure 5, (9) is performed when
" a power of two, and this operation gives the local minima
in “Dec_Gol_A”. In the proposed coding, Lines 6–12 in
Algorithm 2 are performed when " is a power of two, and
this operation gives the local minima in “Dec_Our_A”.

Finally, we discuss the performances in Figure 6 and Figure
7. In our C implementation, “Enc_Our_B” has one fewer
subtraction operation than “Enc_Gol_B”, and “Dec_Our_B”
has one fewer bitwise_not operation than “Dec_Gol_B”. In

2The source code is available at https://github.com/wn312991/VariantsofGol
ombCoding.git.

(a)

A Code(Value)
0 0 (0)
1 10 (4)
2 11 (5)
3 12 (6)
4 13 (7)
5 20 (8)
6 21 (9)
7 22 (10)
8 23 (11)

(b)

Fig. 9. Truncated 4-ary encoding when " = 9, where A is the integer to
encode: (a) the coding tree, and (b) the codebook

addition, although @ and A in “Enc_Our_A” require more
operations than “Enc_Gol_B”, the performances of both codes
are close due to the help of the optimization mechanisms
presented in Section III-A.

V. =-ARY CODING

The =-ary code is a class of codes where each codeword
symbol is in Z=. This section discusses the =-ary version of
Golomb coding and the proposed coding scheme. Both =-ary
versions use a parameter " to divide the input value into two
parts, termed the quotient & and the remainder '. Then, both
parts are encoded into =-ary codes. We first introduce truncated
=-ary encoding. Then, =-ary Golomb coding is proposed, and
the coding efficiency is analyzed. Finally, the =-ary version of
the proposed coding scheme is provided, and the compression
performance is discussed.

A. Truncated =-ary encoding

The conventional Golomb coding scheme encodes the re-
mainder part with truncated binary encoding. Therefore, this
subsection presents the truncated =-ary encoding scheme that
will be used in =-ary Golomb coding.

The coding tree of truncated =-ary encoding possesses the
following properties. First, the root has = − 1 children (the
reason is explained in the later subsection), and other internal
nodes have = children. Second, the tree is completely filled on
every level except for the last level, and all the nodes in the
last level are as far to the right as possible. With the above
definitions, the generated codewords have 1− 1 or 1 symbols,
where 1 is the height of the tree. The following shows that
the number of leaves is a multiple of = − 1. That is,

" = : × (= − 1) , (21)

for : ∈ N. First, if the tree does not have any interval nodes,
the tree has = − 1 leaves by the definition. Second, if a leaf is
replaced by an internal node, the tree will increase by = − 1
leaves. This completes the proof. Figure 9(a) shows the 4-ary
coding tree with " = 9 leaves, and the value of the remainder
A is labeled at the bottom. Figure 9(b) lists the codewords 0001
for A = 0, 1, . . . , 8, and the integers in parentheses denote the
corresponding decimal values 400 + 01.
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Theorem 3. The coding tree of truncated =-ary encoding with
" = : × (= − 1) leaves possesses the following properties.

1) The height of the tree is 1 =
⌈
log= :

⌉
+ 1.

2) The tree has C = =1−1 − : leaves in the (1 − 1)-th layer.

Proof. A coding tree with height 1 has at most (= − 1) ×=1−1

leaves. Then, we obtain the inequality

(= − 1) × =1−2 < " ≤ (= − 1) × =1−1

⇒1 + log= : ≤ 1 < 2 + log= :
⇒1 =

⌈
log= :

⌉
+ 1.

(22)

Next, we consider C. Note that the (1 − 1)-th layer has
(= − 1) × =1−2 − C internal nodes. Then, we have

= ×
(
(= − 1) × =1−2 − C

)
+ C = "

⇒C = =1−1 − :.
(23)

�

As shown in Figure 9(b), the codeword table can be divided
into the upper and the lower parts. The upper part covers the
C codewords of size 1 − 1, and the lower part covers " − C
codewords of size 1. When the input # < C, the codeword
is the =-ary representation of # and is encoded with (1 − 1)
symbols. Otherwise, the codeword is the =-ary representation
of # + C × (= − 1) and is encoded with 1 symbols. It is worth
noting that when C = 0, the codeword is always represented
by 1 symbols. Given # ∈ Z" , the encoding can be written as
a function

T=,: (#) =
{

NC=
1−1 (#) if # < C,

NC=
1
(# + C × (= − 1)) otherwise. (24)

In decoding, we first read (1 − 1) symbols, which form a
number '. If ' < C, this step corresponds to the upper part of
the codebook, and the decoded # is '. Otherwise, we should
read one more symbol 0 from the code bitstream. Then, # is
the value ' subtracted by C × (= − 1). The decoding function

T −1
=,: : Z1= → Z" (25)

is defined as follows.
1) ' ← Deque=

(
(1 − 1).

2) If ' ≥ C, 0 ← Deque=
(
(1), and

' ← ' × = + 0 − C × (= − 1) .

3) Return '.

B. =-ary Golomb coding

The =-ary Golomb coding scheme requires a parameter " ,
that is, the number of leaves of the coding tree defined in (21).
The coefficients 1 and C are defined in Theorem 3. Given the
input value # , the encoding steps are as follows.

1) # is divided by " to obtain the quotient @ = b#/"c
and the remainder A = '4< (#, ").

2) Let 〈&�>34〉 = (= − 1, = − 1, · · · , = − 1)︸                          ︷︷                          ︸
@

, where = − 1 ∈

Z=.
3) Let 〈'�>34〉 = T=,: (A) be defined in (24).
4) The codeword is given by 〈&�>34〉 〈'�>34〉.

TABLE IV
THE GOLOMB CODING SCHEME AND THE PROPOSED CODING SCHEME

FOR (=, " ) = (4, 6)

N Golomb Length Proposed
Q R R Q

0 0 1 0
1 1 1 1
2 20 2 2 1
3 21 2 3 1
4 22 2 2 2
5 23 2 3 2
6 3 0 2 2 3
7 3 1 2 3 3
8 3 20 3 2 01
9 3 21 3 3 01

10 3 22 3 2 02
11 3 23 3 3 02
12 33 0 3 2 03
13 33 1 3 3 03

The =-ary Golomb coding scheme consists of two parts:
〈&�>34〉 and 〈'�>34〉, where 〈&�>34〉 = (= − 1, . . . , = − 1)
consists of a series of values =−1 ∈ Z=. To distinguish the two
parts during decoding, the first symbol of 〈'�>34〉 should not
be = − 1. Thus, we require that the root of the coding tree of
truncated =-ary encoding scheme has only = − 1 children.

To illustrate the above description, Table IV shows the =-ary
Golomb coding scheme at = = 4, " = 6 on the left-hand side.
In this case, we have 1 =

⌈
log4 2

⌉
+1 = 2 and C = 42−1 −2 = 2.

Thus, Table IV shows C codewords of length 1, followed by "
codewords of length 2, " codewords of length 3, and so on.
It is worth noting that we can obtain the conventional Golomb
coding scheme by letting = = 2.

During decoding, we first decode &, which is the number
of successive (= − 1)s in the code. Then, we decode ', which
has 1 or 1 − 1 symbols in the code bitstream. The details are
given below.

1) Decode 〈&�>34〉:
a) & ← 0.
b) Read symbol 0 ← Deque=

(
(1). If 0 = = − 1, & ←

& + 1, and repeat this step. The repetition stops until
the symbol read is not = − 1.

2) 〈'�>34〉 = T −1
=,:
(() defined in (25).

3) The value is # = & × " + '.

C. Analysis

First, we analyze the best value of " for a geometric
distribution. From (21), " is determined by :; thus, we
first discuss the codeword length of Golomb coding and then
discuss the value of : in the following theorems.

Theorem 4. The codeword length for encoding # with the
=-ary Golomb coding scheme is

!4=6Cℎ =

{ ⌊
#
"

⌋
+ 1 if C = 0,⌊

#
"

⌋
+

⌊
Rem(# ," )
=1−1−:

⌋
+ 1 − 1 otherwise.

(26)

Proof. In =-ary Golomb coding, the length of 〈&�>34〉 =
(= − 1, = − 1, · · · , = − 1)︸                          ︷︷                          ︸

@

is @ =
⌊
#
"

⌋
. From Section V-A,
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〈'�>34〉 always has 1 symbols when C = 0; 〈'�>34〉
has 1 − 1 symbols if Rem (#, ") < C; otherwise, it has 1
symbols. The codeword length of 〈'�>34〉 can be written as⌊

Rem(# ," )
C

⌋
+1−1. In summary, the codeword length of =-ary

Golomb coding is given by (26). �

One can verify that the result of Theorem 4 for = = 2 is the
same as the results of Theorems 1 and 2.

Theorem 5. The average codeword length of =-ary Golomb
coding for a geometric distribution is given in (27).

Proof. From Theorem 4, the average codeword length is
discussed in the following.

1) When C = 0, we have

!1 (=, ?, :)

=

∞∑
9=0

(⌊
9

"

⌋
+ 1

)
? (1 − ?) 9

=

∞∑
9=0

1? (1 − ?) 9 +
∞∑
9=0

⌊
9

"

⌋
? (1 − ?) 9

=1 +
∞∑
9=0

⌊
9

"

⌋
? (1 − ?) 9

=1 +
∞∑
ℎ=0

(ℎ+1)"−1∑
9=ℎ"

ℎ? (1 − ?) 9

=1 +
(
1 − (1 − ?)"

) ∞∑
ℎ=0

ℎ (1 − ?)ℎ"

=1 + (1 − ?)"

1 − (1 − ?)"

=
⌈
log= :

⌉
+ 1 + (1 − ?): (=−1)

1 − (1 − ?): (=−1) .

2) When C > 0, we have

!1 (=, ?, :)

=

∞∑
9=0

(⌊
9

"

⌋
+

⌊
Rem ( 9 , ")
=1−1 − :

⌋
+ 1 − 1

)
? (1 − ?) 9

=
(1 − ?)"

1 − (1 − ?)"
+ 1 − 1 +

∞∑
9=0

⌊
Rem ( 9 , ")
=1−1 − :

⌋
? (1 − ?) 9 .

(28)
Let

) = =1−1 − :, � =

⌊
" − 1
)

⌋
. (29)

The term in (28) is derived by

∞∑
9=0

⌊
Rem ( 9 , ")

)

⌋
? (1 − ?) 9

=

"−1∑
!=0

∞∑
/=0

⌊
Rem (! + /", ")

)

⌋
? (1 − ?)!+/"

=?

"−1∑
!=)

∞∑
/=0

⌊
!

)

⌋
(1 − ?)!+/"

TABLE V
THE OPTIMAL VALUE OF : FOR A CERTAIN (=, ?) IN (27)

=\? 2−1 4−1 8−1 16−1 32−1 64−1

2 1 2 4 8 21 42
3 1 3 3 9 13 35
4 1 1 4 6 16 25
5 1 1 5 7 8 25
6 1 1 2 6 10 36
7 1 1 2 7 10 12
8 1 1 2 8 10 14
9 1 1 2 9 9 16

10 1 1 2 2 10 16

=?

"−1∑
!=)

⌊
!

)

⌋
(1 − ?)!

1 − (1 − ?)"

=
?

1 − (1 − ?)"

(
�−1∑
G=1

G

) (G+1)−1∑
!=) G

(1 − ?)!

+�
"−1∑
!=�)

(1 − ?)!
)

=
1

1 − (1 − ?)"

(
�−1∑
G=1

G

(
(1 − ?)) G − (1 − ?)) (G+1)

)
+� (1 − ?))� − � (1 − ?)"

)
=

1
1 − (1 − ?)"

(
�−1∑
G=1
(1 − ?)) G − (� − 1) (1 − ?))�

+� (1 − ?))� − � (1 − ?)"
)

=
1

1 − (1 − ?)"

(
�∑
G=1
(1 − ?)) G − � (1 − ?)"

)

=

(1 − ?))
(
1 − (1 − ?))�

)(
1 − (1 − ?)"

) (
1 − (1 − ?))

) − � (1 − ?)"

1 − (1 − ?)"
.

Then, we have

!1 (=, ?, :)

=
(1 − ?)"

1 − (1 − ?)"
+ 1 − 1 +

∞∑
9=0

⌊
Rem ( 9 , ")
=1−1 − :

⌋
? (1 − ?) 9

=

(1 − ?))
(
1 − (1 − ?))�

)(
1 − (1 − ?)"

) (
1 − (1 − ?))

) + 1 − 1

+ (1 − �) (1 − ?)
"

1 − (1 − ?)"

=

(1 − ?)=dlog= :e−:
(
1 − (1 − ?) (=

dlog= :e−:)
⌊
: (=−1)−1
=dlog= :e−:

⌋ )
(
1 − (1 − ?): (=−1)

) (
1 − (1 − ?)=dlog= :e−:

)
+ dlog= :e +

(
1 −

⌊
: (=−1)−1
=dlog= :e−:

⌋ )
(1 − ?): (=−1)

1 − (1 − ?): (=−1) .

�
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!1 (=, ?, :) =



⌈
log= :

⌉
+ 1 + (1−?): (=−1)

1−(1−?): (=−1) if C = 0,

(1−?)= d
log= :e−:©«1−(1−?)

(
= dlog= :e−:

) ⌊
: (=−1)−1
=dlog= :e−:

⌋ ª®¬(
1−(1−?): (=−1)

) (
1−(1−?)= d

log= :e−:
) +

⌈
log= :

⌉
+

(
1−

⌊
: (=−1)−1

= dlog= :e−:

⌋)
(1−?): (=−1)

1−(1−?): (=−1) otherwise.

(27)

Algorithm 3 Encoding algorithm for the =-ary proposed
coding scheme
Require: #, =, : .
Ensure: A codeword.

Let 1 = dlog= :e + 1, C = =1−1 − :
1: if # < C then
2: 〈'�>34〉 ← NC=

1−1 (#)
3: return 〈'�>34〉
4: else
5: The quotient 2←

⌊
#−C
"

⌋
6: The remainder A ← Rem (# − C, :) + C
7: Let 〈&�>34〉 = (0, 0, · · · , 0︸      ︷︷      ︸

2

, V), where 2 =
⌊
#−C
"

⌋
,

V =
⌊
#−2"−C

:

⌋
+ 1 ∈ Z=

8: 〈'�>34〉 ← NC=
1−1 (A)

9: return 〈'�>34〉 〈&�>34〉
10: end if

Given = and ?, the objective is to determine the value of : to
minimize !1 (=, ?, :) in (27). However, it is difficult to give
the close form via (27). Instead, Table V gives the optimal
value of : for certain = and ? values via the mathematical
software.

D. =-ary proposed coding

Subsection V-B shows that both parts in =-ary Golomb cod-
ing are coded with variable-length coding. In this subsection,
we present a class of prefix codes whose remainder part is
coded by fixed-length coding. Upon introducing the encoding
algorithm, Table IV gives an example of the =-ary proposed
coding scheme for (=, ") = (4, 6) on the right-hand side of
the table. In this case, the =-ary Golomb coding scheme uses
one or two symbols to encode the remainder, while the =-ary
proposed coding scheme always uses one symbol to encode
it.

Let

1 = dlog= :e + 1, C = =1−1 − :. (30)

The following introduces the quotient part and the remainder
part.

1) Construction of 〈&�>34〉 : Let

〈&�>34〉 =

() if 0 ≤ # < C,

(0, 0, · · · , 0︸      ︷︷      ︸
2

, V) otherwise, (31)

Algorithm 4 Decoding algorithm for the =-ary proposed
coding scheme
Require: The code bitstream (

Ensure: #
Let 1 = dlog= :e + 1, C = =1−1 − :

1: if ( = =D;; then
2: return =D;;

3: else
4: ' ← Deque=

(
(1 − 1)

5: 2 ← 0
6: if ' ≥ C then
7: 0 ← Deque=

(
(1)

8: while 0 = 0 do
9: 2 ← 2 + 1

10: 0 ← Deque=
(
(1)

11: end while
12: B← Deque=

(
(1)

13: end if
14: # = ' + 2 × " + : × (B − 1)
15: return #

16: end if

TABLE VI
THE COMPRESSION RATIO OF =-ARY CODING FOR " = 9765

= Ratio
2 0.476531
4 0.492469
8 0.529687

16 0.570922
32 0.609082
64 0.658359

where () is the null string and

2 =

⌊
# − C
"

⌋
, V =

⌊
# − 2" − C

:

⌋
+ 1. (32)

2) Construction of 〈'�>34〉: First, we discuss the design
philosophy of the proposed 〈'�>34〉.

1) Case C = 0: In =-ary Golomb coding, from Section
V-A, when C = 0, the truncated =-ary encoding tree is
a complete tree of height 1. In addition, the codeword
length of 〈&�>34〉 is zero when 0 ≤ # < " . Thus,
the shortest codeword in =-ary Golomb coding has 1

symbols. For the proposed coding scheme, 〈&�>34〉 has
at least one symbol when 2 = 0. Thus, 〈'�>34〉 should
have 1 − 1 symbols. Therefore, we should use 1 − 1
symbols in Z= to express 〈'�>34〉.
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TABLE VII
THE THROUGHPUT OF =-ARY GOLOMB CODING AND =-ARY PROPOSED CODING SCHEME FOR = = 2, 4, 8, " = 21

n Enc_n_Gol(MB/S) Enc_n_Our(MB/S) Dec_n_Gol(MB/S) Dec_n_Our(MB/S)
2 937.56 1099.34 1698.25 2337.62
4 930.13 1000.58 1325.99 1803.64
8 1001.73 1103.93 1003.27 1218.23

TABLE VIII
THE THROUGHPUT OF =-ARY GOLOMB CODING AND =-ARY EXP-GOLOMB FOR = = 2, 256

n Enc_n_Exp-Gol(MB/S) Enc_n_Gol(MB/S) Dec_n_Exp-Gol(MB/S) Dec_n_Gol(MB/S)
2 644.40 937.56 1455.21 1698.25

256 1071.46 1163.94 1285.26 1440.71

2) Case C > 0: In the proposed coding scheme, 〈&�>34〉 =
() is the null string when 0 ≤ # < C. To ensure
that the codeword length of the =-ary proposed coding
scheme is equal to that of the =-ary Golomb coding
scheme, the length of 〈'�>34〉 in the proposed coding
scheme is the same as the shortest codeword of the =-
ary Golomb coding scheme. The shortest =-ary Golomb
coding scheme has 1 − 1 symbols when 〈&�>34〉 = ()
is the null string, which means that 〈'�>34〉 in the =-
ary proposed coding scheme has 1 − 1 symbols. As the
〈'�>34〉 in the proposed coding scheme is fixed-length
coding, the length of 〈'�>34〉 in the =-ary proposed
coding scheme should always have 1 − 1 symbols.

According to the above discussion, 〈'�>34〉 is encoded by
NC=

1−1 (A). Algorithm 3 describes the =-ary proposed encoding
algorithm. In Algorithm 3, Lines 1–3 handle the case in which
# < C, and the codeword only contains 〈'�>34〉 to ensure
the codeword length is the same as that of the =-ary Golomb
coding scheme. Lines 5–9 handle the case in which # ≥ C. In
particular, Lines 5–6 calculate the quotient and the remainder.
Lines 7–9 generate the codeword. During decoding, we first
decode 〈'�>34〉, whose codeword always has 1 − 1 symbols;
then, we decode 〈&�>34〉. Algorithm 4 presents the details
of the decoding method. In Algorithm 4, Line 4 reads 1 − 1
symbols from the code bitstream (. If ' ≥ C, Lines 7–13 try
to decode 〈&�>34〉. Line 14 calculates the decoded value.

Theorem 6. For an input # , the codeword length of the =-ary
proposed coding scheme is

!4=6Cℎ =

{
1 − 1 if 0 ≤ # < C,

1 +
⌊
#−C
"

⌋
if # ≥ C ≥ 0, (33)

which is the same as that of the =-ary Golomb coding scheme.

Proof. When C > 0, from Section V-D2, when 0 ≤ # < C,
〈&�>34〉 = (), 〈'�>34〉 has 1 − 1 symbols, so the =-ary
proposed coding scheme has 1 − 1 symbols; otherwise, it has
1 − 1+

⌊
#−C
"

⌋
+ 1 = 1 +

⌊
#−C
"

⌋
symbols. In summary, we have

!4=6Cℎ =

{
1 − 1 if 0 ≤ # < C,

1 +
⌊
#−C
"

⌋
if # ≥ C > 0. (34)

When C = 0, from Section V-D2, the codeword lengths of
〈'�>34〉 and 〈&�>34〉 are 1 − 1 and

⌊
#
"

⌋
+ 1, respectively.

Thus, the codeword length is

1 − 1 +
⌊
#

"

⌋
+ 1 =

⌊
#

"

⌋
+ 1. (35)

Combining (34) and (35), we obtain (33).
It is easy to see that when C = 0, the codeword length of the

=-ary proposed coding scheme is the same as that of the =-ary
Golomb coding scheme (26). Next, we show that for integers
# and C > 0, the codeword length of the =-ary proposed coding
scheme (34) is also the same as that of the =-ary Golomb
coding scheme (26).

1) When 0 ≤ # < C, the =-ary Golomb coding scheme
given in (26) requires b#/"c +

⌊
Rem(# ," )

C

⌋
+ 1 − 1 =

0 + 0 + 1 − 1 = 1 − 1 symbols, which is equal to that of
the =-ary proposed coding scheme.

2) When 8" + C ≤ # < (8 + 1) " , we have 8 =
⌊
#−C
"

⌋
.

The codeword length of the =-ary Golomb coding scheme
given in (26) requires b#/"c +

⌊
Rem(# ," )

C

⌋
+ 1 − 1 =

8 + 1 + 1 − 1 = 1 + 8 symbols, which is equal to (34).
3) When (8 + 1) " ≤ # < (8 + 1) " + C, we have 8 =

⌊
#−C
"

⌋
.

The codeword length of the =-ary Golomb coding scheme
given in (26) requires b#/"c +

⌊
Rem(# ," )

C

⌋
+ 1 − 1 =

8 + 1 + 0 + 1 − 1 = 1 + 8 symbols, which is also equal to
(34).

�

E. Simulation and discussion

In this subsection, we first give the simulation results to
show the compression ratio and the throughput for =-ary
coding schemes. Then, the benefits of =-ary coding schemes
are discussed.

1) Simulation results: In the first simulation, we show
the compression ratio of =-ary codings for = ∈ {=8}I8=1,
I ∈ N. First, the input sequence, which consists of 8000 32-bit
integers, is generated by the GNU scientific library with (20),
which is determined by " . From (21), we have

" = 8 × lcm (=1 − 1, =2 − 1, · · · =I − 1) , 8 ∈ N.

Figure VI presents the simulation results for 8 = 1, " = 9765
and = = 2, 4 . . . , 64. The compression ratio is defined as the
number of bits of the compressed file divided by the number
of bits of the original file. As one can see, the larger =, the
poorer compression ratio.

Next, we show the throughput of =-ary codings. To fa-
cilitate the implementations on conventional computers, this
simulation considers the =-ary coding schemes for = = 2;
(i.e., for an = that is a power of two). Table VII tabulates the
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throughput of =-ary Golomb coding and the =-ary proposed
coding scheme for = = 2, 4, 8 and " = 21. Table VIII
shows the throughput of =-ary Golomb coding and =-ary Exp-
Golomb for = = 2, 256. It can be seen that the =-ary Golomb
coding scheme (= = 2, 256) has a higher throughput than =-ary
Exp-Golomb coding during encoding and decoding.

2) Benefits of =-ary coding schemes: As shown in the above
simulation results, the =-ary coding schemes have poorer
compression ratios and lower throughput on conventional com-
puters. However, the =-ary coding schemes are still important
in other aspects. First, as stated in Section I, Exp-Golomb
coding has a non-binary version. However, to our knowledge,
Golomb coding lacks a non-binary version, and the major
work of this paper is to give the code construction. Second, in
backward-adaptive coding, the input symbol is encoded by a
coding system chosen from among multiple encoding schemes
[26]–[31]. To align the alphabet of output symbols, we usually
require that all the coding schemes use the same alphabet.
Thus, when backward-adaptive coding uses an =-ary coding
scheme and Golomb coding, we usually require that Golomb
coding should also be =-ary. Third, the proposed =-ary coding
schemes can be used in nonbinary computer systems, such as
ternary computers. A potential future application of ternary
computers is the circuit-based commercial quantum computer
developed by IBM in 2019. It uses a quantum ternary state
rather than the typical qubit.

VI. CONCLUSION

In this paper, we propose an entropy coding scheme for
geometric distributions. The length of the codeword is equal
to that of Golomb coding. However, the remainder of the
proposed coding scheme uses fixed-length coding, which can
significantly reduce the arithmetic complexity. The simulation
shows that the proposed coding involves approximately 20%
fewer addition operations, 40% fewer multiplication operations
and 20% more bitwise operations during encoding and 40%
fewer addition operations, 10% fewer multiplication opera-
tions, 50% fewer bitwise operations and 20% more branch
operations during decoding than Golomb coding. In addition,
the =-ary versions for both coding schemes are proposed and
analyzed.
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