
1

Zigzag-Decodable Reconstruction Codes with
Asymptotically Optimal Repair for All Nodes

Hanxu Hou, Member, IEEE, Patrick P. C. Lee, Senior Member, IEEE and Yunghsiang S. Han, Fellow, IEEE

Abstract—Zigzag-decodable codes have been proposed for
distributed storage systems to achieve fast decoding of uncoded
data packets through the iterative decoding of data bits from
coded packets. To maintain high data availability, it is critical
to minimize the repair bandwidth by downloading the least
amount of bits for repairing any lost packet. In this work,
we propose zigzag-decodable reconstruction (ZDR) codes which
achieve asymptotically minimum repair bandwidth for repairing
a single node, while preserving the high computational efficiency
due to zigzag decoding. We present two explicit constructions of
ZDR codes such that any node of ZDR codes can be repaired with
asymptotically minimum repair bandwidth. The first construction
is based on the well-designed encoding matrix and a generic
transformation, while the second construction is designed by
recursively employing the proposed generic transformation for
any existing zigzag-decodable code. Moreover, we show that the
proposed two classes of ZDR codes can be decoded by the zigzag
decoding algorithm and have less computational complexity than
the existing codes with asymptotically or exactly minimum repair
bandwidth.

Index Terms—Zigzag-decodable codes, minimum repair band-
width, zigzag-decodable reconstruction codes, computational
complexity.

I. INTRODUCTION

Distributed storage systems achieve high fault tolerance by
striping data redundancy across multiple storage nodes. Reed-
Solomon (RS) codes [1] are a well-known family of erasure
codes that have been widely implemented in production [2],
[3]. An (n, k) RS code divides file data into k uncoded data
packets of L bits, which are encoded into additional r = n−k
coded packets of the same size. The n packets are stored in n
nodes (one packet per node). The maximum distance separable
(MDS) property, that any k out of the n nodes can recover
all the original data packets, should be maintained to tolerate
any n−k node failures. RS codes are storage-optimal, as they
incur the minimum amount of redundancy to achieve the MDS
property. However, RS codes have two drawbacks. First, RS
codes perform all coding operations over a large finite field,
thereby incurring high encoding and decoding complexities.
Second, RS codes download k packets from surviving nodes to
repair any lost packet, thereby incurring high repair bandwidth
(i.e., the amount of bits transferred during a repair operation).

H. Hou and Y. S. Han are with the School of Electrical Engineer-
ing & Intelligentization, Dongguan University of Technology (E-mail: h-
hx@dgut.edu.cn). P. P. C. Lee is with Department of Computer Sci-
ence and Engineering, The Chinese University of Hong Kong (E-mail:
pclee@cse.cuhk.edu.hk). This work was partially supported by the Na-
tional Natural Science Foundation of China (No. 61701115, 61671007),
Start Fund of Dongguan University of Technology (No. GB200902-19,
KCYXM2017025), and Research Grants Council of Hong Kong (GRF
14216316 and CRF C7036-15G).

Zigzag decoding [4] is a fast decoding technique that allows
data bits to be iteratively decoded from coded bits. It is
originally designed for wireless communications [4]. Follow-
up studies propose zigzag-decodable codes for distributed
storage systems [5], [6] to achieve fast decoding of data
packets using only XOR operations with the overall decoding
complexity O(k2L) [5]. However, existing zigzag-decodable
codes still incur high repair bandwidth as in RS codes.

As failures are prevalent in practice [2], it is critical to
minimize the repair bandwidth in the face of failures to
maintain high data availability. Assume that a file data with kα
data packets is encoded with additional rα coded packets. The
data packets and coded packets are stored in n = k+r nodes,
where each node stores α packets with the MDS property
being satisfied. The number of bits stored in each node, αL,
is called sub-packetization level. The first k nodes that store
data packets are called data nodes and the last r nodes that
store coded packets are called coded nodes. Let d (where
k ≤ d ≤ n − 1) be the number of surviving nodes that are
accessed to repair a single failed node. It is shown in [7]
that repairing the α packets in a single failed node needs to
download at least Lα

d−k+1 bits from each of the d surviving
nodes, and hence the minimum repair bandwidth is

dLα

d− k + 1
(bits), (1)

where L is the size of data packets. Many constructions [7]–
[11] have been proposed to achieve the minimum repair band-
width. However, such constructions operate on a sufficiently
large finite field and incur high computational complexity.
Thus, we pose the following question: Can we minimize the
repair bandwidth of zigzag-decodable codes, while preserving
the decoding efficiency? This question will be answered in this
work.

A. Related Work

Several MDS codes [12]–[19] have been proposed to
achieve asymptotically or exactly minimum repair bandwidth,
while incurring lower computational complexity. One way
to reduce the computational complexity is to reduce the
underlying field size. Some constructions over small nonbinary
field with optimal repair bandwidth are given in [11], [20],
[21]. Computational complexity would be especially lower if
a code is designed over the binary field. For example, MDR
codes [12] and ButterFly codes [13] achieve the minimum
repair bandwidth with two coded nodes (i.e., r = 2). Some
constructions over the binary field support more than two

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

coded nodes with the asymptotically minimum repair band-
width [15]–[18]; however, they do not provide any efficient
decoding algorithm when some nodes are erased. A generic
transformation for EVENODD codes [22], [23] is proposed in
[24] to enable the minimum repair bandwidth such that the
existing efficient decoding method of EVENODD codes [23],
[25] can be employed in the transformed EVENODD codes.
However, the efficient decoding methods in [23], [25] are only
applicable for some special cases corresponding to solving
the linear systems with Vandermonde matrix. The decoding
complexity of the general case is with O(k2L2), where L is
the packet length.

Another way to reduce the computational complexity, es-
pecially the decoding complexity, is to design codes that can
avoid the step of transforming the system of linear equations
to row echelon form or computing the inverse matrix of the
encoding matrix, where only backward substitution is required.
Zigzag-decodable codes [5] are such codes that only require
backward substitution (call zigzag decoding) in the decoding
process. Some constructions of zigzag-decodable codes have
been proposed in [5], [6], [26], however, they do not consider
the repair problem of one failed node and the repair bandwidth
is high. Similar idea is used in index coding [27] and secret
sharing scheme [28]. Product-matrix regenerating codes [14]
achieve the minimum repair bandwidth and can be augment-
ed with zigzag decoding; however, when they build on the
product-matrix coding framework [8], they only have a low
code rate (i.e., the ratio of the file size to the total storage
space) up to 0.5.

B. Contribution

This paper proposes a new class of erasure codes called
zigzag-decodable reconstruction (ZDR) codes which achieve
five practical properties that are critical for real-world de-
ployment: (i) MDS property (i.e., accessing any k out of n
nodes can recover the information stored in the k data nodes);
(ii) efficient decoding (i.e., any erased data nodes can be
decoded through zigzag decoding); (iii) XOR-only operations
(i.e., all encoding, decoding, and repair operations involve
only bitwise XORs); (iv) high code rate (i.e., the code rate
is larger than 0.5); and (v) asymptotically minimum repair
bandwidth for a single node (i.e., repairing any single node
achieves the minimum repair bandwidth asymptotically in n
or L by connecting to d = n−1 surviving nodes). Note that in
ZDR codes, the size of data packet is L and the size of coded
packet is no less than L, but the additional storage overhead
of coded packet becomes negligible if L is sufficiently large.

We first give a construction of zigzag-decodable codes by
choosing a well-designed encoding matrix that have asymp-
totically minimum repair bandwidth for a single data node,
and then present a generic transformation that can transform
any zigzag-decodable codes into a new zigzag-decodable code
with asymptotically minimum repair bandwidth for each of
any r nodes. Next, we present two explicit constructions of
ZDR codes that have the above five practical properties. The
first construction is based on the proposed zigzag-decodable
codes with asymptotically minimum repair bandwidth for any

one of data nodes and the generic transformation for zigzag-
decodable codes. The second construction is designed by
recursively applying the generic transformation for a zigzag-
decodable codes.

Although both the proposed ZDR codes and the zigzag-
decodable codes in [5] can be decoded by zigzag decoding,
the two codes are fundamental different. First, our ZDR
codes have asymptotically or exactly optimal repair bandwidth
for all nodes, while not for the codes in [5]. Second, the
technique employed in the construction is different. In this
paper, we present two classes of ZDR codes. The first class
of ZDR codes is constructed by first choosing a well-design
encoding matrix and then apply the transformation designed
for ZDR codes. The second class of ZDR codes is constructed
by recursively applying the proposed transformation for any
zigzag-decodable codes, such as the codes in [5]. The zigzag-
decodable codes in [5] only consider the zigzag decoding, but
not to reduce the repair bandwidth.

Similar transformation in optimizing repair bandwidth of
MDS codes can be found in [10], [24], [29]. Li et al. [10]
propose a transformation for non-binary MDS codes to enable
optimal repair bandwidth. Two different transformations for
binary MDS array codes are considered in [24], [29] to enable
optimal repair bandwidth. A more general transformation for
MDS codes to enable optimal repair bandwidth with more
parameters is given in [30]. The main differences between
our transformation and the transformations in [10], [24], [29],
[30] are summarized as follows. First, the structures of our
transformation and the transformations in [10], [24], [29], [30]
are different. In our transformation, we first make some cyclic-
shifts for the r× r square matrix corresponding to the chosen
r nodes that are enabled to have optimal repair bandwidth,
and then replace some entries in the r × r square matrix by
linear combinations. In contrast, cyclic-shifts for the r × r
square matrix are not made in the transformations [10], [24],
[29], [30]. Because of the above difference, we can apply
the transformation for the designed zigzag-decodable codes
with asymptotically optimal repair bandwidth for any data
node to obtain ZDR codes that have asymptotically or exactly
optimal repair bandwidth for any node. Second, the existing
transformations [10], [24], [29], [30] do not work for zigzag-
decodable codes, while our transformation not only works for
zigzag-decodable codes but also for MDS array codes.

This paper is organized as follows. In Section II, we
first present a simple motivating example that illustrates the
proposed approach. In Section III, we give a new construction
of zigzag-decodable codes that have asymptotically minimum
repair bandwidth for every data node. Section IV presents a
generic transformation for any one zigzag-decodable codes
to enable asymptotically minimum repair bandwidth for any
coded node. In Section V, we propose ZDR codes that have
asymptotically minimum repair bandwidth for all nodes, and
give two code constructions of ZDR codes. We also give the
repair algorithm and decoding method for the proposed two
classes of ZDR codes in Section V. Section VII concludes the
paper.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

TABLE I: Example of ZDR codes with (n, k, α) = (4, 2, 2)
and L = 8.

Node 0 Node 1 Node 2 Node 3
s00,0 s00,1 s00,2 = s00,0 + s00,1 s00,3 = s00,0

+s10,0 + s10,1 s10,3 = s00,0 + s00,1
s10,0 s10,1 s10,2 = s10,0 +s14,0 + s14,1
s01,0 s01,1 s01,2 = s01,0 + s01,1 s01,3 = s01,0 + s00,1

+s11,0 + s11,1 s11,3 = s01,0 + s01,1
s11,0 s11,1 s11,2 = s11,0 + s10,1 +s15,0 + s15,1
s02,0 s02,1 s02,2 = s02,0 + s02,1 s02,3 = s02,0 + s01,1

+s12,0 + s12,1 s12,3 = s02,0 + s02,1
s12,0 s12,1 s12,2 = s12,0 + s11,1 +s16,0 + s16,1
s03,0 s03,1 s03,2 = s03,0 + s03,1 s03,3 = s03,0 + s02,1

+s13,0 + s13,1 s13,3 = s03,0 + s03,1
s13,0 s13,1 s13,2 = s13,0 + s12,1 +s17,0 + s17,1
s04,0 s04,1 s04,2 = s04,0 + s04,1 s04,3 = s04,0 + s03,1

+s14,0 + s14,1 s14,3 = s04,0 + s04,1 + s14,0
s14,0 s14,1 s14,2 = s14,0 + s13,1 +s14,1 + s10,0 + s10,1
s05,0 s05,1 s05,2 = s05,0 + s05,1 s05,3 = s05,0 + s04,1

+s15,0 + s15,1 s15,3 = s05,0 + s05,1+

s15,0 s15,1 s15,2 = s15,0 + s14,1 s15,0 + s15,1 + s11,0 + s11,1
s06,0 s06,1 s06,2 = s06,0 + s06,1 s06,3 = s06,0 + s05,1

+s16,0 + s16,1 s16,3 = s06,0 + s06,1 + s16,0
s16,0 s16,1 s16,2 = s16,0 + s15,1 +s16,1 + s12,0 + s12,1
s07,0 s07,1 s07,2 = s07,0 + s07,1 s07,3 = s07,0 + s06,1

+s17,0 + s17,1 s17,3 = s07,0 + s07,1 + s17,0
s17,0 s17,1 s17,2 = s17,0 + s16,1 +s17,1 + s13,0 + s13,1

s18,2 = s17,1 s08,3 = s07,1

II. A MOTIVATING EXAMPLE

We present a motivating example with (n, k, α) = (4, 2, 2)
and L = 8 to show the construction of ZDR codes. Table I
presents the code given in the example. Note that each data
node stores αL = 16 bits and each coded node stores 17
bits, i.e., the additional storage overhead of each coded node
is one bit. For nodes 0 and 1, each of them stores 2L =
16 information bits s00,0, s

0
1,0, . . . , s

0
7,0, s

1
0,0, s

1
1,0, . . . , s

1
7,0 and

s00,1, s
0
1,1, . . . , s

0
7,1, s

1
0,1, s

1
1,1, . . . , s

1
7,1, respectively. Let s0i,0 =

s1i,0 = s0i,1 = s1i,1 = 0 for i < 0 and i > 7. Node 2 stores 17
parity bits s00,2, s

0
1,2, . . . , s

0
7,2 and s10,2, s

1
1,2, . . . , s

1
8,2 that are

computed as

s0i,2 = s0i,0 + s0i,1 + s1i,0 + s1i,1 for i = 0, 1, . . . , 7,

s1i,2 = s1i,0 + s1i−1,1 for i = 0, 1, . . . , 8.

Node 3 stores 17 parity bits s00,3, s
0
1,3, . . . , s

0
8,3 and

s10,3, s
1
1,3, . . . , s

1
7,3 that are computed as

s0i,3 = s0i,0 + s0i−1,1 for i = 0, 1, . . . , 8,

s1i,3 = s0i,0 + s0i,1 + s14+i,0 + s14+i,1 for i = 0, 1, 2, 3,

s1i,3 = s0i,0 + s0i,1 + s1i,0 + s1i,1 + s1i−4,0 + s1i−4,1 for i = 4, 5, 6, 7.

We argue that we can recover the information bits from any
two nodes (i.e., the MDS property holds). From node 0 and
node 1, we can directly obtain the information bits. Also, we
can verify that the information bits can be obtained from node
0 or node 1 plus any of node 2 and node 3. For example, if
we want to decode the information bits from node 0 and node
2, we can subtract s1i,0 from s1i,0 + s1i−1,1 to get the value of
s1i−1,1 for i = 1, 2, . . . , 8, and then decode s0i,1 by subtracting
s0i,0, s

1
i,0, s

1
i,1 from s0i,0 + s0i,1 + s1i,0 + s1i,1 for i = 0, 1, . . . , 7.

Finally, we can decode the information bits from node 2 and
node 3. First, we can compute s0i,0 + s0i,1 and s1i,0 + s1i,1
for i = 0, 1, . . . , 7 from s00,2, s

0
1,2, . . . , s

0
7,2, s

1
0,3, s

1
1,3, . . . , s

1
7,3.

Specifically, we can obtain s1i,0 + s1i,1 for i = 0, 1, 2, 3
by s0i+4,2 + s1i+4,3; obtain s0i,0 + s0i,1 for i = 0, 1, 2, 3 by
s0i,2 + (s1i,0 + s1i,1); obtain s1i,0 + s1i,1 for i = 4, 5, 6, 7
by s1i,3 + (s0i−4,0 + s0i−4,1); and then obtain s0i,0 + s0i,1 for
i = 4, 5, 6, 7 by s0i,2 + (s0i,0 + s0i,1). We can decode s1i,0, s

1
i,1

from s1i,0 +s1i,1 and s1i,0 +s1i−1,1 for i = 0, 1, . . . , 7 via zigzag
decoding as follows. We can directly obtain s10,0, and then
subtract s10,0 from s10,0+s10,1 to obtain s10,1, which is subtracted
from s11,0 + s10,1 to obtain s11,0, until all 16 information bits
s1i,0, s

1
i,1 with i = 0, 1, . . . , 7 are decoded. We can also decode

s0i,0, s
0
i,1 from s0i,0 + s0i,1 and s0i,0 + s0i−1,1 for i = 0, 1, . . . , 7

with the same method.
Our code construction also permits efficient repair upon the

failure of any single node. We consider the case that node 0
fails as an example. Instead of decoding the information bits
of node 0 by retrieving the bits from k = 2 nodes, we can
recover node 0 with smaller repair bandwidth by retrieving the
bits from the remaining three surviving nodes. Specifically, we
recover the bits s12`,0 for ` = 0, 1, 2, 3 by

s10,0 =s10,1 + (s04,2 + s14,3),

s12,0 =s12,1 + (s06,2 + s16,3),

s14,0 =s14,1 + (s00,2 + s10,3),

s16,0 =s16,1 + (s02,2 + s12,3),

and s02`,0 for ` = 0, 1, 2, 3 by

s02`,0 =s02`,1 + s12`,0 + s12`,1 + s02`,2,

and then repair the bits s12`+1,0 and s02`+1,0 for ` = 0, 1, 2, 3
by

s12`+1,0 =s12`,1 + s12`+1,2,

s02`+1,0 =s02`,1 + s02`+1,3.

The repair bandwidth is 24 bits, and is equal to the optimal
value in Eq. (1) with (k, d, α, L) = (2, 3, 2, 8). On the other
hand, we can repair the bits in node 1 by

s10,1 =s10,0 + (s04,2 + s14,3),

s12,1 =s12,0 + (s06,2 + s16,3),

s14,1 =s14,0 + s10,0 + s10,1 + (s00,2 + s10,3),

s16,1 =s16,0 + s12,0 + s12,1 + (s02,2 + s12,3),

s02`,1 =s02`,0 + s12`,0 + s12`,1 + s02`,2, for ` = 0, 1, 2, 3,

and

s12`+1,1 =s12`+2,0 + s12`+2,2 for ` = 0, 1, 2, 3,

s02`+1,1 =s02`+2,0 + s02`+2,3 for ` = 0, 1, 2, 3.

The repair bandwidth is also 24 bits. Furthermore, we can
repair the bits in node 2 by downloading 24 bits s1i,0, s

1
i,1, s

1
i,3

for i = 0, 1, . . . , 7. Specifically, we can repair s1i,2 by

s1i,2 = s1i,0 + s1i−1,1 for i = 0, 1, . . . , 8,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

and repair s00,2, s
0
1,2, . . . , s

0
7,2 by

s0i,2 =s1i,3 + s1i,0 + s1i,1 + s1i+4,0 + s1i+4,1 for i = 0, 1, 2, 3,

s0i,2 =s1i,3 + s1i−4,0 + s1i−4,1 for i = 4, 5, 6, 7.

Similarly, the repair bandwidth of node 3 is also 24 bits, as
we can repair s0i,3 by

s0i,3 = s0i,0 + s0i−1,1 for i = 0, 1, . . . , 8,

and repair s1i,3 by

s1i,3 =s0i+4,2 + s0i,0 + s0i,1 + s0i+4,0 + s0i+4,1 for i = 0, 1, 2, 3,

s1i,3 =s0i,2 + s0i−4,2 + s0i−4,0 + s0i−4,1 for i = 4, 5, 6, 7.

In the following, we first present a construction of zigzag-
decodable codes that have asymptotically minimum repair
bandwidth for k data nodes. Then, we propose a generic trans-
formation that can transform any zigzag-decodable codes into
a new zigzag-decodable codes with asymptotically optimal
repair bandwidth for any arbitrary r nodes.

III. NEW ZIGZAG-DECODABLE CODES WITH
ASYMPTOTICALLY MINIMUM REPAIR BANDWIDTH FOR

DATA NODES

In the section, we propose the explicit construction of
zigzag-decodable codes with each node storing one packet
(α = 1), which achieve the asymptotically minimum repair
bandwidth for repairing any data node, while preserving the
zigzag decoding property.

Assume that zigzag-decodable codes have k ≥ 2 data nodes
and r ≥ 2 coded nodes. Each data node stores one data packet
and each coded node stores one coded packet. We identify the
bits in a packet using the coefficients of a polynomial. We can
represent a packet by a polynomial in the binary polynomial
ring F2[z]. Let s0(z), s1(z), . . . , sk−1(z) ∈ F2[z] be the k
data packets with size L bits, where sj(z) =

∑L−1
i=0 si,jz

i

for j = 0, 1, . . . , k − 1. Let sk+h(z) be a coded packet, for
h = 0, 1, . . . , r − 1, such that it can be expressed as a linear
combination of the k data packets:

sk+h(z) = ch,0(z)s0(z) + · · ·+ ch,k−1(z)sk−1(z),

with encoding coefficients ch,j(z) being drawn from F2[z].
If ch,j(z) is a power of z, the exponent of ch,j(z) denotes
the number of right-shifts of the packet sj(z) in comput-
ing the coded packet sk+h(z). For example, the coefficients
(0, s0,1, s1,1, . . . , sL−1,1) of the polynomial zs1(z) are viewed
as a right-shift of the coefficients (s0,1, s1,1, . . . , sL−1,1) of
polynomial s1(z).

The encoding coefficients ch,0(z), ch,1(z), . . . , ch,k−1(z)
form a vector, which we call the encoding vector of the
associated coded packet. Due to bitwise shifting, the length
of the coded packet is L plus the maximum degree of the
encoding coefficients. The maximum degree of the coefficients
thus provide a measure of the storage overhead.

Given the k data packets, the r coded packets are computed
as 

sk(z)
sk+1(z)

...
sk+r−1(z)

 = Er×k ·


s0(z)
s1(z)

...
sk−1(z)

 ,
where the encoding matrix is

Er×k = [ch,j(z)]
0≤j≤k−1
0≤h≤r−1 = [zh·r

j−h]0≤j≤k−10≤h≤r−1. (2)

The codes with encoding matrix given in Eq. (2) are the
proposed zigzag-decodable codes. Due the bitwise right-shift,
the length of coded packet is L plus the maximum degree of
the encoding coefficients. According to the encoding matrix
in Eq. (2), the length of coded packet is upper bounded by
L+(r−1)rk−1− r+1. The storage overhead is at most (r−
1)rk−1−r+1 which is negligible if L� (r−1)rk−1−r+1.

A. Zigzag Decoding

In the remaining of the section, let ` be the number of coded
packets involved in the decoding procedure. Consider the `×`
linear system

[c0(z), . . . , c`−1(z)]T = E(z)[s0(z), . . . , s`−1(z)]T ,

where s0(z), . . . , s`−1(z) are packets with L bits, and E(z) =
[zeh,j]0≤j≤`−10≤h≤`−1 is an `×` matrix. It is shown in [5] that we can
decode s0(z), . . . , s`−1(z) from c0(z), . . . , c`−1(z) by zigzag
decoding, if

0 < eh,j′ − eh,j < eh′,j′ − eh′,j

holds for all h < h′ and j < j′. The above condition is called
increasing-difference property in [5]. For h = 0, 1, . . . , `− 1,
we have

ch(z) = zeh,0s0(z) + zeh,1s1(z) + · · ·+ zeh,k−1sk−1(z).

Denote the exponent matrix of E(z) by E`×` = [eh,j]
0≤j≤`−1
0≤h≤`−1.

Define w(f(z)) as the lowest degree of terms in f(z) and
Ω(f(z)) as the term with lowest degree in f(z). The zigzag
decoding algorithm is briefly given in Algorithm 1. For details,
please refer to [5].

In the next theorem, we show the correctness of zigzag
decoding.

Theorem 1. If one can always find h∗ and j∗ in Step 2
of Algorithm 1 when M′ 6= ∅, then zigzag decoding can
successfully recover the unknown data packets.

Proof. Recall that eh,j denotes the number of right-shifts of
the data packet sj(z) for the coded packet ch(z). We use
w(ηj(z)) to represent the number of coefficients of sj(z)
decoded in the algorithm and s̄j(z) be the decoded portion of
sj(z) in each iteration. When ηj(z) = 0, we set w(ηj(z)) = L.

In the first iteration, we have w(zeh,jηj(z)) = eh,j
and there exists at least one h∗ ∈ {0, 1, . . . , ` − 1}
such that w(zeh∗,j∗ ηj∗(z)) − w(zeh∗,jηj(z)) < 0 for
all j ∈ {0, 1, . . . , ` − 1} \ {j∗} by the assumption.
For each of such h∗, we have min{w(zeh∗,jηj(z)) −

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Algorithm 1 Zigzag Decoding Algorithm.
Inputs:

Encoding matrix Er×k in (2), M′ = {0, 1, . . . , ` − 1},
s̄h(z) = 0 for all h ∈ {0, 1, . . . , ` − 1} and ηj(z) =
1 + z + . . .+ zL−1 for all j ∈ {0, 1, . . . , `− 1}.
Outputs:

Output s̄j(z) for all j ∈ {0, 1, . . . , `− 1}.
1: if M′ 6= ∅ then
2: Find h∗ ∈ {0, 1, . . . , `− 1} and j∗ ∈ {0, 1, . . . , `− 1}

such that w(zeh∗,j∗ ηj∗(z))−w(zeh∗,jηj(z)) < 0 for all
j ∈ {0, 1, . . . , ` − 1} \ {j∗}. (We can select any pair
of h∗ and j∗ if there are more than one pair have been
chosen). If no such h∗ and j∗ exists, exit and report
decoding failure.

3: Let s̄j∗(z) = s̄j∗(z) + Ω(ch∗(z)).
4: for h ∈ {0, 1, . . . , `− 1} do
5: Let ch(z) = ch(z) + Ω(ch∗(z)).
6: Remove from ηj∗(z) its lowest degree term. If ηj∗(z)

has no more terms, then let M′ =M′ \ {j∗}.

w(zeh∗,j∗ ηj∗(z))}j 6=j∗,j∈{0,1,...,`−1} > 0 and the lowest de-
gree term of the coded packet ch∗(z) is equal to the lowest
degree term of the data packet sj∗(z). Therefore, we can
update s̄j∗(z) by s̄j∗(z) = s̄j∗(z) + Ω(ch∗(z)), and further
subtract the decoded term of sj∗(z) from the other `−1 coded
packets, i.e., update ch(z) by ch(z) = ch(z) + Ω(ch∗(z)) for
all h ∈ {0, 1, . . . , ` − 1}. In the iteration, we have decoded
the lowest term of sj∗(z) and we can remove from ηj∗(z) its
lowest degree term.

By assumption, we can always find at least one h∗ ∈
{0, 1, . . . , `−1} in each iteration such that w(zeh∗,j∗ ηj∗(z))−
w(zeh∗,jηj(z)) < 0 for all j ∈ {0, 1, . . . , ` − 1} \ {j∗}.
Therefore, we can decode the lowest degree term among all
the unsolved terms of the data packet sj∗(z) from the coded
packet ch∗(z). Specifically, we can update s̄j∗(z) by s̄j∗(z) =
s̄j∗(z) + Ω(ch∗(z)), and further subtract the decoded term of
sj∗(z) from the other `− 1 coded packets, i.e., update ch(z)
by ch(z) = ch(z) + Ω(ch∗(z)) for all h ∈ {0, 1, . . . , ` − 1}.
In the iteration, we have decoded the lowest term among all
unsolved terms of sj∗(z) and we can remove from ηj∗(z) its
lowest degree term.

When ηj∗(z) has no more terms, it means that all the
coefficients of the data packet sj∗(z) are decoded and we
remove the entry j∗ from M′. When M′ = ∅, it means that
all ` data packets are decoded and the outputs s̄j(z) are the
decoded data packets for all j ∈ {0, 1, . . . , `− 1}. Therefore,
all the data bits are successfully decoded and the unknown
data packets are successfully decoded by the zigzag decoding
algorithm.

Note that when the code is not zigzag decodable, Algorith-
m 1 exits in Step 2. If the `×` matrix satisfies the increasing-
difference property, it has been proved that we can always find
h∗ and j∗ in Step 2 [5] and it is zigzag decodable.

Consider that k − ` data packets and ` coded packets of
the proposed new zigzag-decodable codes are used to decode
the k data packets, where 0 ≤ ` ≤ r. We can first subtract

k− ` data packets from each of the ` coded packets to obtain
` packets that are linear combinations of the unknown ` data
packets with encoding matrix corresponding to `×` sub-matrix
of Er×k in Eq. (2). By Theorem 1, we can recover ` unknown
data packets, if we can always find h∗ and j∗ in Algorithm
1. The next theorem shows that the zigzag decoding condition
in Theorem 1 is always satisfied.

Theorem 2. Given k − ` data packets and ` coded packets
of the proposed new zigzag-decodable codes with encoding
matrix in Eq. (2). One can always recover the ` unknown
data packets by zigzag decoding for ` = 1, 2, . . . , r.

Proof. We first check that the matrix consisting of the last
r−1 rows of Er×k in Eq. (2) satisfies the increasing-difference
property. Recall that the exponent matrix Er×k of the encoding
matrix in Eq. (2) is

Er×k = [eh,j]
0≤j≤k−1
0≤h≤r−1 = [hrj − h]0≤j≤k−10≤h≤r−1.

Let 1 ≤ x < x′ ≤ r − 1 and 0 ≤ y < y′ ≤ k − 1, we have
that

ex′,y′ − ex′,y =x′ry
′
− x′ − (x′ry − x′)

=x′(ry
′
− ry)

>x(ry
′
− ry)

=ex,y′ − ex,y > 0.

Thus, the matrix consisting of the last r − 1 rows of Er×k
satisfies the increasing-difference property and we can always
recover the ` unknown data packets if the `×` matrix satisfies
the increasing-difference property [5].

We only need to consider the ` × ` sub-matrix of Eq. (2)
consisting of the first row and any other `−1 rows. The matrix
E`×` can be written as

E`×` = [ehx,jy]0≤y≤`−10≤x≤`−1 = [hxr
jy − hx]0≤y≤`−10≤x≤`−1, (3)

where 0 = h0 < . . . < h`−1 ≤ r − 1, 0 ≤ j0 < . . . < j`−1 ≤
k − 1 and 1 ≤ ` ≤ r. Since eh0,jy = 0, Eq. (3) does not
satisfy the increasing-difference property. However, we will
prove that we still can apply the zigzag decoding on Eq. (3).

After determining α0, α1, . . . , α`−1 information bits of the
` unknown data packets by zigzag decoding, respectively, the
updated lowest degree w(zehx,jy ηjy (z)) becomes

w(zehx,jy ηjy (z)) = hxr
jy − hx + αy,

where 0 ≤ α0, α1, . . . , α`−1 and 0 ≤ x, y ≤ `− 1. Let Sx be
the set

Sx = arg min
y∈{0,1,...,`−1}

{hxrjy − hx + αy}.

If the number of elements in Sx, |Sx|, is greater than or equal
to 2 for all x, then the zigzag decoding algorithm fails due
to the failure of Step 1. We next prove that the above failure
does not occur by contradiction. The proof is similar to that
given in the proofs of Lemma 1 and Theorem 2 in [5].

Assume that |Sx| ≥ 2 for all x. First, we prove that Sx has
the following properties:

1) Sx′ � Sx∗ for x′ < x∗. That is, the smallest element in
Sx′ is larger than or equal to the largest element in Sx∗ .

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

2) |Sx ∩ Sx+1| ≤ 1, for x = 0, 1, . . . , `− 2.
3) ∪x=0,1,...,`−1Sx can be partitioned into ` disjoint sub-

sets: S0 \ S1,S1 \ S2, . . . ,S`−2 \ S`−1,S`−1.
Consider the first property. Let x′ < x∗ and y′ ∈ Sx′ , y∗ ∈
Sx∗ , we need to prove that y′ ≥ y∗. As y′ ∈ Sx′ , y∗ ∈ Sx∗ ,
for all y ∈ {0, . . . , `− 1}, we have

hx′r
jy′ − hx′ + αy′ ≤ hx′rjy − hx′ + αy, (4)

hx∗r
jy∗ − hx∗ + αy∗ ≤ hx∗rjy − hx∗ + αy. (5)

Recall that the matrix consisting of the last r − 1 rows of
Er×k in Eq. (2) satisfies the increasing-difference property.
For 0 6= x′ < x∗, we have

hx′(r
jy − rjy′) < hx∗(r

jy − rjy′),∀y > y′.

When x′ = 0, the above inequality is still hold since 0 <
hx∗(r

jy − rjy′),∀y > y′. By Eq. (4), we have

αy′ − αy ≤ hx′(rjy − rjy′),∀y ∈ {0, . . . , `− 1}.

We thus obtain that

αy′ − αy < hx∗(r
jy − rjy′),∀y > y′,

which can be further written as

hx∗r
jy′ − hx∗ + αy′ < hx∗r

jy − hx∗ + αy,∀y > y′. (6)

Eq. (6) means that f(y) = hx∗r
jy − hx∗ + αy is larger than

f(y′) for y > y′. By Eq. (5), we have f(y) is larger than or
equal to f(y∗) for all y, which means that f(y) achieves the
minimum value when y = y∗. Clearly, y∗ is not larger than
y′, as f(y) > f(y′) for y > y′. Therefore, we obtain that
y∗ ≤ y′.

The second property follows from the first one. The
third property can be proved by mathematical induction.
We can partition S0 ∪ S1 into S0 \ S1 and S1. Assume
that ∪x=0,1,...,m−1Sx can be partitioned into S0 \ S1,S1 \
S2, . . . ,Sm−2 \ Sm−1,Sm−1. We can partition ∪x=0,1,...,mSx
into

S0 \ (S1∪Sm),S1 \ (S2∪Sm), . . . ,Sm−2 \ (Sm−1∪Sm),Sm.

The first two properties imply that for x = 0, 1, . . . ,m− 2,

Sx \ (Sx+1 ∪ Sm) = Sx \ Sx+1.

We thus have proved the third property by induction. There-
fore, we have

| ∪x=0,1,...,`−1 Sx| =
`−2∑
x=0

|Sx \ Sx+1|+ |S`−1|

≥`− 1 + 2 = `+ 1,

which is a contradiction. Therefore, we can always iteratively
decode the information bits by the zigzag decoding method
for all selected ` coded packets.

From Theorem 2, we can decode all the patterns of failures
for the proposed zigzag-decodable codes by zigzag decoding
method.

B. Repair Process

We present the repair algorithm for any data packet. Assume
that packet f fails, where 0 ≤ f ≤ k−1 and all n−1 surviving
packets participate in repairing packet f . By the h-th row of
the encoding matrix in Eq. (2), where h = 0, 1, . . . , r− 1, we
have

si,k+h = si,0 + si−hr+h,1 + · · ·+ si−hrk−1+h,k−1,

for i = 0, 1, . . . , L+hrk−1−h− 1. Thus, we can repair a bit
si,f by{

si,k+h +
∑k−1
j=1 si−hrj+h,j f = 0;

si+hrf−h,k+h +
∑k−1
j=0,j 6=f si+hrf−hrj ,j 1 ≤ f ≤ k − 1.

(7)
When we say a bit si,f is repaired by packet k + h, it means
that we access all the bits in Eq. (7) to recover si,f . Given
integers a and b, let (a)b be the remainder of a divided by
b. The repair algorithm is stated in Algorithm 2. There are
some common bits between the bits downloaded by different
packets. Hence, we can carefully choose the packets to repair
the failed bits in order to make the number of common bits as
large as possible in Algorithm 2. This is the essential reason
for achieving asymptotically optimal repair bandwidth of any
data packet. The next theorem shows the repair bandwidth of
one data packet with Algorithm 2.

Algorithm 2 Repair procedure of one data packet failure.
1: Suppose that the packet f has failed.
2: for (i)rf+1 ∈ {0, 1, . . . , rf − 1}. do
3: Repair si,f by packet k, i.e., by Eq. (7) with h = 0.
4: for t = 1, 2, . . . , r − 1 do
5: for (i)rf+1 ∈ {trf , trf + 1, . . . , (t+ 1)rf − 1}. do
6: Repair si,f by packet k+ r− t, i.e., by Eq. (7) with

h = r − t.

Theorem 3. Assume that L is a multiple of rk. We can repair
data packet f by Algorithm 2 and the repair bandwidth is

nL/r − L/rf+1. (8)

Proof. We first show that packet f can be repaired by Algo-
rithm 2. By Steps 2 and 3 in Algorithm 2, the bits si,f are
recovered by Eq. (7) with h = 0 when

(i)rf+1 ∈ {0, 1, . . . , rf − 1} (9)

and i ∈ {0, 1, . . . , L − 1}. As i ranges from 0 to L − 1 and
L is a multiple of rf+1, (i)rf+1 is uniform distributed over
{0, 1, . . . , rf+1 − 1}. Thus, the total number of bits si,f that
are recovered by Eq. (7) with h = 0 is L

rf+1 · rf = L/r.
By Steps 4 to 6 in Algorithm 2, for t = 1, 2, . . . , r− 1, the

bits si,f are recovered by Eq. (7) with h = r − t when

(i)rf+1 ∈ {trf , trf + 1, . . . , (t+ 1)rf − 1} (10)

and i ∈ {0, 1, . . . , L− 1}. As (i)rf+1 is uniform distribution,
the number of bits si,f that are recovered by Eq. (7) with
h = r − t for t = 1, 2, . . . , r − 1 is (r − 1)L/r. Since

{trf , . . . , (t+ 1)rf − 1} ∩ {t′rf , . . . , (t′ + 1)rf − 1} = ∅

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

for 0 ≤ t 6= t′ ≤ r − 1, the indices of all the bits in packet f
are distinct and all L bits are recovered by Algorithm 2.

Next, we calculate the repair bandwidth of packet f by
Algorithm 2. First, consider the case of 1 ≤ f ≤ k − 1. We
first download L/r information bits si,j for j = 0, 1, . . . , f −
1, f + 1, . . . , k − 1 and L/r parity bits si,k with indices in
Eq. (9) in Steps 2 and 3. Then, we only need to download the
bits in Steps 4 to 6 which have not downloaded in Steps 2 and
3. Consider the needed information bits si+(r−t)rf−(r−t)rj ,j
with j = 0, 1, . . . , f − 1, f + 1, . . . , k − 1 in Steps 4 to 6,
where i are in Eq. (10). Given i, the index of the needed
bit si+(r−t)rf−(r−t)rj ,j is i′ = i + (r − t)rf − (r − t)ri. If
(i′)rf+1 ∈ {0, 1, . . . , rf−1}, then we do not need to download
the bit si′,j , as it is downloaded in Steps 2 and 3. Otherwise,
it should be downloaded.

We first consider the bits si′,j for j = 0, 1, . . . , f − 1. If
(i)rf+1 = trf , then there exists an integer m such that i =
mrf+1 + trf . Thus, we have

(i′)rf+1 =(i+ (r − t)rf − (r − t)rj)rf+1

=rf+1 − (r − t)rj as f > j − 1.

By repeating the above procedure for (i)rf+1 = trf +
1, . . . , (t+ 1)rf − 1, we can obtain that

(i′)rf+1 = rf+1 − (r − t)rj , . . . , rf+1 − 1,

0, 1, . . . , rf − (r − t)rj − 1 (11)

when (i)rf+1 runs from trf to (t + 1)rf − 1. Thus, the bits
si′,j with j = 0, 1, . . . , f − 1 and i′ in the union set of all
the values in Eq. (11) are needed, and the union set of all the
values in Eq. (11) is

{rf+1 − (r − 1)rj , . . . , rf+1 − 1, 0, 1, . . . , rf − rj − 1},

which can be rearranged as

{0, 1, . . . , rf − rj −1, rf+1− (r−1)rj , . . . , rf+1−1}. (12)

Since rf − ri − 1 ≤ rf − 1 < rf+1 − (r − 1)rj ,

{0, 1, . . . , rf − rj − 1, rf+1 − (r − 1)ri, . . . , rf+1 − 1}
\{0, 1, . . . , rf − 1} = {rf+1 − (r − 1)rj , . . . , rf+1 − 1}.

We only need to download (r − 1)Lrj−f information bits
si′,j from packets j for j = 0, 1, . . . , f − 1 with (i′)rf+1 ∈
{rf+1 − (r − 1)rj , . . . , rf+1 − 1} in Steps 4 to 6.

By applying the same procedure to the information bits si′,j
with j = f + 1, f + 2, . . . , k − 1, we can prove that

(i′)rf+1 = 0, 1, . . . , rf − 1

when (i)rf+1 runs from trf to (t+ 1)rf − 1. In this case, all
needed bits have already been downloaded in Steps 2 and 3
and we thus do not need to download bits from packets j for
j = f + 1, f + 2, . . . , k − 1 in Steps 4 to 6.

We can count that the total number of bits downloaded from
k + r − 1 packets to repair the data packet f is

kL/r + (r − 1)L/r +

f−1∑
j=0

(r − 1)Lrj−f = nL/r − L/rf+1,

which is equal to Eq. (8). When f = 0, we can show that the
repair bandwidth is (n− 1)L/r with the same argument.

By Theorem 3, the repair bandwidth increases when f
increases. When f = 0, the repair bandwidth is (n − 1)L/r,
which achieves the lower bound in Eq. (1). When f = k− 1,
the repair bandwidth is

nL/r − L/rk < nL/r,

which is strictly less than n
n−1 times of the value in Eq. (1).

Therefore, the repair bandwidth of any one information failure
can achieve the optimal repair in Eq. (1) asymptotically when
n is large enough.

IV. A GENERIC TRANSFORMATION FOR
ZIGZAG-DECODABLE CODES

A zigzag-decodable code contains k data packets
s0(z), s1(z), . . . , sk−1(z) and r coded packets
sk(z), sk+1(z), . . . , sk+r−1(z), where each node stores α = 1
packet. We call k + r packets s0(z), s1(z), . . . , sk+r−1(z)
as a codeword of the zigzag-decodable code. Note that the
repair bandwidth of zigzag-decodable code is sub-optimal.
In order to minimize the repair bandwidth of this code, in
this section, we present a generic transformation that can
convert a zigzag-decodable code into a transformed code with
minimum repair bandwidth for a set of any r nodes. For ease
of presentation, we assume that the chosen r nodes are the
last r nodes in the following.

We first provide a brief overview of the proposed
generic transformation. In the transformed code, each n-
ode contains r packets. We first generate r codeword-
s s`0(z), s`1(z), . . . , s`k+r−1(z) of a zigzag-decodable code
according to the r × k data packages we want to en-
coded in the transformed code, where ` is the index of
the r codewords of a zigzag-decodable code and ` =
0, 1, . . . , r − 1. Note that the r × k data packages are in
s`0(z), s`1(z), . . . , s`k−1(z), where ` = 0, 1, . . . , r − 1. The
packets s`k(z), s`k+1(z), . . . , s`k+r−1(z) are called intermediate
packets as they are used to compute the coded packets stored
in coded nodes of the transformed code. Specifically, the r
intermediate packets s`k(z), s`k+1(z), . . . , s`k+r−1(z) are com-
puted by the multiplication of k data packets [s`0(z), s`1(z), . . .,
s`k−1(z)] and a specific encoding matrix such as the matrix
in Eq. (2). We can represent the r(k + r) packets of the
r codewords by an r × (k + r) array, where the entry in
row ` and column j is s`j(z) with ` = 0, 1, . . . , r − 1 and
j = 0, 1, . . . , k + r − 1. Data node j stores r data packets
in column j of the array, where j = 0, 1, . . . , k − 1. In order
to enable minimum repair bandwidth of each coded node, we
should store the r coded packets in coded node which are
linear combinations of the chosen intermediate packets. By
Eq. (1), the minimum repair bandwidth of repairing the failed
r coded packets in a coded node is k + r − 1 packets when
d = k + r − 1. In the repair procedure, we first download
k data packets in a row of the r × (k + r) array (within a
codeword) from k data nodes to retrieve the r intermediate
packets in the same row of the r × (k + r) array, and then
download r−1 coded packets from other surviving r−1 coded

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

nodes to recover the failed r coded packets, which achieves
the minimum repair bandwidth. Therefore, we should carefully
design the linear combinations to satisfy the following two
requirements: (i) we can recover the failed r coded packets
from the downloaded r− 1 coded packets and k data packets
within a codeword; (ii) we can retrieve all data packets from
any k nodes, i.e., the transformed codes satisfy MDS property.
Note that the size of coded packet is no less than L.

Let mj be the length of packet s`j(z), where j =
0, 1, . . . , k+r−1. When j = 0, 1, . . . , k−1, we have mj = L
and when j = k, k + 1, . . . , k + r − 1, we have mj ≥ L.
Denote the packet s`j(z) with length mj by column vector
s`j = [s`0,j , s

`
1,j , . . . , s

`
mj−1,j]

T . Suppose that mj is an even
number in the following, otherwise, we add a zero at the head
of sj , i.e.,

sj = [0, s0,j , s1,j , . . . , smj−1,j].

We also assume that L is an even integer. In order to enable
optimal repair bandwidth for the last r nodes, we need to
replace some entries in the r × r square matrix by a linear
transformation. On the other hand, in order to make sure that
the repair bandwidths of the first k nodes of the obtained
transformed codes are the same as those of the underlying
codes, we need to carefully design the linear transformation.
The following definitions are used in the transformation.

Given a column vector sj = [s0,j , s1,j , . . . , smj−1,j] with
length mj being an even number, we define ŝj as

ŝj =[smj−L

2 ,j
, smj−L

2 +1,j
, . . . , smj−L−1,j , s0,j , s1,j , . . . ,

smj−L

2 −1,j
, smj−L

2 ,j
, smj−L

2 +1,j , . . . , smj−1,j , smj−L,j ,

smj−L+1,j , . . . , smj−L
2 −1,j

]T , when mj > L,

ŝj =[smj−L
2 ,j
, smj−L

2 +1,j , . . . , smj−1,j , smj−L,j , smj−L+1,j ,

. . . , smj−L
2 −1,j

]T , when mj = L,

and define s̄j as

s̄j =[s0,j , s1,j , . . . , smj−L

2
−1,j

, 0, . . . , 0︸ ︷︷ ︸
mj−L

2

, smj−L,j ,

smj−L+1,j , . . . , smj−L
2
−1,j , 0, . . . , 0︸ ︷︷ ︸

L
2

]T , when mj > L,

s̄j =[smj−L,j , smj−L+1,j , . . . , smj−L
2
−1,j , 0, . . . , 0︸ ︷︷ ︸

L
2

]T ,when mj = L.

For example, when mj = 6 and L = 4, we have

ŝ1j =[s11,1, s
1
0,1, s

1
4,1, s

1
5,1, s

1
2,1, s

1
3,1]T ,

s̄1j =[s10,1, 0, s
1
2,1, s

1
3,1, 0, 0]T .

The definitions of ŝj and s̄j are used in designing the linear
transformation that is used to replace entries of the r×r matrix
to enable optimal repair bandwidth of the last r nodes. The
summation of two column vectors s1j , s

2
j both with length mj

is defined by

s1j ⊕ s2j = [s10,j + s20,j , s
1
1,j + s21,j , . . . , s

1
mj ,j + s2mj ,j]

T .

For j = 0, 1, . . . , k − 1, data node j stores r vectors
s0j , s

1
j , . . . , s

r−1
j , where each vector has L bits and there are in

total rL information bits. The rmj parity bits stored in each
coded node can be created by the following three steps.

1) Cyclic-right-shift i positions of the i-row (i =
0, 1, . . . , r − 1) of the following r × r matrix

P1
r×r =


s0k s0k+1 · · · s0k+r−1
s1k s1k+1 · · · s1k+r−1
...

...
. . .

...
sr−1k sr−1k+1 · · · sr−1k+r−1


to obtain the matrix

P2
r×r =


s0k s0k+1 s0k+2 · · · s0k+r−2 s0k+r−1

s1k+r−1 s1k s1k+1 · · · s1k+r−3 s1k+r−2
...

...
...

. . .
...

...
sr−1k+1 sr−1k+2 sr−1k+3 · · · sr−1k+r−1 sr−1k

 .
2) Recall that (a)b is the remainder of a divided by b. For

i, j ∈ {0, 1, . . . , r−1}, the entry in i row and j column
of the matrix P2

r×r is sik+(r−i+j)r . When i+ j < r−1,
replace the entry in i row and j column of the matrix
P2
r×r by sik+(r−i+j)r⊕s

r−1−j
k+(r−i+j)r . When i+j > r−1,

replace the entry in i row and j column of the matrix
P2
r×r by sik+(r−i+j)r ⊕ ŝr−1−jk+(r−i+j)r ⊕ s̄r−1−jk+(r−i+j)r . The

resulting matrix P3
r×r is given in Eq. (13).

3) The rmj parity bits p0
j ,p

1
j , . . . ,p

r−1
j stored in coded

node j are the r entries in column j of the matrix P3
r×r

for j = 0, 1, . . . , r − 1.
Note that the storage overhead of the transformed codes is the
same as that of the original zigzag-decodable codes.

Given columns j1 and j2 (j2 > j1 ≥ 0) of the matrix
P3
r×r in Eq. (13), the entry in row r−1−j1 and column j2 is

s
r−(1+j2)
k+(1+j1+j2)r

⊕ŝr−(1+j1)k+(1+j1+j2)r
⊕s̄r−(1+j1)k+(1+j1+j2)r

, and the entry in

row r−1−j2 and column j1 is sr−(1+j2)k+(1+j1+j2)r
⊕sr−(1+j1)k+(1+j1+j2)r

.

The next lemma shows that we can obtain s
r−(1+j2)
k+(1+j1+j2)r

and

s
r−(1+j1)
k+(1+j1+j2)r

from the two entries.

Lemma 4. The following statements are valid.
1) sik+` and sjk+` from sik+`⊕s

j
k+` and sik+`⊕ŝ

j
k+`⊕s̄

j
k+`;

2) sik+` ⊕ sjk+` from sjk+` and sik+` ⊕ ŝjk+` ⊕ s̄jk+`;
3) sik+` ⊕ ŝjk+` ⊕ s̄jk+` from sjk+` and sik+` ⊕ sjk+`;
4) sjk+` from ŝjk+` ⊕ s̄jk+`.

Proof. Consider the first statement. From sik+` ⊕ sjk+` and
sik+` ⊕ ŝjk+` ⊕ s̄jk+`, we can obtain

sit,k+` + sjt,k+` for 0 ≤ t ≤ mk+` − 1,

sit,k+` + sjmk+`−L

2
−t,k+`

+ sjt,k+` for 0 ≤ t ≤ mk+` − L

2
− 1,

sit,k+` + sj
t−

mk+`−L

2
,k+`

for
mk+` − L

2
≤ t ≤ mk+` − L− 1,

sit,k+` + sj
t+

mk+`−L

2
,k+`

+ sjt,k+` for mk+` − L ≤ t ≤ mk+` −
L

2
− 1,

sit,k+` + sj
t+L

2
,k+`

for mk+` −
L

2
≤ t ≤ mk+` − 1.

We can first compute sjmk+`−L

2 −t,k+`
for 0 ≤ t ≤ mk+`−L

2 −1

by

(sit,k+` + sjt,k+`) + (sit,k+` + sjmk+`−L

2 −t,k+`
+ sjt,k+`),

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9


s0k ⊕ sr−1k s0k+1 ⊕ sr−2k+1 · · · s0k+r−2 ⊕ s1k+r−2 s0k+r−1

s1k+r−1 ⊕ sr−1k+r−1 s1k ⊕ sr−2k · · · s1k+r−3 s0k+r−2 ⊕ ŝ1k+r−2 ⊕ s̄1k+r−2
...

...
. . .

...
...

sr−2k+2 ⊕ sr−1k+2 sr−2k+3 · · · s1k ⊕ ŝr−2k ⊕ s̄r−2k s0k+1 ⊕ ŝr−2k+1 ⊕ s̄r−2k+1

sr−1k+1 sr−2k+2 ⊕ ŝr−1k+2 ⊕ s̄r−1k+2 · · · s1k+r−1 ⊕ ŝr−1k+r−1 ⊕ s̄r−1k+r−1 s0k ⊕ ŝr−1k ⊕ s̄r−1k

 . (13)

and compute simk+`−L

2 −t,k+`
for 0 ≤ t ≤ mk+`−L

2 − 1 by

sjmk+`−L

2 −t,k+`
+ (simk+`−L

2 −t,k+`
+ sjmk+`−L

2 −t,k+`
),

Let t′ = mk+`−L
2 − t, we can obtain that

t′ = 1, 2, . . . ,
mk+` − L

2
,

when t = 0, 1, . . . , mk+`−L
2 −1. That is to say, we have already

computed the bits sit,k+` and sjt,k+` for t = 1, 2, . . . , mk+`−L
2 .

We can compute sj0,k+` by simk+`−L

2 ,k+`
+ (simk+`−L

2 ,k+`
+

sj0,k+`), and compute si0,k+` by sj0,k+` + (si0,k+` + sj0,k+`).
Then, we compute sit,k+` for mk+`−L

2 ≤ t ≤ mk+` − L − 1
by

sj
t−

mk+`−L

2 ,k+`
+ (sit,k+` + sj

t−
mk+`−L

2 ,k+`
),

and sjt,k+` for mk+`−L
2 ≤ t ≤ mk+` − L− 1 by

sit,k+` + (sit,k+` + sjt,k+`).

The other bits of sik+` and sjk+` can be computed by repeating
the above procedure for mk+` − L ≤ t ≤ mk+`. We can
compute sik+` and sjk+` with 5

2mk+` XORs involved.
The other three statements can be proved similarly.

In the following, we show that the transformed codes also
satisfy the MDS property, if the original zigzag-decodable
codes satisfy the MDS property.

Theorem 5. The transformed codes satisfy the MDS property
if the zigzag-decodable codes satisfy the MDS property.

Proof. The transformed codes satisfy the MDS property if any
k out of n nodes can reconstruct all the information bits. It is
equivalent to show that the k data nodes can be reconstructed
from any t data nodes and any k − t coded nodes, where
max{0, k − r} ≤ t ≤ k. When t = k, we can obtain the k
data nodes directly.

In the following, we consider the case of t < k. Suppose
that data node i1, i2, . . . , it and coded nodes j1, j2, . . . , jk−t
are selected with 0 ≤ i1 < . . . < it ≤ k − 1 and 0 ≤ j1 <
. . . < jk−t ≤ r − 1. The entry in row r − 1− j1 and column
j2 of the matrix P3

r×r is s
r−(1+j2)
k+(1+j1+j2)r

⊕ ŝ
r−(1+j1)
k+(1+j1+j2)r

⊕
s̄
(r−(1+j1))∗
k+(1+j1+j2)r

; while the entry in row r−1−j2 and column j1
is sr−(1+j2)k+(1+j1+j2)r

⊕sr−(1+j1)k+(1+j1+j2)r
. By Lemma 4, we can obtain

s
r−(1+j2)
k+(1+j1+j2)r

and s
r−(1+j1)
k+(1+j1+j2)r

from the above two entries.

Similarly, we can obtain s
r−(1+j`)
k+(1+j1+j`)r

and s
r−(1+j1)
k+(1+j1+j`)r

from
the entries in row r − 1 − j1 column j` and row r − 1 − j`

column j1, for ` = 2, 3, . . . , k− t. Recall that the entry in row
r − 1− j1 and column j1 is s

r−(1+j1)
k+(1+2j1)r

. We obtain

{sr−(1+j1)k+(1+2j1)r
, s
r−(1+j1)
k+(1+j1+j2)r

, . . . , s
r−(1+j1)
k+(1+j1+jk−t)r

},

together with the data vectors in row r − 1 − j1 and data
nodes i1, i2, . . . , it, we can compute all other data vectors in
row r− 1− j1 according to the MDS property of the zigzag-
decodable codes.

By the same argument, we can recover all data vectors in
rows r−1−j2, . . . , r−1−jk−t. Once the vectors in rows r−1−
j2, . . . , r−1−jk−t are known, we can recover all other vectors
similarly, followed by solving the unknown packets according
to the MDS property of the (k+r, k) zigzag-decodable codes.

The idea behind the proof of Theorem 5 is similar to
the proof of Theorem 1 in [10] and Theorem 1 in [24].
The technical difference is that our linear transformation is
designed for zigzag-decodable code but the transformations in
[10] and [24] are designed for non-binary MDS codes and
binary MDS codes, respectively. The next theorem shows that
the r coded nodes of the transformed code are with the optimal
repair bandwidth.

Theorem 6. The r coded nodes of the transformed codes are
with the optimal repair bandwidth.
Proof. For j = 0, 1, . . . , r − 1, we show that we
can recover coded node j by accessing k vectors
sr−1−j0 , sr−1−j1 , . . . , sr−1−jk−1 and r−1 entries in row r−1− j
of the matrix P3

r×r except the entry in the failed column j.
By accessing sr−1−j0 , sr−1−j1 , . . . , sr−1−jk−1 , we can compute

sr−1−jk , sr−1−jk+1 , . . . , sr−1−jk+r−1. With the obtained sr−1−jk+(1+2j)r

and the accessed r − 1 entries in row j of the matrix P3
r×r

except the entry in the failed column j, we can compute all r
vectors in parity column j by Lemma 4.

We show in the next theorem that the repair bandwidth of
both the original zigzag-decoded codes and the transformed
codes is the same if the repair process of a data node satisfies
some condition.

Theorem 7. In the (k+r, k) zigzag-decodable codes, suppose
that we can repair node f by downloading the bits si,j for
all i ∈ Sj and j = 0, 1, . . . , f − 1, f + 1, . . . , k + r − 1,
where 0 ≤ f ≤ k − 1 and Sj denotes the set of indices of
the downloaded bits from node j. Then, we can repair node f
of the transformed codes by downloading s`i,j for all i ∈ Sj ,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

` = 0, 1, . . . , r− 1, j = 0, 1, . . . , f − 1, f + 1, . . . , k − 1, and
the following bits

p0i,0, ∀i ∈ Sk p0i,1, ∀i ∈ Sk+1 · · · p0i,r−1, ∀i ∈ Sk+r−1

p1i,0,∀i ∈ Sk+r−1 p1i,1, ∀i ∈ Sk · · · p1i,r−1, ∀i ∈ Sk+r−2

...
...

. . .
...

pr−2
i,0 , ∀i ∈ Sk+2 pr−2

i,1 , ∀i ∈ Sk+3 · · · pr−2
i,r−1, ∀i ∈ Sk+1

pr−1
i,0 , ∀i ∈ Sk+1 pr−1

i,1 , ∀i ∈ Sk+2 · · · pr−1
i,r−1,∀i ∈ Sk


from nodes k, k + 1, . . . , k + r − 1, if

i+
L

2
∈ Sk+j ,∀i ∈ Sk+j and mj − L ≤ i ≤ mj −

L

2
− 1,

where j = 0, 1, . . . , r − 1.

Proof. Given j = 0, 1, . . . , r− 1, for i ∈ Sk+j and mj −L ≤
i ≤ mj − L

2 − 1, the bits downloaded from p0i,0,∀i ∈ Sk and
pr−1i,r−1,∀i ∈ Sk are

p0i,0 =s0i,k + sr−1i,k ,

p0
i+L

2 ,0
=s0

i+L
2 ,k

+ sr−1
i+L

2 ,k
,

and

pr−1i,r−1 =s0i,k + sr−1
i+L

2 ,k
,

pr−1
i+L

2 ,r−1
=s0

i+L
2 ,k

+ sr−1
i+L

2 ,k
+ sr−1i,k ,

respectively. We can first compute sr−1i,k by

sr−1i,k = p0
i+L

2 ,0
+ pr−1

i+L
2 ,r−1

,

and then compute s0i,k by s0i,k = p0i,0 + sr−1i,k . Finally, we can
compute sr−1

i+L
2 ,k

and s0
i+L

2 ,k
by

sr−1
i+L

2 ,k
= s0i,k + pr−1i,r−1,

and

s0
i+L

2 ,k
= sr−1

i+L
2 ,k

+ p0
i+L

2 ,0
,

respectively. Similarly, we can compute

sr−1−j2i,k+(1+j1+j2)r
, sr−1−j1i,k+(1+j1+j2)r

,

sr−1−j2
i+L

2 ,k+(1+j1+j2)r
, sr−1−j1
i+L

2 ,k+(1+j1+j2)r

from

pr−1−j1i,j2
=sr−1−j2i,k+(1+j1+j2)r

+ sr−1−j1
i+L

2 ,k+(1+j1+j2)r
,

pr−1−j1
i+L

2 ,j2
=sr−1−j2

i+L
2 ,k+(1+j1+j2)r

+ sr−1−j1
i+L

2 ,k+(1+j1+j2)r
+

sr−1−j1i,k+(1+j1+j2)r
,

pr−1−j2i,j1
=sr−1−j2i,k+(1+j1+j2)r

+ sr−1−j1i,k+(1+j1+j2)r
,

pr−1−j2
i+L

2 ,j1
=sr−1−j2

i+L
2 ,k+(1+j1+j2)r

+ sr−1−j1
i+L

2 ,k+(1+j1+j2)r
,

for j2 > j1 ≥ 0, i ∈ Sk+(1+j1+j2)r and m(1+j1+j2)r − L ≤
i ≤ m(1+j1+j2)r − L

2 − 1. We thus obtain the bits s`i,j for all
i ∈ Sj , j = k, k+1, . . . , k+r−1 and ` = 0, 1, . . . , r−1. Recall
that we can recover s0,f , s1,f , . . . , sL−1,f by downloading the
bits si,j for all i ∈ Sj and j = 0, 1, . . . , f − 1, f + 1, . . . , k+
r − 1. Therefore, we obtain the bits s`i,j for all i ∈ Sj , j =
0, 1, . . . , f − 1, f + 1, . . . , k + r − 1 and ` = 0, 1, . . . , r − 1,
and all the bits in node f can be recovered.

In the repair process of the transformed codes, the bits
downloaded from nodes k, k + 1, . . . , k + r − 1 are linear
combinations of the needed bits in repairing a data node. We
need to solve the needed bits from the downloaded bits of
nodes k, k+1, . . . , k+r−1 in order to achieve the sam repair
bandwidth of the original zigzag-decodable codes. In Theorem
7, we give the condition under which we can solve the needed
bits from the downloaded bits of nodes k, k+1, . . . , k+r−1.
Although our transformation is designed for zigzag-decodable
codes, it is also applicable for MDS array codes. We only need
to make the length of both data packets and coded packets be
the same when apply the transformation for MDS array codes.

V. CONSTRUCTIONS OF ZIGZAG-DECODABLE
RECONSTRUCTION CODES

In Section III, we present a construction of zigzag-decodable
codes that can achieve asymptotically optimal repair band-
width for repairing any data node. In this section, we propose
two explicit constructions of zigzag-decodable reconstruction
(ZDR) codes that can achieve asymptotically optimal repair
bandwidth for not only any data node but also coded node. The
first constructed ZDR code is obtained by directly applying
the transformation in Section IV for the code in Section III.
The second constructed ZDR code is obtained by recursively
applying the transformation in Section IV for any zigzag-
decodable code.

A. The First Construction

The proposed ZDR codes contain k ≥ 2 data nodes and
r ≥ 2 coded nodes. Each data node stores r data packets
and each coded node stores r coded packets. For easier
understanding, we divide the encoding process into two steps.
First, we generate r instances of zigzag-decodable codes with
the encoding matrix in Eq. (2). Second, convert the obtained
zigzag-decodable codes with the encoding matrix in Eq. (2)
into the transformed codes by the transformation given in
Section IV.

According to Eq. (2) and the transformation, the length
of the vector p`k+j is L + jrk−1 − j. The proposed ZDR
codes is denoted by ZDR1(k, r). To differential vectors
p`k+j and s`k+j , we call s`k+j as intermediate vector and
p`k+j as coded vector. By the transformation in Section IV,
ZDR1(k, r) has the same storage overhead as that of the
zigzag-decodable codes, the storage overhead of ZDR1(k, r)
is at most (r − 1)rk−1 − r + 1 that is negligible when
L� (r − 1)rk−1 − r + 1.

For example, when (k, r) = (2, 2), we have four data
packets s00(z), s10(z), s01(z), s11(z) and the encoding matrix is[

1 1
z z2

]
.

We can first compute four packets as[
s`2(z)
s`3(z)

]
=

[
1 1
z z2

]
·
[
s`0(z)
s`1(z)

]
,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

where ` = 0, 1. Then, we can compute four coded vectors
stored in two coded nodes as

p0
2 =s02 ⊕ s12,

p0
3 =s03,

p1
2 =s13,

p1
3 =s02 ⊕ ŝ12 ⊕ s̄12.

The example given in Section II is exactly the example of the
proposed codes with (k, r) = (2, 2).

According to Theorem 5, we can decode all data packets of
ZDR1(k, r) by zigzag decoding from any k nodes. Further-
more, according to Theorem 6, we can repair a coded node
f by downloading all k + r − 1 packets in row f and the
repair bandwidth is optimal. Recall that the repair algorithm
of data node f of the original zigzag-decodable codes is given
in Algorithm 2, and the repair bandwidth of each data node is
asymptotically optimal by Theorem 3. In Algorithm 2, if a bit
si,k+j in node k + j with j = 0, 1, . . . , r − 1 is downloaded
to recover node f , then si+L/2,k+j is also downloaded in
the repair process, as L is a multiple of kr. Therefore, the
condition given in Theorem 7 is satisfied, and we can recover
data node f of ZDR1(k, r) with asymptotically optimal repair
bandwidth.

B. The Second Construction

The second construction of ZDR codes is designed by
recursively applying the transformation for a zigzag-decodable
code. In the following, we take an example of zigzag-
decodable codes with the encoding matrix given as

Er×k =


1 1 · · · 1
1 z · · · zk−1

...
...

. . .
...

1 zr−1 · · · z(r−1)(k−1)

 (14)

to show the construction.
By applying the transformation for the r coded nodes of

the zigzag-decodable code with the encoding matrix given in
Eq. (14), according to Theorem 5, we can obtain a transformed
code that can be decoded by zigzag decoding from any k nodes
and, according to Theorem 6, has minimum repair bandwidth
for r coded nodes. We can also apply the transformation
for the chosen r data nodes of the above resulting codes
such that, by Theorem 5, the newly transformed code has the
zigzag decoding property. Furthermore, by Theorem 6, it has
minimum repair bandwidth for both the chosen r data nodes
and r coded nodes. By applying the transformation recursively
for dk+rr e times, we can obtain the transformed ZDR code,
denoted by ZDR2(k, r), that has minimum repair bandwidth
for all nodes. Note that in ZDR2(k, r), α = rd

k+r
r e. The

storage overhead of the original zigzag-decodable codes is
(r−1)(k−1). As ZDR2(k, r) has the same storage overhead
as that of the original zigzag-decodable codes, the storage
overhead of ZDR2(k, r) is also (r−1)(k−1) that is negligible
when L� (r − 1)(k − 1).

We present an example of (k, r) = (2, 2) to illustrate the
construction process. First, we choose a zigzag-decodable code

TABLE II: Codes with (k, r) = (2, 2) by applying the
transformation for the two coded nodes.

Node 0 Node 1 Node 2 Node 3
s00 s01 s02 ⊕ s12 s03
s10 s11 s13 s02 ⊕ ŝ12 ⊕ s̄12

TABLE III: Example of ZDR2(2, 2).

Node 0 Node 1 Node 2 Node 3
s00 ⊕ s20 s01 s02 ⊕ s12 s03
s10 ⊕ s30 s11 s13 s02 ⊕ ŝ12 ⊕ s̄12

s21 s00 ⊕ ŝ20 ⊕ s̄20 s22 ⊕ s32 s23
s31 s10 ⊕ ŝ30 ⊕ s̄30 s33 s22 ⊕ ŝ32 ⊕ s̄32

with (k, r) = (2, 2). Given two data vectors s0, s1, we com-
pute two coded vectors s2, s3 of the zigzag-decodable code
such that any two vectors can retrieve the two data vectors.
Second, we apply the transformation for the zigzag-decodable
code to obtain the transformed code in Table II. Finally, we
obtain the ZDR2(2, 2) by applying the transformation for the
code in Table II, and ZDR2(2, 2) is shown in Table III.

We can recover all the data vectors from any two nodes in
this example. From the first two nodes, by Lemma 4, we can
obtain s00, s10, s20 and s30 from

s00 ⊕ s20, s
1
0 ⊕ s30, s

0
0 ⊕ ŝ20 ⊕ s̄20, s

1
0 ⊕ ŝ30 ⊕ s̄30.

Similarly, by Lemma 4, we can compute all the data vectors
from nodes 2 and 3. Now we consider the decoding from nodes
1 and 2. We can first compute s10 and s12 from two vectors s11
and s13, as the original zigzag-decodable code has the MDS
property. Then, we can compute s02 by s12⊕ (s02⊕s12), together
with s01, we can compute s00 and s03. After computing ŝ30⊕s̄30 by
subtracting s10 from s10⊕ ŝ30⊕ s̄30, by Lemma 4, we can decode
s30 from ŝ30 ⊕ s̄30. We thus can compute s31 and s32 from s30
and s33. The two vectors s20 and s21 can be computed similarly.
With the same argument, we can decode all the data vectors
for other cases.

Next, we demonstrate that we can repair any one node
by downloading two vectors from each of the other three
nodes, where the repair bandwidth of any one node is optimal.
Assume node 0 fails, we can recover the four vectors in node
0 by downloading the following six vectors

s00 ⊕ ŝ20 ⊕ s̄20, s
1
0 ⊕ ŝ30 ⊕ s̄30, s

2
2 ⊕ s32, s

3
3, s

2
3, s

2
2 ⊕ ŝ32 ⊕ s̄32.

First, by Lemma 4, we compute s22 and s32 from s22 ⊕ s32 and
s22 ⊕ ŝ32 ⊕ s̄32. Then, we compute s20, s

2
1 and s30, s

3
1 from s22, s

2
3

and s32, s
3
3, respectively. Finally, we recover s00⊕s20 and s10⊕s30

from s20, s
0
0 ⊕ ŝ20 ⊕ s̄20 and s30, s

1
0 ⊕ ŝ30 ⊕ s̄30, respectively.

Similarly, we can repair node 1 by downloading six vectors

s00 ⊕ s20, s
1
0 ⊕ s30, s

0
2 ⊕ s12, s

1
3, s

0
3, s

0
2 ⊕ ŝ12 ⊕ s̄12,

repair node 2 by downloading

s10 ⊕ s30, s
3
1, s

1
3, s

3
3, s

0
2 ⊕ ŝ12 ⊕ s̄12, s

2
2 ⊕ ŝ32 ⊕ s̄32,

and repair node 3 by downloading

s00 ⊕ s20, s
2
1, s

0
1, s

0
0 ⊕ ŝ20 ⊕ s̄20, s

0
2 ⊕ s12, s

2
2 ⊕ s̄32.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

C. Other Constructions

There exist other constructions by employing the trans-
formation given in Section IV for a zigzag-decodable code
with asymptotically minimum repair bandwidth for some data
nodes. Specifically, we can first construct a new zigzag-
decodable codes that have asymptotically minimum repair
bandwidth for the first γ data nodes by designing an encoding
matrix, where k > γ > 0. Then, we can employ the trans-
formation with for the zigzag-decodable codes with dk+r−γr e
times. We can show that the transformed codes also have
asymptotically minimum repair bandwidth for all nodes, as
in the transformed ZDR1(k, r) codes in Section V-A.

VI. COMPARISONS

In this section, we compare in the decoding complexity and
storage overhead of the proposed ZDR codes with other related
codes, such as MDS codes with exactly or asymptotically
minimum repair bandwidth in [10], [11], [18], [24].

Table IV shows the comparison of existing high code rate
MDS codes with asymptotically optimal repair bandwidth or
exactly optimal repair bandwidth with the proposed ZDR
codes. Suppose that r data nodes are erased and we define
the decoding complexity as the ratio of the number of XOR
operations involved in recovering the erased r data nodes to
the number of packets stored in a node. In ZDR1(k, r), each
node contains r packets. We need to recover the erased r2

data packets from the surviving k− r data nodes and r coded
nodes. First, by Lemma 4, we can compute r(r − 1) coded
packets from r(r−1)

2 pairs of linear combinations and it takes
5(r−1)rL

4 XORs.1 Then, we subtract r(k − r) data packets
in k − r data nodes from the obtained r2 coded packets
and it takes (k − r)r2L XORs. Finally, we can recover the
erased r2 data packets in r data nodes by solving r linear
systems each of size r×r by zigzag decoding and it takes r3L
XORs. Therefore, the decoding complexity of ZDR1(k, r) is
O((k−r)rL+r2L). Similarly, we can show that the decoding
complexity of ZDR2(k, r) is also O((k − r)rL + r2L).
Since the decoding complexity of the existing MDS codes in
[10], [11], [18], [24] is O((k − r)rL2 + r2L2), the proposed
ZDR codes have less decoding complexity than the other
existing MDS codes listed in the table. Note that the lower
decoding complexity of ZDR codes is obtained at a cost of
the storage overhead. The storage overhead of ZDR1(k, r)
and ZDR2(k, r) is (r − 1)rk−1 − r + 1 and (k − 1)(r − 1),
respectively. When the packet length L is sufficiently large,
then the storage overhead is negligible.

VII. CONCLUSION

We propose ZDR codes with any k ≥ 2 data nodes and
any r ≥ 2 coded nodes. We present two explicit constructions
of ZDR codes that have asymptotically minimum repair band-
width for all k+ r nodes. Compared with other related codes
with exactly or asymptotically minimum repair bandwidth, the
proposed ZDR codes have the zigzag decoding property and

1When L is large enough, the additional storage overhead is negligible and
the size of a coded packet is roughly L.

thus have less encoding complexity and decoding complexity.
However, the proposed ZDR codes only have efficient repair
bandwidth for d = k + r − 1, i.e., all the surviving nodes
are connected to repair the failed node. How to design ZDR
codes with asymptotically minimum repair bandwidth for
more flexible parameters (k + 1 ≤ d ≤ k + r − 1) is our
future work.

REFERENCES

[1] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[2] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in Globally Distributed Storage
Systems,” in Proc. of USENIX OSDI, 2010.

[3] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang et al., “F4: Facebook’s Warm Blob
Storage System,” in Proc. of USENIX OSDI, 2014.

[4] S. Gollakota and D. Katabi, “Zigzag Decoding: Combating Hidden
Terminals in Wireless Networks,” in Proc. of SIGCOMM, vol. 38, no. 4,
2008.

[5] C. W. Sung and X. Gong, “A ZigZag-Decodable Code with the MDS
Property for Distributed Storage Systems,” in Proc. IEEE Int. Symp. Inf.
Theory, Istanbul, Jul. 2013, pp. 341–345.

[6] M. Dai, W. S. Chi, H. Wang, X. Gong, and Z. Lu, “A New Zigzag-
Decodable Code with Efficient Repair in Wireless Distributed Storage,”
IEEE Trans. on Mobile Computing, vol. 16, no. 5, pp. 1218–1230, 2017.

[7] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network Coding for Distributed Storage Systems,” IEEE Trans. on
Information Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[8] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-
Regenerating Codes for Distributed Storage at the MSR and MBR Points
via a Product-Matrix Construction,” IEEE Trans. on Information Theory,
vol. 57, no. 8, pp. 5227–5239, Aug. 2011.

[9] C. Suh and K. Ramchandran, “Exact-Repair MDS Code Construction
Using Interference Alignment,” IEEE Trans. on Information Theory,
vol. 57, no. 3, pp. 1425–1442, Mar. 2011.

[10] J. Li, X. Tang, and C. Tian, “A Generic Transformation to Enable
Optimal Repair in MDS Codes for Distributed Storage Systems,” IEEE
Trans. on Information Theory, vol. 64, no. 9, pp. 6257–6267, 2018.

[11] M. Ye and A. Barg, “Explicit Constructions of High-Rate MDS Array
Codes with Optimal Repair Bandwidth,” IEEE Trans. on Information
Theory, vol. 63, no. 4, pp. 2001–2014, 2017.

[12] Y. Wang, X. Yin, and X. Wang, “MDR Codes: A New Class of RAID-
6 Codes with Optimal Rebuilding and Encoding,” IEEE J. on Selected
Areas in Commun., vol. 32, no. 5, pp. 1008–1018, 2013.

[13] E. E. Gad, R. Mateescu, F. Blagojevic, C. Guyot, and Z. Bandic, “Repair-
Optimal MDS Array Codes over GF(2),” in Proc. IEEE Int. Symp. Inf.
Theory, 2013, pp. 887–891.

[14] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC Regenerating Code:
Binary Addition and Shift for Exact Repair,” in Proc. IEEE Int. Symp.
Inf. Theory, Istanbul, Jul. 2013, pp. 1621–1625.

[15] ——, “BASIC Codes: Low-Complexity Regenerating Codes for Dis-
tributed Storage Systems,” IEEE Trans. on Information Theory, vol. 62,
no. 6, pp. 3053–3069, 2016.

[16] H. Hou, P. P. C. Lee, Y. S. Han, and Y. Hu, “Triple-Fault-Tolerant Binary
MDS Array Codes with Asymptotically Optimal Repair,” in Proc. IEEE
Int. Symp. Inf. Theory, Aachen, Jun. 2017.

[17] H. Hou and Y. S. Han, “A Class of Binary MDS Array Codes
with Asymptotically Weak-Optimal Repair,” SCIENCE CHINA Informa-
tion Sciences http://engine.scichina.com/doi/10.1007/s11432-018-9485-
7, vol. 61, no. 10, pp. 1–12, 2018.

[18] H. Hou, Y. S. Han, P. P. Lee, Y. Hu, and H. Li, “A New Design of
Binary MDS Array Codes with Asymptotically Weak-Optimal Repair,”
IEEE Trans. on Information Theory, vol. 65, no. 11, pp. 7095–7113,
2019.

[19] H. Hou, Y. S. Han, and P. P. Lee, “Binary MDS Array Codes with
Asymptotically Optimal Repair for All Columns,” in 2019 28th Interna-
tional Conference on Computer Communication and Networks (ICCCN),
2019, pp. 1–9.

[20] I. Tamo, Z. Wang, and J. Bruck, “Zigzag Codes: MDS Array Codes
with Optimal Rebuilding,” IEEE Trans. on Information Theory, vol. 59,
no. 3, pp. 1597–1616, 2013.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

TABLE IV: Comparison of high code rate erasure codes with efficient repair procedure.

Codes Storage overhead Repair band. Sub-packetization Packet length L Decoding com.

Codes in [10] 0 optimal L · rd
n
r
e log2 n O((k − r)rL2 + r2L2)

Codes 1 in [11] 0 optimal L · rn log2 n lcm(1, . . . , r) O((k − r)rL2 + r2L2)
Codes 2 in [11] 0 optimal L · rn−1 log2 n O((k − r)rL2 + r2L2)

Codes in [18] 0 asym. optimal L (r
2

)d−k+1 O((k − r)rL2 + r2L2)

Codes in [24] 0 optimal L(d− k + 1)
d n
d−k+1

e
n O((k − r)rL2 + r2L2)

ZDR1(k, r) (r − 1)rk−1 − r + 1 asym. optimal L · r rk O((k − r)rL + r2L)

ZDR2(k, r) (k − 1)(r − 1) optimal L · rd
n
r
e kr O((k − r)rL + r2L)

[21] N. Raviv, N. Silberstein, and T. Etzion, “Constructions of High-Rate
Minimum Storage Regenerating Codes over Small Fields,” IEEE Trans.
on Information Theory, vol. 63, no. 4, pp. 2015–2038, 2017.

[22] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Efficient
Scheme for Tolerating Double Disk Failures in RAID Architectures,”
IEEE Trans. on Computers, vol. 44, no. 2, pp. 192–202, 1995.

[23] M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with Independent
Parity Symbols,” IEEE Trans. on Information Theory, vol. 42, no. 2, pp.
529–542, 1996.

[24] H. Hou and P. P. C. Lee, “Binary MDS Array Codes with Optimal
Repair,” IEEE Trans. on Information Theory, vol. 66, no. 3, pp. 1405–
1422, 2020.

[25] H. Hou, Y. S. Han, K. W. Shum, and H. Li, “A Unified Form of
EVENODD and RDP Codes and Their Efficient Decoding,” IEEE Trans.
on Communications, vol. 66, no. 11, pp. 5053–5066, 2018.

[26] J. Chen, H. Li, H. Hou, B. Zhu, T. Zhou, L. Lu, and Y. Zhang, “A New
Zigzag MDS Code with Optimal Encoding and Efficient Decoding,” in
IEEE International Conference on Big Data, 2014, pp. 1–6.

[27] J. Qureshi, C. H. Foh, and J. Cai, “Optimal Solution for the Index Coding
Problem Using Network Coding over GF(2),” in Proc. 9th Annu. IEEE
Commun. Soc. Conf. Sensor Mesh Ad Hoc Commun. Netw., 2012, pp.
209–217.

[28] X. Gong, P. Hu, S. K. W., and W. S. Chi, “A Zigzag-Decodable Ramp
Secret Sharing Scheme,” IEEE Trans. on Information Forensics and
Security, vol. 13, no. 8, pp. 1906–1916, 2018.

[29] J. Li and X. Tang, “A Note on the Transformation to Enable Optimal
Repair in MDS Codes for Distributed Storage Systems,” arXiv preprint:
arXiv:1901.06067v1, 2019.

[30] H. Hou, P. P. C. Lee, and Y. S. Han, “Multi-Layer Transformed MDS
Codes with Optimal Repair Access and Low Sub-Packetization,” arXiv
preprint arXiv:1907.08938, 2019.

Hanxu Hou received the B.Eng. degree in Informa-
tion Security from Xidian University, Xian, China, in
2010, and Ph.D. degrees in the Dept. of Information
Engineering from The Chinese University of Hong
Kong in 2015 and in the School of Electronic and
Computer Engineering, Peking University. He is now
an Associate Professor with the School of Electrical
Engineering & Intelligentization, Dongguan Univer-
sity of Technology. His research interests include
erasure coding and coding for distributed storage
systems.

Patrick P. C. Lee received the B.Eng. degree (first
class honors) in Information Engineering from the
Chinese University of Hong Kong in 2001, the
M.Phil. degree in Computer Science and Engineer-
ing from the Chinese University of Hong Kong in
2003, and the Ph.D. degree in Computer Science
from Columbia University in 2008. He is now an
Associate Professor of the Department of Computer
Science and Engineering at the Chinese University
of Hong Kong. His research interests are in various
applied/systems topics including storage systems,

distributed systems and networks, operating systems, dependability, and
security

Yunghsiang S. Han received B.Sc. and M.Sc. de-
grees in electrical engineering from the National
Tsing Hua University, Hsinchu, Taiwan, in 1984
and 1986, respectively, and a Ph.D. degree from
the School of Computer and Information Science,
Syracuse University, Syracuse, NY, in 1993. He
was from 1986 to 1988 a lecturer at Ming-Hsin
Engineering College, Hsinchu, Taiwan. He was a
teaching assistant from 1989 to 1992, and a research
associate in the School of Computer and Information
Science, Syracuse University from 1992 to 1993.

He was, from 1993 to 1997, an Associate Professor in the Department of
Electronic Engineering at Hua Fan College of Humanities and Technology,
Taipei Hsien, Taiwan. He was with the Department of Computer Science
and Information Engineering at National Chi Nan University, Nantou, Taiwan
from 1997 to 2004. He was promoted to Professor in 1998. He was a
visiting scholar in the Department of Electrical Engineering at University
of Hawaii at Manoa, HI from June to October 2001, the SUPRIA visiting
research scholar in the Department of Electrical Engineering and Computer
Science and CASE center at Syracuse University, NY from September 2002
to January 2004 and July 2012 to June 2013, and the visiting scholar in the
Department of Electrical and Computer Engineering at University of Texas
at Austin, TX from August 2008 to June 2009. He was with the Graduate
Institute of Communication Engineering at National Taipei University, Taipei,
Taiwan from August 2004 to July 2010. From August 2010 to January
2017, he was with the Department of Electrical Engineering at National
Taiwan University of Science and Technology as Chair Professor. Now he
is with School of Electrical Engineering & Intelligentization at Dongguan
University of Technology, China. He is also a Chair Professor at National
Taipei University from February 2015. His research interests are in error-
control coding, wireless networks, and security.

Dr. Han was a winner of the 1994 Syracuse University Doctoral Prize and
a Fellow of IEEE. One of his papers won the prestigious 2013 ACM CCS
Test-of-Time Award in cybersecurity.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCOMM.2020.3011718

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

