
JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 1

Variant Codes Based on A Special Polynomial Ring
and Their Fast Computations

Leilei Yu, Yunghsiang S. Han, Fellow, IEEE, Jiasheng Yuan, and Zhongpei Zhang

Abstract—Binary array codes are widely used in storage
systems to prevent data loss, such as the Redundant Array of
Independent Disks (RAID). Most designs for such codes, such as
Blaum-Roth (BR) codes and Independent-Parity (IP) codes, are
carried out on the polynomial ring F2[x]/⟨

∑p−1
i=0 xi⟩, where F2

is a binary field, and p is a prime number. In this paper, we
consider the polynomial ring F2[x]/⟨

∑p−1
i=0 xiτ ⟩, where p > 1 is

an odd number and τ ≥ 1 is any power of two, and explore
variant codes from codes over this polynomial ring. Particularly,
the variant codes are derived by mapping parity-check matrices
over the polynomial ring to binary parity-check matrices.

Specifically, we first propose two classes of variant codes,
termed V-ETBR and V-ESIP codes. To make these variant codes
binary maximum distance separable (MDS) array codes that
achieve optimal storage efficiency, this paper then derives the
connections between them and their counterparts over poly-
nomial rings. These connections are general, making it easy
to construct variant MDS array codes from various forms of
matrices over polynomial rings. Subsequently, some instances
are explicitly constructed based on Cauchy and Vandermonde
matrices. In the proposed constructions, both V-ETBR and V-
ESIP MDS array codes can have any number of parity columns
and have the total number of data columns of exponential order
with respect to p. In contrast, previous binary MDS array codes
only have a total number of data columns of linear order with
respect to p. This makes the codes proposed in this paper more
suitable for application to large-scale storage systems. In terms
of computation, two fast syndrome computations are proposed
for the Vandermonde-based V-ETBR and V-ESIP MDS array
codes, both meeting the lowest known asymptotic complexity
among MDS codes. Due to the fact that all variant codes are
constructed from parity-check matrices over simple binary fields
instead of polynomial rings, they are attractive in practice.

Index Terms—Storage systems, binary array code, binary
parity-check matrix, syndrome computation.

I. INTRODUCTION

MOdern distributed storage systems require data re-
dundancy to maintain data reliability and durability

in the presence of unpredictable failures. Replications and
erasure codes are two typical redundancy mechanisms [1],
[2]. Compared to the former, erasure codes only need less data
redundancy to attain the same level of data protection [3]. One
well-known class of erasure codes is binary array codes [4]–
[7]. Their coding procedures involve only XOR (exclusive OR)
and cyclic shift operations, which enables simple and efficient

L. Yu, Y. S. Han, J. Yuan and Z. Zhang are with the Shenzhen Institute for
Advanced Study, University of Electronic Science and Technology of China,
Shenzhen, China (e-mail: yuleilei@uestc.edu.cn, yunghsiangh@gmail.com,
202312281024@std.uestc.edu.cn, Zhangzp@uestc.edu.cn). This work was
supported by the National Key Research and Development Program of China
under Grant 2022YFA1004902.

implementations in both software and hardware [8]. This paper
focuses on such codes.

Binary array codes have been widely used in storage
systems, such as RAID (Redundant Array of Independent
Disks) [9]. With the development of distributed storage sys-
tems in recent years, they have also been used as the basis
for developing other erasure codes, such as locally repairable
codes [2], [8], [10], [11] and regenerating codes [12]–[14].
For an ℓ × (k + r) binary array code, any codeword can be
viewed as an ℓ × (k + r) array of bits, where k columns
store all information bits to form k information columns, and
the remaining columns store all the parity bits encoded from
information bits to form r parity columns. The row size ℓ
generally depends on the code construction. In coding theory,
maximum distance separable (MDS) codes reach optimal
storage efficiency [15], and each of their codewords consists
of information and parity symbols, such that any subset of
symbols in the codeword with the same number as information
symbols can recover the entire codeword. Binary MDS array
codes have the same property by treating each column as a
symbol. More precisely, for an ℓ× (k+ r) binary MDS array
code, any k out of k+r columns suffice to decode (reconstruct)
all columns. Some well-known examples of binary array
codes are EVENODD [16], row-diagonal parity (RDP) [17],
STAR [18], and triple-fault-tolerance codes [19]. These codes
are all binary MDS array codes for the case of two or
three parity columns. Examples of binary array codes with
more parity columns are Blaum-Roth (BR) [4], Independent-
Parity (IP) [5], generalized RDP codes [6], and the codes
in [20]. Although they are not always binary MDS array codes,
the conditions that render them such codes can be found in
the corresponding literature.

The new binary array codes proposed in this paper target
an arbitrary number of parity columns, and their constructions
are closely related to the BR, IP, and generalized RDP codes
mentioned above. Specifically, BR and IP codes are both
constructed by parity-check matrices over the polynomial ring
F2[x]/⟨

∑p−1
i=0 xi⟩, where F2 denotes a binary field and p is a

prime number [4], [5]. Generalized RDP codes can be regarded
as a variant of shortened IP codes [6], and they possess lower
computational complexity [21]. In this paper, we reformulate
the generalized RDP codes, and then one can intuitively un-
derstand the essence of the generalized RDP codes being more
computationally superior. Briefly, when computing syndromes,
the codes over F2[x]/⟨

∑p−1
i=0 xi⟩ are first calculated in an

auxiliary polynomial ring F2[x]/⟨xp + 1⟩, where multiplying
x only requires performing a simple cyclic shift operation.
Then all results are returned to the original ring [4], [5]. As



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 2

a variant, the generalized RDP codes have a similar process
to the shortened IP codes in computing syndromes, with the
only difference being that they do not process the extra bits of
the auxiliary polynomial ring compared to the original ring.
Thus, the generalized RDP codes eliminate two operations in
the shortened IP codes when computing syndromes. One is the
processing for one fixed bit in each symbol over the auxiliary
ring, and the other is the modulo operation for returning to the
original ring. A binary parity-check matrix for the generalized
RDP codes is explicitly provided in this paper (Please refer to
(12)).

In fact, this paper generalizes the above variant technique
so that new codes based on binary parity-check matrices
can be easily obtained from codes over the polynomial ring
F2[x]/⟨

∑p−1
i=0 xiτ ⟩, where p is an odd number and τ is any

power of two. In our setup, the parity-check matrices of codes
over the polynomial ring can be determined not only by the
Vandermonde matrices containing only monomials (e.g. BR,
IP codes) but also by matrices with more forms (e.g. Cauchy
matrices, etc.) and wider parameter ranges. In this paper, two
classes of codes defined in F2[x]/⟨

∑p−1
i=0 xiτ ⟩ are referred to

as ETBR and ESIP codes, which can be regarded as extensions
of BR and shortened IP codes, respectively. Correspondingly,
the variants of ETBR and ESIP codes are referred to as V-
ETBR and V-ESIP codes, respectively. The main contributions
of this paper are enumerated as follows:

1) This paper proposes two new classes of binary array
codes (i.e., V-ETBR and V-ESIP codes), which are both
based on binary parity-check matrices (see Sec. III). We
show that the well-known generalized RDP codes are a
special case of the V-ESIP codes.

2) This paper presents the conditions for the new codes to
be binary MDS array codes by exploring the connections
between them and their counterparts over the polynomial
ring (see Sec. IV). In particular, these connections are
built on the foundation that all parity-check matrices have
a sufficiently flexible form. This provides convenience
for constructing V-ETBR/V-ESIP MDS array codes with
various forms.

3) Based on Vandermonde and Cauchy matrices, this paper
explicitly provides the constructions for the V-ETBR and
V-ESIP MDS array codes, both with any number of
parity columns r (see Sec. V). Compared to previous
binary MDS array codes over the polynomial ring, the
constructed codes have significantly more data columns
for a given design parameter p, as well as a more flexible
row size ℓ.

4) This paper also proposes two fast syndrome computa-
tions, which respectively correspond to the V-ETBR MDS
array codes with any r ≥ 2 (see Sec. V-B1) and the V-
ESIP MDS array codes with r = 4 (see Sec. V-B2). Both
of them meet the lowest known asymptotic computational
complexity among MDS codes [1], i.e., each data bit
requires ⌊lg r⌋ + 1 XORs as the total number of data
columns approaches infinity.

In this paper, the proposed fast syndrome computations
can be seen as an extension of the syndrome computation

in Reed-Solomon (RS) codes over finite fields [1] to the
variant codes. In [1], the computation involved in RS codes
can generate a large amount of intermediate data through the
Reed-Muller (RM) transform to reduce the total number of
operations. Some variant codes constructed in this paper are
based on Vandermonde matrices (over polynomial rings) with
a similar structure as in [1], and the fast computation in RS
codes is compatible with these constructed variant codes. In
this paper, the fast computations proposed for variant codes
can be easily adjusted to be suitable for the corresponding
codes over the polynomial ring. To avoid tediousness, we
will not repeat the presentation. Note that the variant codes
are based on binary parity-check matrices, leading to easy
implementation through the use of existing open-source li-
braries for matrix operations over F2, such as M4RI [22]. This
means that engineers can use them without needing to have
much knowledge of algebra. At the end of this paper, we also
compared the specific number of XORs required for encoding
and decoding of the variant codes with other alternative binary
MDS array codes, i.e., Circulant Cauchy code [23], Rabin-like
code [24], and BR code [4], [25]. When the total number of
data columns is 251, and the number of parity columns ranges
from 4 to 7, the average encoding/decoding improvements
of variant codes compared to them are 69%/69%, 63%/61%,
and 26%/22%, respectively. Since the variant codes are based
on simple binary parity-check matrices, there is still a great
potential to further improve computational efficiency by using
scheduling algorithms for binary matrix multiplication, such
as [26], [27], etc.

Recently, [8], [28], and [29] proposed some new binary
MDS array codes. Their idea is to construct binary parity-
check matrices by truncating circulant matrices of elements
over polynomial rings. The resulting binary MDS array codes
are essentially V-ETBR/V-ESIP codes, and this paper can be
seen as a generalization of their works. This generalization
extends parity-check matrices restricted to Vandermonde forms
to having arbitrary matrix forms, as well as extends the
Vandermonde-based syndrome computation in their works,
which is only applicable to 2 ≤ r ≤ 3, to supporting arbitrary
r ≥ 2. Furthermore, one of the main contributions of this
paper is to propose the intrinsic connections between codes
over the polynomial ring and V-ETBR/V-ESIP codes. This
was not considered in the previous work. Particularly, these
connections provide a powerful tool for constructing binary
MDS array codes over binary fields. The detailed differences
between the previous work and this paper are enumerated as
follows:

1) This paper clearly reveals the relationship between V-
ETBR/V-ESIP codes and the well-known generalized
RDP codes, as the former is a generalization of the variant
technique implied by the latter. This was not pointed out
in the previous work.

2) In the previous work, the V-ETBR/V-ESIP codes con-
sider only binary parity-check matrices determined by
Vandermonde matrices. In contrast, the matrices used
in this paper have a more flexible form, of which the
Vandermonde matrix is just a special instance. This can



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 3

facilitate the construction of more variant codes.
3) The previous work focuses only on V-ETBR/V-ESIP

codes without discussing their connections with the cor-
responding codes over polynomial rings. In this paper, we
consider these connections and show that, based on them,
new MDS codes over polynomial rings can be directly
obtained as by-products.

4) In terms of construction, all MDS array codes proposed in
the previous work and this paper can have a total number
of data columns far exceeding the design parameter p.
However, the feasible number of parity columns for the
V-ESIP MDS array codes in the previous work is three,
while that in this paper is any size.

5) In terms of computation, fast syndrome computation in
the previous work is for 2 ≤ r ≤ 3, whereas that proposed
in this paper is for arbitrary r ≥ 2. The former is a special
case of the latter.

The remainder of this paper is organized as follows. Sec-
tion II introduces all necessary preliminaries, including some
existing well-known binary array codes and important nota-
tions. Section III provides the specific definitions of ESIP/ESIP
and V-ETBR/V-ESIP codes. By exploring the general connec-
tions between V-ETBR/V-ESIP codes and their counterparts
over polynomial rings (i.e., ESIP/ESIP codes), Section IV
proposes the conditions that make variant codes binary MDS
array codes. In Section V, some explicit constructions for V-
ETBR and V-ESIP MDS array codes are proposed, along with
their fast syndrome computations. Section VI concludes this
paper.

II. PRELIMINARIES

This section describes some existing well-known classes of
array codes, i.e., BR codes [4], IP codes [5], and generalized
RDP codes [6]. To begin with, let

Rp,τ :=
F2[x]

⟨fp,τ (x)⟩
(1)

denote a binary polynomial ring, where

fp,τ (x) = 1 + xτ + · · ·+ x(p−1)τ (2)

with two positive integers p, τ . The identity that xpτ + 1 =
(xτ + 1) · fp,τ (x) leads to operations in Rp,τ that can be
performed first in polynomial ring

R :=
F2[x]

⟨xpτ + 1⟩
, (3)

and then, all results should be reduced modulo fp,τ (x). Since
multiplying by x in R is equivalent to performing a one-bit
cyclic shift on a vector with pτ bits, the above realization for
the operations in Rp,τ is simple and efficient [4], [5].

A. BR codes

BR codes are constructed in polynomial ring Rp,1 [4], where
p is a prime number. Given the value of p, the BR(p, r < p) is
defined as the set of (p−1)×p arrays (denoted by [xi,j ], where
xi,j ∈ {0, 1}, the first p − r data columns are information
columns and others are parity columns). For ℓ = 0, 1, ..., p−1,

0,0

1,0

2,0

0

0,1

1,1

2,1

0

0,2

1,2

2,2

0

0,3

1,3

2,3

0

0,4

1,4

2,4

0

3,0 3,1 3,2 3,43,3

Fig. 1. Diagram of the BR code
with p = 5 and r = 3.

0,0

1,0

2,0

0

0,1

1,1

2,1

0

0,2

1,2

2,2

0

0,3

1,3

2,3

0

0,4

1,4

2,4

4,4

0,5

1,5

2,5

4,5

0,6

1,6

2,6

4,6

3,0 3,23,1 3,3 3,4 3,63,5

Fig. 2. Diagram of the generalized
RDP code with p = 5 and r = 3.

the ℓ-th column of a (p−1)×p array can be viewed as a binary
polynomial Dℓ =

∑p−2
i=0 xi,ℓ ·xi ∈ Rp,1. The BR(p, r) requires

that 0T = HBR · (D0, D1, ..., Dp−1)
T, where HBR ∈ Rr×p

p,1

is the Vandermonde parity-check matrix given by

HBR =


1 1 1 · · · 1
1 x x2 · · · xp−1

...
...

...
. . .

...
1 xr−1 x2(r−1) · · · x(r−1)(p−1)

 , (4)

and 0 is a zero-row vector.
BR codes have an intuitive graphical representation and

Fig. 1 provides an example of BR(5, 3) to demonstrate it.
In Fig. 1, the last row is imaginary to facilitate operations,
the leftmost two data columns are information columns of
the BR(5, 3), and the rightmost three data columns are all
parity columns. According to the identity 0T = HBR ·
(D0, D1, ..., Dp−1)

T, the result obtained by bit-wise XORing
all data columns is an all-zero column. If each column has
been subjected to down-cyclic shifts according to the corre-
sponding column index size, the above result is either an all-
zero column or an all-one column. This satisfies the need for
realization in Rp,1, which involves first performing operations
in R and then reducing to Rp,1. The above result is also true
if the number of down-cyclic shifts is twice the size of the
corresponding column index. One can know from [4] that BR
codes are always binary MDS array codes.

B. IP codes

IP codes are also constructed in Rp,1, but all parity columns
are independent of each other, leading to a minimization of the
number of parity updates when a data bit is updated [5], [10],
[16]. Precisely, given the prime number p and a positive integer
r, the IP(p + r, r) is defined as the set of (p − 1) × (p + r)
arrays of bits. In the same way as the BR codes, each column
of the array forms a binary polynomial, then the parity-check
matrix of the IP(p + r, r) is HIP = (HBR|Ir) , where HBR

is shown in (4) and Ir is an r× r identity matrix. The matrix
HIP implies that IP codes also have an intuitive graphical
representation similar to that shown in BR codes. Contrary to
BR codes, IP codes are not always binary MDS array codes.
The conditions for making IP codes to be binary MDS array
codes can be found in [5], [7].

C. Generalized RDP codes

In [17], the authors presented a binary MDS array code
with two parity columns, i.e., RDP codes. This code was
generalized to support more parity columns in [6]. Generalized



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 4

RDP codes are not directly constructed by parity-check ma-
trices over Rp,1 like the two codes introduced above. Given
a prime number p and a positive integer r, the generalized
RDP(p+r−1, r) code is defined as the set of (p−1)×(p+r−1)
arrays (denoted by [xi,j ], where xi,j ∈ {0, 1}, the first
p − 1 data columns are information columns, and others are
parity columns). From [6], it satisfies the following encoding
equations:

xi,p−1 =

p−2∑
j=0

xi,j for 0 ≤ i ≤ p− 2 , (5)

and xi,p−1+j =

p−1∑
ℓ=0

xi−jℓ,ℓ for
0 ≤ i ≤ p− 2

1 ≤ j ≤ r − 1
, (6)

where addition is performed through XOR, all subscripts in the
right-hand side of equal signs are modulo p, and xp−1,j = 0
for j = 0, 1, ..., p− 1.

Similar to BR and IP codes, the generalized RDP codes
have an intuitive graphical representation. Fig. 2 shows an
example of p = 5 and r = 3, where the leftmost four
data columns are information columns and the last row is
imaginary. Clearly, the first parity column, i.e., {xi,4}4i=0, is
obtained by bit-wise XORing the first 4 columns. The second
parity column, i.e., {xi,5}4i=0, is obtained by bit-wise XORing
the first 5 columns after each column has been subjected
to down-cyclic shifts according to the corresponding column
index size. The third parity column is similar to the second,
but the number of down-cyclic shifts in each column becomes
twice the corresponding column index size. The three parity
columns of the generalized RDP(7, 3) code are obtained by
directly deleting the imaginary row.

Generalized RDP codes are not always binary MDS array
codes [6], as are IP codes. Conditions that make generalized
RDP codes to be binary MDS array codes can be found in [6].
In particular, there is a connection between generalized RDP
and IP codes as follows:

Theorem 1. ( [6]) The generalized RDP(p + r − 1, r) is a
binary MDS array code if the shortened IP(p+ r− 1, r) with
the following parity-check matrix over Rp,1 is a binary MDS
array code

HSIP =

HBR

0 0 · · · 0
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 . (7)

The encoding of the shortened IP code with (7) can be
analogized from the BR code in Section II-A. It is easy to see
that the process is similar to that in the generalized RDP(p+
r − 1, r). The only difference is that the latter does not need
to calculate the last bit in each parity column and modulo
fp,1(x).

D. Notations

Throughout this paper, the set {0, 1, 2, 3, ...} is denoted by
N and the set {i, i + 1, ..., j − 1} is denoted by [i, j), where

i ∈ N, j ∈ N with i < j. The transpose of a matrix or vector
is marked with the notation T in the upper right-hand corner.
Unless otherwise stated, suppose that

m = pτ, τ = 2s, (8)

where p > 1 is an odd number and s ∈ N. Note that p and τ
are determined if m is given. In addition, fp,τ (x) = fτ

p,1(x).
Some special mappings are defined below. For any i, j ∈ N

and a =
∑m−1

i=0 ai · xi ∈ R, define a mapping Ai,j : R →
F(m−i)×(m−j)
2 by letting Ai,j(a) be the resultant (m − i) ×

(m− j) binary matrix after deleting the last i rows and last j
columns of the following m×m binary circulant matrix

a0 a1 a2 · · · am−1

am−1 a0 a1 · · · am−2

...
...

...
. . .

...
a1 a2 a3 · · · a0

 . (9)

That is,

Ai,j(a) =


a0 a1 a2 · · · am−1−j

am−1 a0 a1 · · · am−2−j

...
...

...
. . .

...
a1+i a2+i a3+i · · · am−j+i

 , (10)

where each subscript is modulo m. From [30], one can see
that A0,0 is an isomorphic mapping. Moreover, for i ∈ N,
Ai,i(0) is the (m − i) × (m − i) zero matrix and Ai,i(1)
is an (m − i) × (m − i) identity matrix. Furthermore, for
any ℓ0, ℓ1 ∈ N, we define a mapping from the set consisting
of all ℓ0 × ℓ1 matrices over R to the set consisting of all
ℓ0(m− τ)× ℓ1(m− τ) matrices over F2, i.e.,

Tℓ0,ℓ1,m : Mℓ0×ℓ1(R) → Mℓ0(m−τ)×ℓ1(m−τ)(F2) (11)

by letting Tℓ0,ℓ1,m(B) = B, where B = [bi,j ] ∈ Rℓ0×ℓ1 and
B = [Aτ,τ (bi,j)] ∈ Fℓ0(m−τ)×ℓ1(m−τ)

2 .
In this paper, the code with Tℓ0,ℓ1,m(B) as the parity-check

matrix has a binary codeword of size ℓ1 · (m−τ), where ℓ0 <
ℓ1. By default, the codeword is arranged in an (m − τ) × ℓ1
array of bits in column-first order, and we refer to this code
as a binary array code. In addition, we refer to this code as a
binary MDS array code if each codeword array can be restored
by any ℓ1 − ℓ0 columns.

III. DEFINITIONS OF VARIANT CODES

This section defines two new classes of binary array
codes (i.e., V-ETBR and V-ESIP codes). One can see that
the generalized RDP codes introduced in Section II-C are a
special case of the V-ESIP codes.

To begin with, we define two codes over the polynomial
ring Rp,τ as follows:

Definition 1. (ETBR Codes) Let 2 ≤ r < n, and H =
[hi,j ]0≤i<r,0≤j<n ∈ Rr×n. Define ETBR(n, r,m = pτ,H) as
a code over Rp,τ determined by the parity-check matrix H that
is reduced to over Rp,τ , where each element in H is modulo
fp,τ (x) to be an element over Rp,τ .



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 5

Tr,p+r−1,p(H
′) =


Ip−1 Ip−1 Ip−1 · · · Ip−1

Ip−1 A1,1(x
p−1) A1,1(x

p−2) · · · A1,1(x) Ip−1

...
...

...
. . .

...
. . .

Ip−1 A1,1(x
(p−1)(r−1)) A1,1(x

(p−2)(r−1)) · · · A1,1(x
r−1) Ip−1

 . (12)

Remark 1. In Definition 1, the form of H is not fixed and
covers HBR in (4), so we refer to ETBR(n, r,m,H) as an
extended BR code.

Definition 2. (ESIP Codes) Let n ≥ 2, r ≥ 2, and H ′ =
[H|Î] ∈ Rr×(n+r−1), where the definition of H is the same
as in Definition 1 and Î is the matrix after removing the first
column of the r × r identity matrix. Define ESIP(n, r,m =
pτ,H ′) as a code over Rp,τ determined by the parity-check
matrix H ′ that is reduced to over Rp,τ , where each element
in H is modulo fp,τ (x) to be an element over Rp,τ .

Remark 2. In Definition 2, the ESIP(n, r,m = p,H ′) is
exactly the shortened IP code given by (7) if H = HBR.
Obviously, H ′ has a wider range of parameters so that the
ESIP codes can be regarded as an extension of shortened IP
codes.

The variant codes corresponding to ETBR and ESIP codes,
i.e., V-ETBR and V-ESIP codes, are defined below. When
we refer to ETBR/ESIP codes and V-ETBR/V-ESIP codes as
corresponding, it means that they are determined by the same
matrix H or H ′ over R.

Definition 3. (V-ETBR Codes) Define V-ETBR(n, r,m =
pτ,H) as a binary array code whose parity-check matrix is
Tr,n,m(H), where 2 ≤ r < n, Tr,n,m is defined in (11), and
the definition of H is the same as that in Definition 1.

Definition 4. (V-ESIP Codes) Define V-ESIP(n, r,m =
pτ,H ′) as a binary array code whose parity-check matrix
is Tr,n+r−1,m(H ′), where n ≥ 2, r ≥ 2, Tr,n+r−1,m is
defined in (11), and the definition of H ′ is the same as that
in Definition 2.

Conventionally, the last r columns of the array correspond-
ing to the codeword in the above codes are referred to as parity
columns and all other columns are referred to as information
columns. We have the following relationship.

Lemma 1. Let H ′ in Definition 4 be determined by a Van-
dermonde matrix H such that h1,j = xp−j and hi,j = hi

1,j

for 2 ≤ i < r, 0 ≤ j < p, and p is a prime number.
Then V-ESIP(p, r,m = p,H ′) is exactly the generalized
RDP(p+ r − 1, r) described in Sec. II-C.

Proof. From Definition 4, Tr,p+r−1,p(H
′) is the parity-check

matrix of the V-ESIP(p, r,m = p,H ′) and is given by (12) at
the top of this page, where all unspecified entries are zero.

Let b0,b1, ...,bp−2 ∈ Fp−1
2 denote all p − 1 information

columns in the codewrod. We next show that any parity
column generated by the V-ESIP code is the same as that
in the generalized RDP code described in Sec. II-C.

Let bp−1,bp, ...,bp+r−2 ∈ Fp−1
2 denote all r parity

columns of the V-ESIP code. One can easily know from

(12) that bp−1 is obtained by bit-wise XORing of all p − 1
information columns. For any i ∈ [1, r), the i-th parity column
of the V-ESIP code is obtained by

bT
p−1+i =

p−1∑
j=0

A1,1(x
(p−j)i)·bT

j =

p−1∑
j=0

A1,0(x
(p−j)i)·(bj , 0)

T.

(13)
Note that calculating A1,0(x

(p−j)i) · (bj , 0)
T is equivalent to

removing the last element from the result of A0,0(x
(p−j)i) ·

(b, 0)T. Furthermore, A0,0(x
(p−j)i) =

(
A0,0(x

p−j)
)i

, where
A0,0(x

p−j) can be regarded as the operator of performing j
times down-cyclic shift on a vector. Assume that each data
column has an imaginary bit attached at the end, thus, (13)
indicates that each bp−1+i, i ∈ [1, r) can be obtained by bit-
wise XORing of the first p columns after each column has
been subjected to down-cyclic shifts according to i times the
corresponding column index size. Each parity column needs
to remove the last bit in the result. The above process is
consistent with the graphical representation of the generalized
RDP code, as shown in Fig. 2. This completes the proof.

Lemma 1 explicitly provides a binary parity-check matrix
for the generalized RDP(p+r−1, r). From the perspective of
the binary parity-check matrix, all fast computations about the
generalized RDP codes, such as those proposed in [21], [31],
can thus be regarded as scheduling schemes for matrix opera-
tions over binary fields. Furthermore, any existing scheduling
algorithm for general matrix operations over binary fields may
be used to accelerate the computation of generalized RDP
codes, such as [26], [27].

Recall that Theorem 1 established a connection between
generalized RDP codes and shortened IP codes, which can be
viewed as a special case of the connection between V-ESIP
codes and ESIP codes. It remains an open problem whether
there exists a general connection between V-ESIP and ESIP
codes, as well as between V-ETBR and ETBR codes. The next
section is devoted to these issues.

IV. CONDITIONS THAT MAKE VARIANT CODES BINARY
MDS ARRAY CODES

This section proposes the conditions that make the variant
codes (see Definitions 3 and 4) binary MDS array codes by
exploring the general connections between them and their
counterparts over polynomial rings (see Definitions 1 and 2).
TABLE I defines some important symbols to be used later.

A. Rank of the square matrix Tℓ,ℓ,m(V )

We first explore the the rank of Tℓ,ℓ,m(V ). The following
lemmas are useful.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 6

TABLE I
IMPORTANT SYMBOLS USED IN SECTION IV

Symbol Definition
ℓ a positive number not less than two.
V V = [vi,j ] is an ℓ× ℓ square matrix over R.

B(i, j) B(i, j) = (Aτ,0(vi,0), ...,Aτ,0(vi,j−1)), i ∈ [0, ℓ), j ∈ [1, ℓ+ 1).
Bτ (i, j) Bτ (i, j) = (Aτ,τ (vi,0), ...,Aτ,τ (vi,j−1)), i ∈ [0, ℓ), j ∈ [1, ℓ+ 1).
vi,j a non-zero codeword with vector form generated by generator matrix Bτ (i, j).
vi,j the non-zero codeword with vector form generated by generator matrix B(i, j) and corresponds to vi,j .

Lemma 2. Assume that ℓ0 ≥ 2, ℓ1 ≥ 2, xτ + 1|ai,j +
ai,k with ai,j , ai,k ∈ R, i ∈ [0, ℓ0), j, k ∈ [0, ℓ1). Let
each ai,j denote the binary coefficient vector of ai,j , i.e.,
ai,j = ai,j · (1, x, ..., xm−1)T, and let ai,j denote the vector
after ai,j deletes the last τ elements. If all vectors in the
set {(ai,0, ...,ai,ℓ1−1) ∈ F1×(m−τ)ℓ1

2 }ℓ0−1
i=0 are F2-linearly

dependent, i.e.,
∑ℓ0−1

i=0 ci · (ai,0, ...,ai,ℓ1−1) = 01×(m−τ)ℓ1 ,
where each ci ∈ F2 and c0, c1, ..., cℓ0−1 are not all zero,
then the result of

∑ℓ0−1
i=0 ci · (ai,0, ...,ai,ℓ1−1) must have the

form of (01×(m−τ),u|01×(m−τ),u, |...|01×(m−τ),u), where
u ∈ F1×τ

2 .

Proof. From the condition, we immediately have
ℓ0−1∑
i=0

ci · (ai,0, ...,ai,ℓ1−1)

=(01×(m−τ),u0|01×(m−τ),u1, |...|01×(m−τ),uℓ1−1)

(14)

where each ui ∈ F1×τ
2 . In the above formula, the sum of any

two parts is (01×(m−τ),uj + uk) =
∑ℓ0−1

i=0 ci · (ai,j + ai,k),
where 0 ≤ j < k < ℓ1. Since xτ + 1|ai,j + ai,k, then the
sum (01×(m−τ),uj +uk) is a binary coefficient vector of the
polynomial that is a multiple of xτ + 1. However, uj + uk

contains only τ elements. This results in uj+uk having to be
a zero vector. Therefore, we have uj = uk with j ̸= k. This
completes the proof.

Remark 3. From the proof of Lemma 2, one can readily know
that u = 01×τ in Lemma 2, if xτ + 1|ai,j , i ∈ [0, ℓ0), j ∈
[0, ℓ1).

Lemma 3. The square matrix Tℓ,ℓ,m(V ) has full rank if the
following conditions are satisfied:
1) V has full rank over Rp,τ , i.e., gcd(|V |, fp,τ (x)) = 1,

where |V | is the determinant of V .
2) For any 0 ≤ i < ℓ, then Bτ (i, ℓ) in TABLE I has full row

rank over F2.
3) For any 0 ≤ i < ℓ, 0 ≤ j < ℓ, then xτ + 1|vi,j .
When v0,j = 1,∀j ∈ [0, ℓ), 3) is relaxed to
3’) For any 1 ≤ i < ℓ, 0 ≤ j < k < ℓ, then xτ +1|vi,j + vi,k.

Proof. According to TABLE I, Tℓ,ℓ,m(V ) is composed of
Bτ (0, ℓ),Bτ (1, ℓ), ...,Bτ (ℓ − 1, ℓ). Since each Bτ (i, ℓ), i ∈
[0, ℓ), has full row rank, we only need to prove that there
is no v0,ℓ,v1,ℓ, ...,vℓ−1,ℓ, which are F2-linearly dependent.
By contradiction, assume that there exists v0,ℓ,v1,ℓ, ...,vℓ−1,ℓ

such that they are F2-linearly dependent, i.e.,
∑ℓ−1

i=0 civi,ℓ =
01×(m−τ)ℓ where each ci ∈ F2 and c0, c1, ..., cℓ−1 are not all
zero.

We first consider the third condition of xτ + 1|vi,j . Ac-
cording to Remark 3 and the facts that xτ + 1|vi,j , each
vi,ℓ is the vector consisting of the binary coefficient vectors
in qi,ℓ · (vi,0, vi,1, ..., vi,ℓ−1), where qi,ℓ ∈ R \ {0} and
deg(qi,ℓ) < m − τ , then

∑ℓ−1
i=0 civi,ℓ = (01×m, ...,01×m).

Therefore, we have
∑ℓ−1

i=0 ciqi,ℓ · vi,j = 0 mod xm + 1 for
j ∈ [0, ℓ). By taking j = 0, 1, ..., ℓ − 1, the above equations
can be converted into

Γ0 ·


c0 · q0,ℓ
c1 · q1,ℓ

...
cℓ−1 · qℓ−1,ℓ

 = 0T, (15)

where 0 is a zero-row vector and

Γ0 =


v0,0 v1,0 · · · vℓ−1,0

v0,1 v1,1 · · · vℓ−1,1

...
...

. . .
...

v0,ℓ−1 v1,ℓ−1 · · · vℓ−1,ℓ−1

 . (16)

In (15), all operations are performed in R. Note that each
ci ∈ F2 and deg(qi,ℓ) < m− τ , we can solve the above linear
equations in Rp,τ . Since |Γ0| = |V | is invertible over Rp,τ ,
then c0q0,ℓ, ..., cℓ−1qℓ−1,ℓ in (15) must all be zero according
to Cramer’s rule. Moreover, each qi,ℓ ̸= 0 with deg(qi,ℓ) <
m− τ , so that c0 = c1 = · · · = cℓ−1 = 0. This contradicts the
assumption at the beginning.

Consider the third condition of xτ + 1|vi,j + vi,k
instead, then Lemma 3 gives

∑ℓ−1
i=0 civi,ℓ =

(01×(m−τ),u|...|01×(m−τ),u), where u ∈ Fm−τ
2 . Since

v0,j = 1,∀j ∈ [0, ℓ), we have

ℓ−1∑
i=1

civi,ℓ

=c0 · v0,ℓ + (01×(m−τ),u|...|01×(m−τ),u) = (u′|...|u′),
(17)

where u′ ∈ Fm
2 . Based on the fact that any two part of

the form in (17) sum to zero, we have
∑ℓ−1

i=1 ciqi,ℓ · (vi,j +
vi,k) = 0 mod xm + 1 for 0 ≤ j < k < ℓ. By taking
(j, k) = (0, 1), (0, 2), ..., (0, ℓ − 1), the above equations can
be converted into

Γ1 ·


c1 · q1,ℓ
c2 · q2,ℓ

...
cℓ−1 · qℓ−1,ℓ

 = 0T, (18)



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 7

where 0 is a zero-row vector and

Γ1 =


v1,0 + v1,1 · · · vℓ−1,0 + vℓ−1,1

v1,0 + v1,2 · · · vℓ−1,0 + vℓ−1,2

...
. . .

...
v1,0 + v1,ℓ−1 · · · vℓ−1,0 + vℓ−1,ℓ−1

 . (19)

In (18), all operations are performed in R. Note that each
ci ∈ F2 and deg(qi,ℓ) < m− τ , we can solve the above linear
equations in Rp,τ . One can know that the determinant of Γ1

is equal∣∣∣∣∣∣∣∣∣
1 0 · · · 0
1 v1,0 + v1,1 · · · vℓ−1,0 + vℓ−1,1

...
...

. . .
...

1 v1,0 + v1,ℓ−1 · · · vℓ−1,0 + vℓ−1,ℓ−1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 v1,0 · · · vℓ−1,0

1 v1,1 · · · vℓ−1,1

...
...

. . .
...

1 v1,ℓ−1 · · · vℓ−1,ℓ−1

∣∣∣∣∣∣∣∣∣ = |V |,

(20)

where the first equality is obtained by subtracting the appro-
priate multiple of the first column from all other columns.
Thus, |Γ1| = |V | is also invertible over Rp,τ . Then
c1q1,ℓ, ..., cℓ−1qℓ−1,ℓ in (15) must all be zero according to
Cramer’s rule. Similarly, note that each qi,ℓ ̸= 0 with
deg(qi,ℓ) < m−τ , so we must have that c1 = · · · = cℓ−1 = 0,
then c0 = 0. This contradicts the assumption at the beginning.
This completes the proof.

The above lemma reveals the connection between the ranks
of V and Tℓ,ℓ,m(V ). In Lemma 3, the latter two conditions are
easily met. More precisely, the third condition only requires
that any vi,j is a multiple of xτ +1, and the second condition
can be satisfied by the following lemma, which is easily
obtained through the proof of Proposition 6 in [29].

Lemma 4. ( [29]) Let a, b ∈ R, then Aτ,τ (a) has full row
rank over F2 if gcd(a, xm + 1) = xτ + 1; Aτ,τ (a, b) has full
row rank over F2 if gcd(a+ b, xm + 1) = xτ + 1.

B. Conditions for binary MDS array codes

We now present the conditions that make the variant codes
binary MDS array codes, by establishing the connections
between them and the corresponding codes over polynomial
rings. To begin with, the following theorem on V-ETBR codes
can be obtained.

Theorem 2. V-ETBR(n, r,m = pτ,H) is a binary MDS array
code if
1) The corresponding ETBR(n, r,m,H) is an MDS code over

Rp,τ .
2) For any 0 ≤ i < r, 0 ≤ j < n, then gcd(hi,j , x

m + 1) =
xτ + 1.

When h0,j = 1,∀j ∈ [0, n), the above last condition is
replaced with
2’) For any 1 ≤ i < r, 0 ≤ j, k < n and j ̸= k, then

gcd(hi,j , x
m+1) = xτ +1 or gcd(hi,j +hi,k, x

m+1) =
xτ + 1.

Proof. We only need to prove that any Tℓ×ℓ(V ) for ℓ = r has
full rank, where all elements in V are determined by H . This
is easily derived from Lemmas 3 and 4.

The following theorems on V-ESIP codes can be obtained.

Theorem 3. When the first row of H in H ′ is an all-one row,
the V-ESIP(n, r,m = pτ,H ′) is a binary MDS array code if
1) The corresponding ESIP(n, r,m,H ′) is an MDS code over

Rp,τ .
2) For any 1 ≤ i < r and 0 ≤ j < k < n, then xτ +1|hi,j +

hi,k.

Proof. Without loss of generality, we only need to prove
Tℓ,ℓ,m(V ) for any 1 < ℓ ≤ r has full rank, where elements
in Tℓ,ℓ,m(V ) are determined by H ′ and {v0,j = 1}ℓ−1

j=0. We
prove this via Lemma 3. First, the first condition of Lemma 3
is satisfied since the corresponding ESIP(n, r,m,H ′) is an
MDS code over Rp,τ . Furthermore, the fact that V with ℓ = 2
have full rank over Rp,τ leads to gcd(hi,j + hi,k, fp,τ (x)) =
1, 1 ≤ i < r, 0 ≤ j < k < n. Recall that the condition of xτ +
1|hi,j +hi,k, then we have gcd(hi,j +hi,k, x

m+1) = xτ +1.
One can easily see from Lemma 4 that the second condition
of Lemma 3 is thus satisfied. The latter third condition of
Lemma 3 is obviously satisfied. This completes the proof.

Remark 4. Now, the correctness of Theorem 1 can be readily
proven by Theorem 3, just by setting τ = 1. Theorem 1
requires p to be an odd prime number for shortened IP codes.
Theorem 3 provides additional clarification by demonstrating
that p only needs to be odd.

In Theorem 3, the rightmost end of H ′ is not necessarily an
identity matrix. Since the existence of an identity matrix can
simplify encoding, we consider the following case that does
not require the first row of H to be an all-one row (only the
last column to be constrained).

Theorem 4. When the rightmost end of H ′ is an r×r identity
matrix, i.e., the last column of H is (1, 0, 0, ..., 0)T, then the
V-ESIP(n, r,m = pτ,H ′) is a binary MDS array code if
1) The corresponding ESIP(n, r,m,H ′) is an MDS code over

Rp,τ .
2) For any 0 ≤ i < r and 0 ≤ j < n−1, then gcd(hi,j , x

m+
1) = xτ + 1.

Proof. Without loss of generality, we only need to prove
Tℓ,ℓ,m(V ) for any 1 ≤ ℓ ≤ r has full rank, where elements
in Tℓ,ℓ,m(V ) are determined by H after removing the last
column. Similarly, we prove this via Lemma 3. First, the
first condition of Lemma 3 is satisfied since the corresponding
ESIP(n, r,m,H ′) is an MDS code over Rp,τ . Lemma 4 and
gcd(hi,j , x

m + 1) = xτ + 1 lead to that the second condition
of Lemma 3 holds. Finally, the former third condition of
Lemma 3 obviously holds. This completes the proof.

V. EXPLICIT CONSTRUCTIONS & FAST COMPUTATIONS

Based on the conditions given in Sec. IV-B, we next present
some explicit constructions for the V-ETBR/V-ESIP binary
MDS array codes. In particular, Vandermonde matrices and



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 8

Cauchy matrices are two classes of matrices commonly used
in the construction of MDS codes. They both have a regular
structure, and their determinants can be easily calculated. By
setting appropriate entries, one can easily make sub-matrices
of the Cauchy-based/Vandermonde-based parity-check matrix
having full rank. For more details, please refer to [1], [23],
[32]. This paper also explores the use of the two matrices in
our constructions.

A. Constructions

To begin with, suppose that fp,1(x) in (2) can be com-
pletely factorized into fp,1(x) = f0(x) · f1(x) · · · fµ−1(x),
where each fi(x) is an irreducible polynomial over F2[x] and
λ = deg(f0(x)) ≤ deg(f1(x)) ≤ · · · ≤ deg(fµ−1(x)). Note
that λ = p− 1 if 2 is a primitive element in p-ary finite field
Fp [5]. Then, we have the following construction for the V-
ESIP MDS array codes with any number of parity columns,
based on Cauchy matrices.

Construction 1. (V-ESIP MDS array codes with r ≥ 2)
Let {a0, ..., ar−1} and {b0, ..., bn−2} are two sets of elements
from R, where deg(ai) < λ,deg(bj) < λ and ai ̸= bj for
any i, j, then the V-ESIP(n, r ≥ 2,m = pτ,H ′ = [HI |Ir×r])
is a binary MDS array code, where HI = [(xτ + 1) · gi,j ] ∈
Rr×(n−1) and gi,j denotes the inverse of ai + bj over Rp,τ

that always exists due to the degree of ai + bj less than λ.

Proof. We prove this via Theorem 4. Let H ′
I = [gi,j =

1
ai+bj

] ∈ Rr×(n−1)
p,τ that is a Cauchy matrix. Obviously, the

determinant of any square sub-matrix of H ′
I is invertible over

Rp,τ , since it is the product of some elements in the sets
{ai + aj}i̸=j , {bi + bj}i̸=j , { 1

ai+bj
} [32], where any ai, bj

has the degree less than λ. Note that the determinant of the
corresponding square sub-matrix of HI is (xτ +1)ξ times the
above result for some ξ ≥ 1, and gcd(xτ + 1, fp,τ (x)) = 1.
This results in the determinant of any square sub-matrix
of HI having to be invertible over Rp,τ . Thus, the first
condition of Theorem 4 is satisfied. Furthermore, we have
gcd((xτ + 1)gi,j , fp,τ (x)) = 1, leading to the second con-
dition of Theorem 4 holds. This completes the proof.

Remark 5. To our knowledge, many works on MDS codes
seek efficient computation by mapping Cauchy-based parity-
check matrices over finite fields to binary matrices [32]–[35].
This enables the use of scheduling algorithms of binary matrix-
vector multiplication, reducing the number of operations. Con-
struction 1 changes finite fields to polynomial rings and also
provides a binary mapping. Existing scheduling algorithms
of binary matrix-vector multiplication may be applicable to
the variant codes in Construction 1, such as those proposed
in [33]–[35]. Notably, our mapping is more convenient than
the previous one to design and analyze the number of 1s in
the resulting matrix after mapping, as it is obtained through
circulant matrices, while the other is by taking the modulus of
an irreducible polynomial. The new mapping offers a new idea
for developing efficient scheduling algorithms for Cauchy-
based codes.

Based on Vandermonde matrices, Construction 2 provides
the construction of the V-ETBR MDS array codes with any
number of parity columns. This construction can also be
found in [29], but a different proof is provided. Since the
proof is based on Theorem 2, which reveals the general
connection between variant codes and codes over polynomial
rings (not specified in [29]), we only need to check whether the
associated matrices over polynomial rings satisfy two simple
conditions. This results in a proof process that is more concise
and efficient compared to the one in [29] (which focuses
directly on binary parity-check matrices). In addition, this
proof shows the wide applicability of Theorem 2. From the
proof of any construction proposed in this paper, one can easily
see that the codes over Rp,τ corresponding to the variant codes
are also MDS codes.

To simplify the representation of elements in the Vander-
monde matrix H , we let h0,i = 1,∀i ∈ [0, n), and hi :=
h1,i,∀i ∈ [0, n), such that hj,i = hj

i ,∀j ∈ [1, r), i ∈ [0, n).

Construction 2. (V-ETBR MDS array codes with r ≥ 2) Let
H ∈ Rr×n be a Vandermonde matrix, n = 2n0 , n0 ≤ λ, and
hi = (1 + xτ ) · h′

i,∀i ∈ [0, n), where {h′
i}0≤i<n is given by

h′
0 = 0 and h′

i+2j = h′
i + xj , 0 ≤ j < n0, 0 ≤ i < 2j . Then,

the V-ETBR(n, 2 ≤ r < n,m = pτ,H) is a binary MDS array
code.

Proof. We prove this via Theorem 2. Since the degree of any
h′
i is less than λ, we have gcd(hj

i , x
m + 1) = (xτ + 1) ·

gcd((h′
i)

j , fτ
p,1(x)) = xτ + 1, where 1 ≤ i < r and 0 ≤

j < k < n. This results in that the latter second condition
of Theorem 2 holds. For the first condition of Theorem 2, we
have gcd(hj+hk, fp,τ (x)) = gcd(h′

j+h′
k, f

τ
p,1(x)) = 1, where

0 ≤ j < k < n. Then any r×r Vandermonde sub-matrix of H
is invertible over Rp,τ , leading to the ETBR(n, r,m = pτ,H)
being MDS code over Rp,τ . This completes the proof.

Remark 6. In [29], the authors provided a fast scheduling
scheme for the syndrome computation of Construction 2 with
2 ≤ r ≤ 3. The next subsection (i.e., Section V-B1) will
propose its generalization to be suitable for any r ≥ 2.

According to Theorem 3, it is not difficult to check that
the V-ESIP(n, r = 3,m = pτ,H ′) is a binary MDS array
code if H ′ has the same H as Construction 2. The following
provides the Vandermonde-based construction for the V-ESIP
MDS array code with r = 4.

Construction 3. (V-ESIP MDS array codes with r = 4) Let
H ∈ Rr×n be a Vandermonde matrix, n = 2n1 + 1, n1 ≤
w = ⌊λ−1

2 ⌋, hn−1 = 0, and hi = (h′
i + xw) · (1 + xτ ), where

i ∈ [0, 2n1) and {h′
i}0≤i<2n1 is given by h′

0 = 0, h′
i+2j = h′

i+
xj , 0 ≤ j < n1, 0 ≤ i < 2j . Then, the V-ESIP(n, r = 4,m =
pτ,H ′) is a systematic binary MDS array code.

Proof. We prove this via Theorem 3. The second condition
in Theorem 3 obviously holds. For the first condition in
Theorem 3, we only need to prove that any 4× 4 sub-matrix
of H ′ is invertible over Rp,τ . Specifically, we first consider
any 4 × 4 sub-matrix of H in H ′, which is a Vandermonde
square matrix. Clearly, for any 0 ≤ i < j < n − 1, we
have that gcd(hi + hj , fp,τ (x)) = gcd(h′

i + h′
j , f

τ
p,1(x)) and



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 9

gcd(hi + hn−1, f
τ
p,1(x)) = gcd(h′

i + xw, fτ
p,1(x)). Since each

deg(h′
i) < w < λ, then gcd(hi + hj , fp,τ (x)) = 1,∀0 ≤

i < j < n. This indicates that any 4 × 4 sub-matrix of
H is invertible over Rp,τ . Next, we focus on the remaining
cases. We only need to determine if the following matrices are
invertible over Rp,τ ,(

1 1
h3
i h3

j

)
,

 1 1 1
hi hj hk

h3
i h3

j h3
k

 ,

 1 1 1
h2
i h2

j h2
k

h3
i h3

j h3
k

 , (21)

where 0 ≤ i < j < k < n. According to generalized
Vandermonde determinants [36], the determinants of the above
three matrices are respectively (let h′

n−1 = 0)

h3
i + h3

j = (hi + hj)(1 + xτ )2 ·
(
(h′

i)
2 + h′

ih
′
j + (h′

j)
2

+(h′
i + h′

j)x
w + x2w

)
,

hi + hj + hk = (1 + xτ )(h′
i + h′

j + h′
k + xw),

hihj + hihk + hjhk = (1 + xτ )2

· (h′
ih

′
j + h′

ih
′
k + h′

jh
′
k + x2w),

(22)
where 0 ≤ i < j < k < n. Since all h′

i, h
′
j , h

′
k have degrees

less than w, the above three values are not zero. Furthermore,
due to 2w < λ, they are all coprime with fp,τ (x). Then all
the matrices in (21) are invertible over Rp,τ . This completes
the proof.

Remark 7. It is clear that all the codes in Construction 1,
2, and 3 allow the total number of data columns to reach the
exponential size with respect to the design parameter p. This
is suitable for the needs of large-scale storage systems [29].
In addition, it is possible to construct the new codes us-
ing other matrices, such as Moore matrices [37] and some
matrices searched by computers. All proposed conditions in
Section IV-B offer great flexibility in constructing the variant
codes.

B. Fast Computations

To begin with, one can know from coding theory that
the product of any parity-check matrix and its corresponding
codeword is zero [38]. Formally, 0T = Ĥ · x̂T, where 0
denotes a zero vector, Ĥ denotes a binary parity-check matrix,
and x̂ denotes the corresponding codeword. It follows that
Ĥ · xT = Ĥe · eT, where x denotes the codeword after all
erased symbols are set to zero, e denotes the vector consisting
of all erased symbols, and Ĥe denotes the sub-matrix of Ĥ
corresponding to e. The above leads to the following common
framework for encoding and decoding procedures [1], [39]:
(when encoding, all parity symbols can be regarded as erased
symbols.)
Step 1. Compute syndrome sT := Ĥ · xT.
Step 2. Solve linear equations sT = Ĥe · eT.

Note that in Step 2, e can be calculated by eT = Ĥ−1
e · sT.

In practice, each storage node holds a massive amount of
data. Once all erased nodes (from power outages, downtime,
etc.) are identified, the inverse of Ĥe needs to be computed
only once to recover all data stored in erased nodes. This
results in the computational complexity of Step 2 being

dominated by matrix-vector multiplication, which requires at
most c · r2(m − τ)2 XOR,1 where c is a very large constant
determined by the capacity of storage nodes. If r, τ are
constants and p = Θ(lg n), we have limn→∞

c·r2(m−τ)2

c·(m−τ)n = 0,
where m = pτ . This means that the asymptotic computational
complexity of encoding/decoding is dominated by syndrome
computation. This subsection proposes fast syndrome compu-
tations for the constructed Vandermonde-based variant codes.

1) Syndrome computation for Construction 2: Here, Ĥ =
Tr,n,m(H), then the syndrome computation is sT =
Tr,n,m(H) ·xT. Let x = (x0, ...,xn−1) and s = (s0, ..., sr−1)
with each xi ∈ Fm−τ

2 , si ∈ Fm−τ
2 . For any i ∈ [0, r), we have

sTi =

2n0−1∑
j=0

Aτ,τ (h
i
j) · xT

j

=

2n0−1∑
j=0

Aτ,τ

(
(h′

j)
i · (1 + xτ )i

)
· xT

j .

(23)

The following is dedicated to demonstrating that s can be
calculated with the asymptotic complexity of ⌊lg r⌋+1 XORs
per data bit as n0 increases.

We first focus on the auxiliary calculation, i.e., (s∗i )
T =∑2n0−1

j=0 A0,0

(
(h′

j)
i · (1 + xτ )i

)
·(x∗

j )
T, where i ∈ [0, r), s∗i ∈

Fm
2 and x∗

i = (xi, 0, 0, · · · , 0) ∈ Fm
2 . Obviously, for any i ∈

[0, r), the first m−τ symbols in s∗i exactly form si. Note that
the auxiliary calculation can be converted into

(s∗i )
T = A0,0

(
(1 + xτ )i

)
·
2n0−1∑
j=0

A0,0

(
(h′

j)
i
)
· (x∗

j )
T, (24)

since A0,0 is an isomorphic mapping. In the above formula,
the result of multiplying A0,0

(
(h′

j)
i
)

by (x∗
j )

T is in fact the
reverse coefficient vector of the resultant polynomial from
multiplying (h′

j)
i by

x∗
j (x) := x∗

j · (xm−1, ..., x, 1)T. (25)

Hence, (24) can be easily obtained after calculating the fol-
lowing polynomial multiplication

P (i, {x∗
j (x)}2

n0−1
j=0 ) :=

2n0−1∑
j=0

(h′
j)

i ·x∗
j (x), i ∈ [0, r). (26)

It can be seen from the setting of {h′
j}

2n0−1
j=0 that the calcu-

lation in (26) is similar to the syndrome computation in [1].
The only difference is that the calculation is performed in the
polynomial ring R, while [1] is in a binary extension field.
Fast syndrome computation in [1] can be easily extended to
the case of polynomial rings. From [1], we have the following
lemma for computing (26).

Lemma 5. Let yT = (y0,y1, ...,y2n0−1)
T = Rn0

·(
x∗
0(x), ...,x

∗
2n0−1(x)

)T
, where each y0 ∈ R, Rn0 is a Reed-

Muller matrix defined by R0 = (1) and

Ri+1 =

(
Ri Ri

0i Ri

)
, (27)

1In fact, this computational complexity can be reduced by scheduling
algorithms for matrix-vector multiplication in the binary field, such as “four
Russians” algorithm [40] or other heuristic algorithms in [26], [27].



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 10

TABLE II
COMPUTATIONAL COMPLEXITIES OF SYNDROME COMPUTATIONS

IN THE VANDERMONDE-BASED VARIANT CODES (# OF XORS PER DATA BIT)

Configurations
p 11 (λ = 10) 13(λ = 12) 17(λ = 8) Theoretical

n0 or n1 8 9 10 8 9 10 8 Results
V-ETBR(n = 2n0 , r,m = p,H)

r = 3 2.026 2.015 2.008 2.027 2.015 2.008 2.028 2
r = 4 3.112 3.070 3.043 3.117 3.073 3.045 3.123 3
r = 5 3.145 3.088 3.053 3.150 3.091 3.055 3.156 3
r = 6 3.376 3.234 3.143 3.384 3.240 3.146 3.395 3
r = 7 3.607 3.380 3.232 3.619 3.387 3.237 3.635 3
r = 8 5.795 5.223 4.807 5.874 5.283 4.848 5.995 4

V-ESIP(n = 2n1 + 1, r = 4,m = p,H′)

r = 4 3.118 3.073 3.044 3.191 3.075 3.046 3.126 3

where i ∈ N and 0i denotes the 2i × 2i all-zero matrix. Then
for any i ∈ [0, r),

P (i, {x∗
j (x)}2

n0−1
j=0 )

=

{
y0, if b(i) = 0,∑n0−1

j=0 xij · y2j +
∑

0<j<2n0

1<b(j)≤b(i)

f(i, j) · yj , if b(i) ≥ 1,

(28)
where b(i) is the number of 1s in the binary representation of
i, and f(i, j) is a function that depends only on the indices i
and j. In particular, when b(i) = 2, each f(i, j) in (28) is a
polynomial containing two terms.

Proof. The proof can be easily obtained by analogy with that
in [1].

From the above, the syndrome computation in (23) can be
completed through the following steps (given m, r and n0):
Step 1. From the input vector (x∗

0(x), ...,x
∗
2n0−1(x)), calcu-

late all required yi in (28).
Step 2. From (28), calculate {P (i, {x∗

j (x)}
2n0−1
j=0 )}r−1

i=0 .
Step 3. Calculate {s∗i }

r−1
i=0 according to (24), and then extract

{si}r−1
i=0 .

In Step 1, many operations involving zeros can be elimi-
nated, as each x∗

i is obtained by filling zeros with xi. In Step 2,
if r < 8, all involved multiplications can be calculated using at
most one vector addition and one circular shift. This is due to
the fact that each multiplication factor is a polynomial contain-
ing no more than two terms. If r ≥ 8, it is best to use matrix-
vector multiplication for this operation (the multiplication of
two polynomials over R can be converted into multiplying a
circulant matrix by a coefficient vector of a polynomial). This
is because f(i, j) in (28) contains too many terms that need
to be summed. In contrast, when implemented using matrix-
vector multiplication, there exist general scheduling algorithms
that can reduce the computational complexity. In Step 3, the
involved two operations can be merged into

sTi = Aτ,0

(
(1 + xτ )i

)
·
2n0−1∑
j=0

A0,0

(
(h′

j)
i
)
· (x∗

j )
T, (29)

where i ∈ [0, r).
In terms of complexity, Step 1 requires only a portion of

the RM transform, and one can know from [1] that it produces

XORs with the number of (m−τ)·((⌊lg r⌋+ 1)n+ o(n)) [1],
where little-o notation is used to describe an upper bound that
cannot be tight. Step 2 produces multiplications and additions
that are both

∑r−1
i=1

∑b(i)
t=1

(
n0

t

)
− r+1. When r is a constant,

it is not difficult to check that limn0→∞

∑r−1
i=1

∑b(i)
t=1 (

n0
t )

2n0/n0
= 0.

Thus, the total number of XORs required for Step 2 is
m2 · o(2n0/n0). Step 3 produces r− 1 matrix-vector multipli-
cations. In summary, when r and τ are constants and n = 2n0

approaches infinity, the asymptotic complexity of the above
syndrome computation is ⌊lg r⌋+ 1 XORs per data bit. Note
that m = pτ and p = Θ(n0), where big-Θ notation is used to
describe a bound within a constant factor. For visualization,
TABLE II lists the computational complexities required for the
proposed syndrome computation with different parameters. It
can be observed that the numerical results are close to the
theoretical ones, especially when n0 is large enough. Indeed,
the syndrome computation proposed in [29], which reaches an
asymptotic complexity of two XORs per data bit, is a special
case of the above scheme at r = 3.

2) Syndrome computation for Construction 3: Here, let x =
(x0, ...,xn+3) of each xi ∈ Fm−τ

2 be a codeword, and s =
(s0, ..., s3) of each si ∈ Fm−τ

2 the corresponding syndrome.
Note that in Construction 3, n = 2n1 +1 and the parity-check
matrix Tr,n,m(H ′) is systematic. For any i ∈ [0, 4), we have

sTi = xT
2n1+i +

2n1−1∑
j=0

Aτ,τ (h
i
j) · xT

j

=xT
2n1+i +

2n1−1∑
j=0

Aτ,0

(
(h′

j + xw)i(1 + xτ )i
)
· (x∗

j )
T

=xT
2n1+i +Aτ,0

(
(1 + xτ )i

) 2n1−1∑
j=0

A0,0

(
(h′

j + xw)i
)
· (x∗

j )
T,

(30)
where each x∗

j = (xi, 0, 0, ..., 0) ∈ Fm
2 . In the above formula,

the result of multiplying A0,0

(
(h′

j + xw)i
)

by (x∗
j )

T is in fact
the reverse coefficient vector of the resultant polynomial from
multiplying (h′

j + xw)i by x∗
j (x), where x∗

j (x) is shown in
(25). Then, (30) can be easily obtained after calculating the



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 11

TABLE III
ASYMPTOTIC COMPLEXITIES OF ENCODING/DECODING WHEN r, τ ARE CONSTANTS AND

THE TOTAL NUMBER OF DATA COLUMNS APPROACHES INFINITY (PER DATA BIT).

MDS array codes Row size Parity columns Data columns # of XORs Note
BR code [4], [25] p− 1 2 ≤ r < p p r p odd prime
IP code [5], [31] p− 1 r ≥ 2 p+ r r p odd prime

Generalized RDP code [6], [31] p− 1 r ≥ 2 p+ r − 1 r p odd prime
Rabin-like code [24] p− 1 2 ≤ r < p p 2r p odd prime

Circulant Cauchy code [23] p− 1 2 ≤ r ≤ p p+ 1 3r − 2 2 primitive element in Fp

The Vandermonde-based V-ETBR code (p− 1)τ 2 ≤ r < 2λ 2λ ⌊lg r⌋+ 1 p odd number

The Vandermonde-based V-ESIP code (p− 1)τ r = 4 2⌊
λ−1
2

⌋ + 4 3 p odd number

following polynomial multiplication

Q(i, {x∗
j (x)}2

n1−1
j=0 ) :=

2n1−1∑
j=0

(h′
j + xw)i · x∗

j (x), i ∈ [0, r).

(31)
The above formula can be simplified as (32), which is shown
at the bottom of this page. This indicates that the syndrome
computation can also be accelerated by (28). From the above,
the syndrome computation can be completed through the
following steps:
Step 1. From the input vector (x∗

0(x), ...,x
∗
2n1−1(x)), calcu-

late all required yi in (32).
Step 2. Calculate {Q(i, {x∗

j}
2n1−1
j=0 )}3i=0 according to (32).

Step 3. Calculate (30).
In terms of complexity, Step 3 only requires a few vector

additions and cyclic shifts. When r, τ are constants and n0

approaches infinity, the asymptotic complexity of the above
is dominated by the first two steps, and it is obviously the
same as that in Sec. V-B1, i.e., ⌊lg r⌋ + 1 = 3 XORs per
data bit. TABLE II also lists the computational complexities
for this syndrome computation with different parameters. Note
that the total number of data columns at this time is n+r−1.

C. Comparison

TABLE III lists the asymptotic complexities of different
binary MDS array codes. The fourth column shows the max-
imum number of data columns for each code, and the fifth
column shows the asymptotic complexities of encoding and
decoding, both of which are equal. It can be observed that
the constructed Vandermonde-based variant codes not only
have a more flexible row size and design parameter p but also
have an exponentially growing total number of data columns
with respect to p and minimal asymptotic encoding/decoding
complexity.

To better demonstrate the impact of asymptotic computa-
tional complexity in practice, Fig. 3 and 4 also show the
average number of XORs required for different binary MDS
array codes with the total number of data columns being 127

and 251, respectively. Note that the average number of XORs
is obtained by dividing the total number of XORs by the total
number of bits in the data array, and that “Proposed 1” and
“Proposed 2” in Fig. 3 and 4 correspond to the Vandermonde-
based V-ETBR and V-ESIP codes in TABLE III, respectively.
In our setup, the parameters p and τ of the variant codes are
fixed to p = 11 and τ = 1, while the parameter p of the
other codes are the same as the total number of data columns
(p = 127 in Fig. 3, p = 251 in Fig. 4). Each code has a row
size of p−1 in the data array. This means that the row size in
the data array of the variant codes is much smaller than that of
other codes. In other words, the proposed variant codes require
significantly less capacity per node in storage systems.

Let the variant codes use “Proposed 2” in the case of four
parity columns and “Proposed 1” in the other cases. Fig. 3
shows that the average improvements in encoding/decoding for
the variant codes compared to the Circulant Cauchy code [23],
Rabin-like code [24], and BR code [4], [25] are 60%/61%,
51%/49%, and 12%/5%, respectively. The average improve-
ments in Fig. 4 are 69%/69%, 63%/61%, and 26%/22%,
respectively. With a fixed number of parity columns, the
performance advantage of the variant codes in Fig. 4 is more
obvious than that in Fig. 3.

It is worth noting that the practical performance of the
variant codes constructed in this paper converges to the
theoretical results when the number of data columns is much
larger than that of parity columns. When the total number
of data columns is not large enough, the proposed syndrome
computation does not dominate the overall computational
complexity, causing the efficiency of binary matrix-vector
multiplication to be crucial. In our simulations, no scheduling
algorithms for binary matrix-vector multiplication was used
in the variant codes. Thus, there is a great potential to further
improve the performance of the variant codes, which is also
one of our future work.

VI. CONCLUSION

In this paper, we explore variant codes from codes over the
polynomial ring F2[x]/⟨

∑p−1
i=0 xiτ ⟩, and then propose two new

Q(i, {x∗
j (x)}2

n1−1
j=0 ) =


P (0, {x∗

j}
2n1−1
j=0 ), i = 0,

P (i, {x∗
j}

2n1−1
j=0 ) + xiw · P (0, {x∗

j}
2n1−1
j=0 ), i = 1, 2,

P (3, {x∗
j}2

n1−1
j=0 ) + xw · P (2, {x∗

j}2
n1−1

j=0 ) + x2w · P (1, {x∗
j}2

n1−1
j=0 )

+ x3w · P (0, {x∗
j}2

n1−1
j=0 )

, i = 3.

(32)



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 12

Fig. 3. Computational complexities of different binary MDS array codes
(when the total number of data columns is 127).

Fig. 4. Computational complexities of different binary MDS array codes
(when the total number of data columns is 251).

classes of binary array codes, termed V-ETBR and V-ESIP
codes. These variant codes are derived by mapping parity-
check matrices over the polynomial ring to binary parity-
check matrices. We show that the well-known generalized
RDP code is a special case of the variant codes. To make this
mapping a powerful tool in the construction of binary array
codes, we explore in detail the connections between the variant
codes and their counterparts over the polynomial ring, and
provide conditions that make them binary MDS array codes.
Based on these conditions, some new binary MDS array codes
are explicitly constructed based on Cauchy and Vandermonde
matrices. In addition, two fast syndrome computations for the
constructed Vandermonde-based codes are proposed, both of
which meet the lowest known asymptotic complexity among
MDS codes [1]. Since the constructed codes have significantly
more data columns than previous binary MDS array codes, the
known lowest asymptotic computational complexity, and they
are constructed from simpler binary parity-check matrices,
they are attractive in practice.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor, and
the anonymous reviewers for their valuable comments and
suggestions that helped us in improving this paper. In addition,
the authors would like to acknowledge the support of the
National Key Research and Development Program of China
under Grant 2022YFA1004902.

REFERENCES

[1] L. Yu, S.-J. Lin, H. Hou, and Z. Li, “Reed-Solomon coding algorithms
based on Reed-Muller transform for any number of parities,” IEEE
Transactions on Computers, vol. 72, no. 9, pp. 2677–2688, 2023.

[2] H. Hou, Y. S. Han, P. P. Lee, Y. Wu, G. Han, and M. Blaum,
“A generalization of array codes with local properties and efficient
encoding/decoding,” IEEE Transactions on Information Theory, vol. 69,
no. 1, pp. 107–125, 2022.

[3] J. D. Cook, R. Primmer, and A. de Kwant, “Compare cost and perfor-
mance of replication and erasure coding,” hitachi Review, vol. 63, p.
304, 2014.

[4] M. Blaum and R. M. Roth, “New array codes for multiple phased burst
correction,” IEEE Transactions on Information Theory, vol. 39, no. 1,
pp. 66–77, 1993.

[5] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent
parity symbols,” IEEE Transactions on Information Theory, vol. 42,
no. 2, pp. 529–542, 1996.

[6] M. Blaum, “A family of MDS array codes with minimal number
of encoding operations,” in 2006 IEEE International Symposium on
Information Theory, 2006, pp. 2784–2788.

[7] H. Hou, K. W. Shum, and H. Li, “On the MDS condition of Blaum–
Bruck–Vardy codes with large number parity columns,” IEEE Commu-
nications Letters, vol. 20, no. 4, pp. 644–647, 2016.

[8] J. Lv, W. Fang, B. Chen, S.-T. Xia, and X. Chen, “New constructions
of binary MDS array codes and locally repairable array codes,” in 2022
IEEE International Symposium on Information Theory (ISIT), 2022, pp.
2184–2189.

[9] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz, “Introduction to
redundant arrays of inexpensive disks (RAID),” in COMPCON Spring
89. IEEE Computer Society, 1989, pp. 112–113.

[10] M. Blaum and S. R. Hetzler, “Array codes with local properties,” IEEE
Transactions on Information Theory, vol. 66, no. 6, pp. 3675–3690,
2019.

[11] M. Blaum, J. L. Hafner, and S. Hetzler, “Partial-MDS codes and
their application to RAID type of architectures,” IEEE Transactions on
Information Theory, vol. 59, no. 7, pp. 4510–4519, 2013.

[12] K. W. Shum, H. Hou, M. Chen, H. Xu, and H. Li, “Regenerating codes
over a binary cyclic code,” in 2014 IEEE International Symposium on
Information Theory, 2014, pp. 1046–1050.

[13] M. Ye and A. Barg, “Explicit constructions of MDS array codes and
RS codes with optimal repair bandwidth,” in 2016 IEEE International
Symposium on Information Theory (ISIT), 2016, pp. 1202–1206.

[14] H. Hou, Y. S. Han, B. Bai, and G. Zhang, “Towards efficient repair
and coding of binary MDS array codes with small sub-packetization,”
in 2022 IEEE International Symposium on Information Theory (ISIT),
2022, pp. 3132–3137.

[15] Z. Shen and J. Shu, “Hv code: An all-around MDS code to improve
efficiency and reliability of Raid-6 systems,” in 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, 2014, pp. 550–561.

[16] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Transactions on computers, vol. 44, no. 2, pp. 192–202, 1995.

[17] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,”
in Proceedings of the 3rd USENIX Conference on File and Storage
Technologies. San Francisco, CA, 2004, pp. 1–14.

[18] C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting
triple storage node failures,” IEEE Transactions on Computers, vol. 57,
no. 7, pp. 889–901, 2008.

[19] H. Hou, P. P. Lee, Y. S. Han, and Y. Hu, “Triple-fault-tolerant binary
MDS array codes with asymptotically optimal repair,” in 2017 IEEE
International Symposium on Information Theory (ISIT), 2017, pp. 839–
843.

[20] H. Hou, K. W. Shum, M. Chen, and H. Li, “New MDS array code
correcting multiple disk failures,” in 2014 IEEE Global Communications
Conference, 2014, pp. 2369–2374.

[21] Z. Huang, H. Jiang, and K. Zhou, “An improved decoding algorithm for
generalized RDP codes,” IEEE Communications Letters, vol. 20, no. 4,
pp. 632–635, 2016.

[22] M. Albrecht and G. Bard, “The M4RI library–version 20121224,” The
M4RI Team, vol. 105, p. 109, 2012.

[23] C. Schindelhauer and C. Ortolf, “Maximum distance separable codes
based on circulant Cauchy matrices,” in International Colloquium on
Structural Information and Communication Complexity. Springer, 2013,
pp. 334–345.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, AUGUST XXXX 13

[24] H. Hou and Y. S. Han, “A new construction and an efficient decoding
method for Rabin-like codes,” IEEE Transactions on Communications,
vol. 66, no. 2, pp. 521–533, 2017.

[25] P. Subedi and X. He, “A comprehensive analysis of XOR-based erasure
codes tolerating 3 or more concurrent failures,” in 2013 IEEE Interna-
tional Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum, 2013, pp. 1528–1537.

[26] J. S. Plank, C. D. Schuman, and B. D. Robison, “Heuristics for opti-
mizing matrix-based erasure codes for fault-tolerant storage systems,”
in IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2012), 2012, pp. 1–12.

[27] C. Huang, J. Li, and M. Chen, “On optimizing XOR-based codes for
fault-tolerant storage applications,” in 2007 IEEE Information Theory
Workshop. IEEE, 2007, pp. 218–223.

[28] J. Lv, W. Fang, B. Chen, S.-T. Xia, and X. Chen, “Binary MDS array
codes with flexible array dimensions and their fast encoding,” in 2023
IEEE International Symposium on Information Theory (ISIT), 2023, pp.
1249–1254.

[29] J. Lv, W. Fang, X. Chen, J. Yang, and S.-T. Xia, “New constructions of q-
ary MDS array codes with multiple parities and their effective decoding,”
IEEE Transactions on Information Theory, vol. 69, no. 11, pp. 7082–
7098, 2023.

[30] R. C. Subroto, “An algebraic approach to symmetric linear layers in
cryptographic primitives,” Cryptography and Communications, pp. 1–
15, 2023.

[31] H. Hou, Y. S. Han, K. W. Shum, and H. Li, “A unified form of EVEN-
ODD and RDP codes and their efficient decoding,” IEEE Transactions
on Communications, vol. 66, no. 11, pp. 5053–5066, 2018.

[32] J. Blomer, “An XOR-based erasure-resilient coding scheme,” Technical
report at ICSI, 1995.

[33] J. S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon codes for
fault-tolerant network storage applications,” in Fifth IEEE International
Symposium on Network Computing and Applications (NCA’06), 2006,
pp. 173–180.

[34] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library
in c/c++ facilitating erasure coding for storage applications,” Technical
Report CS-07–603, University of Tennessee, 2007.

[35] Y. J. Tang and X. Zhang, “Fast en/decoding of Reed-Solomon codes for
failure recovery,” IEEE Transactions on Computers, vol. 71, no. 3, pp.
724–735, 2021.

[36] N. Kolokotronis, K. Limniotis, and N. Kalouptsidis, “Lower bounds
on sequence complexity via generalised Vandermonde determinants,”
in SETA. Springer, 2006, pp. 271–284.

[37] U. Martı́nez-Peñas, “A general family of MSRD codes and PMDS codes
with smaller field sizes from extended Moore matrices,” SIAM Journal
on Discrete Mathematics, vol. 36, no. 3, pp. 1868–1886, 2022.

[38] R. M. Roth, “Introduction to coding theory,” IET Communications,
vol. 47, no. 18-19, p. 4, 2006.

[39] L. Yu, Z. Lin, S.-J. Lin, Y. S. Han, and N. Yu, “Fast encoding algorithms
for Reed–Solomon codes with between four and seven parity symbols,”
IEEE Transactions on Computers, vol. 69, no. 5, pp. 699–705, 2020.

[40] T. M. Chan, “Speeding up the four Russians algorithm by about one
more logarithmic factor,” in Proceedings of the twenty-sixth annual
ACM-SIAM symposium on Discrete algorithms. SIAM, 2014, pp. 212–
217.

Leilei Yu received the B.Eng. degree in electronic
information engineering from the Tianjin Univer-
sity of Technology, Tianjin, China, in 2015, and
the Ph.D. degree in cyberspace security from the
University of Science and Technology of China,
Hefei, China, in 2021. From 2021 to 2022, he was
a cybersecurity researcher with the Purple Mountain
Laboratories, Nanjing, China. He is currently a post-
doctoral research fellow with the Shenzhen Institute
for Advanced Study, University of Electronic Sci-
ence and Technology of China. His research focuses

on coding theory and high-performance computing.

Yunghsiang S. Han (S’90-M’93-SM’08-F’11) was
born in Taipei, Taiwan, 1962. He received B.Sc.
and M.Sc. degrees in electrical engineering from
the National Tsing Hua University, Hsinchu, Taiwan,
in 1984 and 1986, respectively, and a Ph.D. degree
from the School of Computer and Information Sci-
ence, Syracuse University, Syracuse, NY, in 1993.
He was from 1986 to 1988 a lecturer at Ming-Hsin
Engineering College, Hsinchu, Taiwan. He was a
teaching assistant from 1989 to 1992, and a research
associate in the School of Computer and Information

Science, Syracuse University from 1992 to 1993. He was, from 1993 to 1997,
an Associate Professor in the Department of Electronic Engineering at Hua
Fan College of Humanities and Technology, Taipei Hsien, Taiwan. He was
with the Department of Computer Science and Information Engineering at
National Chi Nan University, Nantou, Taiwan from 1997 to 2004. He was
promoted to Professor in 1998. He was a visiting scholar in the Department
of Electrical Engineering at University of Hawaii at Manoa, HI from June
to October 2001, the SUPRIA visiting research scholar in the Department of
Electrical Engineering and Computer Science and CASE center at Syracuse
University, NY from September 2002 to January 2004 and July 2012 to June
2013, and the visiting scholar in the Department of Electrical and Computer
Engineering at University of Texas at Austin, TX from August 2008 to June
2009. He was with the Graduate Institute of Communication Engineering at
National Taipei University, Taipei, Taiwan from August 2004 to July 2010.
From August 2010 to January 2017, he was with the Department of Electrical
Engineering at National Taiwan University of Science and Technology as
Chair Professor. From February 2017 to February 2021, he was with School
of Electrical Engineering & Intelligentization at Dongguan University of
Technology, China. Now, he is with the Shenzhen Institute for Advanced
Study, University of Electronic Science and Technology of China and as a
consultant of Huawei Technology company. His research interests are in error-
control coding, wireless networks, and security.

Dr. Han was a winner of the 1994 Syracuse University Doctoral Prize and
a Fellow of IEEE. One of his papers won the prestigious 2013 ACM CCS
Test-of-Time Award in cybersecurity.

Jiasheng Yuan received the B.Sc. degree in elec-
tronic information science and technology and the
M.Sc. degree in communication and information
systems from Sun Yat-sen University, Guangzhou,
China, in 2019 and 2021, respectively. He is cur-
rently pursuing the Ph.D. degree in Shenzhen Insti-
tute for Advanced Study, University of Electroinc
Science and Technology of China. His research
interests include coding theory and data communi-
cations.

Zhongpei Zhang received the B.S. and M.S. degrees
from the Department of Physics, Sichuan Normal
University, in 1990 and 1993, respectively, and the
Ph.D. degree from the School of Computer and
Communication Engineering, Southwest Jiaotong
University, in 2000. From 2001 to 2003, he was a
Post-Doctoral Fellow at the National Key Laboratory
of Microwave and Digital Communication, Tsinghua
University. From 2004 to 2005, he was a Post-
Doctoral Fellow at the University of Oulu. He is
currently a Professor and a Doctoral Tutor with

the University of Electronic Science and Technology of China and the
Shenzhen Institute for Advanced Study, University of Electronic Science
and Technology of China. He has participated in many research projects
and chaired the National High-Tech Research and Development Program of
China (863 Program) on Coordinated Multiple Points Transmission, and the
National Natural Science Foundation of China on Massive MIMO Channel
Acquisition. He has authored or coauthored more than 90 journal articles and
conference papers. His research interests include channel coding, coordinated
multiple points transmission, information theory, channel estimation based on
compressive sensing, reconfigurable-reflecting-surface aided communications,
and joint sensing and communication.


