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Abstract—Universal coding of integers (UCI) is a class of
variable-length code such that the ratio of the expected codeword
length to max{1, H(P )} is bounded by a constant factor, where
H(P ) is the Shannon entropy of the decreasing probability
distribution P . However, if we consider the ratio of the expected
codeword length to H(P ) for UCI, the ratio tends to infinity when
H(P ) tends to zero. To resolve this issue, we introduce a class
of codes, called generalized universal coding of integers (GUCI),
where the ratio of the expected codeword length to H(P ) is
bounded by a constant factor K.

First, the definition of GUCI is proposed. The coding structure
of GUCI is introduced. Next, we propose a class of GUCIs C to
reach the expansion factor KC = 2, and we show that the smallest
minimum expansion factor is in the range 1 ≤ K∗ ≤ 2. Then,
by comparing UCI and GUCI, we show that when the entropy
is very large or P (0) is not large, there are also cases where
the average codeword length of GUCI is shorter. Finally, the
asymptotically optimal GUCI is presented.

Index Terms—Universal coding of integers, Source coding, and
Elias coding.

I. INTRODUCTION

There are three major categories of lossless source coding:
variable-to-fixed length (VF) codes (e.g., Tunstall code [2]),
fixed-to-variable length (FV) codes (e.g., Huffman code [3]),
and variable-to-variable length (VV) codes (e.g., Khodak
code [4, 5]). As their name implies, VF codes encode a
variable-length sequence of source symbols into a constant-
length codeword. FV codes encode a constant-length sequence
of source symbols into a variable-length codeword. In particu-
lar, variable-length codes map the source symbols to a variable
number of bits, which is the most important type of FV code.
VF and FV codes are special cases of VV codes; the main
study of VV codes has been focused on redundancy rates [4–
7].

Universal coding of integers (UCI) is a variable-length code
(i.e., a type of FV code) for discrete memoryless sources with
infinite alphabets, and the probability distribution of sources
does not require prior knowledge. In 1968, Levenshtein [8]
proposed the first UCI, although UCI was not yet defined. In
1975, Elias [9] established the fundamental framework of UCI.
Elias considered discrete memoryless sources S = (P,A)
with a countable alphabet set A = N+ = {1, 2, 3, · · · } and
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a decreasing probability distribution (DPD) P of N+ (i.e.,∑∞
n=1 P (n) = 1, and P (m) ≥ P (m + 1) ≥ 0, for all

m ∈ N+). Let H(P ) = −
∑∞
n=1 P (n) log2 P (n) denote the

Shannon entropy of P . Let C be a variable-length code for
the source S = (P,N+); it maps the positive integers N+

onto binary codewords {0, 1}∗. Let LC(·) denote the length
function such that LC(m) = |C(m)|, for all m ∈ N+, where
C(m) is the corresponding codeword of m. Furthermore,
EP (LC) =

∑∞
n=1 P (n)LC(n) denotes the expected codeword

length of C. We say that C is universal if

EP (LC)

max{1, H(P )}
≤ KC , (1)

for all DPDs P with H(P ) <∞. KC is called the expansion
factor of UCI C, and K∗C , inf{KC | ∀ DPD P and H(P ) <
∞} is called the minimum expansion factor of UCI C. More-
over, C is called asymptotically optimal if C is universal and
there exists a function RC(·) such that

EP (LC)

max{1, H(P )}
≤ RC(H(P )), (2)

for all DPDs P with H(P ) <∞ and

lim
H(P )→+∞

RC(H(P )) = 1.

UCI has two main categories [10], namely, the message
length strategy and the flag pattern strategy. The γ, δ and ω
codes proposed by Elias [9] are associated with the message
length strategy. With this strategy, UCI is the main recursive
code used to minimize LC(m) for large m ∈ N. For example,
two classes of UCIs were proposed by Stout [11] to improve
ω code for large m. Furthermore, Yamamoto [12] cleverly
designed a delimiter with a length greater than 1 to construct
a new class of UCIs whose length function satisfies

LC(m) < log2m+ log2(log2m) + · · ·+ log
t∗(m)
2 m,

where t∗(m) is the largest positive integer t satisfying
logt2m ≥ 0. However, the UCI with the message length
strategy should be used in an error-free environment. In-
stead, the UCI with the flag pattern strategy, first studied by
Lakshmanan [13], compensates for this problem, and it has
certain resynchronization properties. The family of Fibonacci
codes [14] is likely the most famous flag pattern strategy for
UCI. However, this approach is not asymptotically optimal and
involves complicated encoding and decoding. A UCI with a
new flag pattern strategy, proposed by Wang [15], has been
improved in the above two aspects. Yamamoto et al. [16]
further improved upon Wang’s coding scheme. Furthermore,
Amemiya et al. [17] provided a new group strategy UCI such
that the message length strategy coding can be regarded as a
special group strategy coding.
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Recently, Ávila et al. [18] proposed a new family of UCIs
whose length function can reach the bounds in [8, 19, 20]
with a constant difference. Allison et al. [21] focused on the
universality of the Wallace tree code. Yan et al. [22, 23] first
studied the range of the minimum expansion factor of UCIs.
If a class of UCIs C has the smallest minimum expansion
factor K∗C , then C is called the optimal UCI.1 The authors
proved that the optimal UCI is in the range 2 ≤ K∗C ≤ 2.5,
where K∗C = 2.5 is achieved by ι code [23]. Today, UCI is
used in many applications, such as biological sequencing data
compression [24, 25], inverted file index [26], H.264 advanced
video compression standard [27], H.265 high efficiency video
coding [28],2 standard MIDI (Musical Instrument Digital
Interface) file format [30], evolving secret sharing [31], and
unbounded search problems [19, 32].

A. Motivations

1) For a UCI, the ratio of EP (LC) to max{1, H(P )}
is bounded by a constant. However, when H(P ) is
extremely small, the expected codeword length of a
variable-length code is

EP (LC) =

∞∑
n=1

P (n)LC(n) ≥
∞∑
n=1

P (n) · 1 = 1. (3)

Therefore, for a UCI, the ratio of EP (LC) to H(P )
cannot be bounded by a constant KC when H(P )
approaches zero. That is, the UCI cannot satisfy the
following inequality:

EP (LC)

H(P )
≤ KC . (4)

We found that the reason the UCI cannot satisfy (4)
is that EP (LC) of variable-length codes have a lower
bound (3).

Next, we show that neither FV codes nor VF codes
can satisfy the inequality similar to (4). Let Cn be an FV
code for the discrete memoryless source S = (P,A),
and it maps An onto binary codewords {0, 1}∗, where
n is a fixed positive integer. Let Pn be the probability
distribution over An. Due to

EPn(LCn) ,
∑
x∈An

Pn(x)LCn(x) ≥
∑
x∈An

Pn(x) = 1,

then Cn cannot satisfy

EPn(LCn)

n

/
H(P ) ≤ KC

when H(P ) approaches zero. Since the size of the
alphabet A is infinite, there can be no bijection mapping
from an infinite subset D of A∗ to {0, 1}n; i.e., no such
FV code exists.

1The optimal UCI may not exist, but there exists a family of UCIs such that
the minimum expansion factor tends to a minimum value. In this paper, we
approximate the limit of a family of UCIs to UCIs. We follow the previous
research and assume that the optimal UCI exists.

2There is a class of UCIs, termed Exp-Golomb codes, which is used in
H.264 and H.265. In addition, arithmetic codes [29] are also used in H.264
and H.265.

Therefore, we introduce VV codes in this universal
coding problem to address this issue. First, by introduc-
ing VV codes, it is possible to construct a new class of
code that satisfies the inequality similar to (4). Second,
due to

EP (LC)

max{1, H(P )}
≤ EP (LC)

H(P )
≤ KC ,

the VV code C is still a UCI as long as an inequality
similar to (4) is satisfied. That is, (4) is a stronger
requirement than (1) is.

In short, the aim is to propose a new class of code
satisfying the inequality similar to (4).

2) When the study of the problem is extended from
variable-length codes to VV codes, the mapping of
an individual input symbol to {0, 1}∗ we consider is
changed to the mapping of sequences of input symbols
to {0, 1}∗. Therefore, we next introduce the related
concept of universal source coding (USC) [33, 34].

USC considers the stationary and memoryless source
S = (P,A), where A is the alphabet and P is an
unknown probability distribution on A. Let {Cn}∞n=1

be a sequence of prefix-free FV codes, where Cn is a
mapping from An to {0, 1}∗. Let P(A) denote the set of
all probability distributions on A, and PH(A) , {P ∈
P(A) | H(P ) <∞}. Let D(P ‖ Q) denote the relative
entropy between two probability distributions P and Q.
Thus, we obtain

D(Pn ‖ Q)

n
,

1

n

∑
x∈An

Pn(x) log2

Pn(x)

Q(x)

= − 1

n

∑
x∈An

Pn(x) log2Q(x)−H(P )

=
1

n

∑
x∈An

Pn(x)LCn(x)−H(P )

=
EPn(LCn)

n
−H(P ),

where LCn(x) = − log2Q(x) for all x ∈ An.3 A class
Υ ⊆ P(A) is called weakly universal if there exists a
sequence {Cn}∞n=1 such that

sup
P∈Υ

lim
n→∞

(
EPn(LCn)

n
−H(P )

)
= 0.

And is called strongly universal if there exists a se-
quence {Cn}∞n=1 such that

lim
n→∞

sup
P∈Υ

(
EPn(LCn)

n
−H(P )

)
= 0.

When Υ = PH(A) and A = N+, there is no weak
USC [34, 36].

Therefore, there are two subsequent research di-
rections for [36], as follows. One is to consider the
strong universality of the proposed method over sub-
collections of distributions [37], and the other is to

3In [35, P429], Q(x) = 2−LCn (x) is the distribution that corresponds
to the codeword lengths LCn (x). Let us note that to make Q a probability
distribution, Cn ensures that the Kraft inequality is equal.
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consider the almost lossless (lossy) source coding over
Υ = PH(A) [38].

In a broader sense, this work can also be considered
a follow-up study for [36]. The sources we consider
are arbitrary probability distributions4 over the infinitely
countable alphabet A; the encoding we consider is
lossless. We define the parameter K∗C in Definition 3
as a metric for measuring the universality of the code.

B. Contributions

In this paper, we introduce a family of codes called gen-
eralized universal coding of integers (GUCI), which is a
generalization of UCI via VV codes. The position of GUCI
in VV codes is equivalent to that of UCI in FV codes. GUCI
satisfies an inequality similar to (4) for any discrete memory-
less source. In particular, GUCI is suitable for small entropy.
For example, the frequency domain coefficients have many
zeros in image compression after the quantization process [39].
The minimum expansion factor for GUCI is also studied. The
major contributions of this paper are as follows.

1) The definitions of GUCI and asymptotically optimal
GUCI are presented.

2) A family of GUCIs and asymptotically optimal GUICs
are proposed.

3) In the proposed family of GUCIs, a class of GUCIs is
proposed to achieve the expansion factor 2. Then, we
show that the smallest minimum expansion factor is in
the range 1 ≤ K∗ ≤ 2.

4) The relationship between UCI and GUCI is presented.
5) A sufficient condition for the average codeword length

of GUCI to be shorter than that of UCI is obtained. In
addition, when the Shannon entropy H(P ) is large or
P (0) is not large, there are some cases in which the
average codeword length of GUCIs is shorter.

C. Organization of this paper

In the remainder of this paper, Section II provides some
background knowledge. In Section III, we define GUCI. A
family of GUCIs is provided in Section IV. In Section V, the
expansion factor of GUCIs is discussed. In Section VI, we
compare the average code length of this family of GUCIs and
the original UCI. In Section VII, we study the definition and
properties of the asymptotically optimal GUCI. Section VIII
concludes this work.

II. PRELIMINARIES

A. Notations

Let N , {0}
⋃
N+ denote the set of nonnegative numbers.

Let α(m) denote the unary representation of the positive
number m. For example, α(1) = 1, α(2) = 01 and α(5) =
00001. Let β(m) denote the standard binary representation of
a positive integer m and [β(m)] denote the binary code by

4Each probability distribution can be turned into a DPD by adjusting the
order.

removing the most significant bit 1 of β(m).5 For example,
β(9) = 1001 and [β(9)] = 001. Then, we obtain

|α(m)| = m,

|β(m)| = 1 + blog2mc,
|[β(m)]| = blog2mc,

for all m ∈ N+, where |a| denotes the length of string a.

B. Elias γ code and the codeword lengths of several classical
UCIs

Now, we introduce the specific structure of the Elias γ code.
For other classic UCIs, please refer to [9, 22, 23]. The Elias γ
code was introduced by Elias [9]. It is an encoding scheme for
message length. Elias γ code: N+ → {0, 1}∗ can be expressed
as

γ(m) = α(|β(m)|)[β(m)],

for all m ∈ N+. The role of the leading 0′s is to ensure that
the Elias γ code is a prefix code. The codeword length is given
by

|γ(m)| = |α(1 + blog2mc)|+ |[β(m)]|
= 1 + blog2mc+ blog2mc
= 1 + 2blog2mc.

For example, γ(9) = 0001001 and |γ(9)| = 1+2blog2 9c = 7.
The Elias γ code is universal; however, it is not asymptotically
optimal. Next, we provide a lemma about the length function
of other classic UCIs.

Lemma 1 ([9, 22, 23]). The following classic UCIs satisfy
LC(1) = 1. For all 2 ≤ n ∈ N+,

1) the length function of the δ code satisfies Lδ(n) = 1 +
blog2 nc+ 2blog2(1 + blog2 nc)c;

2) the length function of the η code satisfies Lη(n) = 3 +

blog2(n− 1)c+ b blog2(n−1)c
2 c;

3) the length function of the θ code satisfies Lθ(n) = 3 +

blog2 nc+ blog2blog2 ncc+ b blog2blog2 ncc
2 c;

4) the length function of the ι code satisfies Lι(n) = 2 +

blog2 nc+ b 1+blog2 nc
2 c;

5) the length function of the ω code satisfies Lω(n) = 1 +∑t
m=1(1 + λm(n)), where λ(n) , blog2 nc and λm

denotes the m-fold composition of λ, and t = t(n) ∈ N+

is a unique integer satisfying λt(n) = 1. Furthermore,
Lω(n) ≤ 3 + 2blog2 nc.

C. Run-length encoding

Run-length encoding (RLE) [40] is essentially a method of
encoding run-length rather than encoding individual values.
For example, a scan line consisting of black pixels B and
white pixels W may read as follows:

WWWWWWWBBBWWWWBWWWWW

WWWWWWWWBBWWWWWWWWWW.

With the RLE algorithm, it is encoded as

7W3B4W1B13W2B10W.

5When m = 1, [β(m)] is a null string.
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Moreover, the RLE can be modified to accommodate data
properties. For instance, the above scan line can also be
encoded as

(W, 7, 3, 4, 1, 13, 2, 10),

where a prefix code can encode the numbers.

D. Variable-to-fixed length codes

The VF codes can be divided into two parts, called the pars-
er and the string encoder. First, the parser partitions the source
sequence into a concatenation of variable-length strings. Each
variable-length string belongs to a dictionary D containing
a set of strings. Next, the string encoder maps the variable-
length string α ∈ D into the fixed-length string. To ensure the
completeness and the uniqueness of the segmentation of the
source sequence, D must be proper and complete.

Definition 1 ([41]). 1) If every variable-length string αi ∈
D is not a prefix of another variable-length string αj ∈
D, then D is termed proper.

2) If every infinite sequence has a prefix in D, then D is
termed complete.

For example, the dictionary D = {1, 00, 01} over {0, 1} is
clearly proper. If the first element of the infinite sequence is
1, then 1 ∈ D is its prefix; if the first element of the infinite
sequence is 0, then 01 ∈ D or 00 ∈ D is its prefix. Therefore,
the dictionary D is complete.

E. Variable-to-variable length codes

VV codes can be considered a concatenation of VF codes
and FV codes [5–7]. First, the VF encoder maps the variable-
length string α ∈ D into the fixed-length string. Then, the FV
encoder maps the fixed-length string into the variable-length
string. Nishiara et al. [42] defined the almost surely complete
(ASC) dictionary and the corresponding VV code rate.

Definition 2 ([42]). 1) For every infinite sequence, if the
probability that the dictionary D has a prefix of the
infinite sequence is one, then D is termed almost surely
complete.

2) Let C be a VV code with a proper and ASC dictionary
D and a VV encoder ϕ. Then, the coding rate of C is

RC =

∑
α∈D P (α)|ϕ(α)|∑
α∈D P (α)|α|

.

We have an example of a dictionary D = {1, 01, 001, · · · }
over {0, 1} that is proper and ASC. However, D is incomplete
because the all-zero infinite sequence has no prefix in D.

III. GENERALIZED UNIVERSAL CODING OF INTEGERS

In this section, we first formally define our problem. We
consider the stationary and memoryless source S = (P,A),
where A = N is an infinitely countable alphabet,6 and P is

6In the setting of the GUCI problem, we denote the alphabet A as N, not
N+. For an infinitely countable alphabet A, this is essentially indistinguish-
able. In this paper, we denote the alphabet A as N for ease of expression in
subsequent constructions.

an unknown probability distribution on A. Encoding source S
with VV codes, i.e., we consider mapping sequences of input
symbols to {0, 1}∗.

Second, we define GUCI and explain the rationality of
the definition. Let C = (D, ϕ) denote a VV code C with a
proper and ASC dictionary D and a VV encoder ϕ, where the
dictionary D is over the alphabet A and C = (D, ϕ) satisfies
the prefix property. A VV code C = (D, ϕ) that satisfies the
prefix property means that ϕ(β) is not a prefix of ϕ(α) for
any β 6= α ∈ D. By introducing the VV codes, the definition
of GUCI is as follows.

Definition 3 (GUCI). Let C = (D, ϕ) be a VV code. The
encoder ϕ : D → {0, 1}∗ is prefix free. C is called generalized
universal if there exists a constant KC independent of P for
all DPDs P with 0 < H(P ) <∞ such that

RC
H(P )

≤ KC , (5)

where RC is the coding rate of C and KC denotes the expansion
factor of GUCI C. Let

K∗C , min{KC | ∀ DPD P and 0 < H(P ) <∞}

denote the minimum expansion factor of GUCI C.

Remark 1. Each GUCI C has a unique K∗C corresponding to
it. K∗C is a measure of the compression effect of GUCI C. The
smaller K∗C is, the better. Therefore, we define the smallest
minimum expansion factor

K∗ , inf{K∗C | ∀ GUCI C}.

Let us note that there may exist an optimal GUCI C such that
K∗C = K∗, or there may be only one family of GUCIs {Cn}∞n=1

such that limn→∞K∗Cn = K∗.

Next, we discuss the rationality of Definition 3. First,
the definition of GUCI is an extension of UCI. Comparing
inequality (1) with inequality (5), since the denominator of
the fraction on the left-hand side of (1) removes the max
function, it is extended from this perspective. The numerators
of the fractions on the left-hand side of the two inequalities
are essentially equivalent. Since the variable-length code is
a special VV code, when the dictionary D of the VV code
is equal to the alphabet N, the VV code degenerates into
a variable-length code. Let us note that when the VV code
C = (D, ϕ) = (N, ϕ), C is a variable-length code with a
coding rate

RC =

∑
α∈N P (α)|ϕ(α)|∑
α∈N P (α)× 1

=

∞∑
n=0

P (n)|ϕ(n)|

= EP (LC).

At this time, RC denotes the expected codeword length of
C. Thus, EP (LC) is a special RC . Essentially, both RC and
EP (LC) represent the average codeword length required for a
source symbol. Therefore, for convenience, RC and EP (LC)
can be collectively referred to as the average codeword length.



IEEE TRANSACTIONS ON COMMUNICATIONS 5

The average codeword length EP (LC) of the variable-length
code C is greater than or equal to 1. Then, the ratio

RC
H(P )

=
EP (LC)

H(P )

tends to infinity when H(P ) tends to 0. Hence, there is no
such thing as a variable-length code C that is GUCI. Therefore,
a class of UCIs C must not be a GUCI.

Finally, we prove that the expansion factor of GUCI has the
same property as that of UCI. In a groundbreaking paper [9],
Elias proved that EP (LC) ≥ max{1, H(P )}. Therefore,
the expansion factor of UCI is greater than or equal to 1.
Before presenting the relevant theorem, we first introduce two
important lemmas.

Lemma 2. [42] Let S = (P,A) denote a discrete memoryless
source with entropy H(P ) <∞ and a countable alphabet A.
Given a VV code C with a proper and ASC dictionary D; then,

H(D) = H(P )l(D),

where H(D) = −
∑
α∈D P (α) log2 P (α) denotes the entropy

of D and l(D) =
∑
α∈D P (α)|α| denotes the average length

of D.

Lemma 2 was first described by Nishiara et al. [42], but
they did not provide a complete proof. The complete proof of
Lemma 2 can be found in [43].

Lemma 3. 1) If n positive integers L1, L2, · · · , Ln satisfy∑n
i=1 2−Li ≤ 1. Then, there are n positive integers

M1,M2, · · · ,Mn that satisfy
∑n
i=1 2−Mi = 1 and

Li ≥Mi for all i ∈ {1, 2, · · · , n}.
2) If the integer sequence {Li}∞i=1 satisfies

∑∞
i=1 2−Li ≤

1. Then, there is an integer sequence {Mi}∞i=1 that
satisfies

∑∞
i=1 2−Mi = 1 and Li ≥Mi for all i ∈ N+.

The proof of Lemma 3 is given in the Appendix. Next, we
present a theorem similar to EP (LC) ≥ max{1, H(P )} for
variable-length codes.

Theorem 1. Let S = (P,A) denote a discrete memoryless
source with entropy H(P ) < ∞ and a countable alphabet
A. Assuming that a VV code C = (D, ϕ) satisfies the prefix
property, then RC ≥ H(P ).

Proof. From Lemma 2, we obtain

RC =

∑
α∈D P (α)|ϕ(α)|

l(D)
≥ H(P ) =

H(D)

l(D)

⇐⇒
∑
α∈D

P (α)|ϕ(α)| ≥ H(D) = −
∑
α∈D

P (α) log2 P (α)

⇐⇒
∑
α∈D

P (α)
(
|ϕ(α)|+ log2 P (α)

)
≥ 0

⇐⇒
∑
α∈D

P (α) log2

P (α)

2−|ϕ(α)| ≥ 0.

Below, we prove that the last inequality holds. As the code-
word set {ϕ(α) | α ∈ D} satisfies the prefix property, we
have ∑

α∈D
2−|ϕ(α)| ≤ 1

due to Kraft inequality [44]. From Lemma 3, we can find an
integer set {Mα | α ∈ D} that satisfies∑

α∈D
2−Mα = 1

and |ϕ(α)| ≥Mα for all α ∈ D. Then,∑
α∈D

P (α) log2

P (α)

2−|ϕ(α)| ≥
∑
α∈D

P (α) log2

P (α)

2−Mα

= D(P ‖ PM )

≥ 0,

where the probability distribution represented by PM satisfies
PM (α) = 2−Mα for all α ∈ D.

Remark 2. [45, P11] proves that
∑
α∈D P (α)|ϕ(α)| ≥

H(D). Therefore, Theorem 1 can be proved according to [45]
and Lemma 2 as well. Since [45] does not use Lemma 3 in
the proof, we provide an independent proof here.

From Theorem 1, we obtain that the expansion factor of
GUCI is greater than or equal to 1.

IV. EXPLICIT CONSTRUCTION OF GUCIS

In this section, the explicit structure of a family of GUCIs is
proposed. The traditional UCI cannot satisfy the inequality (4),
as there is no constant KC available to satisfy the inequality
(4) when H(P ) tends to 0. Thus, we consider the case in
which H(P ) tends to 0 in the construction of GUCIs. When
H(P ) tends to 0, without loss of generality, we assume that
P (0) tends to 1. In this case, the nonnegative integer source
string contains several consecutive 0′s, which the RLE can
compress. Specifically, the proposed VV code C = (D, ϕ) is
the concatenation of RLE and UCI ψ. The encoding process
is as follows.

First, the dictionary DRLE selected by the encoder is

DRLE = {00 · · · 0︸ ︷︷ ︸
i

n|i ∈ N, n ∈ N+}.

Next, the encoder maps the variable-length string 00 · · · 0︸ ︷︷ ︸
i

n ∈

DRLE into the fixed-length string (i + 1, n). Finally, the
encoder maps string (i + 1, n) into ψ(i + 1)ψ(n) via UCI
ψ. That is, ϕψ(00 · · · 0︸ ︷︷ ︸

i

n) = ψ(i+ 1)ψ(n).

DRLE is proper and incomplete, as the all-zero infinite
sequence has no prefix in DRLE . However, as the probability
of the all-zero infinite sequence is 0 due to H(P ) > 0,
DRLE is the ASC. We prove that the constructed VV code
C = (DRLE , ϕψ) is a GUCI when UCI ψ satisfies the easily
reachable condition below. First, we present two auxiliary
lemmas.

Lemma 4. The following inequality holds.

− log2

(
P (0)iP (n)

)
≥ 1 + log2 n+ log2(i+ 1),

for all DPDs P and every i ∈ N+ and n ∈ N+.
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Proof. Since P is DPD, we obtain

P (0)iP (n) ≤
P (0)i

(
1− P (0)

)
n

.

Let g(x) = xi(1 − x), for 0 < x < 1. We know that g(x)
is strictly increasing when x ∈ (0, i

i+1 ) and g(x) is strictly
decreasing when x ∈ ( i

i+1 , 1) via its derivative. Thus,

P (0)iP (n) ≤ 1

n
· g
(

i

i+ 1

)
=

1

n
· 1

i+ 1
·
(

i

i+ 1

)i
.

We prove that the sequence {ai = ( i
i+1 )i}∞i=1 is strictly

monotonically decreasing below. Let

bi =
1

ai
=

(
i+ 1

i

)i
=

(
1 +

1

i

)i
,

Then, {ai}∞i=1 strictly monotonically decreasing is equivalent
to {bi}∞i=1 strictly monotonically increasing. Due to the in-
equality of arithmetic and geometric means, we obtain

bi = 1 ·
(

1 +
1

i

)
· · ·
(

1 +
1

i

)
︸ ︷︷ ︸

i

<

[
1 + i(1 + 1

i )

i+ 1

]i+1

=

(
1 +

1

i+ 1

)i+1

= bi+1.

Thus,

P (0)iP (n) ≤ 1

n
· 1

i+ 1
·
(

i

i+ 1

)i
≤ 1

n
· 1

i+ 1
· 1

2
,

and hence,

− log2

(
P (0)iP (n)

)
≥ 1 + log2 n+ log2(i+ 1).

Lemma 5. Given two positive numbers a and b, then

−(2a+ b) log2

(
P (0)iP (n)

)
≥ 2a+ b log2 n+ b log2(i+ 1),

(6)
for all DPDs P and every i ∈ N and n ∈ N+.

Proof. We first consider i = 0. In this case, (6) can be
rewritten as

2a+ b log2 n ≤ −(2a+ b) log2 P (n).

As P (0) ≥ P (1) ≥ · · · ≥ P (n) ≥ · · · , then

1 =

∞∑
m=0

P (m) ≥
n∑

m=0

P (m) ≥ (n+ 1)P (n),

and hence, − log2 P (n) ≥ log2(n+ 1), for n ∈ N+. Thus,

−(2a+ b) log2 P (n) ≥ (2a+ b) log2(n+ 1)

= 2a log2(n+ 1) + b log2(n+ 1)

> 2a+ b log2 n.

Then, we consider i ≥ 1. Due to Lemma 4, we have

− (2a+ b) log2

(
P (0)iP (n)

)
≥ (2a+ b)

(
1 + log2 n+ log2(i+ 1)

)
> 2a+ b log2 n+ b log2(i+ 1).

Now, we present the main theorem in this section.

Theorem 2. Let S = (P,A) denote a discrete memoryless
source with entropy 0 < H(P ) <∞ and a countable alphabet
A. Given that the VV code C = (DRLE , ϕψ) satisfies

Lψ(n) ≤ a+ b log2 n, for n ∈ N+, (7)

where a and b are two positive constants. Then we have

RC
H(P )

≤ 2a+ b,

for all DPDs P .

Proof. From Lemma 5 and (7), we obtain

|ϕψ(00 · · · 0︸ ︷︷ ︸
i

n)| = Lψ(n) + Lψ(i+ 1)

≤ 2a+ b log2 n+ b log2(i+ 1)

≤ −(2a+ b) log2

(
P (0)iP (n)

)
,

(8)

for all i ∈ N and n ∈ N+. From Lemma 2, we have

RC
H(P )

=

∑
α∈DRLE P (α)|ϕψ(α)|

H(DRLE)

=

∑
i,n P (0)iP (n)

(
Lψ(n) + Lψ(i+ 1)

)
−
∑
i,n P (0)iP (n) log2

(
P (0)iP (n)

)
(a)

≤

∑
i,n P (0)iP (n)

[
− (2a+ b) log2

(
P (0)iP (n)

)]
−
∑
i,n P (0)iP (n) log2

(
P (0)iP (n)

)
= 2a+ b,

where (a) is due to (8).

Remark 3. A variable-length code ψ satisfying (7) is a
sufficient condition for ψ to be a UCI [13]. To the best of
our knowledge, all UCI codes currently proposed satisfy (7).
Therefore, when we construct a GUCI C = (DRLE , ϕψ), we
can choose any known UCI code.

V. THE TIGHTER UPPER BOUND OF K∗

Based on UCIs, we have provided a family of GUCIs. In
this section, we explore the expansion factors of some specific
GUCIs, and we obtain a tighter upper bound of K∗. For any
UCI C, its expansion factor KC is greater than or equal to
2 [22]. The best-known UCI to date is the ι code [23] with
Kι = 2.5. Therefore, the optimal UCI is in the range 2 ≤
K∗C ≤ 2.5. Theorem 1 shows that K∗ is greater than or equal
to 1. In this section, we investigate the tighter upper bounds
of K∗.

When constructing a VV code C = (DRLE , ϕψ), we select
the Elias γ code as the UCI ψ. From Theorem 2 and Lγ(n) =
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1 + 2blog2 nc ≤ 1 + 2 log2 n, we obtain KC = 4. It has been
shown [1] that C = (DRLE , ϕγ) can reach KC = 6

log2 5 ≈
2.584. However, this result is not tight, and we show that the
VV code C = (DRLE , ϕγ) can achieve KC = 2. First, we
present two auxiliary lemmas.

Lemma 6. For all DPDs P defined on N and all m ∈ N+,
we find

1)
∑m
j=1 P (j) ≤ m

m+1 ;

2)
∏m
j=1 P (j) ≤

(
1

m+1

)m
;

3) Let Am , 2m ×m!×
(

1
m+1

)m
; then, Am ≤ 1;

4) Let Bm ,
∑m
j=1

(
1 + log2 j + log2 P (j)

)
; then, Bm≤

0.

Proof. 1) We prove that
∑m
j=1 P (j) ≤ m

m+1 by contradic-
tion. Let us suppose that there exists a DPD P0 defined
on N such that

∑m
j=1 P0(j) > m

m+1 . Thus,

P0(0) ≤ 1−
m∑
j=1

P0(j) <
1

m+ 1
,

and hence,

m

m+ 1
> mP0(0) ≥

m∑
j=1

P0(j) >
m

m+ 1
,

which is a contradiction. Thus, the assumption is not
true.

2) Due to the inequality of arithmetic and geometric means,
we obtain

m∏
j=1

P (j) ≤

(∑m
j=1 P (j)

m

)m
≤
(

1

m+ 1

)m
.

3) We prove that Am ≤ 1 by mathematical induction.
When m = 1, then A1 = 2×1× 1

2 ≤ 1. Let us suppose
that Am ≤ 1 holds when m = n. When m = n+ 1, we
have

An+1 = An × 2(n+ 1)

(
1

n+ 2

)n+1

÷
(

1

n+ 1

)n
= 2An ×

(
n+ 1

n+ 2

)n+1

(a)

≤ 2An ×
(

2

3

)2

=
8

9
An

< 1,

where (a) is calculated from the fact that the sequence
{ai = ( i

i+1 )i}∞i=1 is strictly monotonically decreasing.

4) From the above results, we obtain

Bm =

m∑
j=1

log2

(
2× j × P (j)

)

= log2

2m ×m!×
m∏
j=1

P (j)


≤ log2

(
2m ×m!×

(
1

m+ 1

)m)
= log2Am

≤ 0.

Lemma 7. For all DPDs P defined on N and all m ∈ N+,
we define

Sm ,
m∑
j=1

P (j)
(

1 + log2 j + log2 P (j)
)
.

Then, Sm ≤ 0 for all m ∈ N+. Furthermore, we have
∞∑
j=1

P (j)
(

1 + log2 j + log2 P (j)
)
≤ 0.

Proof. When m = 1, we have S1 = P (1)B1 ≤ 0. When
m ≥ 2, we obtain

Sm = P (1)B1 +

m∑
j=2

P (j)(Bj −Bj−1)

=
(
P (1)−P (2)

)
B1 + P (2)B2 +

m∑
j=3

P (j)(Bj−Bj−1)

≤ P (2)B2 +

m∑
j=3

P (j)(Bj −Bj−1)

...
≤ P (m− 1)Bm−1 + P (m)(Bm −Bm−1)

≤ P (m)Bm

≤ 0.

Thus, we have
∞∑
j=1

P (j)
(

1+log2 j+log2 P (j)
)

= lim
m→+∞

Sm≤ lim
m→+∞

0=0.

Now, we present the main results of this section.

Theorem 3. Let S = (P,A) denote a discrete memoryless
source with entropy 0 < H(P ) <∞ and a countable alphabet
A. Given a VV code C = (DRLE , ϕψ) satisfying

Lψ(n) ≤ a+ 2a log2 n, for n ∈ N+, (9)

where a is a positive constant. Then,

RC
H(P )

≤ 2a,

for all DPDs P .
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Proof. From Lemma 2 and (9), we obtain

RC
H(P )

=

∑
α∈DRLE P (α)|ϕψ(α)|
H(P )l(DRLE)

=

∑∞
i=0

∑∞
n=1 P (0)iP (n)

(
Lψ(i+ 1) + Lψ(n)

)
H(DRLE)

≤
2a
∑∞
i=0

∑∞
n=1 P (0)iP (n)

(
1+log2 n+log2(i+1)

)
H(DRLE)

.

Therefore, proving RC
H(P ) ≤ 2a is equivalent to showing that

∞∑
i=0

∞∑
n=1

P (0)iP (n)
(

1 + log2 n+ log2(i+ 1)
)
≤ H(DRLE).

(10)
When i ≥ 1, from Lemma 4, we have

1 + log2 n+ log2(i+ 1) ≤ − log2

(
P (0)iP (n)

)
.

Thus, we obtain
∞∑
i=1

∞∑
n=1

P (0)iP (n)
(

1 + log2 n+ log2(i+ 1)
)

≤−
∞∑
i=1

∞∑
n=1

P (0)iP (n) log2

(
P (0)iP (n)

)
.

(11)

When i = 0, from Lemma 7, we have
∞∑
n=1

P (n) (1 + log2 n) ≤ −
∞∑
n=1

P (n) log2 P (n). (12)

From (11) and (12), (10) holds.

Remark 4. As 1 ≤ Lψ(1) ≤ a, the minimum of a in
Theorem 3 is 1. From Theorem 3 and Lγ(n) ≤ 1 + 2 log2 n,
we know that C = (DRLE , ϕγ) can reach KC = 2. Thus, the
Elias γ code achieves the best case of Theorem 3.

Next, we discuss KCs for GUCIs constructed by using other
classical UCIs. Before presenting the results, we derive an
upper bound on the length function in the form a+ 2a log2 n
for each code listed in Lemma 1.

Lemma 8. For all n ∈ N+,
1) the length function of the δ code satisfies Lδ(n) ≤ 4

3 +
8
3 log2 n;

2) the length function of the η code satisfies Lη(n) ≤
6

1+2 log2 5 + 12
1+2 log2 5 log2 n;

3) the length function of the θ code satisfies Lθ(n) ≤ 4
3 +

8
3 log2 n;

4) the length function of the ι code satisfies Lι(n) ≤ 4
3 +

8
3 log2 n;

5) the length function of the ω code satisfies Lω(n) ≤ 11
9 +

22
9 log2 n.

Proof. 1) Obviously, the inequality blog2(1+x)c ≤ 1
6 + 5

6x
holds, for all x ∈ N. Thus, we obtain

Lδ(n) = 1 + blog2 nc+ 2blog2(1 + blog2 nc)c

≤ 1 + blog2 nc+ 2

(
1

6
+

5

6
blog2 nc

)
≤ 4

3
+

8

3
log2 n.

TABLE I: The expansion factors that can be achieved for VV
code C = (DRLE , ϕψ)

UCI ψ expansion factor KC
γ code 2
η code 12

1+2 log2 5
≈ 2.13

ω code 22
9
≈ 2.44

δ code, θ code and ι code 8
3
≈ 2.67

2) Let f(n) , 6
1+2 log2 5 + 12

1+2 log2 5 log2 n. We directly
verify Lη(n) ≤ f(n) for n < 16. When n ≥ 16, we
have

Lη(n) = 3 + blog2(n− 1)c+ bblog2(n− 1)c
2

c

≤ 3 +
3

2
blog2 nc

≤ 1 + 2blog2 nc
< f(n).

3) Obviously, the inequality 5
3 + 3

2blog2 xc ≤ 5
3x holds, for

all x ∈ N+. Thus, we obtain Lθ(1) = 1 < 4
3 and

Lθ(n)=3+blog2 nc+blog2blog2 ncc+b
blog2blog2 ncc

2
c

≤ 3 + blog2 nc+
3

2
blog2blog2 ncc

=
4

3
+ blog2 nc+

(
5

3
+

3

2
blog2blog2 ncc

)
≤ 4

3
+

8

3
log2 n,

for n ≥ 2.
4) We obtain Lι(1) = 1 < 4

3 and

Lθ(n) = 2 + blog2 nc+ b1 + blog2 nc
2

c

≤ 5

2
+

3

2
blog2 nc

=
4

3
+

8

3
blog2 nc+

7

6
(1− blog2 nc)

≤ 4

3
+

8

3
log2 n,

for n ≥ 2.
5) We directly verify Lω(n) ≤ 11

9 + 22
9 log2 n for n< 16.

When n ≥ 16, we have

Lω(n) ≤ 3 + 2blog2 nc

=
11

9
+

22

9
blog2 nc+

4

9
(4− blog2 nc)

≤ 11

9
+

22

9
log2 n.

From Theorem 3 and Lemma 8, Table I lists the expansion
factors of GUCIs when choosing various UCIs. Let us note
that, based on previous proofs, we find that 1 ≤ K∗ ≤ 2.

VI. COMPARISON OF THE AVERAGE CODEWORD LENGTHS
OF UCI ψ AND GUCI C = (DRLE , ϕψ)

In this section, we compare the expected codeword length
EP (Lψ) of UCI ψ and the coding rate RC of the GUCI
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C = (DRLE , ϕψ). Intuitively, when the Shannon entropy
H(P ) is small or P (0) is large, EP (Lψ) > RC ; When the
Shannon entropy H(P ) is large or P (0) is small, EP (Lψ) <
RC . The following two conclusions can be drawn from the
investigation in this section. First, when P (0) is relatively
large, EP (Lψ) > RC . That is, a sufficient condition for the
average codeword length of the GUCI to be shorter than that
of the UCI is obtained. Second, when the Shannon entropy
H(P ) is very large or P (0) is not large, there are still cases
where EP (Lψ) > RC . A detailed discussion is given below.

First, we recall a definition. If a class of UCIs ψ satisfies

Lψ(m) ≤ Lψ(m+ 1), for m ∈ N. (13)

Then, ψ is termed minimal [9]. For all DPDs P , EP (LC) can
be minimized when (13) is satisfied. Hence, the definition is
natural.
EP (Lψ) and RC are defined as

EP (Lψ) =

∞∑
n=0

P (n)Lψ(n+ 1),

RC =

∑
α∈DRLE P (α)|ϕψ(α)|

l(DRLE)
.

Let us note that the definition of EP (Lψ), where n starts from
0, is slightly different from that defined in the Introduction
section, where n starts from 1. Furthermore, we obtain

l(DRLE) =

∞∑
i=0

∞∑
n=1

P (0)iP (n)(i+ 1)

=

∞∑
n=1

P (n)

( ∞∑
i=0

P (0)i +

∞∑
i=0

iP (0)i

)

=
(

1− P (0)
) 1

1− P (0)
+

P (0)(
1− P (0)

)2


=

1

1− P (0)
,

and ∑
α∈DRLE

P (α)|ϕψ(α)|

=

∞∑
i=0

∞∑
n=1

P (0)iP (n)
(
Lψ(i+ 1) + Lψ(n)

)
=

∞∑
n=1

P (n)

∞∑
i=0

P (0)iLψ(i+1)+

∞∑
i=0

P (0)i
∞∑
n=1

P (n)Lψ(n)

=
(

1− P (0)
) ∞∑
i=0

P (0)iLψ(i+ 1) +

∑∞
n=1 P (n)Lψ(n)

1− P (0)
.

Thus, we have

RC =
(

1− P (0)
)2 ∞∑

i=0

P (0)iLψ(i+ 1) +

∞∑
n=1

P (n)Lψ(n).

Let

∆ ,RC − EP (Lψ)

=
(

1− P (0)
)2 ∞∑

i=0

P (0)iLψ(i+ 1)− P (0)Lψ(1)

−
∞∑
n=1

P (n)
(
Lψ(n+ 1)− Lψ(n)

)
=
(

1− P (0)
)2 ∞∑

i=0

P (0)iLψ(i+ 1)− P (0)Lψ(1)

−
∞∑
n=1

P (n)∆ψ(n),

(14)

where ∆ψ(n) , Lψ(n+1)−Lψ(n) is the jump value of ψ at
n. We note that ∆ is a function of the probability distribution
P and the length function Lψ(·).

When analyzing ∆ without imposing restrictions on ψ, it is
difficult to determine which is larger between ∆ and 0. Then,
we restrict ψ with reasonable conditions, and we conclude
that ∆ < 0 when P (0) is relatively large. The main theorem
is proposed.

Theorem 4. When constructing a VV code C = (DRLE , ϕψ),
the UCI ψ is minimal, and its length function satisfies

Lψ(n) ≤ a+ bblog2 nc, for 2 ≤ n ∈ N+,

where a and b are two positive constants. If there exists t ∈
(0, 1) such that

Lψ(1)

(
t+

1

t
−3

)
+a (1−t)+b (1−t)

(
1+t2+

t6

1−t8

)
≤ 0,

then ∆< 0 when P (0)≥ t, i.e., RC< EP (Lψ) when P (0)≥ t.

Proof. First, we perform calculations. We know that

∞∑
i=1

P (0)iblog2(i+ 1)c

=

∞∑
n=1

n

2n+1−2∑
j=2n−1

P (0)j


=

∞∑
n=1

n · P (0)2n−1 − P (0)2n+1−1

1− P (0)

=
1

1− P (0)
lim

m→+∞

m∑
n=1

n
(
P (0)2n−1 − P (0)2n+1−1

)
=

1

1− P (0)
lim

m→+∞

[
P (0)−mP (0)2m+1−1+

m∑
n=2

P (0)2n−1
]

=
1

1− P (0)

∞∑
n=1

P (0)2n−1

(15)
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and that
∞∑
i=0

P (0)iLψ(i+ 1)

=Lψ(1) +

∞∑
i=1

P (0)iLψ(i+ 1)

≤Lψ(1) +
aP (0)

1− P (0)
+ b

∞∑
i=1

P (0)iblog2(i+ 1)c

=Lψ(1) +
aP (0)

1− P (0)
+

b

1− P (0)

∞∑
n=1

P (0)2n−1

<Lψ(1)+
aP (0)

1−P (0)
+

bP (0)

1−P (0)

(
1+P (0)2+

∞∑
n=0

P (0)6+8n
)

=Lψ(1)+
aP (0)

1−P (0)
+

bP (0)

1−P (0)

(
1+P (0)2 +

P (0)6

1−P (0)8

)
.

We then have

∆
(c)

≤
(

1− P (0)
)2 ∞∑

i=0

P (0)iLψ(i+ 1)− P (0)Lψ(1)

<
(

1− P (0)
)2[

Lψ(1) +
aP (0)

1− P (0)

+
bP (0)

1−P (0)

(
1+P (0)2+

P (0)6

1−P (0)8

)]
−P (0)Lψ(1)

= P (0)
[
Lψ(1)

(
P (0) +

1

P (0)
− 3

)
+ a
(

1− P (0)
)

+ b
(

1− P (0)
)(

1 + P (0)2 +
P (0)6

1− P (0)8

)]
(d)

≤ P (0)
[
Lψ(1)

(
t+

1

t
− 3

)
+ a (1− t)

+ b (1− t)
(

1 + t2 +
t6

1− t8

)]
≤ 0,

where (c) is because ψ is minimal, (d) follows the monotonic
decrease in g1(x) = x + 1

x − 3, g2(x) = 1 − x and g3 =

(1− x)(1 + x2 + x6

1−x8 ) over the interval (0, 1).

We apply several UCIs to Theorem 4 to yield several
examples. In the first example, the corresponding parameters
of the Elias γ code are Lγ(1) = 1, a = 1 and b = 2. Let
h(x) , (x+ 1

x−3)+(1−x)+2(1−x)(1+x2+ x6

1−x8 ). We know
that h(0.81) < 0 by calculation. Thus, when P (0) ≥ 0.81,
the coding rate RC of C = (DRLE , ϕγ) is less than the
expected codeword length EP (Lγ) of the Elias γ code. In
another example, the corresponding parameters of the ι code
are Lγ(1) = 1, a = 2.5 and b = 1.5. When P (0) ≥ 0.83, RC
of C = (DRLE , ϕι) is less than EP (Lι) of the ι code.

Let us note that RC is less than EP (Lψ) not only when
the entropy is small. In other words, P (0) is relatively large,
which does not mean that the entropy is small. For example,
we consider the probability distribution

P1 =

(
P1(0) = 0.9, P1(1) = P1(2) = · · ·P1(n) =

1

10n

)
.

Due to Theorem 4, we know that RC < EP1
(Lγ). How-

ever, taking the limit n → +∞, the entropy H(P1) =
0.1 log2(10n)−0.9 log2 0.9 tends to infinity. This tells us that
when the entropy is large, RC is still less than EP (Lγ). How-
ever, if P (0) is relatively large, a long string of zeros is prone
to appear. Considering the structure of C = (DRLE , ϕψ), it is
reasonable that RC is less than EP (Lψ) at this time.

Finally, we explore the situation in which P (0) is not large.
This situation must be analyzed with a specific UCI. Since
the Elias γ code performs best regarding the expansion factor,
we use the Elias γ code for analysis. Due to Lγ(n) = 1 +
2blog2 nc and (15), (14) can be rewritten as

∆ =
(

1− P (0)
)2 ∞∑

i=0

P (0)i
(

1 + 2blog2(i+ 1)c
)
− P (0)

−
∞∑
n=1

P (n)∆γ(n)

(a)
= 2

(
1−P (0)

)2 ∞∑
i=1

P (0)iblog2(i+1)c

+
(

1−P (0)
)2 ∞∑

i=0

P (0)i − P (0)− 2

∞∑
t=1

P (2t − 1)

= 2
(

1−P (0)
) ∞∑
n=1

P (0)2n−1 + 1− 2

∞∑
t=0

P (2t−1),

where (a) is because when n ∈ {2t − 1 | t ∈ N+},

∆γ(n) = (1 + 2blog2 2tc)− (1 + 2blog2(2t − 1)c) = 2 ;

when the positive integer is n /∈ {2t−1 | t ∈ N+}, ∆γ(n) = 0.
Considering the probability distribution

P2 =
(
P2(0) = P2(1) = P2(2) = P2(3) = 0.24,

P2(4) = P2(5) = · · ·P2(n+ 3) =
1

25n

)
,

we obtain

∆ < 2P2(0)
(

1− P2(0)
)(

1 + P2(0)2 +
P2(0)6

1− P2(0)8

)
+ 1− 2P2(0)− 2P2(1)− 2P2(3)

= 0.3648×
(

1 + 0.0576 +
0.246

1− 0.248

)
− 0.44

≈− 0.054.

Taking the limit n→ +∞, the entropy H(P2) tends to infinity.
Therefore, when P (0) is not large, RC may be less than
EP (Lψ). Let us note that from the calculation, we know that
the main reason for ∆ < 0 in this example is the displacement
term −

∑∞
n=1 P (n)∆ψ(n).

In summary, Theorem 4 shows that when P (0) is relatively
large, RC is less than EP (Lψ). When P (0) is not large, it is
difficult to judge whether ∆ is positive or negative. When the
entropy is very large or P (0) is not large, it is still possible
that ∆ is less than 0.
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VII. ASYMPTOTICALLY OPTIMAL GUCI
In this section, the asymptotically optimal GUCI is dis-

cussed. First, the formal definition of the asymptotically opti-
mal GUCI is given as follows.

Definition 4. (asymptotically optimal GUCI) C is said to be
an asymptotically optimal GUCI if C is a class of GUCIs and
there exists a function TC(·) such that

RC
H(P )

≤ TC(H(P )), (16)

for all DPD P with 0 < H(P ) <∞ and

lim
H(P )→+∞

TC(H(P )) = 1.

Then, we present an important property of the asymptoti-
cally optimal GUCI.

Theorem 5. Let S = (P,A) denote a discrete memoryless
source with entropy 0 < H(P ) <∞ and a countable alphabet
A. Let C = (DRLE , ϕψ) denote the VV code satisfying (7)
and let UCI ψ be minimal. If there exists a function Rψ(·)
satisfying (2) and

lim
H(P )→+∞

Rψ(H(P )) = c,

where c is constant, then there exists a function TC(·) satisfying
(16) and

lim
H(P )→+∞

TC(H(P )) = c.

Proof. From (14), we have

RC
H(P )

=
∆ + EP (Lψ)

H(P )
,

where ∆ =
(

1−P (0)
)2∑∞

i=0 P (0)iLψ(i+1)−P (0)Lψ(1)−∑∞
n=1 P (n)∆ψ(n). (7) indicates that there exists an integer n0

such that
Lψ(n) ≤ n, for n0 ≤ n ∈ N+. (17)

From (17) and ∆ψ(n) ≥ 0, for all n ∈ N, we obtain

∆ <
(

1− P (0)
)2 ∞∑

i=0

P (0)iLψ(i+ 1)

<

n0−1∑
i=0

Lψ(i+ 1) +
(

1− P (0)
)2 ∞∑

i=n0

P (0)i(i+ 1)

=

n0−1∑
i=0

Lψ(i+ 1) +
(
n0 + 1− n0P (0)

)
P (0)n0

(a)

≤
n0−1∑
i=0

Lψ(i+ 1) + 1,

where (a) is because f(x) = (n0 + 1 − n0x)xn0 is strictly
monotonically increasing over the interval (0, 1) by calculating
the derivative of f(x). Furthermore, when H(P ) ≥ 1, we find
that

RC
H(P )

=
∆ + EP (Lψ)

H(P )

<

∑n0−1
i=0 Lψ(i+ 1) + 1

H(P )
+Rψ(H(P )).

When H(P ) < 1, we have RC
H(P ) ≤ 2a+ b due to Theorem 2.

We define

TC(H(P )) ,

{
2a+ b, if H(P ) < 1,
V (H(P )), if H(P ) ≥ 1,

where V (H(P )) ,
∑n0−1
i=0 Lψ(i+1)+1

H(P ) + Rψ(H(P )). Hence,
we obtain RC

H(P ) ≤ TC(H(P )) and

lim
H(P )→+∞

TC(H(P ))

= lim
H(P )→+∞

∑n0−1
i=0 Lψ(i+1)+1

H(P )
+ lim
H(P )→+∞

Rψ(H(P ))

= c.

Finally, we present the theorem describing the relationship
between the asymptotically optimal UCI and the asymptoti-
cally optimal GUCI.

Theorem 6. For any discrete memoryless source S = (P,A)
with entropy 0 < H(P ) <∞ and a countable alphabet A, the
VV code C = (DRLE , ϕψ) satisfies (7), and UCI ψ is minimal
and asymptotically optimal. Then, C is an asymptotically
optimal GUCI.

Proof. From Theorem 2, we know that C = (DRLE , ϕψ) is a
GUCI. Due to Theorem 5 and

lim
H(P )→+∞

Rψ(H(P )) = 1,

we obtain

lim
H(P )→+∞

TC(H(P )) = 1.

Therefore, C is an asymptotically optimal GUCI.

VIII. CONCLUSIONS

In this paper, GUCIs are proposed to resolve the UCI issue
in which the expected codeword length ratio to H(P ) is not
bounded by a constant factor K when H(P ) is extremely
small.

We construct a VV code C = (DRLE , ϕψ) through RLE
and UCI ψ. We prove that C is a GUCI or an asymptotically
optimal GUCI when UCI ψ satisfies certain conditions. We
propose a class of GUCIs C = (DRLE , ϕγ) to reach the
expansion factor KC = 2, and we show that the smallest
minimum expansion factor is in the range 1 ≤ K∗ ≤ 2.
Furthermore, when the entropy is very large or P (0) is not
large, it is still possible that the coding rate RC is less than the
expected codeword length EP (Lψ). Future work is as follows.

1) Is it possible to achieve K∗C < 2 when VV code C
is obtained by concatenating other FV codes and UCI?
For example, one can use Lempel-Zip coding, but the
extra storage space should be considered when using
dictionary coding.

2) The exact value of K∗ is still unknown.
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APPENDIX

Lemma 9 (Lemma 3 Restated). 1) If n positive integers
L1, L2, · · · , Ln satisfy

∑n
i=1 2−Li ≤ 1. Then, there

are n positive integers M1,M2, · · · ,Mn that satisfy∑n
i=1 2−Mi = 1 and Li ≥Mi for all i ∈ {1, 2, · · · , n}.

2) If the integer sequence {Li}∞i=1 satisfies
∑∞
i=1 2−Li ≤

1. Then, there is an integer sequence {Mi}∞i=1 that
satisfies

∑∞
i=1 2−Mi = 1 and Li ≥Mi for all i ∈ N+.

Proof. If the Kraft inequality does not become an equality,
i.e., ∑

i

2−Li < 1,

Then, {Li} is called redundant. If the Kraft inequality is equal,
i.e., ∑

i

2−Li = 1,

Then, {Li} is called complete. Let [n] , {1, 2, · · · , n}.
1) If {Li}ni=1 is complete, then let Mi = Li for all

i ∈ [n]. If {Li}ni=1 is redundant, we suppose the largest
value among n integers {Li}ni=1 is Lt. Then, 2−Li is a
multiple of 2−Lt for all i ∈ [n]. Furthermore, we obtain

n∑
i=1

2−Li = N · 2−Lt ,

where N ∈ N+. We consider n integers {L̃i}ni=1, where
L̃t = Lt − 1 and L̃i = Li for all i ∈ [n] \ {t}. Since

N · 2−Lt =

n∑
i=1

2−Li < 1 = 2Lt · 2−Lt

and both N and 2Lt are integers, we have N+1 ≤ 2Lt .
Thus,

n∑
i=1

2−L̃i = 2−Lt +

n∑
i=1

2−Li

= (N + 1) · 2−Lt

≤ 2Lt · 2−Lt

= 1.

If {L̃i}ni=1 is complete, then let Mi = L̃i for all i ∈
[n]. If {L̃i}ni=1 is redundant, then we repeat the above
process until the Kraft inequality is an equality. Let us
note that the above process is performed at most

1−
∑n
i=1 2−Li

2−Lt
= 2Lt

(
1−

n∑
i=1

2−Li
)

times since the sum of the n terms increases by at least
2−Lt each time. Therefore, after a finite number of the
above procedures, the Kraft inequality is equal.

2) Without loss of generality, we can assume that Ln ≤
Ln+1 for all n ∈ N+. There is no maximum value in
the integer sequence {Li}∞i=1. Otherwise, assuming Lt
is the maximum value, then

∞ =

∞∑
i=1

2−Lt ≤
∞∑
i=1

2−Li ≤ 1.

If {Li}∞i=1 is complete, then let Mi = Li for all i ∈ N+.
If {Li}∞i=1 is redundant, let

a1 ,
∞∑
i=1

2−Li ≤ 1.

Let n1 be the only positive integer satisfying the follow-
ing inequalities:

1− a1

2
< 2−x ≤ 1− a1.

Then, we obtain

1− a1 − 2−n1 <
1− a1

2
.

Because there is no maximum value in the integer se-
quence {Li}∞i=1, there exists a sufficiently large t ∈ N+

such that

1− a1 − 2−n1 + 2−Lt <
1− a1

2
.

Thus, we have

2−n1 − 2−Lt >
1− a1

2
> 0.

We assume that the value of n1 is between Lk−1 and Lk,
i.e., Lk−1 ≤ n1 ≤ Lk. We consider an integer sequence
{L̃(1)i}∞i=1, where

L̃(1)i =

 n1, if i = k ,
Li−1, if i = k + 1, k + 2, · · · , t ,
Li, otherwise.

According to the definitions of {L̃(1)i}∞i=1, we know
that Li ≥ L̃(1)i for all i ∈ N+. Let a2 ,

∑∞
i=1 2−L̃(1)i ;

then,

a1 < a1 + 2−n1 − 2−Lt = a2 ≤ 1− 2−Lt < 1.

We continue the above process indefinitely. Then, we
obtain the sequence {ai}∞i=1 and the sequence {ni}∞i=1.
The following two facts are proven below.

a) nm < nm+1 for all m ∈ N+.
b) lim

m→+∞
am = 1.

Since

1− am+1 = 1− am − 2−nm + 2−Lt <
1− am

2
, (18)

we have

2−nm+1 ≤ 1− am+1 <
1− am

2
< 2−nm .

Furthermore, we obtain nm < nm+1 for all m ∈ N+.
The first fact is proven. Since {ai}∞i=1 is a strictly
increasing sequence with an upper bound, the limit of
sequence {ai}∞i=1 exists. Therefore, we assume that

l , lim
m→+∞

am ≤ 1.

Taking the limit on both sides of (18), we find that

1− l = lim
m→+∞

(1− am+1) ≤ lim
m→+∞

1− am
2

=
1− l

2
.
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Furthermore, we have l ≥ 1. Therefore, l =
lim

m→+∞
am = 1. The second fact is proven.

Finally, we construct the integer sequence {Mi}∞i=1. For
any given i ∈ N+, from the first fact, there exists an
integer nm such that ˜L(m− 1)k−1 ≤ nm ≤ ˜L(m− 1)k

and k − 1 ≥ i. Let Mi , L̃(m)i. We note that nm <

nm+1 < nm+2 < · · · . Thus, L̃(m)i = ˜L(m+ 1)i =
˜L(m+ 2)i = · · · . Therefore, Mi is well defined. Due

to the definitions of Mi and {L̃(m)i}∞i=1, we know that
Li ≥Mi for all i ∈ N+. Furthermore, we find that

∞∑
i=1

2−Mi = lim
m→+∞

am = 1.

The proof is complete.
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