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Abstract—In this paper, the problem of distributed detection
in tree networks in the presence of Byzantines is considered.
Closed form expressions for optimal attacking strategies that
minimize the miss detection error exponent at the fusion center
(FC) are obtained. We also look at the problem from the network
designer’s (FC’s) perspective. We study the problem of designing
optimal distributed detection parameters in a tree network
in the presence of Byzantines. Next, we model the strategic
interaction between the FC and the attacker as a Leader-Follower
(Stackelberg) game. This formulation provides a methodology
for predicting attacker and defender (FC) equilibrium stra tegies,
which can be used to implement the optimal detector. Finally, a
reputation based scheme to identify Byzantines is proposedand
its performance is analytically evaluated. We also providesome
numerical examples to gain insights into the solution.

Index Terms—Distributed detection, data falsification, Byzan-
tines, tree networks, error exponent, leader-follower game, rep-
utation based mitigation scheme

I. I NTRODUCTION

Distributed detection deals with the problem of making
a global decision regarding a phenomenon based on local
decisions collected from several remotely located sensing
nodes. Distributed detection research has traditionally focused
on the parallel network topology, in which nodes directly
transmit their observations or decisions to the Fusion Center
(FC) [1] [2] [3]. Despite its theoretical importance and an-
alytical tractability, parallel topology may not always reflect
the practical scenario. In certain cases, it may be requiredto
place the nodes outside their communication range with the
FC. Then, the coverage area can be increased by forming a
multi-hop network, where nodes are organized hierarchically
into multiple levels (tree networks). Some examples of tree
networks include wireless sensor and military communication
networks.
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Typically, a network embodies a large number of inex-
pensive sensors, which are deployed in an open environment
to collect the observations regarding a certain phenomenon
and, therefore, are susceptible to many kinds of attacks. A
typical example is a Byzantine attack. While Byzantine attacks
(originally proposed in [4]) may, in general, refer to many
types of malicious behavior, our focus in this paper is on data-
falsification attacks [5]–[18], where an attacker sends false
(erroneous) data to the FC to degrade detection performance.
In this paper, we refer to such data falsification attackers as
Byzantines, and the data thus fabricated asByzantine data.

A. Related Work

Recently, distributed detection in the presence of Byzantine
attacks has been explored in [8], [9], where the problem
of determining the most effective attacking strategy for the
Byzantines was investigated. However, both works focused
only on parallel topology. The problem considered in this
paper is most related to our earlier papers [10], [14]. In [10],
[14], we studied the problem of distributed detection in perfect
tree networks (all intermediate nodes in the tree have the same
number of children) with Byzantines under the assumption that
the FC does not know which decision bit is sent from which
node and assumes each received bit to originate from nodes
at depthk with a certain probability. Under this assumption,
the attacker’s aim was to maximize the false alarm probability
for a fixed detection probability. When the number of nodes is
large, by Stein’s lemma [19], we know that the error exponent
of the false alarm probability can be used as a surrogate for
the false alarm probability. Thus, the optimal attacking strategy
was obtained by making the error exponent of the false alarm
probability at the FC equal to zero, which makes the decision
fusion scheme completely incapable (blind). Some counter-
measures were also proposed to protect the network from such
Byzantines.

There are several notable differences between this paper
and our earlier papers [10], [14]. First, in contrast to [10],
[14], in this paper, the problem of distributed detection in
regular tree networks1 with Byzantines is addressed in a
practical setup where the FC has the knowledge of which
bit is transmitted from which node. Note that, in practice,
the FC knows which bit is transmitted from which node,

1For a regular tree, intermediate nodes at different levels are allowed to
have different degrees, i.e., number of children.
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e.g., using MAC schemes2, and can utilize this information
to improve system performance. Next, for the analysis of
the optimal attack, we consider nodes residing at different
levels of the tree to have different detection performance.We
also allow Byzantines residing at different levels of the tree
to have different attacking strategies and, therefore, provide
a more general and comprehensive analysis of the problem
as compared to [10], [14]. We also study the problem from
the network designer’s perspective. Based on the information
regarding which bit is transmitted from which node, we
propose schemes to mitigate the effect of the Byzantines.

B. Main Contributions

In this paper, it is assumed that the FC knows which
bit is transmitted from which node. Under this assumption,
the problem of distributed detection in tree networks in the
presence of Byzantines is considered. The main contributions
of this paper are summarized below:

• Detection performance in tree networks with Byzantines
is characterized in terms of the error exponent and a
closed form expression for the optimal error exponent
is derived.

• The minimum attacking power required by the Byzan-
tines to blind the FC in a tree network is obtained.
It is shown that when more than a certain fraction of
individual node decisions are falsified, the decision fusion
scheme becomes completely incapable.

• The problem is also investigated from the network de-
signer’s perspective by focusing on the design of optimal
distributed detection parameters in a tree network.

• We model the strategic interaction between the FC and
the attacker as a Leader-Follower (Stackelberg) game and
identify attacker and defender (FC) equilibrium strategies.
The knowledge of these equilibrium strategies can later
be used to implement the optimal detector at the FC.

• We propose a simple yet efficient reputation based
scheme, which works even if the FC is blinded, to identify
Byzantines in tree networks and analytically evaluate its
performance.

The rest of the paper is organized as follows. Section II
introduces the system model. In Section III, we study the
problem from Byzantine’s perspective and provide closed form
expressions for optimal attacking strategies. In Section IV,
we investigate the problem of designing optimal distributed
detection parameters in the presence of Byzantines. In Sec-
tion V, we model the strategic interaction between the FC and
the attacker as a Leader-Follower (Stackelberg) game and find
equilibrium strategies. In Section VII, we introduce an efficient
Byzantine identification scheme and analyze its performance.
Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We consider a distributed detection system organized as a
regular tree network rooted at the FC (See Figure 1). For

2In practice, one possible way to achieve this is by using the buffer-
less TDMA MAC protocol, in which, distinct non-overlappingtime slots are
assigned (scheduled) to the nodes for communication. One practical example
of such a scheme is given in [20].

Fusion Center (FC)

Level 1

Level 2

Level 3

Fig. 1. A distributed detection system organized as a regular tree (a1 =
2, a2 = 3, a3 = 2) is shown as an example.

a regular tree, all the leaf nodes are at the same level (or
depth) and all the intermediate nodes at levelk have degree
ak. The regular tree is assumed to have a setN = {Nk}Kk=1

of transceiver nodes, where|Nk| = Nk is the total number
of nodes at levelk. We assume that the depth of the tree is
K > 1 andak ≥ 2. The total number of nodes in the network
is denoted asN =

∑K
k=1 Nk andB = {Bk}Kk=1 denotes the

set of Byzantine nodes with|Bk| = Bk, whereBk is the set
of Byzantines at levelk. The set containing the number of
Byzantines residing at each levelk, 1 ≤ k ≤ K, is referred to
as an attack configuration, i.e.,{Bk}Kk=1 = {|Bk|}Kk=1. Next,
we define themodus operandiof the nodes.

A. Modus Operandi of the Nodes

We consider a binary hypothesis testing problem with two
hypothesesH0 (signal is absent) andH1 (signal is present).
Under each hypothesis, it is assumed that the observationsYk,i

at each nodei at levelk are conditionally independent. Each
nodei at level k acts as a source in the sense that it makes
a one-bit (binary) local decisionvk,i ∈ {0, 1} regarding the
absence or presence of the signal using the likelihood ratio
test (LRT) 3

p
(1)
Yk,i

(yk,i)

p
(0)
Yk,i

(yk,i)

vk,i=1

≷
vk,i=0

λk, (1)

whereλk is the threshold used at levelk (it is assumed that all
the nodes at levelk use the same thresholdλk) andp(j)Yk,i

(yk,i)
is the conditional probability density function (PDF) of obser-
vationyk,i under hypothesisHj for j ∈ {0, 1}. We denote the
probabilities of detection and false alarm of a node at level
k by P k

d = P (vk,i = 1|H1) and P k
fa = P (vk,i = 1|H0),

respectively, which are functions ofλk and hold for both
Byzantines and honest nodes. After making its one-bit local
decisionvk,i ∈ {0, 1}, nodei at levelk sendsuk,i to its parent
node at levelk−1, whereuk,i = vk,i if i is an honest node, but
for a Byzantine nodei, uk,i need not be equal tovk,i. Node
i at levelk also receives the decisionsuk′,j of all successors
j at levelsk′ ∈ [k + 1,K], which are forwarded to nodei by

3Notice that, under the conditional independence assumption, the optimal
decision rule at the local sensor is a likelihood-ratio test[21].
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its immediate children, and forwards4 them to its parent node
at levelk − 1. We assume error-free communication between
children and the parent nodes. Next, we present a mathematical
model for the Byzantine attack.

B. Byzantine Attack Model

We define the following strategiesPH
j,1(k), PH

j,0(k) and
PB
j,1(k), P

B
j,0(k) (j ∈ {0, 1} andk = 1, · · · ,K) for the honest

and Byzantine nodes at levelk, respectively:
Honest nodes:

PH
1,1(k) = 1− PH

0,1(k) = PH
k (x = 1|y = 1) = 1 (2)

PH
1,0(k) = 1− PH

0,0(k) = PH
k (x = 1|y = 0) = 0 (3)

Byzantine nodes:

PB
1,1(k) = 1− PB

0,1(k) = PB
k (x = 1|y = 1) (4)

PB
1,0(k) = 1− PB

0,0(k) = PB
k (x = 1|y = 0) (5)

wherePk(x = a|y = b) is the conditional probability that
a node at levelk sendsa to its parent when it receivesb
from its child or its actual decision isb. For notational conve-
nience, we use(P k

1,0, P
k
0,1) to denote the flipping probability

of the Byzantine node at levelk. Furthermore, we assume
that if a node (at any level) is a Byzantine, then none of
its ancestors and successors are Byzantine (non-overlapping
attack configuration); otherwise, the effect of a Byzantinedue
to other Byzantines on the same path may be nullified (e.g.,
Byzantine ancestor re-flipping the already flipped decisions
of its successors). This means that every path from a leaf
node to the FC will have at most one Byzantine. Notice
that, for the attack configuration{Bk}Kk=1, the total number
of corrupted paths (i.e., paths containing a Byzantine node)
from level k to the FC are

∑k
i=1 Bi

Nk

Ni
, whereBi

Nk

Ni
is the

total number of nodes covered5 at level k by the presence
of Bi Byzantines at leveli. If we denoteαk = Bk

Nk
, then,

∑
k
i=1

Bi
Nk
Ni

Nk
=
∑k

i=1 αi is the fraction of decisions coming
from levelk that encounter a Byzantine along the way to the
FC. For a large network, due to the law of large numbers,
one can approximate the probability that the FC receives the
flipped decisionx̄ of a given node at levelk when its actual
decision isx asβk

x̄,x =
∑k

j=1 αjP
j
x̄,x, x ∈ {0, 1}.

C. Binary Hypothesis Testing at the Fusion Center

We consider the distributed detection problem under the
Neyman-Pearson (NP) criterion. The FC receives decision
vectors, [z1, · · · , zK], where zk for k ∈ {1, · · · ,K} is a
decision vector with its elements beingz1, · · · , zNk

, from
the nodes at different levels of the tree. Then the FC makes
the global decision about the phenomenon by employing the
LRT. Due to system vulnerabilities, some of the nodes may be

4For example, IEEE 802.16j mandates tree forwarding and IEEE802.11s
standardizes a tree-based routing protocol.

5Node i at levelk′ covers (or can alter the decisions of) all its children at
levelsk′+1 to K and itself. In other words, the total number of covered nodes
is equivalent to the total number of corrupted paths (i.e., paths containing a
Byzantine node) in the network.

captured by the attacker and reprogrammed to transmit false
information to the FC to degrade detection performance. We
assume that the only information available at the FC is the
probabilityβk

x̄,x, which is the probability with which the data
coming from levelk has been falsified. Using this information,
the FC calculates the probabilitiesπk

j,0 = P (zi = j|H0, k)
and πk

j,1 = P (zi = j|H1, k), which are the distributions of
received decisionszi originating from levelk and arriving
to the FC under hypothesesH0 andH1. The FC makes its
decision regarding the absence or presence of the signal using
the following likelihood ratio test

K
∏

k=1

(

πk
1,1

πk
1,0

)sk (

1− πk
1,1

1− πk
1,0

)Nk−sk
H1

≷
H0

η (6)

where sk is the number of decisions that are equal to one
and originated from levelk, and the thresholdη is chosen in
order to minimize the missed detection probability(PM ) while
keeping the false alarm probability(PF ) below a fixed value
δ.6 Using Stein’s lemma [19], we know that the Kullback-
Leibler divergence (KLD) represents the best error exponent
of the missed detection error probability in the NP setup.

Lemma 1 ( [19]): For a fixed false alarm probability,
PF ≤ δ, the missed detection probability for an optimal NP
detector asymptotically behaves as

lim
N→∞

1

N
logPM = −D(H0‖H1)

whereN is the number of samples used for detection and
D(H0‖H1) is the Kullback-Leibler divergence (KLD).
A direct consequence of Lemma 1 is thatPM decays, asN
grows to infinity, exponentially, i.e.,

PM ≈ f(N)e−D(H0‖H1),

where f(N) is a slow-varying function compared to the
exponential, such thatlim

N→∞

1
N
log f(N) = 0. Therefore, given

a number of observations, the detection performance depends
exclusively on the KLD between the hypotheses. We can
conclude that the larger the KLD is, the less is the likelihood
of mistakingH0 with H1 and, therefore, KLD can be used as a
surrogate for the probability of missed detection during system
design for a large network.7 Next, we derive a closed form
expression for the optimal missed detection error exponentfor
tree networks in the presence of Byzantines, which will later
be used as a surrogate for the probability of missed detection.

Proposition 1: For aK level tree network employing the
detection scheme as given in (6), the asymptotic detection
performance (i.e.,N1 → ∞) can be characterized using the
missed detection error exponent given below

D =

K
∑

k=1

Nk





∑

j∈{0,1}

πk
j,0 log

πk
j,0

πk
j,1



 . (7)

6This type of problem setup is important, for instance, in Cognitive Radio
Networks (CRN). In order to coexist with the primary user (PU), secondary
users (SUs) must guarantee that their transmissions will not interfere with the
transmission of the PU who have higher priority to access thespectrum.

7Kullback-Leibler divergence based detection approaches perform reason-
ably well even for a small size network as observed in [8], [22]–[24] .
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Proof: Let Z = [Z1, · · · ,ZN1
] denote the received deci-

sion vectors from the nodes at level1, whereZi is the decision
vector forwarded by the nodei at level1 to the FC. Observe
that, Zi for i = 1 to N1 are independent and identically
distributed (i.i.d.). Therefore, using Stein’s lemma [19], when
N1 →∞, the optimal error exponent for the detection scheme
as given in (6) is the Kullback-Leibler divergence (KLD)
[25] between the distributionsP (Z|H0) and P (Z|H1). The
summation term in (7) follows from the additive property of
the KLD for independent distributions.
Note that, (7) can be compactly written as
∑K

k=1 NkDk(π
k
j,1||πk

j,0) with Dk(π
k
j,1||πk

j,0) being the
KLD between the data coming from nodei at level k
underH0 andH1. The FC wants to maximize the detection
performance, while, the Byzantine attacker wants to degrade
the detection performance as much as possible which can
be achieved by maximizing and minimizing the KLD,
respectively. Next, we explore the optimal attacking strategies
for the Byzantines that degrade the detection performance
most by minimizing the KLD.

III. O PTIMAL BYZANTINE ATTACK

As discussed earlier, the Byzantines attempt to make the
KL divergence as small as possible or to blind the FC. We
say that the FC is blind if an adversary can make the data that
the FC receives from the sensors such that no information
is conveyed. In other words, the optimal detector at the FC
cannot perform better than simply making the decision based
on priors. Since the KLD is always non-negative, Byzantines
attempt to chooseP (zi = j|H0, k) andP (zi = j|H1, k) such
thatDk = 0, ∀k. This is possible when

P (zi = j|H0, k) = P (zi = j|H1, k) ∀j ∈ {0, 1}, ∀k.
(8)

Notice that,πk
j,0 = P (zi = j|H0, k) and πk

j,1 = P (zi =
j|H1, k) can be expressed as

πk
1,0 = βk

1,0(1 − P k
fa) + (1− βk

0,1)P
k
fa (9)

πk
1,1 = βk

1,0(1 − P k
d ) + (1− βk

0,1)P
k
d . (10)

with βk
1,0 =

∑k

j=1 αjP
j
1,0 and βk

0,1 =
∑k

j=1 αjP
j
0,1. Sub-

stituting (9) and (10) in (8) and after simplification, the
condition to make theD = 0 for a K-level network be-
comes

∑k

j=1 αj(P
j
1,0 + P j

0,1) = 1, ∀k. Notice that, when
∑k

j=1 αj < 0.5, there does not exist any attacking probability
distribution(P j

0,1, P
j
1,0) that can makeDk = 0, and, therefore,

the KLD cannot be made zero. In the case of
∑k

j=1 αj = 0.5,
there exists a unique solution(P j

0,0, P
j
1,0) = (1, 1), ∀j that can

makeDk = 0, ∀k. For the
∑k

j=1 αj > 0.5 case, there exist
infinitely many attacking probability distributions(P j

0,1, P
j
1,0)

which can makeDk = 0, ∀k. Thus, we have the following
result.

Lemma 2: In a tree network withK levels, the minimum
number of Byzantines needed to make the Kullback-Leibler
divergence (KLD) between the distributionsP (Z|H0) and
P (Z|H1) equal to zero (or to makeDk = 0, ∀k) is given
by B1 =

⌈

N1

2

⌉

.

Proof: The proof follows from the fact that the condition
∑k

j=1 αj = 0.5, ∀k, is equivalent toα1 = 0.5, αk = 0, ∀k =
2, · · · ,K.

Next, we explore the optimal attacking probability distribu-
tion (P k

0,1, P
k
1,0) that minimizesDk when

∑k
j=1 αj < 0.5, i.e.,

in the case where the attacker cannot makeD = 0. To analyze
the problem, first we investigate the properties ofDk with
respect to(P k

0,1, P
k
1,0) assuming(P j

0,1, P
j
1,0), 1 ≤ j ≤ k − 1

to be fixed. We show that attacking with symmetric flipping
probabilities is the optimal strategy in the region where the
attacker cannot makeDk = 0. In other words, attacking with
P k
1,0 = P k

0,1 is the optimal strategy for the Byzantines.
Lemma 3: In the region where the attacker cannot make

Dk = 0, i.e., for
∑k

j=1 αj < 0.5, the optimal attacking
strategy comprises of symmetric flipping probabilities(P k

0,1 =
P k
1,0 = p). In other words, any non zero deviationεi ∈ (0, p]

in flipping probabilities(P k
0,1, P

k
1,0) = (p− ε1, p− ε2), where

ε1 6= ε2, will result in an increase inDk.
Proof: Please see Appendix A.

In the next theorem, we present the solution for the optimal
attacking probability distribution(P k

j,1, P
k
j,0) that minimizes

Dk in the region where the attacker cannot makeDk = 0.
Theorem 1: In the region where the attacker cannot make

Dk = 0, i.e., for
∑k

j=1 αj < 0.5, the optimal attacking
strategy is given by(P k

0,1, P
k
1,0) = (1, 1).

Proof: Observe that, in the region where the attacker
cannot makeDk = 0, the optimal strategy comprises of
symmetric flipping probabilities(P k

0,1 = P k
1,0 = p). The proof

is complete if we show thatDk is a monotonically decreasing
function of the flipping probabilityp.

After plugging in (P k
0,1, P

k
1,0) = (p, p) in (9) and (10), we

get

πk
1,1 = [βk−1

1,0 (1− P k
d ) + (1− βk−1

0,1 )P k
d ]

+[αk(p− P k
d (2p)) + P k

d ] (11)

πk
1,0 = [βk−1

1,0 (1− P k
fa) + (1− βk−1

0,1 )P k
fa]

+[αk(p− P k
fa(2p)) + P k

fa]. (12)

Now we show thatDk is a monotonically decreasing function

of the parameterp or in other words,
dDk

dp
< 0. After plugging

in πk′

1,1 = αk(1 − 2P k
d ) and πk′

1,0 = αk(1 − 2P k
fa) in the

expression of
dDk

dp
and rearranging the terms, the condition

dDk

dp
< 0 becomes

(1− 2P k
d )

(

1− πk
1,0

1− πk
1,1

−

πk
1,0

πk
1,1

)

+ (1− 2P k
fa) log

(

1− πk
1,1

1− πk
1,0

πk
1,0

πk
1,1

)

< 0 (13)

SinceP k
d > P k

fa andβk
x̄,x < 0.5, we haveπk

1,1 > πk
1,0. Now,

using the fact that
1− P k

d

1− P k
fa

>
1− 2P k

d

1− 2P k
fa

and (33), we have

1− 2P k
d

1− 2P k
fa

[

1− πk
1,0

1− πk
1,1

−

πk
1,0

πk
1,1

]

< (πk
1,1 − π

k
1,0)

[

1

πk
1,1

+
1

1− πk
1,0

]

⇔
1− 2P k

d

1− 2P k
fa

[

1− πk
1,0

1− πk
1,1

−

πk
1,0

πk
1,1

]

+

[

πk
1,0

πk
1,1

− 1

]

< 1−
1− πk

1,1

1− πk
1,0

.(14)
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Fig. 2. KLD Dk vs. flipping probabilities whenP k
d = 0.8, P k

fa = 0.2,
and the probability that the bit coming from levelk encounters a Byzantine
is
∑k

j=1 αj = 0.4.

Applying the logarithm inequality(x − 1) ≥ log x ≥ x− 1

x
,

for x > 0 to (14), one can prove that (13) is true.
Next, to gain insights into the solution, we present some
numerical results in Figure 2. We plotDk as a function of the
flipping probabilities(P k

1,0, P
k
0,1). We assume that the proba-

bility of detection isP k
d = 0.8, the probability of false alarm is

P k
fa = 0.2, and the probability that the bit coming from level

k encounters a Byzantine is
∑k

j=1 αj = 0.4. We also assume
that P k

0,1 = P0,1 and P k
1,0 = P1,0, ∀k. It can be seen that

the optimal attacking strategy comprises of symmetric flipping
probabilities and is given by(P k

0,1, P
k
1,0) = (1, 1), which

corroborates our theoretical result presented in Lemma 3 and
Theorem 1.

We have shown that, for allk,

Dk(P
k
0,1, P

k
1,0) ≥ Dk(1, 1). (15)

Now, by multiplying both sides of (15) byNk and summing
it over all K we can show that the KLD,D, is minimized by

(P k
0,1, P

k
1,0) = (1, 1), for all k, in the region

K
∑

k=1

αk < 0.5.

Now, we explore some properties ofDk with respect
to
∑k

j=1 αj in the region where the attacker cannot make

Dk = 0, i.e., for
∑k

j=1 αj < 0.5. This analysis will later
be used in exploring the problem from the network designer’s
perspective.

Lemma 4: D∗
k = min

(Pk
j,1

,Pk
j,0

)
Dk(π

k
j,1||πk

j,0) is a continuous,

decreasing and convex function of
∑k

j=1 αj for
∑k

j=1 αj <
0.5.

Proof: The continuity ofDk(π
k
j,1||πk

j,0) with respect to
the involved distributions implies the continuity ofD∗

k. To
show thatD∗

k is a decreasing function oft =
∑k

j=1 αj , we
use the fact that arg min

(Pk
0,1

,Pk
1,0

)

Dk(π
k
j,1||πk

j,0) is equal to(1, 1) for

∑k

j=1 αj < 0.5 (as shown in Theorem 1). After plugging
(P k

0,1, P
k
1,0) = (1, 1), ∀k, in the KLD expression, it can be

shown that
dDk

dt
< 0. Hence,D∗

k is a monotonically decreas-
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(Pk

j,1
,Pk

j,0
)
Dk vs probability that the bit coming from levelk

encounters a Byzantine forP k
d = 0.8 andP k

fa = 0.2.

ing function of
∑k

j=1 αj for
∑k

j=1 αj < 0.5. The convexity
of D∗

k follows from the fact thatD∗
k(π

k
j,1||πk

j,0) is convex in
πk
j,1 and πk

j,0, which are affine transformations of
∑k

j=1 αj

(Note that, convexity holds under affine transformation).
It is worth noting that Lemma 4 suggests that minimiza-

tion/maximization of
∑k

j=1 αj is equivalent to minimiza-
tion/maximization ofDk. Using this fact, one can consider
the probability that the bit coming from levelk encounters a
Byzantine (i.e.,t =

∑k

j=1 αj) in lieu of Dk for optimizing
the system performance.

Next, to gain insights into the solution, we present some nu-
merical results in Figure 3. We plot min

(Pk
j,1

,Pk
j,0

)
Dk as a function

of the probability that the bit coming from levelk encounters a
Byzantine, i.e.,t. We assume that the probabilities of detection
and false alarm areP k

d = 0.8 and P k
fa = 0.2, respectively.

Notice that, whent = 0.5, Dk between the two probability
distributions becomes zero. It is seen thatD∗

k is a continuous,
decreasing and convex function of the fraction of covered
nodes,t, for t < 0.5, which corroborates our theoretical result
presented in Lemma 4.

Until now, we have explored the problem from the attacker’s
perspective. In the rest of the paper, we look into the problem
from a network designer’s perspective and propose techniques
to mitigate the effect of Byzantines. First, we study the
problem of designing optimal distributed detection parameters
in a tree network in the presence of Byzantines.

IV. SYSTEM DESIGN IN THE PRESENCE OFBYZANTINES

For a fixed attack configuration{Bk}Kk=1, the detection
performance at the FC is a function of the local detectors used
at the nodes in the tree network and the global detector used at
the FC. This motivates us to study the problem of designing
detectors, both at the nodes at different levels in a tree and
at the FC, such that the detection performance is maximized.
More specifically, we are interested in answering the question:
How does the knowledge of the attack configuration{Bk}Kk=1

affect the design of optimal distributed detection parameters?
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By Stein’s lemma [19], we know that in the NP setup for a
fixed false alarm probability, the missed detection probability
of the optimal detector can be minimized by maximizing the
KLD. For an optimal detector at the FC, the problem of
designing the local detectors can be formalized as follows:

max
{Pk

d
,Pk

fa
}K
k=1

K
∑

k=1

Nk

∑

j∈{0,1}

P (zi = j|H0, k) log
P (zi = j|H0, k)

P (zi = j|H1, k)
.

(16)

The local detector design problem as given in (16) is a
non-linear optimization problem. Furthermore, it is difficult to
obtain a closed form solution for this problem. Next, we show
that likelihood ratio tests remain optimal (under the conditional
independence assumption) even in the presence of Byzantines
and optimal decision rule for each node is independent of
Byzantines’ parameters.8 To solve the problem, we need to
find the pairs{P k

d , P
k
fa}Kk=1 which maximize the objective

function as given in (16). However,P k
d andP k

fa are coupled
and, therefore, cannot be optimized independently. Thus, we
first analyze the problem of maximizing the KLD for a fixed
P k
fa. We assume thatP k

fa = yk and P k
d = yk + xk. Next,

we analyze the properties of KLD with respect toxk, i.e.,
(P k

d −P k
fa) in the region where attacker cannot blind the FC,

i.e., for
∑k

j=1 αj < 0.5, in order to study the local detector

design problem. Notice that, in the region
∑k

j=1 αj ≥ 0.5,
Dk = 0 and optimizing over local detectors does not improve
the performance.

Lemma 5: For a fixedP k
fa = yk, when

∑k
j=1 αj < 0.5,

the KLD, D, as given in (7) is a monotonically increasing
function ofxk = (P k

d − P k
fa).

Proof: To prove this, we calculate the partial derivative
of D with respect toxk. By substitutingP k

fa = yk andP k
d =

yk+xk into (7), the partial derivative ofD with respect toxk

can be calculated as

∂D

∂xk

= Nk
∂

∂xk

[

π
k
1,0 log

πk
1,0

πk
1,1

+ (1− π
k
1,0) log

1− πk
1,0

1− πk
1,1

]

⇔
∂D

∂xk

= Nkπ
k′

1,1

(

1− πk
1,0

1− πk
1,1

−

πk
1,0

πk
1,1

)

,

whereπk
1,0 andπk

1,1 are as given in (9) and (10), respectively
andπk′

1,1 = (1− βk
0,1 − βk

1,0). Notice that,
(

1− πk
1,0

1− πk
1,1

− πk
1,0

πk
1,1

)

> 0⇔ πk
1,1 > πk

1,0.

Thus, the condition to make
∂D

∂xk

> 0 simplifies to

πk′

1,1 > 0⇔ 1 > (βk
0,1 + βk

1,0) (17)

Substituting the values ofβk
1,0 andβk

1,1, the above condition

8In other words, under the assumption of conditional independence, an
optimal decision rule for each node takes the form of a likelihood ratio test
(LRT), with a suitably chosen threshold. In turn, optimization over the set of
all thresholds can yield the desired solution.

can be written as:
k
∑

j=1

αjP
j
1,0 +

k
∑

j=1

αjP
j
0,1 < 1 (18)

⇔
k
∑

j=1

αj(P
j
1,0 + P j

0,1) < 1 (19)

The above condition is true for any0 ≤ P j
0,1, P

j
1,0 ≤ 1 when

∑k
j=1 αj < 0.5. This completes the proof.
Lemma 5 suggests that one possible solution to maximize

D is to choose the largest possiblexk constrained to0 ≤
xk ≤ 1 − yk. The upper bound results from the fact that
{P k

d , P
k
fa}Kk=1 are probabilities and, thus, must be between

zero and one. In other words, the solution is to maximize
the probability of detection for a fixed value of probability
of false alarm. In detection theory, it is well known that the
likelihood ratio based test is optimum for this criterion. Thus,
under the conditional independence assumption, the likelihood
ratio based test as given in (6) is optimal for local nodes, even
in the presence of Byzantines, and the optimal operating points
{P k∗

d , P k∗
fa}Kk=1 are independent of the Byzantines’ parameters

{αk}Kk=1.
The above result has the following important consequences:

1) search space is reduced from any arbitrary detector to
likelihood ratio based detectors,2) the threshold in the LRT
can be optimized without any prior knowledge about the
Byzantines’ parameters{αk}Kk=1. We further explore the prob-
lem from the network designer’s (FC) perspective. In our
previous analysis, we have assumed that the attack configu-
ration {Bk}Kk=1 is known and shown that the optimal local
detector is independent of{αk}Kk=1. However, notice that the
KLD is the exponential decay rate of the error probability
of the optimal detector. In other words, while optimizing
over KLD, we implicitly assumed that the optimal detector,
which is a likelihood ratio based detector, is used at the FC.
Taking logarithm on both sides of (6), the optimal decision
rule simplifies to

K
∑

k=1

[ak1sk + ak0(Nk − sk)]
H1

≷
H0

log η (20)

where the optimal weights are given byak1 = log
πk
1,1

πk
1,0

and

ak0 = log
1−πk

1,1

1−πk
1,0

. To implement the optimal detector, the FC

needs to know the optimal weightsakj , which are functions of
{αk}Kk=1. In the next section, we are interested in answering
the question: Is it possible for the FC to predict the attack
configuration{Bk}Kk=1 in the tree? The knowledge of this
attack configuration can be used for determining the optimal
detector at the FC to improve the system performance. Notice
that, learning/estimation based techniques can be used on data
to determine the attack configuration. However, the FC has to
acquire a large amount of data coming from the nodes over a
long period of time to accurately estimate{Bk}Kk=1.

In the next section, we propose a novel technique to predict
the attack configuration by considering the following scenario:
The FC, acting first, commits to a defensive strategy by
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deploying the defensive resources to protect the tree network,
while the attacker chooses its best response or attack con-
figuration after surveillance of this defensive strategy. Both,
the FC and the Byzantines have to incur a cost to deploy the
defensive resources and attack the nodes in the tree network,
respectively. We consider both the FC and the attacker to
be strategic in nature and model the strategic interaction
between them as a Leader-Follower (Stackelberg) game. This
formulation provides a framework for identifying attackerand
defender (FC) equilibrium strategies, which can be used to
implement the optimal detector. The main advantage of this
technique is that the equilibrium strategies can be determined
a priori and, therefore, there is no need to observe a large
amount of data coming from the nodes over a long period of
time to accurately estimate{Bk}Kk=1.

V. STACKELBERG GAME FOR ATTACK CONFIGURATION

PREDICTION PROBLEMS

We model the strategic interaction between the FC and
the attacker as a Leader-Follower (Stackelberg) game. We
assume that the FC has to incur a cost for deploying the
network and the Byzantine has to incur a cost9 for attacking
the network. It is assumed that the network designer or the FC
has a cost budgetCnetwork

budget and the attacker has a cost budget
Cattacker

budget
10. More specifically, the FC wants to allocate the

best subset of defensive resources (denoted as{c̃k}Kk=1)11

from a set of available defensive resourcesC = (c1, · · · , cn)
(arranged in a descending order, i.e.,c1 ≥ c2 · · · ≥ cn), where
n ≥ K, complying with its budget constraintCnetwork

budget to
different levels of the tree network. After the FC allocatesthe
defensive resources or budget to different levels of the tree
network, an attacker chooses an attack configuration,{Bk}Kk=1

complying with his budget constraintCattacker
budget to maximally

degrade the performance of the network.

Next, we formalize the Stackelberg game as a bi-level op-
timization problem. For our problem, the upper level problem
(ULP) corresponds to the FC who is the leader of the game,
while the lower level problem (LLP) belongs to the attacker

9Due to variations in hardware complexity and the level of tamper-
resistance present in nodes residing at different levels ofthe tree, the resources
required to capture and tamper nodes at different levels maybe different and,
therefore, nodes have varying costs of being attacked.

10In this paper, we assume that the attacker budgetCattacker
budget is such that

K
∑

k=1

αk < 0.5, i.e., the attacker cannot makeDk = 0, ∀k. Notice that,

if the attacker can makeDk = 0 for somek = l, then, it can also make
Dk = 0, ∀k ≥ l. Also, Dk = 0 implies thatπk

1,1 = πk
1,0 and, therefore,

the weights(ak1 , a
k
0 ) in (20) are zero. In other words, the best the FC can

do in the case whenDk = 0, ∀k ≥ l is to ignore or discard the decisions
of the nodes residing at levelk ≥ l. This scenario is equivalent to using the
tree network with(l − 1) levels for distributed detection.

11Let c̃k denote the resources deployed or budget allocated by the FC to
protect or deploy a node at levelk.

who is the follower.

maximize
{c̃k}K

k=1
∈C

D({c̃k}Kk=1)

subject to
K
∑

k=1

c̃kNk ≤ Cnetwork
budget

minimize
Bk∈Z+

D({Bk}Kk=1)

subject to
K
∑

k=1

c̃kBk ≤ Cattacker
budget

0 ≤ Bk ≤ Nk, ∀ k = 1, 2, . . . ,K
(21)

whereZ+ is the set of non-negative integers. Notice that the bi-
level optimization problem, in general, is an NP-hard problem.
In fact, the LLP is a variant of the packing formulation of
the bounded knapsack problem with a non-linear objective
function. This is, in general, NP-hard. Using existing algo-
rithms, cost set{c̃k}Kk=1 and attack configuration{Bk}Kk=1 can
be determined at the cost of computational efficiency. In this
paper, we identify a special case of the above problem which
can be solved in polynomial time to determine the equilibrium
strategies. To solve the bi-level optimization problem, wefirst
solve the LLP assuming the solution of the ULP to be some
fixed (c̃1, · · · , c̃K). This approach will give us a structure of
the optimal{Bk}Kk=1 for any arbitrary{c̃k}Kk=1. Next, using
the structure of the optimal{Bk}Kk=1, the bi-level optimization
problem simplifies to finding the solution{c̃k}Kk=1 of the ULP.
Finally, we present a polynomial time algorithm to solve the
bi-level optimization problem, i.e., to find{c̃k}Kk=1 and, thus,
{Bk}Kk=1.

Next, we discuss the relationships that enable our problem
to have a polynomial time solution. We define profitP (S) of
an attack configurationS = {Bk}Kk=1 as follows12

P (S) = D(φ) −D(S) = D(φ)−D({Bk}Kk=1),

whereD(φ) is the KLD when there are no Byzantines in the
network andD(S) = D({Bk}Kk=1) is the KLD with {Bk}Kk=1

Byzantines in the tree network. Next, we define the concept
of dominance which will be used later to explore some useful
properties of the optimal attack configuration{Bk}Kk=1.

Definition 1: We say that a setS1 dominates another set
S2 if

P (S1) ≥ P (S2) andC(S1) ≤ C(S2), (22)

whereP (Si) andC(Si) denote the profit and cost incurred
by using setSi, respectively. If in (22),P (S1) > P (S2),
S1 strictly dominatesS2 and if P (S1) = P (S2), S1 weakly
dominatesS2.

To solve the bi-level optimization problem, we first solve
the LLP assuming the solution of the ULP to be some
fixed (c̃1, · · · , c̃K). We refer to LLP as a maximum damage
Byzantine attack problem. Observe that, knowing that the

12In this section, we assume that the optimal operating point,i.e.,
(P k∗

d , P k∗
fa ), is the same for all the nodes in the tree network. It has been

shown that the use of identical thresholds is asymptotically optimal for parallel
networks [26]. We conjecture that this result is valid for tree networks as well
and employ identical thresholds.
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FC chooses(c̃1, · · · , c̃K), the LLP can be reformulated as
follows:

minimize
Bk∈Z+

K
∑

k=1

NkDk({Bi}ki=1)

subject to
K
∑

k=1

c̃kBk ≤ Cattacker
budget

0 ≤ Bk ≤ Nk, ∀k = 1, · · · ,K.

We discuss the relationships that enable maximum damage
Byzantine attack problem to admit a polynomial time solution.

A. Analysis of the Optimal Attack Configuration

In this section, we identify a special case of the bounded
knapsack problem (LLP) which can be solved in polynomial
time. More specifically, we show that if the set of defensive
resourcesC = (c1, · · · , cn) satisfy the cost structurecmax ≤
(

min
k∈{1,··· ,K−1}

Nk+1

Nk

)

× cmin
13 or c1 ≤ min

k
ak × cn, then,

the optimal solution{Bk}Kk=1 exhibits the properties given in
the lemma below.

Lemma 6: Given aK level tree network with cost structure

satisfying cmax ≤
(

min
k∈{1,··· ,K−1}

Nk+1

Nk

)

× cmin, the best

response of an attacker with cost budgetCattacker
budget is {Bk}Kk=1

with

B1 =

⌊

Cattacker
budget

c̃1

⌋

and the remaining elements ofBk for 2 ≤ k ≤ K can be
calculated recursively.

Proof: Please see Appendix B.
It can also be shown that the solution{Bk}Kk=1 will be non-
overlapping and unique under the condition that the attacker
cannot makeDk = 0, ∀k.

B. Bi-Level Optimization Algorithm

Based on Lemma 6, in this section we will present a
polynomial time algorithm to solve the bi-level optimization
problem, i.e., to find{c̃k}Kk=1 and {Bk}Kk=1. Using the cost

structurecmax ≤
(

min
k

Nk+1

Nk

)

× cmin, the attack configura-

tion {Bk}Kk=1 as given in Lemma 6 can be determined in a
computationally efficient manner. Due to the structure of the
optimal{Bk}Kk=1, the bi-level optimization problem simplifies
to finding the solution{c̃k}Kk=1 of the ULP.

To solve this problem, we use an iterative elimination
approach. We start by listing all

(

n
K

)

combinations from the

setC, denoted as,S = {si}(
n
K)

i=1 . Without loss of generality, we
assume that the elements ofsi = {ci1, · · · , ciK} are arranged
in descending order, i.e.,cik ≥ cik+1, ∀k. Notice that, all these
(

n
K

)

combinations will satisfycik ≤
Nk+1

Nk
cik+1, because

cik ≤ cmax ≤ min
j

Nj+1

Nj

cmin ≤ min
j

Nj+1

Nj

cik+1 ≤
Nk+1

Nk

cik+1.

13Notice that, in the case of the perfectM -ary tree networks, the proposed
cost structure simplifies tocmax ≤ M × cmin.

Next, we discard all those subsetssi from S which violate
the network designer’s cost budget constraint. If the setS is
empty, then there does not exist any solution for the ULP.
Otherwise, the problem reduces to finding the subsetsi which
maximizes the KLD. To find the subsetsi which maximizes
the KLD, using the dominance relationship we start with
assigning the cost̃c1 = min

k∈s
ck1 , where s has the elements

which are solutions ofargmin
i

⌊

Cattacker
budget

ci1

⌋

. Next, we discard

all those subsetssi from S which do not havẽc1 as their first
element and solve the problem recursively.

The pseudo code of the polynomial time algorithm to find
{c̃k}Kk=1 and{Bk}Kk=1 is presented as Algorithm 1.

Algorithm 1 Bi-Level Optimization Algorithm

Require: C = {ck}nk=1 with cmax ≤
(

min
j

Nj+1

Nj

)

× cmin

1: S←All K out of n combinations{si}(
n
K)

i=1 with elements

of si arranged in decreasing order

2: for i = 1 to
(

n
K

)

do

3: if
K
∑

k=1

cik ×Nk > Cnetwork
budget then

4: S ← S/si

5: end if

6: end for

7: if S is an empty setthen

8: return (φ, φ)

9: else

10: for k = 1 to K do

11: c̃k = min
j∈s

cjk wheres has elements which are solu-

tions of argmin
i

⌊

Cattacker
budget

cik

⌋

12: Bk ←
⌊

Cattacker
budget

c̃k

⌋

13: Cattacker
budget ← (Cattacker

budget − c̃kBk)

14: end for

15: return ({c̃k}Kk=1, {Bk}Kk=1)

16: end if

C. An Illustrative Example

Let us consider a two-level network withN1 = 6 and
N2 = 12. We assume thatC = {4, 3, 2}, Cnetwork

budget = 60

andCattacker
budget = 11. Next, we solve the bi-level optimization

problem. Observe that, costs satisfyc1 ≤ 2 × c3. So the
algorithm chooses the solution of the ULP as (c̃1 = 4,
c̃2 = 3) and the solution of the LLP as (B1 =

⌊

11
4

⌋

= 2,
B2 =

⌊

11−2×4
3

⌋

= 1). To corroborate these results, in
Figure 4, we plot the min

P1,0,P0,1

KLD for all combinations of

the parametersB1 andB2 in the tree. We vary the parameter
B1 from 0 to 6 andB2 from 0 to 12. All the feasible solutions
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Fig. 4. min KLD vs. attack configuration(B1, B2) for Pd = 0.9, Pfa =
0.1.

are plotted in red and unfeasible solutions are plotted in blue.
Figure 4 corroborates the results of our algorithm.

Notice that, the attack configuration{Bk}Kk=1 is the set con-
taining thenumberof Byzantines residing at different levels
of the tree. However, the FC cannot identify the Byzantines
in the network. Also, notice that when the adversary attacks
more than50% of the nodes at level1, the decision fusion
scheme becomes completely incapable. In these scenarios,
where the FC is blind, the knowledge of attack configuration
will not incur any performance benefit. Next, we present a
reputation-based Byzantine identification/mitigation scheme,
which works even when the network is blind, in order to
improve the detection performance of the network. We propose
a simple yet efficient Byzantine identification scheme and
analyze its performance.

VI. A N EFFICIENT BYZANTINE IDENTIFICATION SCHEME

In this section, we propose and analyze a Byzantine identi-
fication scheme to be implemented at the FC.

A. Byzantine Identification Scheme

We assume that the FC has the knowledge of the attack
model and utilizes this knowledge to identify the Byzan-
tines. The FC observes the local decisions of each node
over a time windowT , which can be denoted by(k, i) =
[u1(k, i), . . . , uT (k, i)] for 1 ≤ i ≤ Nk at level1 ≤ k ≤ K.
We also assume that there is one honest anchor node with
probability of detectionPA

d and probability of false alarmPA
fa

present and known to the FC. We employ the anchor node to
provide the gold standard which is used to detect whether or
not other nodes are Byzantines. The FC can also serve as an
anchor node when it can directly observe the phenomenon and
make a decision. We denote the Hamming distance between
reports of the anchor node and an honest nodei at level k
over the time windowT by dAH(k, i) = ||UA − UH(k, i)||,
that is the number of elements that are different between
UA andUH(k, i). Similarly, the Hamming distance between
the reports of the anchor node and a Byzantine nodei at
level k over the time windowT is denoted bydAB(k, i) =

||UA − UB(k, i)||. Since the FC is aware of the fact that
Byzantines might be present in the network, it compares the
Hamming distance of a nodei at level k to a thresholdηk,
∀i, ∀k (a procedure to calculateηk is discussed later in the
paper), to make a decision to identify the Byzantines. In
tree networks, a Byzantine node alters its decision as well
as received decisions from its children prior to transmission
in order to undermine the network performance. Therefore,
solely based on the observed data of a nodei at levelk, the
FC cannot determine whether the data has been flipped by
the nodei itself or by one of its Byzantine parent node. In
our scheme, the FC makes the inference about a node being
Byzantine by analyzing the data from the nodei as well as
its predecessor nodes’ data. FC starts from the nodes at level
1 and computes the Hamming distance between reports of
the anchor node and the nodes at level1. FC declares node
i at level 1 to be a Byzantine if and only if the Hamming
distance of nodei is greater than a fixed thresholdη1. Children
of identified Byzantine nodesC(B1) are not tested further
because of the non-overlapping condition. However, if a level
1 node is determined not to be a Byzantine, then, the FC tests
its children nodes at level2. The FC declares nodei at levelk,
for 2 ≤ k ≤ K, to be a Byzantine if and only if the Hamming
distance of nodei is greater than a fixed thresholdηk and
Hamming distances of all predecessors of nodei is less than
equal to their respective thresholdsηj .

In this way, it is possible to counter the data falsification
attack by isolating Byzantine nodes from the information
fusion process. The probability that a Byzantine nodei at level
k is isolated at the end of the time windowT , is denoted as
P iso
B (k, i).

B. Performance Analysis

As mentioned earlier, local decisions of the nodes are
compared to the decisions of the anchor node over a time
window of lengthT . The probability that anhonestnode i
at levelk makes a decision that is different from the anchor
node is given by

P
AH
diff (k, i)

= P (uA
i = 1, uH

k,i = 0,H0) + P (uA
i = 0, uH

k,i = 1,H0)

+P (uA
i = 1, uH

k,i = 0,H1) + P (uA
i = 0, uH

k,i = 1,H1)

= P0[(P
k
fa + P

A
fa)− 2P k

faP
A
fa] + P1[(P

k
d + P

A
d )− 2P k

d P
A
d ]

.
= P0[P

AH
diff (k, i, 0)] + P1[P

AH
diff (k, i, 1)] .

where the prior probabilities of the two hypothesesH0 and
H1 are denoted byP0 andP1, respectively. The probability
that a Byzantine nodei at level k sends a decision different
from that of the anchor node is given by

P
AB
diff (k, i)

= P (uA
i = 1, uB

k,i = 0, H0) + P (uA
i = 0, uB

k,i = 1, H0)

+P (uA
i = 1, uB

k,i = 0,H1) + P (uA
i = 0, uB

k,i = 1,H1)

=P0[P
A
faP

k
fa + (1− P

A
fa)(1− P

k
fa)] + P1[P

A
d P

k
d + (1− P

A
d )(1− P

k
d )]

.
= P0[P

AB
diff (k, i, 0)] + P1[P

AB
diff (k, i, 1)] .

The difference between the reports of a node and
the anchor node under hypothesisl ∈ {0, 1} (i.e.,
dAI (k, i, l), I ∈ {H,B}) is a Bernoulli random variable with



1556-6013 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIFS.2015.2415757, IEEE Transactions on Information Forensics and Security

10

a(k, l) = Q





Q−1(δk)
√

PAH
diff (k, i, l

∗)(1− PAH
diff (k, i, l

∗)) +
√
T (PAH

diff (k, i, l
∗)− PAB

diff (k, i, l))
√

PAB
diff (k, i, l)(1− PAB

diff (k, i, l))



 (23)

mean PAH
diff (k, i, l) for honest nodes andPAB

diff (k, i, l) for
Byzantines. FC declares nodei at levelk to be a Byzantine if
and only if the Hamming distance of nodei is greater than a
fixed thresholdηk and Hamming distances of all predecessors
of nodei are less than equal to their respective thresholdsηj .
The probability that a Byzantine nodei at levelk is isolated
at the end of the time windowT can be expressed as

P iso
B (k, i) =

P [(dAB(k, i) > ηk), (d
A
H (k − 1, i) ≤ ηk−1), · · · , (d

A
H (1, i) ≤ η1)]

=
∑

l∈{0,1}

Pl

[

P [dAB(k, i, l) > ηk ]

k−1
∏

m=1

P [dAH(m, i, l) ≤ ηm]

]

=
∑

l∈{0,1}

Pl

T
∑

j=ηk+1

(T

j

)

(PAB
diff (k, i, l))

j(1 − PAB
diff (k, i, l))

T−j

×

k−1
∏

m=1





ηm
∑

j=0

(T

j

)

(PAH
diff (m, i, l))j(1− PAH

diff (m, i, l))T−j



 .

For largeT , by using the normal approximation, we get

P iso
B (k, i) =

∑

l∈{0,1}

PlQ







ηk − TPAB
diff (k, i, l)

√

(TPAB
diff

(k, i, l)(1 − PAB
diff

(k, i, l)))







×

k−1
∏

m=1

Q







TPAH
diff (m, i, l)− ηm

√

(TPAH
diff

(m, i, l)(1− PAH
diff

(m, i, l)))






.

This can be written recursively as follows

P iso
B (k + 1, i) =

∑

l∈{0,1}

Pl

[

(1 − b(k, l))

(

a(k + 1, l)

a(k, l)

)

P iso
B (k, i, l)

]

,

(24)

with P iso
B (k, i)

.
=

∑

l∈{0,1}

Pl[P
iso
B (k, i, l)], and

a(k, l) = Q





ηk − TPAB
diff(k, i, l)

√

(TPAB
diff (k, i, l)(1− PAB

diff (k, i, l)))



 ,

b(k, l) = Q





ηk − TPAH
diff(k, i, l)

√

(TPAH
diff (k, i, l)(1− PAH

diff (k, i, l)))



 .

One can chooseηk such that the isolation probability of honest
nodes at levelk based solely on its data under the hypothesis
Hl (i.e., b(k, l)) is constrained to some valueδk << 0.5. In
other words, we chooseηk such that max

l∈{0,1}
b(k, l) = δk, i.e.,

ηk = Q−1(δk)
√

TPAH
diff (k, i, l

∗)(1 − PAH
diff (k, i, l

∗))+TPAH
diff (k, i, l

∗)

(25)

where l∗ = argmax
l

b(k, l). Now, the expression fora(k, l)

can be written as given in (23).
Now using the fact that max

l
PAH
diff (k, i, l) <

min
l

PAB
diff (k, i, l), it can be shown that(PAH

diff (k, i, l
∗) −

PAB
diff (k, i, l)) < 0, ∀i and, therefore,lim

T→∞
a(k, l) = 1.
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Fig. 5. Isolation probabilityP iso
B (k, i) vs. time windowT .

Lemma 7: For a K level tree network, for our proposed
Byzantine identification scheme, the asymptotic (i.e.,T →∞)
probability that a Byzantine nodei at levelk+1, for 1 ≤ k ≤
K − 1, is isolated is lower-bounded by,

k
∏

j=2

(1− δj).

Proof: Notice that, lim
T→∞

a(k, l) = 1. The asymptotic

performance of the proposed scheme can be analyzed as
follows:

lim
T→∞

P iso
B (k + 1, i) =

∑

l∈{0,1}

Pl lim
T→∞

[

(1− b(k, l))

(

a(k + 1, l)

a(k, l)

)

P iso
B (k, i, l)

]

≥ (1− δk)
∑

l∈{0,1}

Pl lim
T→∞

[

P iso
B (k, i, l)

]

=
k
∏

j=2

(1− δj).

Notice that, the parallel network topology is a special case
of the tree network topology withK = 1. For K = 1, our
scheme can identify all the Byzantines with probability one
because lim

T→∞
P iso
B (1, i) = lim

T→∞

∑

l∈{0,1}

Pl[a(1, l)] = 1. When

K > 1, we can chooseηk appropriately such that Byzantines
can be identified with a high probability.

Next, to gain insights into the solution, we present some
numerical results in Figure 5 that corroborate our theoreti-
cal results. We consider a tree network withK = 5 and
plot P iso

B (k, i), 1 ≤ k ≤ 5, as a function of the time
window T . We assume that the operating points(P k

d , P
k
fa),

1 ≤ k ≤ 5, for the nodes at different levels are given
by [(0.8, 0.1), (0.75, 0.1), (0.6, 0.1), (0.65, 0.1), (0.6, 0.1)] and
for anchor node(PA

d , PA
fa) = (0.9, 0.1). We also assume that

the hypotheses are equi-probable, i.e.,P0 = P1 = 0.5, and
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the maximum isolation probability of honest nodes at levelk
based solely on its data is constrained byδk = 0.01, ∀k. It
can be seen from Figure 5 that in a span of onlyT = 25
time windows, our proposed scheme isolates/identifies almost
all the Byzantines in the tree network.

VII. C ONCLUSION

In this paper, we considered the problem of optimal
Byzantine attacks on distributed detection mechanism in tree
networks. We analyzed the performance limit of detection
performance with Byzantines and obtained the optimal at-
tacking strategies that minimize the detection error exponent.
The problem was also studied from the network designer’s
perspective. It was shown that the optimal local detector is
independent of the Byzantine’s parameter. Next, we modeled
the strategic interaction between the FC and the attacker asa
Leader-Follower (Stackelberg) game and attacker and defender
(FC) equilibrium strategies were identified. We also proposed
a simple yet efficient scheme to identify Byzantines and
analytically evaluated its performance. There are still many
interesting questions that remain to be explored in the future
work such as analysis of the problem for arbitrary network
topologies. The case where Byzantines collude in several
groups (collaborate) to degrade the detection performancecan
also be investigated.

APPENDIX A
PROOF OFLEMMA 3

To prove the lemma, we first show that any positive de-
viation ε ∈ (0, p] in flipping probabilities (P k

1,0, P
k
0,1) =

(p, p − ε) will result in an increase inDk. After plugging
in (P k

1,0, P
k
0,1) = (p, p− ε) in (9) and (10), we get

πk
1,0 = (26)

[βk−1
1,0 (1− P k

fa) + (1− βk−1
0,1 )P k

fa]+[αk(p− P k
fa(2p − ε)) + P k

fa]

πk
1,1 = (27)

[βk−1
1,0 (1− P k

d ) + (1 − βk−1
0,1 )P k

d ]+[αk(p− P k
d (2p− ε)) + P k

d ].

Now we show thatDk is a monotonically increasing function

of the parameterε or in other words,
dDk

dε
> 0.

dDk

dε
= πk

1,0

(

πk′

1,0

πk
1,0

−
πk′

1,1

πk
1,1

)

+ πk′

1,0 log
πk
1,0

πk
1,1

(28)

+(1 − πk
1,0)

(

πk′

1,1

1− πk
1,1

−
πk′

1,0

1− πk
1,0

)

− πk′

1,0 log
1− πk

1,0

1− πk
1,1

where
dπk

1,1

dε
= πk′

1,1 = αkP
k
d and

dπk
1,0

dε
= πk′

1,0 = αkP
k
fa.

After rearranging the terms in the above equation, the condi-

tion
dDk

dε
> 0 becomes

1− πk
1,0

1− πk
1,1

+
P k
fa

P k
d

log
πk
1,0

πk
1,1

>
πk
1,0

πk
1,1

+
P k
fa

P k
d

log
1− πk

1,0

1− πk
1,1

. (29)

SinceP k
d > P k

fa andβk
x̄,x < 0.5, πk

1,1 > πk
1,0. It can also be

proved that
P k
d

P k
fa

πk
1,0

πk
1,1

> 1. Hence, we have

1 + (πk
1,0 − πk

1,1) <
P k
d

P k
fa

πk
1,0

πk
1,1

⇔ (πk
1,0 − πk

1,1)[1 + (πk
1,0 − πk

1,1)] >
P k
d

P k
fa

πk
1,0

πk
1,1

(πk
1,0 − πk

1,1)

⇔ (πk
1,0 − πk

1,1)

[

1 + (πk
1,0 − πk

1,1)

πk
1,0(1− πk

1,1)

]

>
P k
d

P k
fa

πk
1,0

πk
1,1

[

πk
1,0 − πk

1,1

πk
1,0(1− πk

1,1)

]

⇔ (πk
1,0 − πk

1,1)

[

1

1− πk
1,1

+
1

πk
1,0

]

>

P k
d

P k
fa

[

πk
1,0 − πk

1,0π
k
1,1 + πk

1,0π
k
1,1 − πk

1,1

πk
1,1(1 − πk

1,1)

]

⇔

[

1− πk
1,1 − (1− πk

1,0)

1− πk
1,1

+
(πk

1,0 − πk
1,1)

πk
1,0

]

>

P k
d

P k
fa

[

πk
1,0

πk
1,1

−
1− πk

1,0

1− πk
1,1

]

⇔
1− πk

1,0

1− πk
1,1

+
P k
fa

P k
d

(

1−
πk
1,1

πk
1,0

)

>
πk
1,0

πk
1,1

+
P k
fa

P k
d

(

1− πk
1,0

1− πk
1,1

− 1

)

. (30)

To prove that (29) is true, we apply the logarithm inequality

(x − 1) ≥ log x ≥ x− 1

x
, for x > 0 to (30). First, let us

assume thatx =
πk
1,0

πk
1,1

. Now using the logarithm inequality

we can show thatlog
πk
1,0

πk
1,1

≥ 1 − πk
1,1

πk
1,0

. Next, let us assume

thatx =
1− πk

1,0

1− πk
1,1

. Now using the logarithm inequality it can

be shown that

[

1− πk
1,0

1− πk
1,1

− 1

]

≥ log
1− πk

1,0

1− πk
1,1

. Using these

results and (30), one can prove that condition (29) is true.

Similarly, we can show that any non zero deviationε ∈
(0, p] in flipping probabilities(P k

1,0, P
k
0,1) = (p − ε, p) will

result in an increase inDk, i.e.,
dDk

dε
> 0, or

πk
1,0

πk
1,1

+
1− P k

fa

1− P k
d

log
1− πk

1,0

1− πk
1,1

>
1− πk

1,0

1− πk
1,1

+
1− P k

fa

1− P k
d

log
πk
1,0

πk
1,1

. (31)

SinceP k
d > P k

fa andβk
x̄,x < 0.5, πk

1,1 > πk
1,0. It can also be

proved that
1− πk

1,0

1− πk
1,1

<
1− P k

fa

1− P k
d

. Hence, we have

1− πk
1,0

1− πk
1,1

<
1− P k

fa

1− P k
d

[

1− (πk
1,0 − πk

1,1)
]

(32)

⇔
1− πk

1,0

πk
1,1(1 − πk

1,1)
<

1− P k
fa

1− P k
d

[

1− (πk
1,0 − πk

1,1)

πk
1,1

]

⇔
1

πk
1,1(1 − πk

1,1)
<

1− P k
fa

1− P k
d

[

1− (πk
1,0 − πk

1,1)

πk
1,1(1 − πk

1,0)

]

⇔
1

πk
1,0 − πk

1,1

[

πk
1,0 − πk

1,0π
k
1,1 + πk

1,0π
k
1,1 − πk

1,1

πk
1,1(1− πk

1,1)

]

<

1− P k
fa

1− P k
d

[

1− (πk
1,0 − πk

1,1)

πk
1,1(1 − πk

1,0)

]

⇔
1

πk
1,0 − πk

1,1

[

πk
1,0

πk
1,1

−
1− πk

1,0

1− πk
1,1

]

<
1− P k

fa

1− P k
d

[

1

πk
1,1

+
1

1− πk
1,0

]

(33)
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⇔
πk
1,0

πk
1,1

−
1− πk

1,0

1− πk
1,1

>
1− P k

fa

1− P k
d

[

πk
1,0 − πk

1,1

πk
1,1

+
πk
1,0 − πk

1,1

1− πk
1,0

]

⇔
πk
1,0

πk
1,1

−
1− πk

1,0

1− πk
1,1

>

1− P k
fa

1− P k
d

[

πk
1,0 − πk

1,1

πk
1,1

+
1− πk

1,1 − (1− πk
1,0)

1− πk
1,0

]

⇔
πk
1,0

πk
1,1

+
1− P k

fa

1− P k
d

[

1−
1− πk

1,1

1− πk
1,0

]

>

1− πk
1,0

1− πk
1,1

+
1− P k

fa

1− P k
d

[

πk
1,0

πk
1,1

− 1

]

. (34)

To prove that (31) is true, we apply the logarithm inequality

(x−1) ≥ log x ≥ x− 1

x
, for x > 0 to (34). First, let us assume

thatx =
1− πk

1,0

1− πk
1,1

. Now using the logarithm inequality we can

show thatlog
1− πk

1,0

1− πk
1,1

≥ 1 −
1− πk

1,1

1− πk
1,0

. Next, let us assume

that x =
πk
1,0

πk
1,1

. Now using the logarithm inequality it can be

shown that

[

πk
1,0

πk
1,1

− 1

]

≥ log
πk
1,0

πk
1,1

. Using these results and

(34), one can prove that condition (31) is true.

APPENDIX B
PROOF OFLEMMA 6

To prove Lemma 6, it is sufficient to show that:

1) KLD is a monotonically decreasing function ofBk, and,
2) Attacking parent nodes is a strictly dominant strategy.

Lemma 4 suggests that the KLD is a monotonically de-
creasing function ofBk in the region where attacker cannot
makeDk = 0 and, therefore, (1) is proved. Next, we show that
attacking parent nodes is a strictly dominant strategy. In other
words, given a cost budgetCattacker

budget , it is more profitable for
an attacker to attack the parent nodes. Observe that the KLD at
level k is a function of Byzantines’ parameter(B1, · · · , Bk).
Thus, we denote it asDk(B1, · · · , Bk).

In order to prove that attacking parent nodes is a strictly
dominant strategy, it is sufficient to show that the attack config-
urationS1 = (B1, · · · , Bj , Bj+1, · · · , BK) strictly dominates
the attack configurationS2 = (B1, · · · , Bj − δ, Bj+1 +

δ
Nj+1

Nj
, · · · , BK) for δ ∈ {1, · · · , Bj}. In other words, we

want to show thatP (S1) > P (S2) andC(S1) ≤ C(S2). From
the cost inequality it follows thatC(S1) ≤ C(S2) because
cmax ≤ (min

k
Nk+1/Nk)× cmin ⇒ c̃j ≤ (Nj+1/Nj)× c̃j+1.

Also, note that if the attack configurationS1 strictly dominates
the attack configurationS2, then, it will also strictly domi-
nate any attack configuratioñS2 with S̃2 = (B1, · · · , Bj −
δ, Bj+1+ δγ, · · · , BK), whereγ ≤ Nj+1

Nj
. Next, we show that

P (S1) > P (S2).

SinceDj(B1, · · · , Bj−1, Bj) < Dj(B1, · · · , Bj−1, Bj−δ),
for δ ∈ {1, · · · , Bj}, ∀j, it follows that

Dj(B1, · · · , Bj−1, Bj) < Dj(B1, · · · , Bj−1, Bj − δ)

⇔

j
∑

k=1

Dk(B1, · · · , Bk)<

j−1
∑

k=1

Dk(B1, · · · , Bk)+Dj(B1, · · · , Bj−1, Bj−δ)

⇔

K
∑

k=1

Dk(B1, · · · , Bk) <

j−1
∑

k=1

Dk(B1, · · · , Bk)+Dj(B1, · · · , Bj−1, Bj−δ)

+
K
∑

k=j+1

Dk(B1, · · · , Bj−δ, Bj+1+δ
Nj+1

Nj

, Bj+2, · · · , Bk),

where the last inequality follows from the fact that
Bj

Nj
+

Bj+1

Nj+1
=

Bj−δ

Nj
+

Bj+1+
Nj+1

Nj
δ

Nj+1
and, therefore,

Dk(B1, · · · , Bj , Bj+1, · · ·Bk)=Dk(B1, · · · , Bj−δ,Bj+1+
Nj+1

Nj

δ, · · · , Bk).

This implies thatS1 strictly dominatesS2. From Lemma 4,
we know that the profit is an increasing function of attack
nodes. Lemma 4 in conjunction with the fact that attacking
parent nodes is a strictly dominant strategy implies Lemma 6.
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