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Abstract—In this paper, the problem of distributed detection

Typically, a network embodies a large number of inex-

in tree networks in the presence of Byzantines is considered pensive sensors, which are deployed in an open environment

Closed form expressions for optimal attacking strategies hat
minimize the miss detection error exponent at the fusion ceer
(FC) are obtained. We also look at the problem from the netwok
designer’s (FC’s) perspective. We study the problem of deghing
optimal distributed detection parameters in a tree network

to collect the observations regarding a certain phenomenon
and, therefore, are susceptible to many kinds of attacks. A
typical example is a Byzantine attack. While Byzantineckisa
(originally proposed in [4]) may, in general, refer to many

in the presence of Byzantines. Next, we model the strategic types of malicious behavior, our focus in this paper is omdat

interaction between the FC and the attacker as a Leader-Fabiwer
(Stackelberg) game. This formulation provides a methodolgy
for predicting attacker and defender (FC) equilibrium strategies,
which can be used to implement the optimal detector. Finallya
reputation based scheme to identify Byzantines is proposeand
its performance is analytically evaluated. We also providesome
numerical examples to gain insights into the solution.

Index Terms—Distributed detection, data falsification, Byzan-
tines, tree networks, error exponent, leader-follower garae, rep-
utation based mitigation scheme

I. INTRODUCTION

Distributed detection deals with the problem of makin
a global decision regarding a phenomenon based on lo
decisions collected from several remotely located sensi

nodes. Distributed detection research has traditionaltty$ed

on the parallel network topology, in which nodes directl
transmit their observations or decisions to the Fusion é}en[
(FC) [1] [2] [3]. Despite its theoretical importance and an-

alytical tractability, parallel topology may not alwaysfleet

the practical scenario. In certain cases, it may be requoed
place the nodes outside their communication range with t
FC. Then, the coverage area can be increased by formin
multi-hop network, where nodes are organized hierarclyica
into multiple levels (tree networks). Some examples of tre[
networks include wireless sensor and military communicati

networks.

falsification attacks [5]-[18], where an attacker sendsefal
(erroneous) data to the FC to degrade detection performance
In this paper, we refer to such data falsification attackers a
Byzantinesand the data thus fabricated Bgzantine data

A. Related Work

Recently, distributed detection in the presence of Bynanti
attacks has been explored in [8], [9], where the problem
of determining the most effective attacking strategy foe th
Byzantines was investigated. However, both works focused
%ny on parallel topology. The problem considered in this
Fﬁll)er is most related to our earlier papers [10], [14]. In],[10

], we studied the problem of distributed detection infeetr
tree networks (all intermediate nodes in the tree have tmesa

Yumber of children) with Byzantines under the assumptiai th

he FC does not know which decision bit is sent from which

node and assumes each received bit to originate from nodes

at depthk with a certain probability. Under this assumption,

he attacker’s aim was to maximize the false alarm probkgbili

5t a fixed detection probability. When the number of nodes is
l%]e, by Stein’s lemma [19], we know that the error exponent
f the false alarm probability can be used as a surrogate for

fe false alarm probability. Thus, the optimal attackingtstgy

was obtained by making the error exponent of the false alarm

probability at the FC equal to zero, which makes the decision
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measures were also proposed to protect the network from such
Byzantines.

There are several notable differences between this paper
and our earlier papers [10], [14]. First, in contrast to [10]
[14], in this paper, the problem of distributed detection in
regular tree networRswith Byzantines is addressed in a
practical setup where the FC has the knowledge of which
bit is transmitted from which node. Note that, in practice,
the FC knows which bit is transmitted from which node,

1For a regular tree, intermediate nodes at different levatsaiowed to
have different degrees, i.e., number of children.
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e.g., using MAC schemésand can utilize this information

to improve system performance. Next, for the analysis o

the optimal attack, we consider nodes residing at differer tevel3
levels of the tree to have different detection performaiée.

also allow Byzantines residing at different levels of theetr

to have different attacking strategies and, thereforeyigeo  ievei2
a more general and comprehensive analysis of the proble

as compared to [10], [14]. We also study the problem fron

the network designer’s perspective. Based on the infoonati tevei1
regarding which bit is transmitted from which node, we
propose schemes to mitigate the effect of the Byzantines.

B. Main Contributions

In this paper, it is assumed that the FC knows whicl o Fusion Center (FC)
bit is transmitted from which node. Under this assumptiofy® - A distributed detection system organized as a regnée (a1 =
L . . . } a2 = 3, az = 2) is shown as an example.
the problem of distributed detection in tree networks in the

presence of Byzantines is considered. The main contribsitio
of this paper are summarized below: a regular tree, all the leaf nodes are at the same level (or

« Detection performance in tree networks with Byzantine%epth) and all the intermediate nodes at lebdiave degree

i K
is characterized in terms of the error exponent and “?' The regular tree is assumed to have a/set {Ni};_,

closed form expression for the optimal error exponeH transceiver nodes, whetly| = N is the total number_
is derived. of nodes at levek. We assume that the depth of the tree is

o The minimum attacking power required by the Byzar‘[fsf ge:loigga;sii 3 g}? toj?l r;l;r;geiogﬁo}d}?s 'getgstg:tmgrk
tines to blind the FC in a tree network is obtained Y T Lak=1""F — WPkrg=1 U=
et of Byzantine nodes wit[B,| = By, whereBy, is the set

It is shown that when more than a certain fraction of

individual node decisions are falsified, the decision fnsioOlc Byzantines at levek. The set containing the number of

scheme becomes completely incapable Byzantines residing at each level1 < k < K, is referred to
« The problem is also investigated from the network dé-> %n fatta(t:ﬁ con(;ﬂguratlon, '(‘jgﬁﬁ}kl(:ld: {Bx[} =y Next,
signer’s perspective by focusing on the design of optimye efiné thenodus operan € nodes.
distributed detection parameters in a tree network.
« We model the strategic interaction between the FC akd Modus Operandi of the Nodes

the attacker as a Leader-Follower (Stackelberg) game andye consider a binary hypothesis testing problem with two
identify attacker and defender (FC) equilibrium Strategiehypothesesﬂo (signal is absent) andf; (signal is present).
The knowledge of these equilibrium strategies can latgfnder each hypothesis, it is assumed that the observations
be used to implement the optimal detector at the FC. at each node at level k are conditionally independent. Each

« We propose a simple yet efficient reputation baseghde; at level k acts as a source in the sense that it makes
scheme, which works even if the FC is blinded, to identify one-bit (binary) local decision;, ; € {0,1} regarding the
Byzantines in tree networks and analytically evaluate itghsence or presence of the signal using the likelihood ratio

performance. test (LRT)3
The rest of the paper is organized as follows. Section Il pg/lk).(yk,i) vpi=1
introduces the system model. In Section Ill, we study the o 2 M (1)
problem from Byzantine’s perspective and provide closedhfo Py, (ki) ori=0

expressions for optimal attacking strategies. In Sectddn Iyhere), is the threshold used at leve((it is assumed that all
we investigate the prqblem of designing opt|mal_ distributene nodes at levet use the same threshalg) andp%)_(yk,i)
detection parameters in the presence of Byzantines. In SRCthe conditional probability density function (PDF) ofset-
tion V, we model the strategic interaction between the FC aQdtiony,, ; under hypothesiél; for j € {0,1}. We denote the
the attacker as a Leader-Follower (Stackelberg) game add fitohabilities of detection and false alarm of a node at level
equilibrium strategies. In Section VII, we introduce anaéfnt . py P¥ = P(vg; = 1|Hy) and Pk, = P(vz; = 1|Hp),
Byzantine identification scheme and analyze its performangegpectively, which are functions j&k and hold for both
Finally, Section VII concludes the paper. Byzantines and honest nodes. After making its one-bit local
decisionuy,; € {0,1}, nodei at levelk sendsuy; to its parent

Il. SYSTEM MODEL L
) o i ) node at levek—1, whereuy, ; = vy, ; if 7 is an honest node, but
We consider a distributed detection system organized a$oR 5 Byzantine node, u;; need not be equal to, ;. Node
1 2 s

regular tree network rooted at the FC (See Figure 1). Fphy jevel i also receives the decisions. ; of all successors

2In practice, one possible way to achieve this is by using thieb J at levelsk’ € [k + 1, K7, which are forwarded to nodieby

less TDMA MAC protocol, in which, distinct non-overlappirigne slots are
assigned (scheduled) to the nodes for communication. Caxtigal example SNotice that, under the conditional independence assumpii® optimal
of such a scheme is given in [20]. decision rule at the local sensor is a likelihood-ratio {24f.
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its immediate children, and forwartithem to its parent node captured by the attacker and reprogrammed to transmit false
at levelk — 1. We assume error-free communication betwednformation to the FC to degrade detection performance. We
children and the parent nodes. Next, we present a mathexhatassume that the only information available at the FC is the

model for the Byzantine attack. probabilityﬁ’gyz, which is the probability with which the data
coming from levelk has been falsified. Using this information,
B. Byzantine Attack Model the FC calculates the probabilitieg, = P(z; = j|Ho, k)

and wﬁl = P(z; = j|H1,k), which are the distributions of
received decisiong; originating from levelk and arriving
to the FC under hypothesd$, and H,. The FC makes its
decision regarding the absence or presence of the sigmaj usi
the following likelihood ratio test

We define the following strategie®/! (k), P/{(k) and
PJ(k), PFy(k) (j € {0,1} andk = 1,--- , K) for the honest
and Byzantine nodes at levg] respectively:

Honest nodes:

Pll,fl(k):1_P0f,11(k)zplfl($:1|y:1):1 2 K /k \** (1 _ k Ne=si
M L1 > 6
Pk =1-Ph(k) =Pz =1y=0)=0 (3) kr_[<w> (1_7%) =1 ©
Byzantine nodes: where s is the number of decisions that are equal to one

PE(k)=1- BB (k)= PPz =1y =1) (4) and origingt.ed. from Iev_el:, and the _threshold; ils_ chosen in

' ’ order to minimize the missed detection probabi(if, ) while
PPy(k) =1— Pfy(k) = PP (x = 1|y = 0) (5) keeping the false alarm probability’-) below a fixed value
8.5 Using Stein’s lemma [19], we know that the Kullback-
Leibler divergence (KLD) represents the best error expbnen

. . . T ) of the missed detection error probability in the NP setup.
from its child or its actual decision s For notational conve Lemma 1 ( [19]): For a fixed false alarm probability,

. e ok I .
nience, we US.QPLO’POJ) to denote the flipping probability Pr < 4, the missed detection probability for an optimal NP
of the Byzantine node at levdl. Furthermore, we assume X

that if a node (at any level) is a Byzantine, then none gfetector asymptotlc;;\IIy behaves as

its ancestors and successors are Byzantine (non-oveamappi o4 _

attack configuration); otherwise, the effect of a Byzantine ngﬂoo N log Par = —D(Hol|H1)

to other Byzantines on the same path may be nullified (e.gshere N is the number of samples used for detection and
Byzantine ancestor re-flipping the already flipped decsiom (H,||H,) is the Kullback-Leibler divergence (KLD).

of its successors). This means that every path from a leRfdirect consequence of Lemma 1 is that; decays, asV
node to the FC will have at most one Byzantine. Noticgrows to infinity, exponentially, i.e.,

that, for the attack configuratiofB,}X_,, the total number P
of corrupted paths (i.e., paths containing a Byzantine hode Py = f(N)e (Holl ),

k N, Ny
from level & to the FC are) ;_, B; 1+, where B, T is the \yhere £(N) is a slow-varying function compared to the
total number of nodes coveredt level k by the presence exponential, such the}\}im +log f(N) = 0. Therefore, given
=

_ i ; — Bw : .
OkaZ Bj}[/kzantmes at levet. If we denoteay, = Ni then, a number of observatloﬁos, the detection performance depend
Zz}vj - Z’? L «; is the fraction of decisions comingexclusively on the KLD between the hypotheses. We can
i=

from level k that encounter a Byzantine along the way to theonclude that the larger the KLD is, the less is the likelithoo
FC. For a large network, due to the law of large number@f mistakingH, with H; and, therefore, KLD can be used as a
one can approximate the probability that the FC receives tpiérrogate for the probability of missed detection duringtem
flipped decisionz of a given node at levet when its actual design for a large network. Next, we derive a closed form

decision isz as 8% | = Z’;ZI a;Pl,, e {0,1}. expression for the optimal missed detection error expofoent
' ' ' tree networks in the presence of Byzantines, which willrlate
C. Binary Hypothesis Testing at the Fusion Center be used as a su.rrogate for the probability of mlssed.detec'uo
) o _ Proposition 1: For a K level tree network employing the
We consider the distributed detection problem under thgtection scheme as given in (6), the asymptotic detection
Neyman-Pearson (NP) criterion. The FC receives decisigrformance (i.e.N; — oc) can be characterized using the

where P,(x = aly = b) is the conditional probability that
a node at levelk sendsa to its parent when it receives

vectors, [zy, - -, zk|, wherezy for k € {1,---, K} is @ missed detection error exponent given below
decision vector with its elements being,--- ,zy,, from
the nodes at different levels of the tree. Then the FC makes K i ™o
i i D:ZNk Z 7o log —— | . (7)
the global decision about the phenomenon by employing the 3,0 T‘J’Cl
k=1 j€{0,1} I

LRT. Due to system vulnerabilities, some of the nodes may be

4For example, IEEE 802.16j mandates tree forwarding and IBEE11s 6This type of problem setup is important, for instance, in @tige Radio
standardizes a tree-based routing protocol. Networks (CRN). In order to coexist with the primary user jP&econdary
5Nodej at level k' covers (or can alter the decisions of) all its children atisers (SUs) must guarantee that their transmissions wilinterfere with the
levelsk’+1 to K and itself. In other words, the total number of covered node§ansmission of the PU who have higher priority to accessstieetrum.
is equivalent to the total number of corrupted paths (i.athg containing a  “Kullback-Leibler divergence based detection approachefopn reason-
Byzantine node) in the network. ably well even for a small size network as observed in [8]]{&24] .
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Proof: Let Z = [Z,--- ,Zy,| denote the received deci- Proof: The proof follows from the fact that the condition
sion vectors from the nodes at ledelwhereZ; is the decision Z 1 a7 = 0.5, Vk, is equivalenttay; = 0.5, oy, =0, Vk =
vector forwarded by the nodeat level1 to the FC. Observe 2,--- | K. |

that, Z, for i = 1 to N; are independent and identically Next we explore the optimal attacking probability distrib
distributed (i.. d) Therefore, using Stein's lemma [1&hen tion (P§,, Pf'y) that minimizesD;, whenz _, a5 <05, e,

N; — oo, the optimal error exponent for the detection schenie the case where the attacker cannot mﬁ«e 0. To analyze
as given in (6) is the Kullback-Leibler divergence (KLD)the problem, first we investigate the propertiesof with
[25] between the distribution®(Z|H,) and P(Z|H,). The respect to(P},, Pf) assuming(Py 1, P/), 1 <j<k-1
summation term in (7) follows from the additive property ofo be fixed. We show that attacking with symmetric flipping
the KLD for independent distributions. B probabilities is the optimal strategy in the region where th
Note that, (7) can be compactly written asttacker cannot mak®; = 0. In other words, attacking with
S NiDy(rk [|7h)  with  Dy(xk ||7%,) being the P, = P, is the optimal strategy for the Byzantines.

KLD between the data coming from node at level & Lemma 3: In the region where the attacker cannot make
under Hy and H;. The FC wants to maximize the detectiorD, = 0, i.e., for 27 La; < 0.5, the optimal attacking
performance, while, the Byzantine attacker wants to degrastrategy comprises of symmetric flipping probabnnégvl =
the detection performance as much as possible which cpp p). In other words, any non zero deviatien< (0, p]

be achieved by maximizing and minimizing the KLDjn flipping probab|I|t|es(P0 ., PE o) = (p— €1,p — €2), where
respectively. Next, we explore the optimal attacking sg&s ¢, -~ ¢, will result in an increase iDj.

for the Byzantines that degrade the detection performance proof: Please see Appendix A. m
most by minimizing the KLD. In the next theorem, we present the solution for the optimal
attacking probability distribution( P}’ 1,Pfo) that minimizes
I1l. OPTIMAL BYZANTINE ATTACK Dy, in the region where the attacker cannot mdke = 0.
As discussed earlier, the Byzantines attempt to make t Theorem 1 In the reg|on where the attacker cannot make
= 0, i.e., for Z 1 a7 < 0.5, the optimal attacking

KL divergence as small as possible or to blind the FC.
say that the FC is blind if an adversary can make the data tﬁi{:\tegy IS glven bYPO 1 Y o) = (L,1).

the FC receives from the sensors such that no information ' roof: Observe that, in the region where the attacker
is conveyed. In other words, the optimal detector at the nr;s;tm:aﬁieD ikn _ rgg;gﬁtigggmal s]tjrategy )C(_)rrﬂgr'srizf()f
cannot perform better than simply making the decision bast omplete |?5vegsﬁow thab,. is f?tlmt)noltgntcall decrreasm
on priors. Since the KLD is always non-negative, Byzantin%nctloﬂ of the flipping probgbmt)p y 9

attempt to choos®(z; = j|Hy, k) and P(z; = j|Hy, k) such

that D;, = 0, Vk. This is possible when gef\fter plugging in (7, Pr,) = (p.p) in (9) and (10), we
P(z; = j|Ho, k) = P(z; = j|H1, k) Vi € {0,1}, kag) 7T]f_,1 - fﬁl(l CPha(- éﬁIl)Pf]
Notice that, 7%, = P(z = j|Ho, k) and7F, = P(z = +lak(p — P§(2p)) + P} (11)
JjlH1, k) can be expressed as Wf,o = fﬁl(l _ Pf]?a) +(1- gﬂl)Pfa]
Mo =Bro(l = Pla) + (1= B5)Pf.  (9) +aw(p = Pfo(20) + Pf,). (12)
Ty = Bro(l— Pf)+ (1= B5.) Py (10) Now we show thatD,, is a monotonically decreasing function

fth t th d dDy 0. After pl
with g, = = Oéapfo and g, = ZJ—1 ajpo .. Sub- Ofthe parametep or in other wor sd—p < er plugging

stituting (9) and (10) in (8) and after simplification, then 7T1 . = ar(1 —2P%) and 7710 = ay(l — 2Pk) in the

condition to make theD = 0 for a K-level network be- dDy,

comesz _ a;(Ply + PJ,) = 1, Vk. Notice that, when expression of— and rearranging the terms, the condition
dp

Zle a; < 0.5, there does not exist any attacking probability!Dx
distribution (P} ,, P{ ;) that can makeD,, = 0, and, therefore, dp
the KLD cannot be made zero. In the caséof_, a; = 0.5,
. ) R 2o, - (1—2pPk) (12T _ Mo ) L (g _gpk yieg (LT TI0 | () (13)

there exists a unique solutidd, ,, P/ ;) = (1,1), Vj that can 1—nk,  wk, 1— kg, nk)
make Dj, = 0, Vk. For the>>%__ a; > 0.5 case, there exist __
L onk : 29*1.% T o Since P} > P}, andﬂ’gz < 0.5, we haver? ; > =¥ . Now,
infinitely many attacking probability distribution&y ,, P/ ;) _pi | _ ophk : :
which can makeD; = 0, Vk. Thus, we have the foIIowmg using the fact thaf d d
result. - Pk 1- 2P}€a

Lemma 2: In a tree network withK" levels, the minimum
number of Byzantines needed to make the Kullback-Leibler
divergence (KLD) between the distribution3(Z|H,) and
P(Z|H,) equal to zero (or to mak®, = 0, Vk) is given o 1 — 2P

by By =[], 1—2P},

< 0 becomes

and (33), we have

1—2P%
k
1—2Pf,

k k

1-— 71,0 71,0 k k

1 | < (751 — 7o)
—T11 1

1—7Tfo B ﬁ:| + [ﬁ _1:| <1-— ﬂ.(]ﬁ)
T

& &
1- 11 11 1,1
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t
Fig. 2.  KLD Dy vs. flipping probabilities Wheer = 0.8, Pka = 0.2, Fig. 3. min Dy vs probability that the bit coming from levet
and the probability that the bit coming from levelencounters a Byzantine (PFyPFg)
is >, a; =04 encounters a Byzantine fdP} = 0.8 and Py, = 0.2.

ing function of Zle a; for Zle a; < 0.5. The convexity
for z > 0 to (14), one can prove that (13) is true. ~ m  ©f Dj follows from the faCt_thatDZ(”f-,ﬂhf-,@ is convex in
Next, to gain insights into the solution, we present somfb1 andw,, which are affine transformations of ;_, a;
numerical results in Figure 2. We pl@; as a function of the (NOte that, convexity holds under affine transformationym
flipping probabilities(PF,, PE,). We assume that the proba-_ It is worth noting tha}s Lemma 4 suggests that minimiza-
bility of detection isP} = 0.8, the probability of false alarm is ilon/maximization of >7;_, a; is equivalent to minimiza-

Pfa — 0.2, and the probability that the bit coming from |eveFion/maximi_z_ation of Dy. _Using_this fact, one can consider
k encounters a Byzantine Ek o — 0.4. We also assume the probability that the bit coming from levél encounters a
j=145j = Y.>

Byzantine (i.e.,t = K ) in lieu of D, for optimizin
that Pf, = P and Py = Py, Vk. It can be seen that y ( 25=194) i P g

) . . -~ .~ the system performance.
the optimal attacking strategy comprises of symmetric itigp o . .
robabilities and is given byPt,. P,) — (1,1), which Ngxt, to galn_|n5|ghts into the solutlon,.we present some nu-
P 0,1>~ 1,0 o merical results in Figure 3. We plot minD;, as a function

Applying the logarithm inequalityz — 1) > logx > x—_l,

corroborates our theoretical result presented in Lemmad3 an (P, P
Theorem 1. of the probability that the bit coming from levklencounters a
We have shown that, for akl, Byzantine, i.e.t. We assume that the probabilities of detection

P and false alarm ar@”; = 0.8 and P, = 0.2, respectively.
Di(Fy1s Pro) = Di(1,1). (15)  Notice that, whent = 0.5, D;, between the two probability
Now, by multiplying both sides of (15) by, and summing distributions becomes zero. It is seen tiijt is a continuous,

it over all K we can show that the KLDD, is minimized by decreasing and convex function of the fraction of covered
) K nodesy, for ¢ < 0.5, which corroborates our theoretical result
(P§y, Ply) = (1,1), for all k, in the region> aj < 0.5.

et presented in Lemma 4.
Now, we explore some properties db, with respect  Until now, we have explored the problem from the attacker’s
to Zle a; in the region where the attacker cannot makeerspective. In the rest Cff the paper, we look into the proble
Dy = 0, ie., for Z?:laj < 0.5. This analysis will later from a network designer’s perspective and propose tecksiqu

be used in exploring the problem from the network designef@ Mitigate the effect of Byzantines. First, we study the
perspective. problem of designing optimal distributed detection partarse

Lemma 4: D} :(Pkmilgk )Dk(ﬁf,lﬂﬂf,o) is a continuous, in a tree network in the presence of Byzantines.
3,177 3,0
decreasing and convex function @ff:l o for 2?:1 aj <
0.5.

Proof: The continuity of Dy (% ||7% ) with respect to ~ For a fixed attack configuratioffB;}/ ,, the detection
the involved distributions implies the continuity d;. To performance at the FC is a function of the local detectord use
show thatDj is a decreasing function of = Z’?Zl a;, we at the nodes in the tree network and the global detector used a
use the fact that arg mim(w* ,||7%,) is equal to(1, 1) for the FC. This motivates us to study the problem of designing

(PEL.PEy) ’ ’ detectors, both at the nodes at different levels in a tree and
Zleaj < 0.5 (as shown in Theorem 1). After pluggingat the FC, such that the detection performance is maximized.
(PE,, PF.) = (1,1), Vk, in the KLD expression, it can be More specifically, we are interested in answering the qoesti
’ " dDy, How does the knowledge of the attack configurati@h, } 1,

shown that—= < 0. Hence,Dj; is a monotonically decreas- affect the design of optimal distributed detection paramest

IV. SYSTEM DESIGN IN THE PRESENCE OFBYZANTINES
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By Stein’s lemma [19], we know that in the NP setup for @an be written as:

fixed false alarm probability, the missed detection prolitgbi k k
of the optimal detector can be minimized by maximizing the Z%Pf,o + Zajp({1 <1 (18)
KLD. For an optimal detector at the FC, the problem of j=1 j=1
designing the local detectors can be formalized as follows: k . ‘
= a;(Pl,+Pl) <1 19
K | Plos = j1Ho. k) 2 ai(Plo+ ) (19)
{Pkrp,?.XK ZNkZ P(ZZ :]|H0,k)10g m 1=
ST k=1 je{o.) (i6) The above condition is true for ary< Py ,, P/, < 1 when
* ;< 0.5. This completes the proof. |
Z]fl J p p

The local detector design problem as given in (16) is @] emma 5 suggests that one possible solution to maximize
non-linear optimization problem. Furthermore, it is difficto 1 is 10 choose the largest possible constrained ta) <

obtai_n a_closed fc_nrm solution for thi_s problem. Next, yve_showk < 1 — y,. The upper bound results from the fact that
that likelihood ratio tests remain optimal (under the ctindal é
&

_ _ - _ Pj,Rl’fa}kK:l are probabilities and, thus, must be between
independence assumption) even in the presence of Byzanti ro and one. In other words, the solution is to maximize

and optimal decision ﬁrsule for each node is independent @fe hronability of detection for a fixed value of probability
Byzantines’ parametefs.lo solve the problem, we need 104 taise alarm. In detection theory, it is well known that the

find the pairs{Fy, Pf,}j_, which maximize the objective |ielihood ratio based test is optimum for this criteriomu,
function as given in (16). Hovyev_ef?u’f and Pj, are coupled nder the conditional independence assumption, the tiket
and, therefore, cannot be optimized independently. Thes, Yatio hased test as given in (6) is optimal for local nodesnev
first analyze the problem of maximizing the KLD for a fixedy, the presence of Byzantines, and the optimal operatingtpoi
Pf,. We assume thaPf, = y, and P} = yj, + z4. Next, {P}*, Pk} are independent of the Byzantines’ parameters

a

we analyze the properties of KLD with respect 49, i.e., {on} .

.(Pf - Pfa)k in the reg|onlwhere attacker cannot blind the FC, The above result has the following important consequences:
ie., for}; ; a; < 0.5, in order to study the local detector)) search space is reduced from any arbitrary detector to
design problem. Notice that, in the regi@le a; > 0.5, likelihood ratio based detector®) the threshold in the LRT
D;, =0 and optimizing over local detectors does not improvean be optimized without any prior knowledge about the
the performance. Byzantines’ parametergy; } X . We further explore the prob-

Lemma 5: For a fixedP}“a — yr, when Z?:l a; < 0.5, lem from the network designer's (FC) perspective. In our

the KLD, D, as given in (7) is a monotonically increasingore"ious analysis, we have assumed that the attack configu-
function of zj, = (P¥ — Pk ) ration { By }+#_, is known and shown that the optimal local
- d fal*

_ , ) . detector is independent dfv, } X . However, notice that the
Proof: To prove this, we calculate the partial derivativg| b is the exponential decay rate of the error probability

; it tingPk — k_
ZZ f xv,\:ltigtz)e(s%e(t::uteoégrt?g{ g’gﬁ\slggcénggf\;lw% %g;l%ﬁim_k of the optimal detector. In other words, while optimizing
can be calculated as over K.LD, we _implicitly.assumed that the loptimal detector,
. . which is a likelihood ratio based detector, is used at the FC.
8D _ Nki ¥ o log % + (1= 7t ) log 1= “20 Taking logarithm on both sides of (6), the optimal decision
Oy Oy rule simplifies to

1,1 1- 11

oD w [1— ke who K
< — = N, —_— |, H,
Oz, KL <1 -ty 7w Z[alfsk +ab (N, —s;)] = logn (20)
Hyp
k=1
Wherew’lﬂ0 andw’i1 are as given in (9) and (10), respectively .
andnf, = (1 - gk, — B%,). Notice that, where the optimal weights are given byf = log 3> and
s 5 s 1,0
kK
1— 7711630 7711670 0 . . af = log 1_:3; To implement the optimal detector, the FC
1—ak,  oF =V T = Mo needs to know the optimal weight§, which are functions of
5D {ax}E . In the next section, we are interested in answering
Thus, the condition to makg— > 0 simplifies to the question: Is it possible for the FC to predict the attack
Lk configuration{B;}&_, in the tree? The knowledge of this
Wf,l1 >0 1> (85, +6F,) (17) attack configuration can be used for determining the optimal

detector at the FC to improve the system performance. Notice

Substituting the values off, and 37 ;, the above condition that, learning/estimation based techniques can be usedtan d
to determine the attack configuration. However, the FC has to
acquire a large amount of data coming from the nodes over a
long period of time to accurately estimafé,, } ;.

8In other words, under the assumption of conditional indepene, an In the next section. we propose a novel technique to predict
optimal decision rule for each node takes the form of a liledd ratio test ’

(LRT), with a suitably chosen threshold. In turn, optimiaatover the set of the attack cor?figur.ation by CODSidering the foII-owing secena
all thresholds can yield the desired solution. The FC, acting first, commits to a defensive strategy by
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deploying the defensive resources to protect the tree mkfwownho is the follower.
while the attacker chooses its best response or attack con;. . imize D& M)
figuration after surveillance of this defensive strateggtB {en i, ec =t

the FC and the Byzantines have to incur a cost to deploy the K

defensive resources and attack the nodes in the tree networlsubject to Z ¢k Ny < Cgljéf;;’[’“

respectively. We consider both the FC and the attacker to k=1

be strategic in nature and model the strategic interaction mEigningi}e D({By}E.))
k€

between them as a Leader-Follower (Stackelberg) game. This

formulation provides a framework for identifying attackerd bi K < (ttacker
defender (FC) equilibrium strategies, which can be used to subject to » _&Bx < Ciliiydh
implement the optimal detector. The main advantage of this k=1

0< B, <Np,Vk=1,2,....K

technique is that the equilibrium strategies can be detexdhi
a priori and, therefore, there is no need to observe a large (21)

amount of data coming from the nodes over a long period @hereZ™* is the set of non-negative integers. Notice that the bi-
time to accurately estimatgB; } ;. level optimization problem, in general, is an NP-hard peotnl
In fact, the LLP is a variant of the packing formulation of
the bounded knapsack problem with a non-linear objective
function. This is, in general, NP-hard. Using existing algo
rithms, cost seféy, 1, and attack configuratiofBy, }/<_, can
be determined at the cost of computational efficiency. Is thi
paper, we identify a special case of the above problem which
can be solved in polynomial time to determine the equililriu
strategies. To solve the bi-level optimization problem, fixst
We model the strategic interaction between the FC amdlve the LLP assuming the solution of the ULP to be some
the attacker as a Leader-Follower (Stackelberg) game. Wifeed (¢, --- ,éx). This approach will give us a structure of
assume that the FC has to incur a cost for deploying thge optimal{B;}& , for any arbitrary{é; }X_,. Next, using
network and the Byzantine has to incur a &dsir attacking the structure of the optimdlBy,} X_,, the bi-level optimization
the network. It is assumed that the network designer or the pgoblem simplifies to finding the solutiofe, } £, of the ULP.
has a cost budget;.c/"" and the attacker has a cost budgatinally, we present a polynomial time algorithm to solve the
Cyiteker. More specifically, the FC wants to allocate théi-level optimization problem, i.e., to finéic,} /<, and, thus,
best subset of defensive resources (denotedcass )™ {B,}K .
from a set of available defensive resouréés= (ci1,--- ,¢,) Next, we discuss the relationships that enable our problem
(arranged in a descending order, i®.> c2 - - > ¢,), where to have a polynomial time solution. We define prd?itS) of
n > K, complying with its budget constrainfj.cj5"" to an attack configuratios = { B} ; as follows?
different levels of the tree network. After the FC allocaties %
defensive resources or budget to different levels of the tre P(S) = D(¢) = D(S) = D(¢) = D({ Bk }ji=1):
network, an attacker chooses an attack configurafiBp} ", where D(¢) is the KLD when there are no Byzantines in the
complying with his budget constraiﬂgig‘;%’ie" to maximally network andD(S) = D({Bx}}~,) is the KLD with { By},
degrade the performance of the network. Byzantines in the tree network. Next, we define the concept
Next, we formalize the Stackelberg game as a bi-level opf dominance which will be used later to explore some useful
timization problem. For our problem, the upper level prable properties of the optimal attack configuratiom; } /.
(ULP) corresponds to the FC who is the leader of the game Definition 1: We say that a set; dominates another set
while the lower level problem (LLP) belongs to the attacke?: if

V. STACKELBERG GAME FOR ATTACK CONFIGURATION
PREDICTION PROBLEMS

where P(S;) and C(S;) denote the profit and cost incurred
®Due to variations in hardware complexity and the level of gam by using setS;, respectively. If in (22),P(S1) > P(Ss),

resistance present in nodes residing at different levelseofree, the resources ; ; ; —
required to capture and tamper nodes at different levels meagifferent and, S1 SmCtIy dominatesS; and if P(Sl) P(SQ)’ S1 Weakly

therefore, nodes have varying costs of being attacked. dominatesSs.

1%n this paper, we assume that the attacker budggt/ich< is such that  To solve the bi-level optimization problem, we first solve
K . .
> oy, < 0.5, i.e., the attacker cannot make, = 0, Vk. Notice that, t_he LIjP ass‘fm'“g the solution of the ULI_D to be some
k=1 ) fixed (¢1,---,Cx). We refer to LLP as a maximum damage
if the attacker can maké), = 0 for somek = [, then, it can also make B ti ttack bl Ob that. k . that th
Dy =0, Vk > 1. Also, D, = 0 implies thatx}, = =¥ ; and, therefore, yzanune attack problem. serve that, knowing tha €
the Weights(a’f,a’g) in (20) are zero. In other words, the best the FC can

do in the case whe, = 0, Vk > [ is to ignore or discard the decisions 12In this section, we assume that the optimal operating pair,
of the nodes residing at levél > [. This scenario is equivalent to using the(Po‘;*,Pk*), is the same for all the nodes in the tree network. It has been

tree network with(l — 1) levels for distributed detection. shown tf);gt the use of identical thresholds is asymptoticgitimal for parallel
11 et &, denote the resources deployed or budget allocated by thes FCrietworks [26]. We conjecture that this result is valid faemetworks as well
protect or deploy a node at levél and employ identical thresholds.
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FC chooseq¢y, - - ,¢k), the LLP can be reformulated asNext, we discard all those subsets from S which violate
follows: the network designer’s cost budget constraint. If the$és
K empty, then there does not exist any solution for the ULP.
m;nirgi}e Z NeDy({B;i}r_)) Otherwise, the problem reduces to finding the sulssethich
k€ k=1

maximizes the KLD. To find the subset which maximizes

K the KLD, using the dominance relationship we start with

subjectto & By < Cytficker
k=1
OSBk SNIW szla 7K'

which are solutions ofrg min
3

assigning the cost; = glinc’f, where s has the elements
€s

g,t:fiacker
“7‘;7“ . Next, we discard
C

1

We discuss the relationships that enable maximum damagjethose subsets; from .S which do not have’; as their first
Byzantine attack problem to admit a polynomial time solatio element and solve the problem recursively.
The pseudo code of the polynomial time algorithm to find

A. Analysis of the Optimal Attack Configuration

{&}E | and{B,}X | is presented as Algorithm 1.

In this section, we identify a special case of the bounded
knapsack problem (LLP) which can be solved in polynomi

ﬁigorithm 1 Bi-Level Optimization Algorithm

time. More specifically, we show that if the set of defensiv&e

resourcesC = (cq,- - -
. k+1
min
ke{l,-,K—1} Ny
the optimal solution{ B, }#_, exhibits the properties given in

, ¢ ) satisfy the cost structure,,,, <

the lemma below. 2:

Lemma 6: Given level tree netwaqrk with cost structure
L . N1
satisfying ¢, < min X Cmin, the best
ke{l,- ,K-1} Ng 4:
response of an attacker with cost budggiei is {Br i,
with
By — Chiigen” 6:
' & 7:
and the remaining elements @&f; for 2 < k < K can be s&:
calculated recursively. 9
Proof: Please see Appendix B. | 10

X Cmin 3 OF ¢1 < mkin ai X ¢y, then, L

. . N;
quire: C = {cx}}_, With ¢ae < (m_in J—’Ll) X Conin

J J
S«+All K outofn combinations{sl-}gl)
of s; arranged in decreasing order
for i =1to (5) do
K .
if Z ¢, X N >
159:<1— S/si
end if
end for
if S is an empty sethen
return (¢, ¢)
else
for k=1to K do

with elements

t k
Cg‘jdge"[ then

It can also be shown that the soluti¢; } <, will be non-
overlapping and unique under the condition that the attacké&l:
cannot makeD; = 0, Vk.

CL = minci where s has elements which are solu-

J€s
attacker
Obudget
Ci

tions of arg min
K3
k

B. Bi-Level Optimization Algorithm
Based on Lemma 6, in this section we will present &2

attacker
Chudget
Ck

Bk(—

pol;l;rlwomia_ll timte f;l_lgori:[hrirl to soollveBthe;(bi-Ivagl 0|c3[tri]mizmit 13: C%%%ﬁer o (C%%ce;;er — &,By)
roblem, i.e., to fin ' . an * .. Usin e cos

p d{Ck}li:ll { Bk} =1 g - 14 end for

structurec,, g < min . X cmin, the attack configura- 15 return ( {6k}£(:17 { Bk}kK:1)

tion {B;} | as given in Lemma 6 can be determined in ae: end if
computationally efficient manner. Due to the structure @& th
optimal{ B}/, the bi-level optimization problem simplifies
to finding the solution{¢; }#_, of the ULP.

To solve this problem, we use an iterative eliminatiof. An lllustrative Example
approach. We start by listing ally) combinations from the | et us consider a two-level network with; = 6 and

setC, denoted as$ = {s; 1(51) Without loss of generality, we N2 = 12. We assume thal = {4, 3, 2}, Cpius™ = 60
assume that the elements gf= {ci,--- ,ci. } are arranged and C{ie

budget . = 11. Next, we solve the bi-level optimization

in descending order, i.eci > ci . Vk. Notice that, all these problem. Observe that, costs safisfy < 2 x ¢3. So the
() combinations will satisfy:, < NJ’\‘,“CQH, because algorithm chooses the solution of the ULP a5 (= 4,
: ¢ = 3) and the solution of the LLP asB{ = || = 2,

Mci B, |11=24] = 1). To corroborate these results, in
Ny Figure 4, we plot the min KLD for all combinations of

Nj+1ci —
—Cpy1 S
NJ

i . Njiq .
C < Cmae < Min Cmin < MIN
J j J

1,0,40,1
L3Notice that, in the case of the perfekf-ary tree networks, the proposed the parameters; and B in the tree. We vary _the parameter
cost structure simplifies 6,100 < M X Cmin. B; from 0 to 6 and B, from 0 to 12. All the feasible solutions
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|[UA — UB(k,i)||. Since the FC is aware of the fact that
Byzantines might be present in the network, it compares the
Hamming distance of a nodeat level k to a thresholdy,
: " Vi,Vk (a procedure to calculatg, is discussed later in the
" ommasouen paper), to make a decision to identify the Byzantines. In
St tree networks, a Byzantine node alters its decision as well
as received decisions from its children prior to transroissi
» : in order to undermine the network performance. Therefore,
RS T solely based on the observed data of a nbde level k, the
: i FC cannot determine whether the data has been flipped by
the nodei itself or by one of its Byzantine parent node. In
our scheme, the FC makes the inference about a node being

01 Byzantine by analyzing the data from the nodas well as
: == its predecessor nodes’ data. FC starts from the nodes dt leve
B e " 1 and computes the Hamming distance between reports of
Fig. 4. min KLD vs. attack configuratioiBy, Bz) for Py = 0.9, P;, = the anchor node and the nodes at leveFC declares node
0.1. i at level 1 to be a Byzantine if and only if the Hamming

distance of nodeis greater than a fixed threshojg. Children

of identified Byzantine node€(B,) are not tested further
because of the non-overlapping condition. However, if @llev

1 node is determined not to be a Byzantine, then, the FC tests
its children nodes at levél The FC declares nodeat levelk,

or 2 < k < K, to be a Byzantine if and only if the Hamming

are plotted in red and unfeasible solutions are plotted ure bl
Figure 4 corroborates the results of our algorithm.

Notice that, the attack configuratig®,, } <, is the set con-
taining thenumberof Byzantines residing at different levels
of the tree. However, the FC cannot identify the Byzantin

in the network. Also, notice that when the adversary attac Stance of node is greater than a fixed thresholg and

more than50% of the nodes at level, the decision fusion Hamming distances of all predecessors of nodeless than

scheme becomes completely incapable. In these scenarécbsu‘,jlI to their respective thresholgls

where the FC is blind, the knowledge of attack configuration In this way, it is possible to counter the data falsification

wil not. incur- any performan_ce b.eneﬂft' Ne>_<t., we present Sttack by isolating Byzantine nodes from the information
reputation-based Byzantine identification/mitigatiornesme, fusion process. The probability that a Byzantine nodelevel

Wh'Ch works even when the network is blind, in order t% is isolated at the end of the time winddii, is denoted as
improve the detection performance of the network. We prepo?mo(k i)

a simple yet efficient Byzantine identification scheme and”
analyze its performance.
B. Performance Analysis

VI. AN EFFICIENT BYZANTINE IDENTIFICATION SCHEME As mentioned earlier, local decisions of the nodes are
. . L ompared to the decisions of the anchor node over a time
In this section, we propose and analyze a Byzantine 'de’ﬁhndow of lengthT. The probability that arhonestnode i
fication scheme to be implemented at the FC. at level k. makes a decision that is different from the anchor
node is given by

A. Byzantine ldentification Scheme Pt (ki)
We assume that the FC has the knowledge of the attack= P(u' = 1,ul; = 0, Ho) + P(ui' = 0,uf; = 1, Ho)
model and utilizes this knowledge to identify the Byzan- +P(uf =1,up; =0, Hy) + P(uf* = 0,ut; = 1, Hy)

tines. The FC observes _the local decisions of each node— p,(P}, + PA) — 2P}, Pii] + Pi[(PY + Pi') — 2P5 P
over a time windowT, which can be denoted bk, i) = - AH (q. AH (q.

. ) . = Po[Paifs(k,i,0)] + Pr[Payy(k,i,1)] .
[ui(k,i),...,up(k,i)] for 1 <i < Nj atlevell <k < K. )
We also assume that there is one honest anchor node wihere the prior probabilities of the two hypothesés and

i (DA o A Hp are denoted by?, and Py, respectively. The probability
probability of detection”;" and probability of false alarri?fa that a Byzantine nodé at level &k sends a decision different
present and known to the FC. We employ the anchor nodeffgm that of the anchor node is given by

provide the gold standard which is used to detect whether or s

not other nodes are Byzantines. The FC can also serve as an Paify(k,1)

anchor node when it can directly observe the phenomenon and- P(uf = 1,ug,; = 0, Ho) + P(u;" = 0,u, = 1, Ho)

make a decision. We denote the Hamming distance between  pP(u* =1,u/; =0, H1) + P(u* = 0,up; = 1, H1)

reports of the anchor node ind an honeit nodsglevglk =R [PAPE, + (1— PA)(1 — PE) + PP PY + (1 — P — PF)]
over the time window!l' by dy; (k,i) = |[[U* — U™ (k,i)||, S R PAE (i, )] + Py [PAE (i, 1)]

that is the number of elements that are different between LA T TR S

U4 andUH (k,i). Similarly, the Hamming distance between The difference between the reports of a node and
the reports of the anchor node and a Byzantine nb@t the anchor node under hypothesis € {0,1} (i.e.,
level k over the time window!" is denoted byd4(k,i) = di(k,i,1), I € {H,B}) is a Bernoulli random variable with
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) L(65) \/ng (k,4,1%) P;gff(k i,19)) + VT(P{E (k,i,17) — P2, (K, 1,1) 9
\/PdﬁjBf (kyi, O)(1 — PAB, (k. 1,1)

mean P, (k,i,1) for honest nodes and;}f,(k,i,1) for
Byzantlnes FC declares nodat levelk to be a Byzantme if
and only if the Hamming distance of nodés greater than a
fixed threshold), and Hamming distances of all predecessors
of node: are less than equal to their respective threshglds
The probability that a Byzantine nodeat level k is isolated

at the end of the time windoW' can be expressed as

—¥— PEO(k=1)
——P(=2) ||
—x— PEK=3) | ]

—a— PRk=4) |

i —o— Py (k=5) | 4
o
Py (ki) =
P((dfs (k, ) > i), (df (k = 1,0) < m—r), -+ (dfg (1,4) <))
k—1
= > n {P[d (ks 1) > me] [ Pldg(m,i,1) < nm] )
1e{0,1} m=1 o ) ) ) ) ) ) ) ) )
T T 5 10 15 20. 25 30 35 40 45 50
ST > () PaFki 0y (1 = PAF (ki) Time window T
16{0 1} J=metl Fig. 5. Isolation probabilityPi (k, i) vs. time windowT'.

Nm

Z( ) (Paify(m,i, 1)) (1 Pﬁff(m,i,l))Tj} _

3=0

I

m=1

Lemma 7: For a K level tree network, for our proposed
) o Byzantine identification scheme, the asymptotic (ilé> oo)
For largeT’, by using the normal approximation, we get prohability that a Byzantine nodeat levelk +1, for 1 < k <

K — 1, is isolated is lower-bounded by,
. TPdef(k:,i,l)
Pgo(k,i) = k
le{o1} \/(T w(k,z,l (1= PAB (k,i,1))) TTa -4
" Q Tpﬁff(mvzvl) m /=2
Xm:1 \/(Tngf(m,z,l)(l PAR (m,1,1))) : Proof: Notice that, Tlgrio a(k,l) = 1. The asymptotic
) ) ) erformance of the proposed scheme can be analyzed as
This can be written recursively as follows ollows:
PL.S()(k_,’_ 1, Z Z P |: 1 _ b(k l)) ( (k(-]: }) l)) Péso(k,i,l)} , Tleoo Péso(k;ﬂ— 1,7;) =
k41,1 ;
oy @) S i [0y (") Py )
with Pio(k,i) = Y P[Pg°(k,i,1)], and 1€ 101} Y
1€{0,1} > (1-6&) Y. A Lim [PE°(k,i,0)]
1€{0,1}
k1,1 k
k) = Q e TPy , - e
\/(TP;:}Bf(k i,)(1 — PAP (k,4,1))) =2
[ |
N — TPC{Z‘.]{l’f(k i,1) Notice that, the parallel network topology is a special case
b(k,1) = Q TPAH (ki1 — PAE (k il of the tree network topology with' = 1. For K = 1, our
\/( dsz( i, 0)(1 dsz( i,1)) scheme can identify all the Byzantines with probability one
One can choos%C such that the isolation probability of honesPecauselim Pi(1,i) = lim > Pla(1,1)] = 1. When
nodes at levek based solely on its data under the hypothesis AN PITRY!

H; (i.e., b(k,1)) is constrained to some valug << 0.5.In K > 1, we can choose, appropriately such that Byzantines
other words, we choosg, such that g3§}b(k ;1) =0k i€ can be identified with a high probability.
7 Next, to gain insights into the solution, we present some
me = Q1 (d) \/T A (ki ) (1 — PR (k,4,0%) + TP (k,4,1")  numerical results in Figure 5 that corroborate our theereti
_ (25 cal results. We consider a tree network with = 5 and
wherel* = argmlaxb(k,l). Now, the expression fod(k,[) plot Pio(k,i), 1 < k < 5, as a function of the time
can be written as given in (23). window 7. We assume that the operating poirif3}, Pf,),
Now using the fact that madeij(k i,1) < 1 < k < 5, for the nodes at different levels are given
AB sy AH by [(0.8,0.1), (0.75,0.1), (0.6,0.1), (0.65,0.1), (0.6,0.1)] and
mz;nBPdiff_(k’Z’l)’ t 'can be shown .tha(P‘“ff (k 5 = for anchor nodg P!, P{) = (0.9,0.1). We also assume that
Fiigs(k,1,1)) < 0, Vi and, therefore,lim a(k,l) = 1. the hypotheses are equi-probable, iB,= P, = 0.5, and
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the maximum isolation probability of honest nodes at level
based solely on its data is constrained fiy= 0.01, Vk. It N . Pk ok,
can be seen from Figure 5 that in a span of ofly= 25 1+ (m0 = m11) < P_ZWT
time windows, our proposed scheme isolates/identifies simo fa Tt Pk
all the Byzantines in the tree network. & (nFo—mf D+ (xFo -t )] > P—g%(n’ﬁo —7fy)
fa ™11
o (nby k) 1+ (Wf,o - ”lf,1) ﬁ@ { ”lf,o - ”lf,} }
VIlI. CONCLUSION ' ' ”If,o(l_ﬁlf,l) Pfka W’f,l W’f,o(l_”]f,l)
In this paper, we considered the problem of optimal & & 1 1
Byzantine attacks on distributed detection mechanismeia tr (o = mi0) {1 T ™ -
networks. We analyzed the performance limit of detection P; ko =k ok ok ok ok
performance with Byzantines and obtained the optimal at- Pk ok ’(1_7rk ) ’
K . .. . fa 1,1 1,1 ]
tacking strategies that minimize the detection error expbn Lomb —(—k ) ek — k)
The problem was also studied from the network designer's< { e 1
perspective. It was shown that the optimal local detector is 1= 10 i
independent of the Byzantine’'s parameter. Next, we modeled Pi @ _ L)
the strategic interaction between the FC and the attackar as Pr,o |ty 1—mfy

(FC) equilibrium strategies were identified. We also praubs 1z ™, P}
a simple yet efficient scheme to identify Byzantines an
analytically evaluated its performance. There are stilhyna T .
interesting questions that remain to be explored in theréutu — 1) = logz > ——, for z > 0 to (30). First, let us
work such as analysis of the problem for arbitrary network 7% ] ] ) ]

topologies. The case where Byzantines collude in sevef§iSume that: = . Now using the logarithm inequality
groups (collaborate) to degrade the detection performeaae 1’17Tk k
also be investigated. we can show thatog % >1-— # Next, let us assume

1,1 1,0

&
1,0

k k
T Py

Leader-Follower (Stackelberg) game and attacker and defen R ( nlf_l) LI P_J’fa (1 - B 1> (30)
s

_ -k
1 T

dI'o prove that (29) is true, we apply the logarithm inequality

k

APPENDIX A 1—m7y

PROOF OFLEMMA 3 - 1—77, -7t .
To prove the lemma, we first show that any positive dde shown that 15, — 1| > log ———~. Using these

viation ¢ € (0,p] in flipping probabilities (Pf,, PF,) = ~ 1 1=m
(p,p — €) will result in an increase inDj. After plugging
in (Pfo, P§y) = (p,p—e¢) in (9) and (10), we get

results and (30), one can prove that condition (29) is true.

Similarly, we can show that any non zero deviatiore

why = 26) (0,p] in flipping probabilities(Pfy, P§,) = (p — ¢, p) will
[BY 5" (1= Pf) + (1= 85 ) PEJHow(p — PF,(2p — €)) + Pf,] result in an increase iy, i.e., % >0, or
k €
™ = (27)

k—1 k k—1\ pk k k Wlfo 1_P;?a Wfo
[61,0 (I_Pd)'i'(l_ﬁo,l )Pd]+[ak(p_Pd(2p_E))+Pd]~ — 4 1 log ——. (31)

k k _ pk

o 1- 1,0 1- 1,0 1 Pfa
k k k k k k

™y 1- Py 1—7r171 1—7r171 1-Pj T

Now we show thatD;, is a monotonically increasing function

. dD Since P¥ > P¥ and gk 5, wk k . It can also be
of the parameter or in other words—= > 0. d = Tfa Bo < 05,701 > T

de — 71'{“,0 1-— P;“a

1
proved that1 Hence, we have

1 & k k k*
dD;, s ™ / ™ -7 1-P
e ko nlf’o <i0 - 21) + 7"%,0 log 10 (28) L1 d
€ T10 Ti1 1,1
K’ K’ k k
1 1,0 % 1=7¥, 1—nf, 1-P
+(1 =770 S~ | ~ ol ——— w0 < fo 1= (eko — b)) 32
1-af,  1-ab, 1—nf, 1—ak, ~ 1-P% (o = i) (32
k " "
drh ¥ i drk ¥ i N 1-mho 1-Pp, [1—(mfo — ™)
where il S a, Py and o = Mo = aiPf,. w (—nk,)  1-PF k]
After rearranging the terms in the a%ove equation, the eondi 1 1- P [1— (kg —xk )
. dDy, & < - ’ .
tion == >0 becomes i (l—7f) "~ 1-PF | w1 —7ky)
1 ak gk gk +7Tk ak gk
1k pk ok ok pk 1k o 1,0 1,071,1 1,071 1,1
1,0 n fa, o 1,0 1,0 i fa log 1,0 (29) ”lfo — wf L ﬂ.lic (- wf D)
1—rxk Pk ke ke Pk 1—7k ! ’ ! ’
1,1 d 1,1 1,1 d 1,1 k k k
k k k k k L= Ba 11 (Mo ~ o)
Since Py > Pkfa 2nd5m < 0.5, 71 > 7. It can also be 1—PF | wf (1—nhy)
P Vs k 1— k 1— Pk
proved that—g% > 1. Hence, we have & — 1 . {”20 ”:0}< fa i . 1 ; }(33)
fa 11 10~ ™1 T11 1- 1 1-P; 11 1- 1,0
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k
N ”lfo _ 1_7Tlf,o 1- Pfa Wfo _Wf1 ”lf,o _Wf1:|
11 1 11 1-Ppy 11 1_7T1.,0
mho 1—k, Dj(B1,---,Bj_ 1,B)<D (B1,---,Bj-1,Bj —9)
& = ’ i
& — &
My tTma & S Dp(Bi,--- By <ZDk(Bl,- ,Bu)+D;(B1,- -+, Bj_1, B;=0)
1 Pfa W{C,o _Wlf,1 1 _Wlf,1 -( —Wlf,o)
1— Pk ok 1—rk K
F 1 pk dl X i vo &> Dp(Bi,-+,By) < ZDk(Bl,'“ s Bg)+Dj(B1,- -+, Bj—1,B;—9)
1,0 ~—Ira — 711 k=1 k=1
& = - >
T 1-Pf 1_7#1“.0} al Njt1
Lk 1Pk [k + > Di(Bi,o Bj=8Bjsi+d—= Bjya, . By),
71,0 fa | 71,0 kg1 J
E P¥ |k -1 (34) J
1—7r1_1 1- 1

where the last inequality follows from the fact that
To prove that (31) is true, we apply the logarithm inequality B,

>
5 | Bint—%o

Bij+1 _ B
= and, therefore,
(x—1) > logz > > 277 forz > 0to (34). First, let us assume N T N N; Nit+1
xZ
1—7F, (Biye- By, Byin,- - Br)=Dy(Bi,---  Bj—8, Bjr+ 515 ... By).
thatz = ——. Now using the Ioganthm inequality we can Di(Br, 41, Br)=Di(B1, ity )
— 7T
T . This implies thatS; strictly dominatesS,. From Lemma 4,
show thatlogii’0 > . Next, let us assume we know that the profit is an increasing function of attack
. 1=y 1 ”1 0 nodes. Lemma 4 in conjunction with the fact that attacking
s
that  — }C Now using the logarithm inequality it can peParent nodes is a strictly dominant strategy implies Lemma 6
11
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