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Abstract—In this paper, we revisit the received signal strength
(RSS) based target localization technique presented in [1], where
a simple threshold quantizer was employed to quantize the
RSS values prior to sending them to the fusion center. It was
shown that the probability of misclassification of the distributed
classification fusion using error correcting codes (DCFECC)
scheme vanishes as the number of sensors tends to infinity. This
result was obtained based on an intuitive threshold design at the
local sensors, and the question of how much a careful design
of local thresholds can help improve the overall performance
was not addressed. In this work, we demonstrate the significance
of threshold design for accurate and robust target localization
in wireless sensor networks, particularly when the number of
sensors is finite. With this objective, we derive an upper bound on
the probability of misclassification as a function of RSS thresholds
by using the union inequality. The RSS thresholds that algorith-
mically minimize the derived misclassification error bound are
then numerically obtained over a mirror-based homomorphic
sensor deployment structure. Simulations over fading wireless
links show that the scheme based on newly found optimized
RSS thresholds considerably outperforms the previous scheme
using the thresholds that are intuitively selected, especially in the
presence of Byzantine attacks that severely impact information
security.

Index Terms—Target Localization, Wireless Sensor Networks,
Error Correcting Codes, Byzantines, Quantizer Design

I. INTRODUCTION

Target localization has become an important application of
the wireless sensor network (WSN) framework. In state-of-
the-art techniques, angle of arrival (AOA), time of arrival
(TOA) and time difference of arrival (TDOA) are extensively
exploited [2], [3], [4], [5], [6]. The AOA approach exploits
the arrival angles between neighboring sensors in order to
estimate the location of a target. As such, it requires an
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antenna array, which is generally considered expensive, and
hence is not suitable for a low-cost system. As their names
suggest, the TOA approach measures the signal propagation
time among sensor nodes, and the TDOA approach computes
the time difference of the signals propagated between the target
and the sensor nodes with known locations. Thus, TOA and
TDOA systems yield inaccurate target localization if reliable
synchronization among sensor nodes cannot be established
[7], [8], [9]. This motivates us to direct our attention on an
alternate received signal strength (RSS) based approach for
target localization which has low power consumption, low cost
and low complexity.

The RSS based target localization technique usually con-
fines its target search within a region of interest (ROI), which
is sub-divided into multiple segmented areas. The sensors are
often deployed equally over these areas, and they constantly
monitor the channel through which the target emits its signal.
Once the sensor nodes capture the signal radiated from the
target, they quantize the received signal strength (RSS) and
transmit either quantized outputs [10] or local decisions to
the fusion center (FC) through noisy wireless links. By using
methodologies such as least-square or maximum-likelihood
[11], [12], an estimate of the target location is determined
by the FC.

In addition to signal corruption due to sensing noise and
imperfection of wireless links, the accuracy of target local-
ization can be seriously diminished by malicious Byzantine
attacks [13], [14], [15], where the so-called Byzantine attacks
or data falsification attacks considered here are adversarial
actions to compromise the sensors and deliberately lead the
sensors to report faulty data bits to the FC. The FC even
becomes blind to the target when the fraction of Byzantine
sensors is higher than 50% [16]. A straightforward mitigation
of Byzantine adversaries is to identify Byzantine sensors
and exclude their faulty information [16]. Another mitigation
approach is to introduce fault-tolerance capability into system
design. In either case, error correcting coding techniques can
be employed to assist in detecting and correcting the corrupted
data bits [17].

This resulted in the contribution of [18], [19], [20], where
the distributed classification fusion using error correcting
codes (DCFECC) paradigm was shown to be effective in
mitigating the impact of Byzantine attacks. The idea is to
associate each class, defined according to which segmentation
region the target is located in, with a codeword that is
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transmitted from sensors to the FC in parallel. By decoding
the receptions from the sensors and determining the most
likely codeword to be transmitted, the FC pinpoints the region
that the target is possibly located in. It should be noted that
the messages transmitted from sensors to the FC may also
be interfered by channel noise and fading of the wireless
links in addition to Byzantine attacks, making the receptions
deviate from the correct codeword. By taking the majority of
individual decisions of all the sensors, correction of certain
deviations from the correct codeword can be achieved.

On top of a multi-layer hierarchical DCFECC system,
iterative classification was further proposed in [1]. At each
iteration, the ROI, where the target may be located, is split
into L non-overlapping super-regions consisting of multiple
segmented regions. Based on DCFECC, the FC selects the
super-region, where the target is most likely located, inside the
current ROI. The FC then sets the super-region just selected
to be the ROI of the next iteration. Only the sensors in the
current ROI need to report their decisions to the FC. Thus, the
number of sensors involved at each iteration can be rapidly
decreased by a factor of L. As a result, this sophisticated
design of iterative classification over a multi-layer hierarchical
DCFECC system not only retains the desired robustness to
sensor faults due to Byzantine attacks but considerably reduces
the decoding complexity for target localization.

Since each sensor is required to only report a binary decision
to the FC, a simple threshold quantizer on the received signal
strength (RSS) was adopted in [1], where a “1” was reported
if the RSS was larger than the threshold, and a “0” was
sent, otherwise. With a threshold inversely proportional to the
distance between the sensor and the center of the segmentation
region that the sensor lies in, it was shown in [1] that such a
simple system design can achieve an asymptotically vanishing
probability of misclassification as the number of sensors grows
to infinity even under a moderately high degree of Byzantine
attacks.

Although the intuitive threshold design in [1] has been
shown to perform well asymptotically, numerical experiments
suggest that they are by no means optimal when the number
of sensors is fixed and finite. A research direction of practical
interest then arises as to how significant an elaborate design of
local thresholds is for an accurate and robust target localization
in WSNs of finite size.

With this objective in mind, determination of the local
thresholds that minimize the detection error for identification
of the ROI that the target is located in becomes a natural
target to pursue. Since under the non-asymptotic (in number
of sensors) iterative classification scenario we consider, an
exact expression of the detection error for target localization
cannot be obtained, an assumption on sensor deployment
structure, where the locations of sensors in different super-
regions are guaranteed to be mirror-based homomorphic, is
imposed in this paper. Based on the assumption, a union bound
as a function of RSS thresholds can be derived. This union
bound is then used as an objective function for the numerical
determination of the best RSS thresholds. Simulation results
show that taking the bound we derive as an objective function
results in a set of thresholds that considerably outperform

the intuitive ones adopted in [1], especially when Byzantine
attacks are present.

In summary, the main contributions of this paper are as
follows:

1) Based on the union inequality and the particular mirror-
based homomorphic sensor deployment structure we
consider in this paper, an upper bound on the probability
of misclassification is derived as a function of RSS
thresholds. Since the bound is quite accurate at high
signal-to-noise ratios, the resulting thresholds are near-
optimal in the sense of minimizing the misclassification
probability. These thresholds then lead to a new insight
in that a sensor closer to the boundary between two
super-regions should have a larger threshold which is
in stark contrast to the intuition adopted in [1] where
larger thresholds were assigned to sensors closer to the
center of a super-region instead of its boundary.

2) The derived objective function based on the misclas-
sification probability bound considerably simplifies the
computational complexity of searching for the most suit-
able thresholds for local sensors. The obtained thresh-
olds are applicable to practical WSNs with finite number
of sensors.

The rest of the paper is structured as follows. Section II
reviews the work related to the problem considered in this pa-
per while Section III defines the system model. The DCFECC
scheme and its hard/soft-decision decoding as well as iterative
classification on top of a multi-layer hierarchical DCFECC
system are introduced in Section IV. Analysis of bounds on
the probability of misclassification is given in Section V. The
numerical algorithm to determine the suitable RSS thresholds
based on the derived upper bound on misclassification error
is presented in Section VI. Section VII then presents and
discusses the simulation results, and Section VIII concludes
the work.

II. RELATED WORK

As aforementioned, a straightforward solution for the
Byzantine adversary problem is to identify the Byzantine
sensors and exclude the faulty information received from them
[16]. This, however, may be a tough challenge under certain
circumstances and hence fault-tolerance capability has to be
introduced into system design. An example is the contribution
of [21], where a fault-tolerant localization algorithm, referred
to as Subtract on Negative Add on Positive (SNAP), was
proposed. The SNAP algorithm employed a likelihood func-
tion to determine the most likely ROI through the sensing
information from sensors.1 Because only the sensors in an
ROI can contribute to the likelihood function values, the faulty
sensors outside the ROI will not affect the accuracy of target
localization, and hence negative impact from faulty sensors
can be mitigated. The authors of [21] further proposed a two-
phase localization procedure for their SNAP algorithm in a
subsequent work [22], employing SNAP over an identified ROI
that the target is hypothesized to be located in, and making

1The ROI was called the region of coverage (ROC) in [21].
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possible the tracking of multiple sources. Localization among
many overlapping ROIs using SNAP, however, may require
intensive computational effort.

As an alternative approach, conventional error control cod-
ing techniques have been incorporated into target localization
[23]. This approach, although possibly complex at the design
stage, can simultaneously compensate for sensing noise and
imperfection of wireless links as well as Byzantine attacks
without the need to identify the cause of information deterio-
ration as long as the deterioration is within the error correcting
capability of the adopted code. An example of this alternative
approach is the DCFECC paradigm introduced in [18], where
error control codes were successfully employed for distributed
inference with corrupted observations.

Techniques for target localization over WSNs can also be
extensively used in solving problems of analogous nature such
as estimation of the arrival direction of an acoustic wavefront
through cooperation of a network of sensors [24], [25], [26].
Another example of such is the distributed source coding
scheme in [27], where the lowest achievable sum rate is
investigated under the consideration that the data is required to
be reconstructed from observations of sensors, of which some
may suffer Byzantine attacks.

All the works mentioned above handle the task of target
localization at the physical layer. In certain situations, message
exchanges among nearby sensors, which is more likely to be
conducted at the network layer,2 is a more favored approach
for target localization, in particular over a large-scale wireless
sensor network where direct communication from the sensors
to the FC is not always available [29]. Along this research
direction, the authors in [30] provide an excellent framework
for a large-scale wireless sensor network that takes into
account the constraint from a class of bounded-height tree
topologies from [31]. An optimal distributed fusion protocol,
which allows the messages to be transmitted from a parent
sensor node to a child sensor node, and which can efficiently
reach a consensus among sensors after a certain number of
message exchanges, was established [30].

In a situation where sensor networks have no FC, a cross-
layer approach for target localization has been proposed in
[32], in which the sensors are assumed to have the capability
to communicate with neighboring sensors. In the framework
considered in [32], sensors exchange weighted likelihood func-
tion values of their observations with neighboring sensors, and
the target location is finalized when sensors reach a consensus
after multiple message exchanges.

In contrast to finding the optimal message-exchange proto-
col subject to network topology constraints, target localization
that we consider in this paper is conducted at the physical
layer due to the unavailability of a protocol stack at local
sensors [7], [8], [9]. Only simple analog measurements are
acquired at the physical layer of sensors and are utilized for the

2It is also possible to have message exchanges among a group of specific
sensors using beamforming techniques at the physical layer [28], which allows
a transmission device to steer its signal along a particular direction. However,
in applications that deploy inexpensive sensors with limited resources such as
energy and realization cost, to equip the sensors with beamforming devices
may not be cost-economical.

estimation of target location. As a result of limited resources
such as energy and bandwidth, sensors are allowed to transmit
only a small number of bits to the FC. Therefore, in the
particular framework that we consider in this paper, using
a multiple-step message-exchange algorithm is impractical.
Similar consideration can also be seen in related publications
such as [1], [7], [8], [9], where only binary or multiple-bit
quantized data was transmitted from local sensors to the FC.
This follows the system model defined in the next section.

III. SYSTEM MODEL

The WSN scenario discussed in this paper is described as
follows. In a designated ROI R, there are N cooperating
sensors deployed to estimate the location of a target. The
location of the target is denoted by ✓ = (x,y),3 where
(x,y) represents the random coordinates of the target in
a 2-dimensional Cartesian plane. Likewise, ✓i = (xi, yi)
characterizes the position of the ith sensor for 1  i  N .
It is assumed that the locations of the sensors are known to
the FC and the sensors constantly monitor the channel through
which the target radiates its signal. The signal received by the
ith sensor is modeled by

si = ai + ni for i = 1, 2, . . . , N, (1)

where ai denotes the noise-free signal received at the ith
sensor, and ni is the noise experienced during the sensing op-
eration. We assume that {ai}Ni=1 and {ni}Ni=1 are independent
of each other, and the latter are independent and identically
distributed (i.i.d.) Gaussian random variables with mean zero
and variance �2. Furthermore, ai follows the inverse-square
law of radiation as

a

2
i = P0

✓
d0
di

◆2

for i = 1, 2, . . . , N, (2)

where P0 is the power measured at the reference distance d0,4
and

di = dE(✓, ✓i) =
p

(x� xi)
2
+ (y � yi)2

is the Euclidean distance between the target and the ith
sensor. Thus, random variables a1, a2, . . ., aN are generally
dependent due to their common dependence on ✓ = (x,y).

In the scheme presented in [1], sensors only return binary
decisions to the FC due to their limited bandwidth, and
these decisions are made based on simple threshold rules
corresponding to whether the target is within a certain range or
not. Thus, the decision ui made by the ith sensor is controlled
by the local threshold ⌘i for this sensor and follows

ui =

(
0, si  ⌘i;

1, si > ⌘i.
(3)

3Throughout the paper, both ✓ and (x,y) are used to denote the location
of the target, depending on the ease of representation. In addition, as a
convention, underlined letters denote vectors; boldface letters such as ui and
u = (u1,u2, . . . ,uN ) respectively denote random variables and random
vectors; and non-boldface letters such as ui and u = (u1, u2, . . . , uN ) are
their realizations.

4In this work, all the Euclidean distances are measured in the same unit as
(and also with respect to) the reference distance d0. For convenience, we let
d0 = 1 meter. As an example, the performance index of mean square error
(MSE) presented later will be measured in the unit of meter square.
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The noisy link between the ith sensor and the FC is modeled
as

vi = hi(�1)

ui
p

Eb +wi, (4)

where hi denotes the unit-variance Rayleigh distributed fading
attenuation of the wireless link, Eb is the energy required to
transmit one sensor bit, and wi is the additive Gaussian noise
corresponding to the wireless link. Here, we assume that wi

has mean zero and variance �2
w. In addition, {hi}Ni=1 and

{wi}Ni=1 are both i.i.d. and are independent of each other.

IV. DISTRIBUTED CLASSIFICATION FUSION USING ERROR
CORRECTING CODES

A. Background

In this section, we revisit Distributed Classification Fusion
using Error Correcting Codes (DCFECC) presented in [1].
As proposed therein, the designated region of interest (ROI)
R is partitioned into M regions, which are denoted as R1,
R2, . . ., RM , and which can be pre-determined by, e.g., a
Voronoi diagram associated with a set of given center points
(

¯✓1, ¯✓2, . . . , ¯✓M ). The hypothesis corresponding to the target
lying in region R` (i.e., ✓ 2 R`) is denoted as H`�1. Upon the
reception of the signals from the target, the N local sensors
transmit their binary decisions to the FC, whose action is to
determine which region the target is located in.

In the DCFECC scheme, an M -by-N binary code matrix C
is generated to assist in determining the region that the target
resides in. For 1  `  M , the `th row of C is associated
with hypothesis H`�1, where subject to ✓ 2 R`, sensors in
R` are anticipated to report “1”, while sensors outside R`

are likely to output “0”. For 1  i  N , the ith column of C
indicates the region that the ith sensor belongs to. An example
for M = 4 and N = 16 is given below:

C =

2

666666666664

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

3

777777777775

, (5)

where in the above setting, the first four sensors are located
in region R1, the next four sensors lie in region R2, sensor
9 to sensor 12 are inside region R3 and the last four sensors
reside in region R4. We will use S` to denote the set of indices
of sensors in region R`; hence, in the above example, S1 =

{1, 2, 3, 4}, S2 = {5, 6, 7, 8}, S3 = {9, 10, 11, 12} and S4 =

{13, 14, 15, 16}. Also, the element of C in the `th row and the
ith column is denoted as c`,i, while codeword c` is a shorthand
for (c`,1, c`,2, . . . , c`,N ). Based on the code matrix, the FC can
determine which hypothesis should be declared true by using
either a hard-decision decoding algorithm or a soft-decision
one, which will be introduced in next section.

B. Decoding Schemes for Distributed Classification

Based on the reception v = (v1,v2, . . . ,vN ) defined by
(4), the FC computes their corresponding log-likelihood ratios
as

⇠i = ln

f(vi = vi|ui = 0)

f(vi = vi|ui = 1)

, i = 1, 2, . . . , N,

where f(vi|ui) is the probability density function (pdf) ob-
tained from the respective Rayleigh fading channel model. A
hard-decision decoding based FC then transforms each ⇠i to its
hard-decision counterpart according to i = 1(⇠i  0), where
1(·) is the set indicator function, and determines the region
Rˆ̀ that the target belongs to using the minimum Hamming
distance fusion rule [17], i.e.,

ˆ` = arg min

1`M
dH(, c`) (6)

with  = (1,2, . . . ,N ), where dH(·, ·) is the Hamming
distance.

It, however, was shown in [33] that the hard-decision
decoding performance of the DCFECC scheme deteriorates
when channel fading is introduced. Hence, a Distributed Clas-
sification using Soft-decision Decoding (DCSD) scheme was
proposed therein and shown to outperform the hard-decision
decoding based DCFECC in the presence of channel fading.
Because the soft-decision decoder given in [1, Eq. (6)] may be
computationally intensive, a simplification was subsequently
devised in [1, Eq. (43)]. As a result of such simplification,
the most likely region that the target belongs to is decided
by finding the row of C that is closest to the likelihood ratio
vector ⇠ = (⇠1, ⇠2, . . . , ⇠N ) in Euclidean distance, i.e.,

ˆ` = arg min

1`M
dE(⇠, (�1)

c`
), (7)

where dE(⇠, (�1)

c`
) , PN

i=1 (⇠i � (�1)

c`,i
)

2 is the Euclidean
distance.

C. Iterative Classification

Fig. 1. Illustration of iterative classification on top of a three-layer
hierarchical DCFECC system with N = 64 sensors, where each layer consists
of only L = 4 super-regions as in contrast to a total of M = 16 regions.
Here, “�” denotes the locations of sensors.
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The decoding based DCFECC not only simplifies the de-
cision making process at the FC, particularly in comparison
with the traditional maximum likelihood estimation, but is
also resilient to sensor faults due to Byzantine attacks as
well as channel impairments. The decoding effort in both
(6) and (7), however, requires MN metric computations,
which grows considerably when the number of sensors is
moderately large. In order to obtain a computationally efficient
classification scheme, the authors in [1] further proposed an
iterative classification framework on top of a hierarchical
DCFECC system.

The idea behind the iterative classification in [1] can be
described as follows. At each iteration, the ROI is split
into L non-overlapping super-regions with L being possibly
much smaller than the total number of regions M . As an
example illustrated in Figure 1, given a three-layer hierarchical
DCFECC system with N = 64 sensors that are equally
distributed over M = 16 regions, the ROI is split into L = 4

non-overlapping super-regions at each iteration. An L-ary
hypothesis test is then performed at the FC to determine the
super-region that the target is most likely located in at each
iteration. The decision is then regarded as the new ROI for
the next classification iteration. Through such a hierarchical
zoom-in process, the area of ROI is reduced by a factor of
L at each iteration, and the region that the target belongs
to is determined eventually. Notably, only the sensors in the
current ROI need to report their local decisions to the FC.
Because the ROI is downsized by a multiplicative factor of
(1/L)k after k iterations, the number of equally distributed
sensors required to report their local decisions to the FC is
proportionally reduced; hence, the code size and codeword
length can be considerably downscaled at each iteration and
the decoding complexities are much reduced. This reduction
can be substantiated again by the example in Figure 1, where
MN = 16⇥ 64 = 1, 024 metric computations can be reduced
to LN+L(N/L)+L(N/L2

) = 4⇥64+4⇥16+4⇥4 = 336

metric computations. More saving in computational efforts can
be obtained when the number of sensors further increases.

We next define the notations that will be used in later
performance analysis for iterative classification. Denote the
number of sensors required to report their local decisions to
the FC at the kth iteration by Nk , N/Lk�1 for 1  k  kstop,
where kstop is the maximum number of iterations, and the
code matrix used at the FC at the kth iteration becomes
of size L ⇥ Nk. We use the notation Ck to denote the
code matrix used at the kth iteration and denote its `th
row by ck` = (ck`,1, c

k
`,2, . . . , c

k
`,Nk

) for 1  `  L. By
following the same notational convention, the L super-regions
obtained by subdividing the ROI at the kth iteration are
denoted as Rk

1 ,Rk
2 , . . . ,Rk

L, and let Rk , [L
`=1Rk

` ; the center
points corresponding to these super-regions are denoted as
¯✓k1 ,

¯✓k2 , . . . ,
¯✓kL; the set of indices of sensors belonging to super-

region Rk
` is denoted as Sk

` , {i 2 N : ✓i 2 Rk
` }, where

N , {1, 2, . . . , N}, and Sk , [L
`=1Sk

` ; the local threshold
used by the ith sensor at the kth iteration is denoted by ⌘ki ; and
the local decision transmitted to the FC from the ith sensor
at the kth iteration is denoted by u

k
i = 1(si > ⌘ki ), where

1(·) is the set indicator function. In addition, by dropping

its dependence on the iteration number, we use a convenient
shorthand notation r(i) (rather than rk(i)) to identify the
index of the super-region that the ith sensor is located in,
i.e., r(i) = ` if i 2 Sk

` . Note that the system does not need
to re-sense the signal radiated from the target at each iteration
but simply to re-perform binary quantization according to
the iteratively updated thresholds; hence, superscript k is not
necessary for {si}Ni=1.

With these notations, the problem pursued in this work is
that instead of intuitively setting the local threshold ⌘ki in (3)
to be

p
P0/dE(✓i, ¯✓

k
r(i)) as in [1], we devise a strategy to

determine a better threshold ⌘ki in order to improve system
performance. Details will be given in subsequent sections.

V. PERFORMANCE ANALYSIS UNDER IDEAL WIRELESS
LINKS

In this section, we derive a bound on the probability of
misclassification for iterative localization under the assumption
of ideal wireless links. As far as we know, no closed-form
expression of the probability of detection error for iterative
localization has been derived in the literature. Often in similar
situations in the coding literature, a bound based on the union
inequality is employed when an exact analysis of the error
performance cannot be carried out. We employ a similar
approach to derive the bound for our problem and then use it
as an objective function for the optimization of the thresholds
used by local sensors.

As previously mentioned, the FC conducts an L-ary hy-
pothesis test iteratively. Thus, a misclassification occurs if the
target is not within the super-region of the declared hypothesis
at any iteration. In this section, we derive an upper bound on
this misclassification probability. This upper bound will then
be used to determine the local thresholds {⌘ki }

Nk
i=1 that result

in a better performance than the ones proposed in [1] in the
next section.

For simplicity, we assume an ideal wireless link between the
FC and the sensors, i.e., hi = 1 and wi = 0 with probability
one in (4). Thus, the FC can perfectly recover ui for every
i in Sk. Under this assumption, we can replace (7) by the
minimum Hamming distance criterion [17], based on which
the decision regions for the `th codeword at the kth iteration
are given by

Dk,+
` =

⇢
uk 2 {0, 1}Nk

: dH(u
k, ck` )  min

1jL
dH(u

k, ckj )

�

and

Dk,�
` =

⇢
uk 2 {0, 1}Nk

: dH(u
k, ck` ) < min

1jL, j 6=`
dH(u

k, ckj )

�

for 1  `  L, where dH(·, ·) is the Hamming distance.
According to their definitions, the set of Dk,+

` consists of the
received vectors that are at least as close to ck` as to any other
codewords, where received vectors that are of equal Hamming
distance to ck` and to some other codeword are all included,
while Dk,�

` , as a subset of Dk,+
` , is formed by excluding all

elements in Dk,+
` that could cause a tie decision.
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Observe that {di = dE(✓, ✓i)}i2Sk are generally dependent
random vectors because of their dependence on the com-
mon random location of the target ✓, and so are {ai =p
P0/di}i2Sk . This implies that both {si = ai + ni}i2Sk

and {uk
i = 1(si > ⌘ki )}i2Sk are dependent across sensors. To

overcome the impact of this dependency, we notice that for a
given ✓ = ✓, {di = dE(✓, ✓i)}i2Sk and {ai =

p
P0/di}i2Sk

become constants, by which the statistical dependencies in
{si = ai + ni}i2Sk and {uk

i = 1(si > ⌘ki )}i2Sk can be
conditionally removed. This observation is the basis of our
analysis.

Let P k
e be the probability of misclassification at the kth

iteration, subject to the premise that the target is contained in
Rk. Then irrespective of ties, P k

e can be upper- and lower-
bounded by

LX

`=1

⇡k
`�1 Pr

⇣
u

k 62 Dk,�
`

���Hk
`�1

⌘
� P k

e

�
LX

`=1

⇡k
`�1 Pr

⇣
u

k 62 Dk,+
`

���Hk
`�1

⌘
, (8)

where ⇡k
`�1 = Pr(✓ 2 Rk

` ) is the prior probability that
hypothesis Hk

`�1 = [✓ 2 Rk
` ] is true, subject to ✓ 2 Rk.

We thus derive

⇡k
`�1 Pr

⇣
u

k 62 Dk,+
`

���Hk
`�1

⌘

= Pr

⇣
u

k 62 Dk,+
` ^ ✓ 2 Rk

`

⌘

=

Z

R
Pr

⇣
u

k 62 Dk,+
` ^ ✓ 2 Rk

`

���✓ = ✓
⌘
dF k

(✓)

=

Z

Rk
`

Pr

⇣
u

k 62 Dk,+
`

���✓ = ✓
⌘
dF k

(✓),

where F k
(·) is the cumulative distribution function (cdf) of ✓

given that it belongs to Rk. Similarly,

⇡k
`�1 Pr

⇣
u

k 62 Dk,�
`

���Hk
`�1

⌘
=

Z

Rk
`

Pr

⇣
u

k 62 Dk,�
`

���✓ = ✓
⌘
dF k

(✓).

As a result, (8) can be rewritten as

LX

`=1

Z

Rk
`

Pr

⇣
u

k 62 Dk,�
`

���✓ = ✓
⌘
dF k

(✓)

� P k
e �

LX

`=1

Z

Rk
`

Pr

⇣
u

k 62 Dk,+
`

���✓ = ✓
⌘
dF k

(✓).

We then infer from the structure of our code matrix (see, for

example, (5)) that

dH(u
k, ck` ) � dH(u

k, ckj )

()
X

i2Sk
`

(uk
i � ck`,i) +

X

i2Sk
j

(uk
i � ck`,i)

�
X

i2Sk
`

(uk
i � ckj,i) +

X

i2Sk
j

(uk
i � ckj,i)

()
X

i2Sk
`

(uk
i � ck`,i) +

X

i2Sk
j

(uk
i � ck`,i)

�
X

i2Sk
`

[1� (uk
i � ck`,i)] +

X

i2Sk
j

[1� (uk
i � ck`,i)]

()
X

i2Sk
`

S
Sk
j

zki,` � 0, (9)

where zki,` = 2(uk
i � ck`,i) � 1, and “�” denotes modulo-2

addition. In light of (9), we proceed to obtain that

Pr

⇣
u

k 62 Dk,�
`

���✓ = ✓
⌘

= Pr

✓
dH(u

k, ck` ) � min

1jL, j 6=`
dH(u

k, ckj )

����✓ = ✓

◆

= Pr

✓
dH(u

k, ck` ) � dH(u
k, ck1) _ · · · _ dH(u

k, ck` )

� dH(u
k, ck`�1) _ dH(u

k, ck` ) � dH(u
k, ck`+1)

_ · · · _ dH(u
k, ck` ) � dH(u

k, ckL)

����✓ = ✓

◆

= Pr

✓ X

i2Sk
`

S
Sk
1

z

k
i,` � 0 _ · · · _

X

i2Sk
`

S
Sk
`�1

z

k
i,` � 0

_
X

i2Sk
`

S
Sk
`+1

z

k
i,` � 0

_ · · · _
X

i2Sk
`

S
Sk
L

z

k
i,` � 0

����✓ = ✓

◆


LX

j=1, j 6=`

Pr

✓ X

i2Sk
`

S
Sk
j

z

k
i,` � 0

����✓ = ✓

◆
. (10)

Let qki,` = qki,`(✓) , Pr

⇣
z

k
i,` = 1

���✓ = ✓
⌘

. By noting that
{zk

i,`}i2S`
S

Sj are conditionally independent given ✓ = ✓,
we obtain from [34, Lemma 2] that if for every 1  j  L
with j 6= `,

�k
`,j , L

2Nk

X

i2Sk
`

S
Sk
j

E
⇥
z

k
i,`

⇤
=

L

2Nk

X

i2Sk
`

S
Sk
j

(2qki,` � 1)

=

L

Nk

X

i2Sk
`

S
Sk
j

qki,` � 1  0, (11)
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then (10) is upper-bounded by5

Pr

⇣
u

k 62 Dk,�
`

���✓ = ✓
⌘


LX

j=1,j 6=`

0

B@1�

⇣P
i2Sk

` [Sk
j
(2qki,` � 1)

⌘2

(dkmin)
2

1

CA

dk
min/2

,

where dkmin , 2Nk/L is the minimum pairwise Hamming
distance of Ck. This concludes that if max1`,jL, 6̀=j �

k
`,j <

0, the probability of misclassification satisfies

P k
e 

LX

`=1

Z

Rk
`

Pr

⇣
u

k 62 Dk,�
`

���✓ = ✓
⌘
dF k

(✓)


LX

`=1

Z

Rk
`

8
<

:

LX

j=1, j 6=`

0

@
1

�

⇣P
i2Sk

` [Sk
j
(2qki,` � 1)

⌘2

(dkmin)
2

1

CA

dk
min/2

9
>>=

>>;
dF k

(✓). (13)

We next establish the connection between the upper bound
in (13) and the thresholds {⌘ki }i2Sk . It can be verified that for
i 2 Sk

` ,

qki,` = Pr

�
z

k
i,` = 1

��
✓ = ✓

�
= Pr

�
u

k
i � ck`,i = 1

��
✓ = ✓

�

= Pr

�
u

k
i = 0

��
✓ = ✓

�
= Pr

�
si < ⌘ki

��
✓ = ✓

�

= Pr

�
ai + ni < ⌘ki

��
✓ = ✓

�

= �

✓
⌘ki � ai

�

◆
, (14)

where �(·) is the cdf of the standard normal distribution.
Likewise, for i 62 Sk

` ,

qki,` = Pr

�
u

k
i = 1

��
✓ = ✓

�
= Pr

�
si > ⌘ki

��
✓ = ✓

�

= Pr

�
ai + ni > ⌘ki

��
✓ = ✓

�

= 1� �

✓
⌘ki � ai

�

◆
. (15)

Substituting (14), (15) and dkmin = 2Nk/L into (13), we have

P k
e 

PL
`=1

R

Rk
`

n

PL
j=1, j 6=`

⇣

1

�

 
P

i2Sk
`

�

 
⌘k
i �ai
�

!
�
P

i2Sk
j

�

 
⌘k
i �ai
�

!!2

N2
k/L2

1

C

A

Nk/L
9

>

>

=

>

>

;

dF k
(✓),

(16)

5Lemma 2 in [34] literally states that if �k
`,j < 0, then

Pr

✓ X

i2Sk
`

S
Sk
j

z

k
i,` � 0

����✓ = ✓

◆


⇥
1� (�k

`,j)
2⇤dkmin/2. (12)

Since (12) remains valid when �k
`,j = 0, we relax the condition in (11) by

adopting �k
`,j  0.

provided that6 for ✓ 2 Rk
` and every j 6= `,

X

i2Sk
`

�

✓

⌘k
i � ai

�

◆


X

i2Sk
j

�

✓

⌘k
i � ai

�

◆

. (17)

Our goal is to find ⌘k
i for each i 2 Sk that minimizes the right-hand-

side of (16) subject to the constraints in (17).
In order to simplify the optimization of (16), we utilize two

assumptions.
Assumption 1 (Homomorphic sensor deployment): There exists a

bijection mapping � = �k
`,j : Sk

` 7! Sk
j such that for every ✓ 2 Rk

` ,
one can find ˜✓ 2 Rk

j that satisfies dE(✓, ✓i) = dE(˜✓, ✓�(i)) for all
i 2 Sk

` .7

Assumption 2 (Non-decreasing distances after mapping): The bi-
jective mapping given in Assumption 1 also satisfies that dE(✓, ✓i) 
dE(✓, ✓�(i)) for every i 2 Sk

` and ✓ 2 Rk
` .

In Figure 2, we illustrate a set of bijection mappings that validate
Assumption 1. In this figure, there are four sensors in each super-
region. The sensors with the same color establish the required

�

4
2

�

=

6 bijection mappings between super-regions Rk
1 , Rk

2 , Rk
3 and Rk

4 .
The existences of ˜✓ respectively in super-regions Rk

2 , Rk
3 and Rk

4 ,
which satisfies dE(✓, ✓i) = dE(˜✓, ✓�(i)) for all i 2 Sk

1 and a given
✓, is demonstrated in Figure 2(b), where the pair of equal distance
dE(✓, ✓i) and dE(˜✓, ✓�(i)) is depicted in the same color.

˜✓ 2 Rk
3

˜✓ 2 Rk
4

✓ 2 Rk
1

˜✓ 2 Rk
2

(a) (b)

target sensor

Rk
2Rk

1

Rk
3 Rk

4

Fig. 2. Illustration of the homomorphic sensor deployment in Assumption 1.
Sensors with the same color form the required bijection mappings between
super-regions Rk

1 , Rk
2 , Rk

3 and Rk
4 . The existence of ✓̃, whose distance to

the mapped sensor �(i) is equal to the distance between a given ✓ to the
sensor i before bijection mapping, is demonstrated in (b).

Assumption 2 dictates that the distance between a target and a
sensor in the same super-region is never greater than that between

6By Eqs. (14) and (15), we can equivalently re-write (17) as either
X

i2Sk
`

Pr
⇣
si > ⌘ki

���✓ = ✓
⌘
�

X

i2Sk
j

Pr
⇣
si > ⌘ki

���✓ = ✓
⌘

or
X

i2Sk
`

Pr
⇣
u

k
i = ck`,i

���✓ = ✓
⌘
�

X

i2Sk
j

Pr
⇣
u

k
i = ck`,i

���✓ = ✓
⌘
.

Thus under the assumption that ✓ 2 Rk
` , constraint (16) implies that in

comparison with the RSS received by sensors in Rk
j , the RSS experienced

by sensors in Rk
` tends to be larger with a higher sum probability since the

target ✓ 2 Rk
` is supposed to be statistically nearer to those sensors in the

same super-region Rk
` .

7We drop parameters `, j and k in the notation of mapping � to simplify
its representation.



1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2670531, IEEE
Transactions on Information Forensics and Security

8

the same target and any mapped sensor in another super-region. For
an easy understanding, two cases concerned by Assumption 2 are
illustrated in Figure 3, where the length of the solid line is obviously
no larger than that of any dashed line.

✓ 2 Rk
1

(a) (b)

✓ 2 Rk
1

target sensor

Fig. 3. Illustration of Non-decreasing distances after mapping in Assumption
2

It can be straightforwardly verified that these two assumptions
can be satisfied if the �(i)th sensor in super-region Rk

j is the mirror
point of the ith sensor at super-region Rk

` with respect to the middle
reflection line between Rk

j and Rk
` . It then immediately follows from

Assumption 2 that ai =
p
P0/dE(✓, ✓i) � a�(i) =

p
P0/dE(✓, ✓�(i))

for every i 2 Sk
` and ✓ 2 Rk

` . Hence, if we set ⌘k
i = ⌘k

�(i) for i 2 Sk
` ,

then constraint (17) is valid, i.e.,

⌘k
i � ai  ⌘k

�(i) � a�(i) 8 i 2 Sk
`

, �

✓

⌘k
i � ai

�

◆

 �

✓

⌘k
�(i) � a�(i)

�

◆

8 i 2 Sk
`

)
X

i2Sk
`

�

✓

⌘k
i � ai

�

◆


X

i2Sk
`

�

 

⌘k
�(i) � a�(i)

�

!

=

X

i2Sk
j

�

✓

⌘k
i � ai

�

◆

. (18)

As a result of the two assumptions, together with uniform F k
(✓), we

end up with the following objective function for the optimization of
{⌘k

i }i2Sk
1

:

P k
e 

L
X

`=1

Z

Rk
`

8

<

:

L
X

j=1, j 6=`

0

@

1

�

⇣

P

i2Sk
`
�

⇣

⌘k
i �ai
�

⌘

�
P

i2Sk
j
�

⇣

⌘k
i �ai
�

⌘⌘2

N2
k/L

2

1

C

A

Nk/L
9

>

>

=

>

>

;

dF k
(✓),

=

1

|Rk|

L
X

`=1

Z

Rk
`

L
X

j=1, j 6=`

0

@

1

�

✓

P

i2Sk
`



�

⇣

⌘k
i �ai
�

⌘

� �

✓

⌘k
i �a�(i)

�

◆�◆2

N2
k/L

2

1

C

C

C

A

Nk/L

d✓,

where |Rk| denotes the area of Rk. We summarize the derivation in
this section in the next Proposition.

Proposition 1: Given that a set of bijection mapping � = �k
`,j :

Sk
` 7! Sk

j satisfies Assumptions 1 and 2 for 1  k  kstop and 1 
`, j  L, and subject to that all the previous (k�1) iterations succeed
to identify the correct super-region that the target is located in, the
misclassification probability of the kth iteration is upper-bounded by

P k
e  L

|Rk|

Z

Rk
1

L
X

j=2

(1

�

✓

P

i2Sk
1



�

⇣

⌘k
i �ai
�

⌘

� �

✓

⌘k
i �a�(i)

�

◆�◆2

N2/L2k

1

C

C

C

A

N/Lk

d✓,

where {⌘i}i2Sk are a set of pre-specified local thresholds for sensors
in Rk that uphold ⌘�(i) = ⌘i for every i 2 Sk, and ai = ai(✓) =p
P0/dE(✓, ✓i) is the noise-free signal received by the ith sensor,

provided that ✓ is uniformly distributed over the ROI Rk, and

⌦

k ,
Z

Rk
`

L
X

j=1, j 6=`

(1

�

✓

P

i2Sk
`



�

⇣

⌘k
i �ai
�

⌘

� �

✓

⌘k
i �a�(i)

�

◆�◆2

N2/L2k

1

C

C

C

A

N/Lk

d✓ (19)

is the same for 1  `  L.

We close this section by remarking that it might be possible to
determine a set of local thresholds {⌘k

i }1iNk without the two
assumptions but to resort only to constraint (17). However, the
numerical challenge, as required to examine the validity of (17)
for every choice of candidate thresholds as well as the calculation
of (16), may make the task of searching for the best thresholds
computationally intractable. This brings up the value of the two
assumptions in Proposition 1, which not only reduces the number
of thresholds to be determined from Nk down to Nk/L, but makes
possible the simplification of the double summations indexed by `
and j in (16) down to one summation indexed by j, thereby greatly
weakening the previously mentioned numerical challenge. Since the
particular mirror-based homomorphic sensor deployment structure is
physically realizable, Proposition 1 can be well applied to practical
WSNs with a finite number of sensors.

VI. LOCAL THRESHOLD DESIGN

In this section, we develop an algorithmic procedure to determine
the thresholds {⌘k

i }i2Sk
1

by minimizing ⌦

k given in Proposition 1.
Since the exact evaluation of ⌦

k requires a closed-form integration
from

ai = ai(✓) =
p
P0/dE(✓, ✓i),

which is actually analytically intractable, we maximize an approxi-
mate quantity by Monte Carlo integration instead:

�

k , 1

|T k
1 |

X

✓2T k
1

L
X

j=2

0

@

1

�

✓

P

i2Sk
1



�

⇣

⌘k
i �ai
�

⌘

� �

✓

⌘k
i �a�(i)

�

◆�◆2

N2
k/L

2

1

C

C

C

A

Nk/L

, (20)

where T k
1 is a set consisting of a finite number of typical discrete

points in Rk
1 and |T k

1 | indicates the number of points in T k
1 . It

is reasonable to assume that as long as the number of points in
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T k
1 is adequately large and they are evenly distributed over Rk

1 ,
minimization of the criterion �

k should yield near-optimal thresholds,
where by optimality, we mean the thresholds that minimize ⌦

k.
From (1) and (2), the binary value of uk

i is determined by

si =
p
P0

d0
di

+ ni
>
<

uk
i = 1

uk
i = 0

⌘k
i ,

which under d0 = 1 and ni = 0, is equivalent to

di
<
>

uk
i = 1

uk
i = 0

p
P0

⌘k
i

.

Since di = dE(✓, ✓i) is the Euclidean distance between the target
and the ith sensor, it is reasonable to infer that the reciprocal of the
optimal threshold, i.e., 1/⌘k⇤

i , will not be larger than Ak
i /

p
P0, where

Ak
i , max✓2Rk dE(✓, ✓i) is the distance between the ith sensor and

the farthest boundary point of the ROI Rk to it. In addition, since
di is nonnegative, a negative ⌘k

i will not be optimal. This suggests
a search space of

p
P0/⌘

k
i between 0 and Ak

i .
In order to conduct a computationally efficient search that yields

an accurate solution, we fix the step size � to be 1/8 of the
minimum distance between the sensors, and partition the interval
of (0, Ai

k] into Qk
i , bAi

k/�c sub-intervals of length � and one
sub-interval of length Ai

k � Qk
i �. We then examine �

k based onp
P0/⌘

k
i being the end points of these sub-intervals, i.e.,

p
P0/⌘

k
i 2

�

�, 2�, 3�, . . . , Qk
i �

 

. Under such setting, the values of ⌘k
i under

test are confined in
n p

P0

Qk
i �

,
p
P0

(Qk
i �1)�

,
p
P0

(Qk
i �2)�

, . . . ,
p

P0
�

o

. Notably,

we intentionally make the setting of Qk
i to be independent of the

choice of P0 to facilitate our simulations for different radiating
signal-to-noise power ratio �rad , P0/�

2. With an adequately small
�, the optimal threshold ⌘k⇤

i can be approached. Our experiments
indicate that the optimal threshold ⌘k⇤

i is always markedly larger thanp
P0/(Q

k
i �) and is never near the largest possible value

p
P0/�

under test.
It should be noted that the optimal local thresholds of the sensors

can be determined before their deployment in the field. Hence the
complexity of searching for the best local thresholds will never add
the operational complexity of the sensors or the FC.

VII. EXPERIMENTAL RESULTS

In this section, we present the simulation results that show the
significant improvement of system performance when the proposed
local threshold design is employed.

The system setting of our experiments is described as follows. The
sensors are deployed in a square grid, and the minimum pair-wise
distance among sensors is 1. For the computation of � in (20), we set
P0 = 200 and � = 3 so that the radiating signal-to-noise power ratio
�rad , P0/�

2
= 13.5 dB. For all the simulations, independent fading

channels between the sensors and the FC were employed. While the
performance of only the hard-decision decoding scheme is shown in
Figures 4 to 7, the performances of both hard-decision decoding and
soft-decision decoding schemes are presented in Figures 8 to 11. For
each simulation, 5000 target locations are randomly generated for the
numerical evaluation of the performance.

Under the setting that the designated area R is partitioned into
4 regions, each of which consists of 16 sensors, Table I gives the
optimal local thresholds {⌘⇤

i }64i=1 obtained by using a numerical
search method that is frequently employed for system optimization,
often referred to as the person-by-person optimization procedure
[35]. One can observe from Table I that the values of the local
thresholds, marked in red, are relatively large. It reveals the fact
that the sensors located near the border between regions require a
higher local threshold in order to reduce the chance of false alarm
of incorrectly claiming that a target was within the region that the
sensor belongs to. It coincides with the theoretical implication that the
sensors located near the borders among regions would tend to make
wrong local decisions with higher probabilities. Hence, the results

of Table I are justified. Later, we employ the local thresholds from
Table I to show their effectiveness with two performance metrics,
which are the detection probability of the region that the target is
located in, and the MSE of the average distance between the true
target location and its estimate.

TABLE I
OPTIMAL LOCAL THRESHOLDS {⌘⇤i }64i=1 UNDER THE SETTING THAT THE
DESIGNATED AREA R IS PARTITIONED INTO M = 4 REGIONS, EACH OF
WHICH CONSISTS OF 16 SENSORS. HERE, WE ASSUME THAT THE POWER
MEASURED AT THE REFERENCE DISTANCE d0 = 1 IS P0 = 200 AND THE

VARIANCE OF THE SENSING NOISE IS �2 = 9.

R3 R4

4.714 7.071 6.285 8.703 8.703 6.285 7.071 4.714
6.655 5.955 6.655 6.655 6.655 6.655 5.955 6.655
6.285 7.071 7.071 8.081 8.081 7.071 7.071 6.285
5.955 7.542 10.285 16.162 16.162 10.285 7.542 5.955
5.955 7.542 10.285 16.162 16.162 10.285 7.542 5.955
6.285 7.071 7.071 8.081 8.081 7.071 7.071 6.285
6.655 5.955 6.655 6.655 6.655 6.655 5.955 6.655
4.714 7.071 6.285 8.703 8.703 6.285 7.071 4.714

R1 R2

TABLE II
THE RESULTANT PROBABILITY BOUNDS � IN (20) AS A FUNCTION OF
TOTAL NUMBER OF SENSORS N , WHERE THE DESIGNATED AREA R IS

PARTITIONED INTO M = 4 REGIONS

N N/M �
64 16 0.2256
256 64 0.0319
1024 256 0.0032

As a reference, we list in Table II the probability bounds �

computed using the thresholds obtained from the proposed method.
We can observe that by quadrupling the number of sensors in an ROI
of the same size, we can, in the sense of upper bounds, reduce the
probability of misclassification by one order of magnitude.

A major advantage of the DCFECC scheme is its capability to
compensate for adversarial action from Byzantine sensors without
the need to identify them [1]. This is in principle similar to the
error correcting capability of a channel code. To show this aspect,
we compare the probabilities of detection (i.e., Pd = 1 � Pe) based
on thresholds adopted in [1] with those obtained using the proposed
method in the presence of Byzantine adversaries, and summarize the
results in Figure 4. It should be noted that in our simulations, a
Byzantine sensor is assumed to maliciously flip its local decision (i.e.,
ui) before sending it to the FC in order to alter the global inference
of the true hypothesis. The Byzantine sensors are randomly chosen
among all the sensors in our simulations. Our experimental results
indicate that an improvement in the probability of detection can be
obtained by adopting the proposed thresholds. As an example, when
the fraction of Byzantine sensors is equal to 25%, the probability of
detection increases from 0.55 to 0.75 after replacing the thresholds
used in [1] by the ones obtained by using the proposed method. We
also test whether different ordering of thresholds during the numerical
person-by-person search affects the performance of the resulting
thresholds in Figure 4 and found that the ordering of thresholds during
the numerical search indeed has little impact on the probability of
detection as well as the resultant threshold values.

Another common performance index for target localization is the
MSE of the average distance between the true target position and
its estimate. In this paper, the estimated target location is set to be
the center of the region that the target is declared to lie in. This
definition is the same as the one used in [1]. Figure 5 shows that when
the fraction of Byzantine sensors is 25%, the MSE of the average
distance between the true target position and its estimate is 2.7 if the
thresholds in [1] are used, while it is reduced to 2.2 if the proposed
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Fig. 4. Probabilities of detection resulting from thresholds employed in
[1] and from those derived from the proposed method with three different
orderings of thresholds during the numerical person-by-person search

thresholds are used instead. As a result, 18.5% improvement in the
accuracy of target positioning can be achieved on an average. Also
shown in Figure 5 is that different ordering of thresholds during the
numerical search yields almost identical MSEs. This coincides with
what we have observed from Figure 4.
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Fig. 5. MSEs of the average distance between the true target position and the
center of the declared region determined based on thresholds used in [1] and
also based on those derived from the proposed method with three different
orderings of thresholds during the numerical person-by-person search

Next, we examine the performance of the optimized thresholds
acquired by using the proposed method in situations when iterative
classification is employed. For L = 4, we set the number of sensors
at the first, second and third iterations to be N1 = 1024, N2 = 256

and N3 = 64, respectively. At the final iteration, the region that the
target is declared to lie in will contain only N3/L = 16 sensors. The
experimental results are illustrated in Figures 6 and 7. We observe
from Figure 6 that when the number of Byzantine sensors reaches
25% of the total number of sensors at each iteration, the probability
of detection for the optimized thresholds reaches 0.68 but that for
the thresholds used in [1] is only 0.40.

In Figure 7, we observe that at the end of the first iteration,
the thresholds in [1] and the thresholds from the proposed method,
although seemingly different, yield almost the same MSEs when the
fraction of Byzantine sensors is below 25%. It is during the following
iterations that the optimized thresholds from the proposed method
start to outperform the thresholds used in [1]. More specifically,
when iterative classification is employed on the three-layer DCFECC

system we consider here and 25% of sensors are experiencing
Byzantine attacks, the MSE of the average distance between the target
location and its estimate is 1.0 if the thresholds in [1] are used, while
it is reduced to 0.7 if the optimized thresholds from the proposed
method are adopted instead. As a result, 30% improvement in the
accuracy of target positioning can be achieved on an average.

In addition, Figure 7 illustrates how iterative classification on
the three-layer DCFECC system improves over iterations in MSE
performance index. More specifically, when 25% of the sensors
experience Byzantine attacks and the sensors employ the optimized
thresholds from the proposed method, the MSE performance is
improved from 1.5 down to 0.7 when iterative classification migrates
from the first iteration to the third iteration. Over 50% improvement
in the accuracy of target positioning is obtained.
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Furthermore, we investigate the performance of the proposed local
threshold design when the system operates at different signal-to-noise
ratios �w , Eb/�

2
w for the wireless links defined in (4). The results

are summarized in Figures 8 and 9, where two fractions of Byzantine
sensors are tested, namely, ↵ = 0 and ↵ = 25%. Both hard-decision
based classification, which performs the minimum Hamming distance
fusion based on binary quantized received signals in (4), and soft-
decision based classification, which determines the target region by
searching the rows of C that is closest to the received signals in
Euclidean distance as in (7), are examined. Several observations can
be made on these two figures. First, soft-decision based classification
always performs better than hard-decision based classification for the
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same system setting. This observation is applicable to both Figures
8 and 9. The performance gap between hard and soft-decision based
classification methods, however, vanishes when �w is beyond �2

dB. Secondly, when the fraction of Byzantine sensors is ↵ = 25%,
the optimized thresholds from the proposed method improve the
system performance considerably over the thresholds in [1]. This
is in contrast to the limited performance improvement due to the
adoption of the optimized thresholds from the proposed method
instead of those used in [1] when no Byzantine sensors are present.
Thirdly, the performances of all system settings saturate when �w is
greater than �4 dB because Byzantine attacks and wireless channel
fading begin to dominate the deterioration of the data bits received
at the FC. Last, hard-decision based classification that employs the
optimized thresholds from the proposed method beats soft-decision
based classification that employs the thresholds obtained from [1] in
almost all the cases considered in the two figures except for ↵ = 0

and �w  �6 dB. This confirms the superiority of our new threshold
design over the one in [1].
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Fig. 8. Probabilities of detection for thresholds used in [1] and for those
obtained from the proposed method under iterative classification and fading
wireless links
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Fig. 9. MSEs between the true target position and the center of the declared
region for thresholds used in [1] and for those obtained from the proposed
method under iterative classification and fading wireless links

In all the above threshold designs, we assumed P0 = 200 and
� = 3, resulting in a radiating signal-to-noise ratio �rad = P0/�

2
=

13.5 dB. A natural question that follows is whether the optimized
thresholds obtained at �rad = 13.5 dB are robust in performance
for other �rad values. Figures 10 and 11 address this point. Fixing
�w = �4 dB to have a saturated performance, we observe from
the two figures that when �rad is larger than 6 dB, the optimized
thresholds designed based on �rad = 13.5 dB have little degradation
and still markedly outperform the thresholds in [1]. The superiority

of the optimized thresholds from the proposed method over those in
[1], however, gradually diminishes when �rad moves away from the
13.5 dB value that was assumed at the design stage. By noting that
the radiating signal-to-noise ratio sensed by the ith sensor �i is equal
to

�i (dB) = �rad (dB) � 20 log10(di/d0),

it may be realistic to require that the nearby nine sensors around the
target in a square grid of size 2⇥ 2 have all their �i’s larger than 0

dB; hence, by assuming di to be the length of the side of the 2⇥ 2

square grid, which is 2 · d0 in our setting, it is justified to place our
attention on those �rad � 20 log10(2) = 6 dB.
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Fig. 10. Probabilities of detection as a function of the radiating signal-to-
noise ratio for thresholds used in [1] and for those obtained from the proposed
method under iterative classification and fading wireless links
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used in [1] and for those obtained from the proposed method under iterative
classification and fading wireless links

VIII. CONCLUSION

A highly innovative approach for target localization via iterative
classification and the use of error control codes was presented in [1].
It was shown to be quite robust and to provide high accuracy even
in the presence of sensor failures and communication errors when
the number of sensors grows without bound. The issue of optimal
threshold design at local sensors, however, was not addressed in [1],
particularly when the number of sensors is fixed and finite. This paper
considered threshold design for the problem formulation in [1] for a
practical WSN of finite size and thus completes the work started in
[1] by making it applicable in practice.

With this objective, in this paper, a systematic procedure to find
the set of optimized RSS thresholds for iterative classification over a
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multi-layer hierarchical DCFECC system of [1] was proposed. The
key to the effectiveness in performance of the newly found RSS
thresholds is the establishment of a theoretical upper bound on the
probability of misclassification, which we afterwards adopted as the
objective function in threshold search.

In simulation experiments, we took into account all the imper-
fections over WSNs, including sensing noise, fast fading wireless
links and Byzantine attacks. Our simulation results demonstrated
the necessity of an optimized threshold design for improvement of
both probability of detection and MSEs, in particular in the situation
where a moderately large fraction of sensors are Byzantines. Perfor-
mances of both hard-decision and soft-decision based classifications
were evaluated. We observed, however, that hard-decision based
classification may outperform soft-decision based one if the former
employs a better set of RSS thresholds. This further substantiates the
significance of the proposed RSS threshold design in a multi-layer
hierarchical DCFECC system of finite size.

The estimated target location in this work is taken to be the center
of the final ROI region obtained from iterative classification. Further
improvement could be possible by incorporating other estimation
approaches with the tradeoff that multiple-bit transmissions may be
necessary. For example, a scheme can utilize the RSS of the beacon
signals received by the sensors in the final ROI to produce a better
estimate of the target position instead of simply using the region
center as the final estimate. Carrying the RSS information from
sensors to the FC, however, requires definitely more transmission
effort. Alternatively, to replace the static way the super-regions are
divided with a dynamic one through iterations (in order to avoid
the ambiguity introduced when the target happens to be near the
boundary of two divisions) may also benefit the estimation accuracy.
As such, a dynamic network management mechanism at the FC with
certain communication feedbacks to sensors may be necessary as
sensors should be notified about the new dynamic divisions they
belong to at the next iteration. It would be interesting to examine
the tradeoff among energy consumption, management cost and the
improvement of the estimate for the proposed iterative classification
under the above modifications, in particular in a fading environment
with possible Byzantine attacks.

Like many other works on localization [7], [8], [9] that are based
on received signal strengths, the current work considered a one-
shot location estimation for the localization of a single target. Due
to the robustness of the proposed hierarchical DCFECC system
that was shown to be capable of simultaneously compensating for
sensing noise, imperfection of wireless links and Byzantine attacks
without the need to identify the cause of information deterioration,
its extension to motion tracking that faces inevitably varying noise
and link statistics could be an interesting problem to further explore.
A challenging future work that may be of importance and usefulness
is to investigate whether a set of quality RSS thresholds can be
determined analytically from the probability bound. By this, useful
rules of thumb on quality RSS threshold design could be introduced
into the target localization literature.
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