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without Auxiliary Space
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Abstract—Entropy coding is a widely used technique for lossless data compression. The entropy coding schemes supporting the
direct access capability on the encoded stream have been investigated in recent years. However, all prior schemes require auxiliary
space to support the direct access ability. This paper proposes a rearranging method for prefix codes to support a certain level of direct
access to the encoded stream without requiring additional data space. Then, an efficient decoding algorithm is proposed based on
lookup tables. The simulation results show that when the encoded stream does not allow additional space, the number of bits per
access read of the proposed method is above two orders of magnitude less than the conventional method. In contrast, the alternative
solution consumes at least one more bit per symbol on average than the proposed method to support direct access. This indicates that
the proposed scheme can achieve a good trade-off between space usage and access performance. In addition, if a small amount of
additional storage space is allowed (it is approximately 0.057% in the simulation), the number of bits per access read in our proposal
can be significantly reduced by 90%.

Index Terms—Data compaction and compression, Entropy Coding, Prefix Codes, Direct Access, and Additional Data Space.

✦

1 INTRODUCTION

W ITH the explosive growth of data volume, data com-
pression has become an indispensable part of the

storage and transmission of text [1], [2], images, sensor
data [3] and trajectory data [4], etc. Prefix coding [5], [6]
exerts a major role in well-known compression schemes.
It is a type of variable-length coding [7] that the coding
system does not have a codeword that is a prefix of any
other codeword. Several well-known prefix codes include
Huffman coding [8], [9], [10] and universal coding [11], [12],
[13]. These codes often eliminate redundancy and improve
transmission, storage and processing efficiency.

To reduce the space of a column-oriented database, each
column can be compressed via a prefix code, such as Huff-
man coding. In this case, when a user wants to access the 𝑖-th
entry of the column, all preceding entries shall be decoded,
as the location of the 𝑖-th entry is unknown on the encoded
stream. This paper refers to this method as the conventional
method. Hence, the coding schemes that can decode an
entry in an encoded stream have been investigated in recent
years [14], [15], [16], [17]. A direct solution to this problem is
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to maintain an additional array, which stores the locations of
certain entries [18], [19] to help to decode. For example, we
can use an array to store the locations of each 𝑛-th entry,
𝑛 = 100, 200, ..., on the encoded stream. However, using
auxiliary storage space degrades the compression ratio of
the coding. Zhou et al. [20] introduced a neighbor-based
block-organized storage scheme by paying a small price for
storage space to support local retrieval. However, it relies
on the length-prefix compression algorithm (to be defined
precisely in Section 2.2.3). In [21], Brisaboa et al. intro-
duced Directly Addressable Codes (DACs), which present
a variable-length encoding scheme for sequences of inte-
gers and enable direct access to any element of the source
sequence. However, this method is only suitable for Vbyte
encoding [22], and it requires additional space to achieve
rank search in a constant time. Therefore, it is not a general
solution to provide direct access capability in a variable-
length encoded bit sequence. In [23], a new application
of wavelet tree is introduced to provide accessibility and
unique decodability for non-prefix-free codes. Nevertheless,
storing the entire wavelet tree requires storage space, which
brings a new overhead space. The problem of source coding
with random access has also received attention from the
information theory community [24], [25], [26], [27], [28], [29],
[30]. Particularly, Mazumdar et al. [26] gave a fixed-length
compression scheme that requires Θ( 1

𝜀
log 1

𝜀
) bits on the

encoded stream to decode a single source bit, where 𝜀 > 0
is the rate exceeding the source entropy. Building on the
work of [26], Tatwawadi et al. [27] discussed a systematic
scheme to achieve close to optimal compression with finite
random access. However, the researches in [26] and [27]
only investigate random access to a single bit. In [29], an
explicit entropy-achieving scheme that achieves constant
average local decodability and update efficiency is given.
Nevertheless, the probability of its local decoding may be
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nonzero and requires a particular data structure for code-
word location. All existing methods require additional space
to achieve direct access capability. That is, the compression
ratios of existing methods are inferior to that of Huffman
coding. In practice, the use of extra space is not suitable for
all applications. For example, in wireless sensor networks
[31], [32], energy consumption is a major bottleneck due to
the limited memory storage, small battery capacity, limited
processing power, and bandwidth of its tiny sensor nodes.
Data compression technology has been used to reduce
energy consumption and prolong the network’s lifetime.
It reduces data size before it is forwarded from sensor
nodes to sink nodes in the network. A common operation
in compressed data is direct access. However, in such a
complex and constrained environment, the additional space
overhead is generally unbearable for the tiny nodes. In
contrast, a compression method that supports direct access
without requiring additional space would be preferable.

In this paper, we extend [20] and propose a rearranging
method for prefix codes to support direct access without
requiring additional data space, which is reflected in the
following two perspectives. First, the space overhead in the
proposed method to store the encoded stream is equal to
that in Huffman coding. Second, the cost for the proposed
method to implement the direct access processing is inde-
pendent of the volume of the input data but only related
to the alphabet size. Further, in data transmission, due to
the limited storage resources and network bandwidth, it is
beneficial to reduce the storage space of the encoded data as
much as possible. In contrast, the prior work [20] requires
auxiliary space to mark the length of each codeword and
the size of each block is fixed, resulting in a waste of some
space. To the best of our knowledge, this paper is the first
that employs the rearranging method for prefix codes and
allows the average codeword length to be a floating-point
number.

The contribution of this paper is summarized as follows.

1) A rearranging method for prefix codes is proposed to
support direct access to the encoded stream without
requiring auxiliary space.

2) A novel lookup table construction method and fast
decoding algorithm are presented.

3) The simulations are given.
a) If the encoded stream does not allow additional

space: the number of bits per access read of the
proposed method is above two orders of magnitude
less than the conventional method; when the chosen
prefix codes meet certain conditions, such as canoni-
cal Huffman code, the number of bits per access read
can be further reduced.

b) If the encoded stream allows using additional space:
the alternative solution consumes on average at least
one more bit per symbol than the proposed method
to support direct access; when using a little addi-
tional space (in our simulation, it is approximately
0.057%), the number of bits per access read in the
proposed method can be significantly reduced by
90%.

The remainder of the paper is organized as follows.
Section 2 lists the notations and related works. Section 3

introduces the proposed scheme and algorithms. Section
4 presents the access algorithm for certain codes. Section
5 gives the simulation results and analysis, and Section 6
concludes this work.

2 PRELIMINARIES

2.1 Notations
Let Σ = {𝑧1, 𝑧2, . . . , 𝑧𝜎} denote an alphabet, and Σ∗ denote
the set of all strings over Σ. Let 𝑇 = {𝑡𝑖}𝑁𝑖=1 = (𝑡1, 𝑡2, . . . , 𝑡𝑁 )
denote an 𝑁-symbol input sequence, for each 𝑡𝑖 ∈ Σ. The 𝑖-th
element of 𝑇 is denoted as 𝑇 [𝑖] = 𝑡𝑖 , and a subsequence of 𝑇
is denoted by 𝑇 [𝑖 : 𝑗] = (𝑡𝑖 , 𝑡𝑖+1, . . . , 𝑡 𝑗 ).

The coding scheme C : Σ → 𝑊 maps an alphabet
Σ to a set of codewords 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝜎}, where 𝑤𝑖

is the codeword of 𝑧𝑖 . Thus, the encoding of 𝑇 generates
a sequence C(𝑇) = (𝑐1, 𝑐2, . . . , 𝑐𝑁 ), where 𝑐𝑖 ∈ 𝑊 is the
codeword of 𝑡𝑖 ∈ Σ. The encoded sequence has |C(𝑇) | =
|𝑐1 |+ |𝑐2 |+· · ·+ |𝑐𝑁 | bits, where |𝑐𝑖 | denotes the number of bits
of 𝑐𝑖 . In addition, we define an unconventional decoding
function C(𝐵) for a sequence 𝐵. Note that if the sequence 𝐵
is decodable, C(𝐵) returns two values: a decoded symbol
and the reading length required to decode the symbol.
Otherwise, C(𝐵) returns 𝑁𝑈𝐿𝐿. In other words, C(𝐵) is
defined as:

C(𝐵) =
{
(𝑡𝑖 , 𝑟) if ∃ C(𝑡𝑖) = 𝐵[1 : 𝑟];
𝑁𝑈𝐿𝐿, otherwise; (1)

where 𝑡𝑖 ∈ Σ, 1 ≤ 𝑟 ≤ |𝐵 |. Therefore, if C(𝐵) ≠ 𝑁𝑈𝐿𝐿, we
conclude that the sequence 𝐵 is decodable and the first 𝑟
bits in 𝐵 can decode a symbol 𝑡𝑖 . Otherwise, we say 𝐵 is not
decodable. Table 1 lists the notations used throughout the
paper for ease of reference.

2.2 Related works
2.2.1 Canonical Huffman code
Canonical Huffman code [33], [34] is a prefix code by remap-
ping the codewords of Huffman coding. In the codebook
of the canonical Huffman code, the symbols are sorted by
their bit lengths in non-decreasing order. Figure 1 shows a
Huffman tree and its corresponding canonical Huffman tree.
In this way, in canonical Huffman code, the set of codewords
of the same length can be seen as binary representations of
consecutive integers. This property allows us to determine
the codeword length by only reading a portion of the
codeword. For example, in Figure 1(b), the length of the
codeword is two if its prefix is 0 and is three if its prefix is 1.

2.2.2 Sampled Huffman code with R/S dictionaries [35]
Figure 2 depicts an example for an input sequence 𝑇 =

𝑁𝑂𝑁𝑃𝑅𝐸𝐹𝐼𝑋𝐹𝑅𝐸𝐸 , where Huffman(𝑇) is the Huffman-
encoded stream, and 𝐴(Huffman(𝑇)) is the additional ar-
ray. Precisely, 𝐴(Huffman(𝑇)) is a |C(𝑇) |-bit binary stream
that marks the start locations of the {𝑖𝑆 + 1|𝑖 = 0, 1, ...}-
th codewords in Huffman(𝑇). In Figure 2, when 𝑆 = 2,
the beginnings of 1, 3, 5, 7, 9, 11, 13-th codewords are marked
with 1, and the rest are marked with 0. Additionally, the
underlined bits indicate the corresponding codewords at
the sampling locations. To reduce space complexity, the
additional array 𝐴(Huffman(𝑇)) is compressed with an R/S
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TABLE 1: Definitions of notations used throughout the paper

Symbol Definition
Σ An alphabet {𝑧1, 𝑧2, . . . , 𝑧𝜎 }
Σ∗ The set of all strings over Σ
{0, 1}∗ {0, 1}∗ = {0, 1, 00, 01, 10, · · · } denotes the set of all binary strings
{𝑡𝑖 }𝑁𝑖=1 (𝑡1, 𝑡2, . . . , 𝑡𝑁 )

𝑇 An input source sequence
𝑁 The number of symbols in the source sequence

𝑇 [𝑖 ] The 𝑖-th element of 𝑇
𝑇 [𝑖 : 𝑗 ] (𝑇 [𝑖 ], 𝑇 [𝑖 + 1], . . . , 𝑇 [ 𝑗 ] )
|𝐵 | The length of 𝐵 ∈ {0, 1}∗
C(·) A coding scheme for a source sequence
C(·) An unconventional decoding function. When the incoming sequence is decodable, it returns two

values: a decoded symbol and the length required for decoding the symbol. Otherwise, it
returns NULL

𝑡 𝑡 = | C (𝑇 ) |/𝑁 ∈ R is the average block size
PopLast An index of the block, which stores the bit popped last from the stack during the rearranging
𝑠𝑝 (𝑖) The start position of the 𝑖-th block
𝑏𝑠 (𝑖) The size of the 𝑖-th block
𝐿𝑖 The codeword length of the 𝑖-th symbol
𝑝𝑖 The prefix that can determine 𝐿𝑖

𝐿𝑚𝑎𝑥 The maximum codeword length in a codebook
𝐵𝑖 The bit sequence stored in the 𝑖-th block
𝑜𝑖 The overflow variable to indicate whether the 𝑖-th block overflows

𝐶𝑢𝑚𝑢(𝑖, 𝑗 ) The cumulative overflow variable of 𝑗 consecutive blocks following the 𝑖-th block
𝑉𝑎𝑙𝑖𝑑 (𝐶 ) The valid sequence available for decoding in a sequence 𝐶

𝐿𝑣𝑎𝑙𝑖𝑑 (𝐶 ) The length of sequence 𝑉𝑎𝑙𝑖𝑑 (𝐶 ) . Note that when 𝐶 is all zeros, 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐶 ) = 0
CountZeros(𝐶 ) The number of consecutive zeros in the sequence 𝐶 starting from the least significant bit

Modify(𝐶 ) Modify a sequence 𝐶

LookUp(𝐶 ) Uses sequence 𝐶 for the table lookup, and returns two attributes: sym and len
𝐿 (𝑖) Starting block index when decoding the 𝑖-th symbol
𝐻 (𝑖) Ending block index when decoding the 𝑖-th symbol

⟨𝐿 (𝑖) , 𝐻 (𝑖) ⟩ An envelope structure
⟨𝐿 (𝑚𝑖 ) , 𝐻 (𝑚𝑖 ) ⟩ The maximum envelope of ⟨𝐿 (𝑖) , 𝐻 (𝑖) ⟩

(a) (b)

Fig. 1: (a). A Huffman tree, and (b). its corresponding
canonical Huffman tree

dictionary data structure that allows constant time select
queries. To access the 𝑖-th symbol, we simply query com-
pressed 𝐴(Huffman(𝑇)) with 𝑗 = select(

⌈
𝑖
𝑆

⌉
), and begin de-

coding from location 𝑗 in Huffman(𝑇) until the 𝑖-th symbol
is obtained.

2.2.3 Neighbor-based storage scheme
Given 𝑛 independent sequences {𝑇𝑖}𝑛𝑖=1, these sequences
are compressed to {C(𝑇𝑖)}𝑛𝑖=1 and stored in an array 𝑋 . If
these compressed sequences are stored in 𝑋 with a constant
interval 𝑡, one can read each C(𝑇𝑖) from 𝑋 directly. That is,
each C(𝑇𝑖) is stored in 𝑋 [𝑡 × (𝑖 − 1) + 1 : 𝑡 × 𝑖]. However, as

Fig. 2: A sampling example in [35]

{|C(𝑇𝑖) |}𝑛𝑖=1 are variant, if we choose 𝑡 = max𝑛
𝑖=1 |C(𝑇𝑖) |, this

causes fragmentation and degrades the compression ratio.

(a) Compressed sequences to store

(b) Storage result

Fig. 3: Neighbor-based scheme: storage example
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Zhou et al. [20] introduced a rearranging scheme by
paying a small price for storage space (around 3% ex-
tra storage space) to solve this issue. The scheme stores
{C(𝑇𝑖) = 𝑔′ (𝑇𝑖) | |𝑔(𝑇𝑖)}𝑛𝑖=1, precisely, C(𝑇𝑖) is the concatena-
tion of 𝑔′ (𝑇𝑖) and 𝑔(𝑇𝑖), where 𝑔 : Σ∗ → {0, 1}∗ is a variable-
length lossless compression without prefix constraints, and
{0, 1}∗ = {0, 1, 00, 01, 10, · · · } denotes the set of all binary
strings, and 𝑔′ (𝑇𝑖) is the binary representation of the length
of 𝑔(𝑇𝑖). Therefore, one can read the first |𝑔′ (𝑇𝑖) | bits in its
corresponding block to obtain the length of 𝑔(𝑇𝑖).

Next, a neighbor-based storage scheme is proposed,
where the part of the sequence that exceeds the block size is
called overflow. The store rules are given below.

1) If |C(𝑇𝑖) | ≤ 𝑡, then 𝑋 [𝑡 × (𝑖− 1) + 1 : 𝑡 × (𝑖− 1) + |C(𝑇𝑖) |] ←
C(𝑇𝑖). A visual example is given in Figure 3(b), as
compressed sequences C(𝑇1), C(𝑇4) and C(𝑇5) shown.

2) If |C(𝑇𝑖) | > 𝑡, then C(𝑇𝑖) = C1 (𝑇𝑖) | |C2 (𝑇𝑖) is divided into
two parts such that |C1 (𝑇𝑖) | = 𝑡, and 𝑋 [𝑡 × (𝑖 − 1) + 1 :
𝑡 × 𝑖] ← C1 (𝑇𝑖). The overflow part C2 (𝑇𝑖) is stored in the
neighboring blocks that have free space according to
the nearest neighbor priority. For example, for the free
space in block 4 in Figure 3(b), the overflow of C(𝑇3)
has storage priority, as C2 (𝑇3) shown in Figure 3(b). If
C2 (𝑇3) has been stored, the rest space is used to store the
overflow of C(𝑇2), denoted by C2 (𝑇2). Notably, to fill as
many free spaces as possible, the blocks are designed
as cyclic, i.e., the next block of the final block is the first
block.

Next, the method to access 𝑇𝑖 in 𝑋 is presented below.
First, we read the prefix 𝑔′ (𝑇𝑖) of C(𝑇𝑖) to determine the
length |𝑔(𝑇𝑖) |. If |𝑔(𝑇𝑖) | ≤ 𝑡 − |𝑔′ (𝑇𝑖) |, i.e., |C(𝑇𝑖) | ≤ 𝑡, the next
|𝑔(𝑇𝑖) | bits are simply read to complete the retrieval. Oth-
erwise, we read 𝑔′ (𝑇𝑖+1) in the (𝑖 + 1)-th block to determine
whether data needs to be read from the (𝑖 + 1)-th block. This
process is repeated until the decoding of 𝑇𝑖 is finished. As
shown in Figure 3(b), to access 𝑇2, the prefix 𝑔′ (𝑇2) in the 2-
th block is first read. Since |C(𝑇2) | > 𝑡, it is known that 2-th
block is overflow and the overflow variable is 𝑜2 = |C(𝑇2) |−𝑡.
Then, we repeat this process for the 3-th block and get the
overflow variable 𝑜3 = |C(𝑇3) | − 𝑡. When we move to the 4-
th block, we know that the 4-th block stores overflow data.
Finally, we read the overflow of C(𝑇2) starting at location
|C(𝑇4) | + 𝑜3 + 1 in the 4-th block to complete the decoding.

3 PROPOSED REARRANGING METHOD AND ALGO-
RITHMS

In this section, we propose a rearranging method that does
not require the average block size to be an integer. Then, a
lookup table for decoding is given. Finally, we present the
encoding, decoding and direct access algorithms.

3.1 Rearranging method
Given a source sequence 𝑇 of 𝑁 symbols, the proposed
method generates a |C(𝑇) |-bit sequence 𝑋 via a prefix code
with the block sizes ⌊𝑡⌋ or ⌊𝑡⌋+1 bits, where 𝑡 = |C(𝑇) |/𝑁 ∈ R.
Notably, 𝑡 could be a floating-point number, and [20] is only
applicable to the case that the block size is a fixed integer
number such that the approach [20] cannot be applied
directly in our method. In contrast, the proposed method

allows each block to have ⌊𝑡⌋ or ⌊𝑡⌋ + 1 bits. Precisely, the
codeword of the 𝑖-th symbol is expected to be stored in
𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖 + 1) − 1], where 𝑠𝑝(𝑖) is the start position of
the 𝑖-th block in the compressed sequence 𝑋 , which can be
calculated by

𝑠𝑝(𝑖) = ⌊(𝑖 − 1) × 𝑡⌋ + 1. (2)

It can be seen that the 𝑖-th block can store 𝑏𝑠(𝑖) = 𝑠𝑝(𝑖 + 1) −
𝑠𝑝(𝑖) bits.

The strategy for storing C(𝑇𝑖) in 𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖 + 1) − 1]
is similar to Section 2.2.3. That is, when the length of C(𝑇𝑖)
exceeds the size of the 𝑖-th block, i.e., |C(𝑇𝑖) | > 𝑏𝑠(𝑖), we store
the overflow part of size |C(𝑇𝑖) | − 𝑏𝑠(𝑖) in the neighboring
blocks that have free space according to the nearest neighbor
priority. Otherwise, let 𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖) + |C(𝑇𝑖) | − 1] ← C(𝑇𝑖).
Finally, we can obtain a rearranged bit sequence.

Once the rearranged sequence is obtained, the procedure
to decode the 𝑖-th symbol is as follows. First, we read the
sequence stored in the 𝑖-th block, denoted by a key 𝐾 .
According to the above description, there are three cases
for decoding the 𝑖-th symbol. In the first, if 𝐾 is part of the
codeword of the 𝑖-th symbol, we need to find its overflow
from its subsequent blocks to complete the decoding. Con-
cretely, we temporarily store 𝐾 into a stack and try to find
overflow from the next block. If the next block does not store
the overflow, then we continue with the block following it.
Note that the overflow may be divided into several parts
and stored in multiple blocks according to the store rules.
Therefore, whenever we read overflow in a certain block, we
pop 𝐾 from the stack and concatenate it with the overflow
read, getting a new sequence 𝐾̂ , and try to decode 𝐾̂ . If 𝐾̂
is still not decodable, we push 𝐾̂ into the stack again and
continue the process until the 𝑖-th symbol is decoded. In the
second, if 𝐾 is just the codeword of the 𝑖-th symbol, we can
directly decode 𝐾 and output the 𝑖-th symbol. Finally, if 𝐾
consists of the codeword of the 𝑖-th symbol followed by the
overflow of several codewords preceding the 𝑖-th symbol,
we can also output the 𝑖-th symbol directly. The unused bits
in decoding (the unused bits refer to the overflow of some
codewords preceding it) can be used to help decode the
symbols before the 𝑖-th symbol. In this paper, the decoding
is implemented based on a proposed novel lookup table
(see Section 3.2 for details). Intuitively, we use the key 𝐾

to look up the table to get the information needed, which
can facilitate the decoding process.

3.2 Construction of decoding table for truncated code-
words

In decoding prefix code, the method based on a lookup table
is widely used [36]. From Section 3.1, it can be seen that a
codeword C(𝑇𝑖) in the proposed method may be dispersed
in multiple blocks. As the tail of the codeword is stored in
later blocks, there is an issue that the codeword used for
decoding is truncated. That is, we may not have enough
information to decode the symbol. Thus the conventional
lookup table method is not suitable.

A modified version of the lookup table construction is
proposed to solve this issue. Let 𝐿𝑚𝑎𝑥 denote the maximum
codeword length in the codebook. The proposed lookup
table has 2𝑚 entries, where 𝑚 > 𝐿𝑚𝑎𝑥 and each entry is a
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binary 𝑚-bit string. The value of the incoming 𝑚-bit binary
string acts as an index to the lookup table. In the lookup
table, each entry has two attributes, termed sym and len,
which represent the symbol decoded by the entry and the
number of bits required to decode the symbol, respectively.

For each 𝑚-bit entry 𝐶 in the lookup table, the valid
sequence for decoding is defined as

𝑉𝑎𝑙𝑖𝑑 (𝐶) = 𝐶 >> (CountZeros(𝐶) + 1), (3)

where >> denotes the bitwise right-discard operation, e.g.,
if 𝐶 = 0111, then 𝐶 >> 2 = 01, and CountZeros(𝐶) denotes
the number of consecutive zeros in 𝐶 starting from the least
significant bit. For example, for a sequence 𝐶 = 10100, we
have 𝑉𝑎𝑙𝑖𝑑 (𝐶) = 10. The rightmost 1 and its subsequent bits
in 𝐶 are essentially unavailable for decoding. The bits 100
in the sequence 10100 are not used for decoding. Next, the
length of the sequence 𝑉𝑎𝑙𝑖𝑑 (𝐶) is given by

𝐿𝑣𝑎𝑙𝑖𝑑 (𝐶) = 𝑚 − (CountZeros(𝐶) + 1). (4)

When 𝐶 is all zeros, we define 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐶) = 0.
Let 𝐵[1 : 𝑖] be the prior part of a sequence 𝐵, where

1 ≤ 𝑖 ≤ |𝐵|. In the construction of the proposed lookup table,
for an 𝑚-bit entry 𝐶, if the prior part of 𝑉𝑎𝑙𝑖𝑑 (𝐶) is identical
to a codeword 𝑤𝑖 in the codebook, where 𝑤𝑖 is the codeword
of symbol 𝑧𝑖 , then we say 𝐶 is decodable and have

sym← 𝑧𝑖 , len← |𝑤𝑖 |. (5)

Otherwise, 𝐶 is undecodable. In this case, we define

sym← $, len← 0, (6)

where $ is a symbol not in the alphabet. Therefore, the value
of len can be used to determine whether 𝐶 is decodable.
Exactly, if len > 0, 𝐶 is decodable; otherwise, it is not. From
the above description, it can be seen that the cost of building
the proposed lookup table is related to the selection of 𝑚 and
is independent of the volume of input data.

From (3), we can see that in our proposed lookup table,
the rightmost one and its subsequent zeros in each entry
are not available for decoding. Therefore, to support direct
access to the lookup table, we need to modify the key 𝐾

accordingly before the table lookup. Precisely, we use

𝐾 ′ ←Modify(𝐾) = ((𝐾 ≪ 1) + 1) ≪ (𝑚 − |𝐾 | − 1) (7)

to look up the table, where ≪ denotes the bitwise left-shift
operation and sets zero at the least significant bit. Next, the
operation

(sym, len) ← LookUp(𝐾 ′)

uses 𝐾 ′ for the table lookup, and returns the corresponding
attributes sym and len.

To illustrate the details of constructing the lookup table,
an example is given below.

Example 1: Consider the codebook as

Σ = (𝑎, 𝑏, 𝑐) ,
𝑊 = (0, 10, 11) ,

(8)

and we have 𝐿𝑚𝑎𝑥 = 2. For simplifying the representation,
we choose 𝑚 = 3 as an example. Next, the 23 entries in
the lookup table are decoded. For the entry 𝐶 = 000, as
𝐿𝑣𝑎𝑙𝑖𝑑 (𝐶) = 0, thus we have sym = $, len = 0. For the entry

TABLE 2: The constructed lookup table for Example 1

C sym len
000 $ 0
001 a 1
010 a 1
011 a 1
100 $ 0
101 b 2
110 $ 0
111 c 2

Algorithm 1: Proposed rearranging algorithm
Input: A source sequence 𝑇 of 𝑁 symbols, the

average block size 𝑡.
Output: An encoded sequence 𝑋 .

1 Allocate 𝑁 × 𝑡 bits to 𝑋 ;
2 Build a stack 𝑈;
3 for 𝑖 = 1 to 𝑁 do
4 Calculate 𝑠𝑝(𝑖) and 𝑠𝑝(𝑖 + 1) via (2);
5 if |C(𝑇𝑖) | ≤ 𝑏𝑠(𝑖) then
6 𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖) + |C(𝑇𝑖) | − 1] ← C(𝑇𝑖);
7 for 𝑖 = 𝑠𝑝(𝑖) + |C(𝑇𝑖) | to 𝑠𝑝(𝑖 + 1) − 1 do
8 if 𝑈.𝑠𝑖𝑧𝑒() ≠ 0 then
9 𝑋 [𝑖] ← 𝑈.𝑝𝑜𝑝();

10 else
11 Divide C(𝑇𝑖) into C1 (𝑇𝑖) and C2 (𝑇𝑖);
12 𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖 + 1) − 1] ← C1 (𝑇𝑖);
13 𝑈.𝑝𝑢𝑠ℎ(C2 (𝑇𝑖));

14 while 𝑈.𝑠𝑖𝑧𝑒() ≠ 0 do
15 for 𝑖 = 1 to 𝑁 × 𝑡 do
16 if 𝑋 [𝑖] is empty then
17 𝑋 [𝑖] ← 𝑈.𝑝𝑜𝑝();

𝐶 = 001, 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐶) = 3 − 1 = 2, and the prior part of 𝑉𝑎𝑙𝑖𝑑 (𝐶)
is identical to the codeword 0 in the codebook, which is the
codeword of symbol 𝑎. Thus, the corresponding sym = 𝑎,
len = 1. We proceed similarly with entry 𝐶 = 010 and so on.
Finally, the lookup table shown in Table 2 is obtained.

3.3 Algorithms
In this subsection, we first present a rearranging algorithm
for the proposed method by using a stack, where each entry
in the stack is a bit. Then, the algorithm for decoding the
source sequence is given. Finally, we provide an access
algorithm based on the proposed lookup table.

3.3.1 Rearranging
We discuss it in the following three cases. In the first, if
|C(𝑇𝑖) | > 𝑏𝑠(𝑖), we divide C(𝑇𝑖) into two parts C(𝑇𝑖) =

C1 (𝑇𝑖) | |C2 (𝑇𝑖), where |C1 (𝑇𝑖) | = 𝑏𝑠(𝑖), and let 𝑋 [𝑠𝑝(𝑖) :
𝑠𝑝(𝑖 + 1) − 1] ← C1 (𝑇𝑖). Besides, we push C2 (𝑇𝑖) into the
stack bit by bit in the rightmost first order. In the second, if
|C(𝑇𝑖) | = 𝑏𝑠(𝑖), let 𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖 + 1) − 1] ← C(𝑇𝑖). Finally,
if |C(𝑇𝑖) | < 𝑏𝑠(𝑖), let 𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖) + |C(𝑇𝑖) | − 1] ← C(𝑇𝑖),
and if the stack is not empty, we start popping up a bit
from the stack and sequentially store it in 𝑋 [𝑠𝑝(𝑖) + |C(𝑇𝑖) | :
𝑠𝑝(𝑖 + 1) − 1], the popping process ends either if the stack is
empty or 𝑋 [𝑠𝑝(𝑖) + |C(𝑇𝑖) | : 𝑠𝑝(𝑖 + 1) − 1] is full.
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(a) Push the overflow 0 into stack (b) Pop a bit 0 from stack and store it (c) Push the overflow 1 into stack

(d) Pop a bit 1 from stack and store it (e) Rearranging finished

Fig. 4: A rearranging example

Algorithm 1 presents the proposed rearranging proce-
dure. In Algorithm 1, Lines 5–9 handle the case |C(𝑇𝑖) | ≤
𝑏𝑠(𝑖). Lines 10–13 handle the opposite. Lines 14–17 handle
the case that all symbols are encoded, but there is still
overflow data in the stack. As the blocks are cyclic, we
start from the first block looking for the free space in 𝑋 and
storing the data there.

To facilitate understanding, Figure 4 gives an example
for encoding an input sequence 𝑇 = 𝑏𝑎𝑐𝑎𝑏𝑑𝑏 with 7 sym-
bols, and the corresponding alphabets and codewords are
given by

Σ = (𝑎, 𝑏, 𝑐, 𝑑) ,
𝑊 = (10, 0, 110, 111) .

(9)

The block sizes are either 1 or 2 in this example.
In addition, if one wants to recover the source sequence

𝑇 with 𝑁 symbols from the rearranged bit sequence (see
below), we have to additionally store an index of the block,
denoted by PopLast, where 1 ≤ PopLast ≤ 𝑁 , which stored
the bit popped last from the stack during the rearranging,
e.g., in Figure 4(d), since the 7-th block stores the bit 1
popped last from the stack, we have PopLast = 7. Notably,
the block PopLast might have a small number of indexes
since the blocks are located in cyclic, and storing it brings us
a little additional overhead.

3.3.2 Decoding

The decoding algorithm for the source sequence is imple-
mented using a stack, where each entry in the stack is
also a bit. Let 𝐵𝑖 denote the bit sequence stored in the 𝑖-
th block. According to the description in Section 3.3.1, 𝐵𝑖

can be divided into the following three cases. First, if 𝐵𝑖 is a
codeword, we can directly decode it to get the 𝑖-th symbol.
In the second, if 𝐵𝑖 is the prefix part of a codeword, we need
to look for the overflow from subsequent blocks to complete
its decoding. Finally, if 𝐵𝑖 consists of a full codeword and
the overflow of the blocks preceding it, we can decode it to
get the 𝑖-th symbol, and the unused bits (i.e., the overflow
of the blocks preceding it) can be used for decoding other
symbols preceding it. In this subsection, to recover the entire
source sequence 𝑇 with 𝑁 symbols, we start decoding from
the PopLast -th block in the backward direction, where the
index PopLast has been recorded during the rearranging

process (see Section 3.3.1). There are 𝑁 steps in the backward
decoding. Precisely, let

𝜇 =

{
PopLast + 1 − 𝑖 if 1 ≤ 𝑖 ≤ PopLast,
𝑁 + PopLast + 1 − 𝑖 if PopLast + 1 ≤ 𝑖 ≤ 𝑁. (10)

In step 𝑖, where 1 ≤ 𝑖 ≤ 𝑁 , we read sequence 𝐵𝜇 in the
𝜇-th block to decode 𝑇 [𝜇]. For example, in Figure 4, as
PopLast = 7, we read 𝐵7 in step 1 to decode 𝑇 [7], then we
read 𝐵6 in step 2 to decode 𝑇 [6], and so on. The reason
for decoding in the backward direction is to first obtain the
overflow required by the codewords to be decoded later to
facilitate its decoding. Accordingly, if the read sequence is
decodable, we decode it to get the corresponding symbol.
We temporarily store unused bits on the stack if there are
unused bits in the decoding. In subsequent steps, when we
read a sequence that cannot be decoded, we achieve its
decoding with the help of the bits in the stack (see below
for details).

According to the store rules, in the backward decoding,
𝐵𝜇 in step 𝑖 has the following three cases. In the first, if
𝐵𝜇 holds a full codeword and some overflow, i.e., C(𝐵𝜇) =
(𝑇 [𝜇], 𝑟) ≠ 𝑁𝑈𝐿𝐿, where 1 ≤ 𝑟 < |𝐵𝜇 |, we can directly obtain
𝑇 [𝜇] and push the unused bits 𝐵𝜇 [𝑟 + 1 : |𝐵𝜇 |] into stack
bit by bit in rightmost first order. In the second, if 𝐵𝜇 is
just a codeword, we decode it to get 𝑇 [𝜇] and continue to
the next step. Finally, if 𝐵𝜇 is a prefix part of a codeword,
we start popping up a bit from the stack and sequentially
append it to the end of 𝐵𝜇, getting a new sequence 𝐵𝜇, the
popping process ends if C(𝐵𝜇) ≠ 𝑁𝑈𝐿𝐿. Notably, since we
have stored the overflow required by the codewords to be
decoded later in the previous steps, there are enough bits in
the stack to help decode 𝐵𝜇. When C(𝐵𝜇) ≠ 𝑁𝑈𝐿𝐿, we can
decode it to obtain the 𝜇-th symbol and continue to the next
step until the entire source sequence is decoded.

Algorithm 2 presents the proposed decoding algorithm.
In Algorithm 2, Lines 6–9 handle the case where 𝐵𝜇 can
be directly decoded. In this case, we directly obtain 𝑇 [𝜇],
and if there are unused bits, we temporarily store them
in the stack. Lines 10–13 handle the opposite. Particularly,
Lines 11–12 use the unused bits in the stack to help decode
it. Finally, Line 13 returns the decoded symbol 𝑇 [𝜇]. An
example is given below to illustrate Algorithm 2.

Example 2: Given a bit sequence 𝑋 = 0101110001101 with
13 bits, 𝑁 = 7 and PopLast = 7. The codebook is given in
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Algorithm 2: Proposed decoding algorithm
Input: An encoded sequence 𝑋 , the number of

symbols 𝑁 , the average block size 𝑡, the block
index PopLast.

Output: A source sequence 𝑇 .
1 Build an array 𝑇 of length 𝑁 , a stack 𝑈;
2 for 𝑖 = 1 to 𝑁 do
3 Calculate 𝜇 via (10);
4 Calculate 𝑠𝑝(𝜇) via (2);
5 𝐵𝜇 ← 𝑋 [𝑠𝑝(𝜇) : 𝑠𝑝(𝜇 + 1) − 1];
6 if C(𝐵𝜇) ≠ 𝑁𝑈𝐿𝐿 then
7 (𝑇 [𝜇], 𝑟) ← C(𝐵𝜇);
8 if 𝑟 < |𝐵𝜇 | then
9 push 𝐵𝜇 [𝑟 + 1 : |𝐵𝜇 |] into stack 𝑈 bit by bit

in rightmost first order;

10 else
11 while C(𝐵𝜇) = 𝑁𝑈𝐿𝐿 do
12 𝐵𝜇 ← 𝐵𝜇 +𝑈.𝑝𝑜𝑝();
13 (𝑇 [𝜇], 𝑟) ← C(𝐵𝜇);

(9), and each block’s start and end locations are determined
by (2). The backward decoding procedure starting from the
PopLast -th block is as follows. First, the sequence 01 in the
7-th block is read and decoded to a symbol 𝑏 with an unused
bit 1; then we have 𝑇 [7] = 𝑏 and push bit 1 into the stack.
Next, we move to the 6-th block and read the sequence 11.
Since C(11) = 𝑁𝑈𝐿𝐿, thus we pop bit 1 from the stack
and append them to the end of the sequence 11, getting
a new sequence 111. As (𝑑, 3) ← C(111), then 𝑇 [6] = 𝑑 is
determined. We proceed similarly in subsequent steps until
all symbols are decoded. Finally, we get the source sequence
𝑇 = 𝑏𝑎𝑐𝑎𝑏𝑑𝑏.

Algorithm 3: 𝑅𝐸𝐴𝐷_𝐿𝑂𝑂𝐾𝑈𝑃(𝑖)
Input: An encoded sequence 𝑋 , a block index 𝑖, the

proposed look-up table.
Output: (𝐵′

𝑖
, sym𝑖 , len𝑖), where 𝐵′

𝑖
is the modified

sequence and (sym𝑖 , len𝑖) is a pair of
attributes after the table lookup.

1 𝐵𝑖 ← 𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖 + 1) − 1];
2 𝐵′

𝑖
←Modify(𝐵𝑖);

3 (sym𝑖 , len𝑖) ← LookUp(𝐵′
𝑖
);

4 Return (𝐵′
𝑖
, sym𝑖 , len𝑖);

3.3.3 Accessing

In this subsection, we show a method to access the 𝑖-th
symbol via the lookup table with 2𝑚 entries described in
Section 3.2. The access algorithm is implemented based on
two stacks, 𝑈1 and 𝑈2, where each entry in 𝑈1 is with 𝑚 bits
and in 𝑈2 with a bit.

To access the 𝑖-th symbol, we first read the sequence 𝐵𝑖

in the 𝑖-th block. From Section 3.1 and Section 3.2, it can be
seen that the length of 𝐵𝑖 meets

|𝐵𝑖 | ∈ {⌊𝑡⌋, ⌊𝑡⌋ + 1} ≤ 𝐿𝑚𝑎𝑥 < 𝑚. (11)

Algorithm 4: Proposed access algorithm with a
lookup table

Input: An encoded sequence 𝑋 , the number 𝑁 of
symbols, and an index 𝑖.

Output: The 𝑖-th symbol 𝑠.
1 Build two stacks 𝑈1 and 𝑈2;
2 (𝐶, 𝑠, 𝑙) ← 𝑅𝐸𝐴𝐷_𝐿𝑂𝑂𝐾𝑈𝑃(𝑖);
3 if 𝑙 > 0 then
4 return 𝑠;
5 else
6 push 𝐶 into stack 𝑈1;
7 while 𝑈1.𝑠𝑖𝑧𝑒() ≠ 0 do
8 𝑘 ← the index of the next block;
9 (𝐶, 𝑠, 𝑙) ← 𝑅𝐸𝐴𝐷_𝐿𝑂𝑂𝐾𝑈𝑃(𝑘);

10 if 𝑙 = 0 then
11 push 𝐶 into stack 𝑈1;
12 else
13 if 𝑙 < 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐶) then
14 push 𝐶 [𝑙 + 1 : 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐶)] into stack 𝑈2

bit by bit in rightmost first order;
15 while 𝑈2.𝑠𝑖𝑧𝑒() ≠ 0 do
16 𝐸𝑡 ← 𝑈1.𝑝𝑜𝑝();
17 𝐸𝑡 ← 𝑉𝑎𝑙𝑖𝑑 (𝐸𝑡 );
18 𝑙 ← 0;
19 while 𝑈2.𝑠𝑖𝑧𝑒() ≠ 0 and 𝑙 = 0 do
20 𝐸𝑡 ← 𝐸𝑡 +𝑈2.𝑝𝑜𝑝();
21 𝐸 ′𝑡 ←Modify(𝐸𝑡 );
22 (𝑠, 𝑙) ← LookUp(𝐸 ′𝑡 );

23 if 𝑈2.𝑠𝑖𝑧𝑒() = 0 and 𝑙 = 0 then
24 push 𝐸 ′𝑡 into stack 𝑈1;

Therefore, to facilitate direct table lookup, we first need to
modify 𝐵𝑖 through 𝐵′

𝑖
← Modify(𝐵𝑖) to obtain an 𝑚-bit key

𝐵′
𝑖
. Next, we perform (sym𝑖 , len𝑖) ← LookUp(𝐵′

𝑖
), i.e., using

𝐵′
𝑖

to look up the table. For clarity, Algorithm 3 defines a
function 𝑅𝐸𝐴𝐷_𝐿𝑂𝑂𝐾𝑈𝑃(𝑖) that covers the above three
steps: read 𝐵𝑖 , modify 𝐵𝑖 and look up the table using 𝐵′

𝑖
.

Finally, 𝑅𝐸𝐴𝐷_𝐿𝑂𝑂𝐾𝑈𝑃(𝑖) returns the modified sequence
𝐵′
𝑖

and a pair of attributes (sym𝑖 , len𝑖) after the table lookup.
From (5)–(6), len𝑖 has the following two cases.
1. If len𝑖 > 0, 𝐵𝑖 is decodable, thus the symbol sym𝑖 is the

desired output.
2. If len𝑖 = 0, 𝐵𝑖 is not decodable, we need to find its over-

flow from subsequent blocks to complete its decoding.
Next, we give the decoding details for Case 2 above.

First, we push 𝑚-bit 𝐵′
𝑖

into stack 𝑈1, then we move to the
next block, proceeding with the procedure in Algorithm
3. For any subsequent block 𝑘 , the table-lookup result
(𝐵′

𝑘
, sym𝑘 , len𝑘) ← 𝑅𝐸𝐴𝐷_𝐿𝑂𝑂𝐾𝑈𝑃(𝑘) can be divided into

the following three cases. Note that, from (4), the valid
sequence length for decoding in 𝐵′

𝑘
is 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐵′𝑘).

(i) If len𝑘 = 0, 𝐵𝑘 cannot be decoded. In this case, we push
𝐵′
𝑘

into stack 𝑈1.
(ii) If 0 < len𝑘 = 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐵′𝑘), 𝐵𝑘 is just a codeword, without

any overflow of other codewords. In this case, we
move to the next block.
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(iii) If 0 < len𝑘 < 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐵′𝑘), 𝐵𝑘 consists of a full codeword
and some overflow of the blocks preceding it. In this
case, if stack 𝑈1 is not empty, we will use the unused
bits (i.e., the sequence 𝐵′

𝑘
[len𝑘 + 1 : 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐵′𝑘)]) to help

decode the sequences in stack 𝑈1.

We continue the above procedures until we read a block
𝑗 that meets Case (iii). That is, we have (𝐵′

𝑗
, sym 𝑗 , len 𝑗 ) ←

𝑅𝐸𝐴𝐷_𝐿𝑂𝑂𝐾𝑈𝑃( 𝑗) and 0 < len 𝑗 < 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐵′𝑗 ). Next, we
use the unused bits 𝐵′

𝑗
[len 𝑗 + 1 : 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐵′𝑗 )] to help decode

sequences stored in stack 𝑈1. Concretely, we first push
𝐵′

𝑗
[len 𝑗 + 1 : 𝐿𝑣𝑎𝑙𝑖𝑑 (𝐵′𝑗 )] into stack 𝑈2 bit by bit in rightmost

first order. Then, we pop 𝑚-bit sequence 𝐸𝑡 from stack
𝑈1. Note that the sequences stored in stack 𝑈1 have been
modified to 𝑚-bit, i.e., the valid sequence for decoding in
any 𝐸𝑡 is 𝑉𝑎𝑙𝑖𝑑 (𝐸𝑡 ). Next, we start popping up bit from stack
𝑈2 and sequentially append it to the end of 𝑉𝑎𝑙𝑖𝑑 (𝐸𝑡 ), getting
a new sequence ˆ𝑉𝑎𝑙𝑖𝑑 (𝐸𝑡 ), and then modify ˆ𝑉𝑎𝑙𝑖𝑑 (𝐸𝑡 ) to an
𝑚-bit 𝐸 ′𝑡 to lookup the table. The popping process ends if
the stack 𝑈2 is empty or 𝐸 ′𝑡 is decodable. When the popping
ends, there are three cases (except for the case where stack
𝑈2 is not empty and 𝐸 ′𝑡 is not decodable, because in this
case, we continue popping up bits from stack 𝑈2 until stack
𝑈2 is empty or 𝐸 ′𝑡 is decodable) as follows.

1) If stack 𝑈2 is empty, but 𝐸 ′𝑡 is still not decodable,
according to the store rules, the block storing 𝐸𝑡 still
has an overflow in the blocks following the 𝑗-th block.
Therefore, we push 𝐸 ′𝑡 into stack 𝑈1 and move to the
next block to find the overflow.

2) If stack 𝑈2 is empty and 𝐸 ′𝑡 is decodable, we have
the following two cases. In the first, if stack 𝑈1 is not
empty (this indicates that the 𝑖-th symbol has not been
decoded), we move to the next block and look for the
overflow to help decode the sequences in stack 𝑈1.
In the second, if stack 𝑈1 is empty, decoding the 𝑖-th
symbol is achieved.

3) If stack 𝑈2 is not empty and 𝐸 ′𝑡 is decodable, we have
the following two cases. First, if stack 𝑈1 is not empty,
we pop the 𝑚-bit sequence from stack 𝑈1 and use the
remaining bits in stack 𝑈2 to help decode it. In the
second, if stack 𝑈1 is empty, we can conclude that
decoding the 𝑖-th symbol is achieved.

We continue the above procedures until stack 𝑈1 is empty.
When stack 𝑈1 is empty, decoding the 𝑖-th symbol is fin-
ished.

Algorithm 4 gives the corresponding algorithm details.
In Algorithm 4, Lines 3–4 handle the case that the sequence
in the 𝑖-th block can be directly decoded. Lines 5–24 handle
the opposite. In particular, Lines 13–24 use the unused bits
to help decode the sequences in stack 𝑈1. Below we give an
example to explain Algorithm 4.

Example 3: Consider a bit sequence 𝑋 = 110001, 𝑁 = 4
and a codebook shown in (8). The corresponding lookup
table is given in Table 2. From (2), it can be determined
that the block sizes are 1, 2, 1, 2, respectively. To access the
first symbol, we have 𝐵1 = 1, 𝐶 = Modify(𝐵1) = 110. As
($, 0) ← LookUp(110) in Table 2, we push sequence 110 into
stack 𝑈1 and move to the next block. Next, we have 𝐵2 = 10,
𝐶 = Modify(𝐵2) = 101. Considering (𝑏, 2) ← LookUp(101)
and 𝐿𝑣𝑎𝑙𝑖𝑑 (101) = 2, i.e., 𝐵2 is just a codeword without any
overflow of other codewords. Thus we move to the third

block and have 𝐵3 = 0, 𝐶 = Modify(𝐵3) = 010. Similarly, 𝐵3 is
just a codeword. Next, we move to the 4-th block and have
𝐵4 = 01, 𝐶 = Modify(𝐵4) = 011. As (𝑎, 1) ← LookUp(011) and
𝐿𝑣𝑎𝑙𝑖𝑑 (011) = 2 > 1, we push the unused bit 1 in 𝐵4 into
stack 𝑈2 and use it to help decode the top entry 𝐸𝑡 = 110
in stack 𝑈1. The valid sequence in 𝐸𝑡 is 𝑉𝑎𝑙𝑖𝑑 (𝐸𝑡 ) = 1, then
we pop up bit 1 from stack 𝑈2 and append it to the end of
𝑉𝑎𝑙𝑖𝑑 (𝐸𝑡 ), resulting in a new sequence ˆ𝑉𝑎𝑙𝑖𝑑 (𝐸𝑡 ) = 11. Next,
we have 𝐶 = Modify( ˆ𝑉𝑎𝑙𝑖𝑑 (𝐸𝑡 )) = 111 and use sequence 111
to lookup the table. Since (𝑐, 2) ← LookUp(111) and stack 𝑈1
are empty now, we can conclude that the first symbol in the
source sequence is 𝑐.

4 ACCESS ALGORITHM WITH FEWER BITS FOR
CERTAIN CODES

Section 2.2.1 states that canonical Huffman code can deter-
mine the codeword length by its prefix. In this paper, a code
whose codeword length can be determined by the prefix
is called a canonical form code. In this section, we show
that when the encoding scheme is performed on a canonical
form code in the proposed rearranging method, the number
of bits reads for direct access can be reduced.

Let 𝐿𝑖 denote the codeword length of the 𝑖-th symbol,
where 1 ≤ 𝑖 ≤ 𝑁 . Let 𝑝𝑖 denote the prefix that can determine
𝐿𝑖 . Also, let 𝑜𝑖 = 𝑏𝑠(𝑖)−𝐿𝑖 be an overflow variable to indicate
whether the 𝑖-th block overflows. According to the store
rules, 𝑜𝑖 has the following three cases. First, if 𝑜𝑖 = 0, i.e.,
𝑏𝑠(𝑖) = 𝐿𝑖 , we can conclude that the sequence 𝐵𝑖 in the 𝑖-
th block is just a full codeword. In the second, if 𝑜𝑖 > 0,
i.e., 𝑏𝑠(𝑖) > 𝐿𝑖 , we can conclude that 𝐵𝑖 consists of a full
codeword and the overflow of some blocks preceding it. In
the third, if 𝑜𝑖 < 0, i.e., 𝑏𝑠(𝑖) < 𝐿𝑖 , we can conclude that
𝐵𝑖 is a prefix part of a codeword, and its overflow is stored
in subsequent blocks. Especially this section considers the
case where the length of each prefix that can determine the
codeword length does not exceed the corresponding block
size, i.e., |𝑝𝑖 | ≤ 𝑏𝑠(𝑖) for 1 ≤ 𝑖 ≤ 𝑁 , where |𝑝𝑖 | is the length
of 𝑝𝑖 . This can ensure that in any block 𝑖, we can read part
of 𝐵𝑖 or the full 𝐵𝑖 to determine the codeword length 𝐿𝑖 .

Before formally giving the algorithm details for Case
𝑏𝑠(𝑖) > 𝐿𝑖 , two facts need to be highlighted. First, in
finding the overflow of the 𝑖-th block, when we move to
a subsequent block, we do not need to decode the symbol
in the current block but only need to determine whether
the current block stores the overflow of the 𝑖-th block. If it
does, we read the overflow to help decode the 𝑖-th symbol.
Otherwise, we should continue with the next block. Second,
if any block 𝑘 following the 𝑖-th block has free space after
storing the codeword of the 𝑘-th symbol, it will first store the
overflow of the nearest block preceding it. If a block occurs
an overflow between the 𝑖-th block and the 𝑘-th block, the
free space in the 𝑘-th block will store the overflow of this
block first instead of the overflow of the 𝑖-th block.

The algorithm details are now given below. Let

𝐶𝑢𝑚𝑢(𝛼, 𝛽) =
𝛼+𝛽∑︁

𝑘=𝛼+1
𝑜𝑘 =

𝛼+𝛽∑︁
𝑘=𝛼+1

𝑏𝑠(𝑘) − 𝐿𝑘 =

𝛼+𝛽∑︁
𝑘=𝛼+1

𝑏𝑠(𝑘) −
𝛼+𝛽∑︁

𝑘=𝛼+1
𝐿𝑘

denote the cumulative overflow variable of 𝛽 consecutive
blocks following the 𝛼-th block, where 𝛼, 𝛽 ∈ N+. To find the
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overflow of the 𝑖-th block, we first calculate 𝐶𝑢𝑚𝑢(𝑖, 1). If
𝐶𝑢𝑚𝑢(𝑖, 1) ≤ 0, i.e., 𝑏𝑠(𝑖 + 1) ≤ 𝐿𝑖+1, the (𝑖 + 1)-th block has
no free space, thus it does not store the overflow of the 𝑖-
th block. Then, we calculate 𝐶𝑢𝑚𝑢(𝑖, 2). If 𝐶𝑢𝑚𝑢(𝑖, 2) ≤ 0,
i.e.,

∑𝑖+2
𝑘=𝑖+1 𝑏𝑠(𝑘) ≤

∑𝑖+2
𝑘=𝑖+1 𝐿𝑘 , then we have two cases.

In the first, if
∑𝑖+2

𝑘=𝑖+1 𝑏𝑠(𝑘) =
∑𝑖+2

𝑘=𝑖+1 𝐿𝑘 , this means that
the size of the next two blocks is just enough to store
the codewords of the next two symbols, so the next two
blocks do not store the overflow of the 𝑖-th block. In the
second, if

∑𝑖+2
𝑘=𝑖+1 𝑏𝑠(𝑘) <

∑𝑖+2
𝑘=𝑖+1 𝐿𝑘 , this means that the next

two blocks have an overflow, and its overflow is stored
in the blocks following the (𝑖 + 2)-th block. Hence, these
two blocks do not store the overflow of the 𝑖-th block. In
conclusion, if 𝐶𝑢𝑚𝑢(𝑖, 2) ≤ 0, we can conclude that the
next two blocks do not store the overflow of the 𝑖-th block.
Similarly, we continue to calculate 𝐶𝑢𝑚𝑢(𝑖, 3), 𝐶𝑢𝑚𝑢(𝑖, 4),
· · · , 𝐶𝑢𝑚𝑢(𝑖, 𝑗) by enlarging 𝑗 until we have 𝐶𝑢𝑚𝑢(𝑖, 𝑗) > 0.
When 𝐶𝑢𝑚𝑢(𝑖, 𝑗) > 0 is encountered for the first time,
according to the store rules, the last 𝐶𝑢𝑚𝑢(𝑖, 𝑗) bits in the
(𝑖 + 𝑗)-th block contains the overflow of the 𝑖-th block.
Therefore, we concatenate the last 𝐶𝑢𝑚𝑢(𝑖, 𝑗) bits in the
(𝑖 + 𝑗)-th block to the end of 𝐵𝑖 and update 𝑜𝑖 . Precisely,
let

𝐵𝑖 ← 𝐵𝑖 | | the last 𝐶𝑢𝑚𝑢(𝑖, 𝑗) bits in 𝐵𝑖+ 𝑗 ,

𝑜𝑖 ← 𝑜𝑖 + 𝐶𝑢𝑚𝑢(𝑖, 𝑗).
(12)

where | | denotes the concatenation. Once the concatenation
and update operations above are completed, 𝑜𝑖 has the
following two cases. In the first, if 𝑜𝑖 ≥ 0, this means that
the overflow of the 𝑖-th block is completely found, thus we
have C(𝐵𝑖) ≠ 𝑁𝑈𝐿𝐿 and the 𝑖-th symbol is obtained. In the
second, if 𝑜𝑖 < 0, the remaining overflow of the 𝑖-th block is
stored in the blocks following the (𝑖 + 𝑗)-th block. Therefore,
we continue to calculate 𝐶𝑢𝑚𝑢(𝑖 + 𝑗 , 𝑓 ) starting from 𝑓 = 1
until we have 𝐶𝑢𝑚𝑢(𝑖 + 𝑗 , 𝑓 ) > 0. When 𝐶𝑢𝑚𝑢(𝑖 + 𝑗 , 𝑓 ) > 0,
we perform concatenation and update operations. We repeat
the above steps, and the repetition stops when 𝑜𝑖 ≥ 0. When
𝑜𝑖 ≥ 0, the decoding of the 𝑖-th symbol is achieved.

The above description shows that when we access the
𝑖-th symbol if the codeword length of the 𝑖-th symbol does
not exceed the block size, i.e., 𝐿𝑖 ≤ 𝑏𝑠(𝑖), the number of
bits read to access the 𝑖-th symbol is |𝑝𝑖 | + (𝐿𝑖 − |𝑝𝑖 |) = 𝐿𝑖 .
Otherwise, we need to find the overflow of the 𝑖-th block
from the blocks following the 𝑖-th block. In the latter, for any
subsequent block 𝑘 , we first read the prefix 𝑝𝑘 to determine
its codeword length 𝐿𝑘 . By comparing 𝐿𝑘 and 𝑏𝑠(𝑘), we can
determine whether the 𝑘-th block stores the overflow of the
𝑖-th block and if it does, we read the overflow; otherwise,
we move to the next block. That is, we neither read the full
codeword of the 𝑘-th symbol nor decode the 𝑘-th symbol
such that the number of bits reads and the time required for
access are reduced.

Algorithm 5 presents the details, and an example is
given below to illustrate it. In Algorithm 5, Lines 2–4 han-
dle the case where the codeword length does not exceed
the block size, i.e., it can be directly decoded. Lines 5–16
handle the opposite. In particular, Lines 10–13 calculate the
cumulative overflow variable in the following several blocks
until 𝐶𝑢𝑚𝑢 > 0. We perform the concatenation and update
operations in Lines 14–15. Finally, Line 16 completes the
decoding of the 𝑖-th symbol.

Algorithm 5: Proposed access algorithm for canon-
ical form codes

Input: An encoded sequence 𝑋 , the average block
size 𝑡, and an index 𝑖.

Output: The 𝑖-th symbol 𝑣.
1 Read the prefix 𝑝𝑖 to determine 𝐿𝑖 ;
2 if 𝐿𝑖 ≤ 𝑏𝑠(𝑖) then
3 𝐵𝑖 ← 𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖) + 𝐿𝑖 − 1];
4 (𝑣, 𝑟) ← C(𝐵𝑖);
5 else
6 𝐵𝑖 ← 𝑋 [𝑠𝑝(𝑖) : 𝑠𝑝(𝑖 + 1) − 1];
7 𝑜𝑖 ← 𝑏𝑠(𝑖) − 𝐿𝑖 ;
8 while 𝑜𝑖 < 0 do
9 𝐶𝑢𝑚𝑢 ← 0 ;

10 while 𝐶𝑢𝑚𝑢 ≤ 0 do
11 𝑘 ← the index of the next block;
12 read the prefix 𝑝𝑘 to determine 𝐿𝑘 ;
13 𝐶𝑢𝑚𝑢 ← 𝐶𝑢𝑚𝑢 + 𝑜𝑘 ;

14 𝐵𝑖 ← 𝐵𝑖 | | the last 𝐶𝑢𝑚𝑢 bits in 𝐵𝑘 ;
15 𝑜𝑖 ← 𝑜𝑖 + 𝐶𝑢𝑚𝑢;

16 (𝑣, 𝑟) ← C(𝐵𝑖);

Example 4: Given a bit sequence 𝑋 = 0101110001101,
𝑁 = 7 and its codebook is shown in (9). The correspon-
dence between prefix and codeword length is as follows:
{0 → 1, 10 → 2, 11 → 3}, where the left and right sides
of the arrow denote the prefix that can determine the
codeword length and the corresponding codeword length,
respectively. And we obtain the start and end locations of
each block by (2) and further get the sizes of these 7 blocks
are 1, 2, 2, 2, 2, 2, 2, respectively. The steps to access the
3-th symbol are as follows. First, we read the prefix 11 in
the 3-th block, which determines the codeword length is 3.
However, the size of the 3-th block is 2, so we have 𝐵3 = 11
and 𝑜3 = 2 − 3 = −1. Second, we calculate the accumulation
𝐶𝑢𝑚𝑢(3, 𝑗) starting from 𝑗 = 1. This accumulation stops
when 𝐶𝑢𝑚𝑢(3, 𝑗) > 0, thus we have 𝐶𝑢𝑚𝑢(3, 2) = 1 > 0.
Then, we perform the concatenation and update operations
and have 𝐵3 = 11| |0 = 110 and 𝑜3 = −1 + 1 = 0. Finally, we
decode sequence 110 to symbol 𝑐. The 3-th symbol in the
source sequence is 𝑐.

5 SIMULATIONS AND ANALYSIS

In this section, we first give the simulations of the proposed
method and three solutions with direct access capability.
Second, we prove that when additional space is not allowed,
the number of bits per access read in the proposed method
is no more than that in the conventional method.

5.1 Simulations
We consider the direct access in a sequence of symbols,
and the programs are written in C, compiled with gcc with
optimization level -O3. We benchmarked the schemes on the
platform equipped with Intel(R) Core(TM) i7-6700K CPU
@ 4.00GHz and 32 GB main memory on Ubuntu 18.04.
To evaluate the proposed compression scheme, we choose
seven different data benchmarks covering a variety of data
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TABLE 3: Description of the datasets used

File Name Alphabet Size Input Size (Bytes)
book1 82 768,771
book2 96 610,856

alice19.txt 74 152,089
asyoulik.txt 68 125,179

dickens 100 10,192,446
nci 62 33,553,445

webster 98 41,458,703

types: Calgary and Canterbury Corpus1, canterburycorpus2,
and silesia.3 Table 3 presents some information about the
data files involved, where the first two columns give the
file name and the alphabet size. The last column shows the
input file size in bytes.

Fig. 5: Space usage evaluation (𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙)

We implemented the algorithms as suggested by [20]
(Nbss) and [35] (Huf-RS), as well as the conventional method
(Conv), which encodes directly with Huffman coding. Since
the codeword location of the 𝑖-th symbol is unknown on
the Huffman-encoded stream, it needs to decode all pre-
ceding 𝑖 − 1 symbols to decode the 𝑖-th symbol. Among
them, the underlying compression algorithm in our im-
plementation of Nbss uses an optimal length-prefix com-
pression by prepending a length field to a non-prefix code
𝑔, where 𝑔 lists all symbols in decreasing probabilities.
It maps them, starting with the most probable one, to
binary sequences {0, 1, 00, 01, 10, 11, 000, 001, 010, 011 · · · } of
increasing lengths. For instance, suppose 𝑥1, 𝑥2, 𝑥3, · · · are all
the symbols in decreasing probabilities, then 𝑥1 is mapped to
code 0, and 𝑥5 is mapped to code 10, and so on. In contrast to
prefix code, non-prefix code achieves a better compression
ratio. Moreover, we prioritize storage efficiency by selecting
the fixed block size in Nbss. Also, in our implementation of
Huf-RS, the sampling frequency 𝑆 is selected as 10, which is
the best sampling ratio declared in [35].

Next, we give four simulations, and the details are as
follows. First, we test the space usage for storing encoded
streams in these four schemes: Conv, Huf-RS, Nbss and the

1. http://www.data-compression.info/Corpora/CalgaryCorpus/.
2. http://www.data-compression.info/Corpora/

CanterburyCorpus/.
3. https://sun.aei.polsl.pl//~sdeor/index.php?page=silesia.

proposed method (Ours). Among them, the prefix coding
used in Conv, Huf-RS, and Ours are both Huffman coding.
The space usage is measured in 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 and is com-
puted by

Space usage =
|C(𝑇) | + overhead(𝑏𝑖𝑡𝑠)

𝑁
,

where the overhead denotes the size of additional space to
store the encoded stream in bits. Figure 5 shows the results,
and the values are labeled in the bars. It can be seen that
the space cost of the proposed method is equal to that of the
conventional method, and neither requires additional space
to store the encoded stream. However, Nbss consumes, on
average, at least one more bit per symbol than the proposed
method, and its space usage mainly benefits from non-prefix
codes. In other words, the space usage gap will be even
larger if Nbss uses Huffman coding instead of non-prefix
code as our proposed method. In addition, the space cost of
Huf-RS scheme is about 40% more bits than the proposed
method, and it has the worst space requirements in most
cases.

We also test the number of decoded symbols in Conv,
Nbss and Ours under the worst and average (abbreviated as
𝑎𝑣𝑔) cases when we randomly access 10, 000 locations. The
location is selected by mod(𝑟𝑎𝑛𝑑 (), 𝑁) + 1, which returns
a pseudo-random integral number in the range between 1
and 𝑁 , where mod(·, ·) is the remainder operator. Figure 6
displays the simulation results. The values are labeled in the
bars, and the bounds in the proposal are plotted with the
results. The upper bounds of the proposed scheme in the
worst and average cases are 𝑁 and 𝑁+1

2 (see Section 5.2 for
details), respectively. Figure 6 shows that when the encoded
stream does not use additional space, the average number
of decoded symbols in the proposed method is significantly
less than that in the conventional method. In the worst case,
sometimes, this number is close to that in the conventional
method. This is because the blocks in the proposed method
are cyclic, which may require decoding 𝑁 symbols to access
a symbol. Thus, the number of decoded symbols may be
large in certain cases. This is also a price for the proposal
to support direct access when additional space for stor-
ing encoded stream is not allowed. Correspondingly, with
the help of additional data space, the number of decoded
symbols in Nbss is less than that in the proposed method.
However, Nbss has a hard requirement for additional space
to store the encoded stream, this may not be available for
some memory-constrained scenarios.

Next, we test the direct access performance of the above
four solutions. All results are an average of 10, 000 runs
on each encoded file. The direct access performance is
measured in 𝑏𝑖𝑡𝑠/𝑎𝑐𝑐𝑒𝑠𝑠 and 𝑢𝑠𝑒𝑐/𝑎𝑐𝑐𝑒𝑠𝑠, which denote the
number of bits per access read and the time per access
consumed in a microsecond, respectively. Figure 7 gives the
simulation results, and the values are labeled in the bars,
where Ours_cano denotes the proposed method applied to
canonical Huffman code (see Section 4 for details), and
Conv, Ours and Ours_cano do not require additional space
to store the encoded stream. In contrast, the solutions Huf-
RS and Nbss require additional space (see Figure 5 for
details). In terms of the number of bits read as shown in
Figure 7(a), it can be seen that when the encoded stream
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(a) (b)

Fig. 6: The number of decoded symbols when randomly accessing an item: (a) in the worst case and (b) in the average
case

(a) (b)

Fig. 7: Direct access performance evaluation: (a) the number of bits read and (b) the time consumed

does not allow additional space, the bits read to access
a symbol in the proposed method is above two orders
of magnitude less than that in the conventional method.
The compact property of canonical Huffman code can help
reduce the number of bits read. When the encoded stream
allows the use of additional space, Huf-RS reads fewer bits
than Nbss in most cases, but as shown in Figure 5, Huf-
RS has a higher space requirement. In terms of the time
consumed as shown in Figure 7(b), if the additional space
is not allowed, the proposed method takes significantly less
time than the conventional method. If not, Huf-RS and Nbss
perform better than the proposal, and Huf-RS benefits from
the use of standard rrr structure to provide constant time
queries. In conclusion, when the space overhead of storing
the encoded stream is the key metric, the proposed method
can achieve a good trade-off between space usage and access
performance.

Finally, we suggest an improved version when a little
auxiliary space is allowed. In this case, rather than applying

the proposed rearranging method to the entire input data,
we restrict it to operate on smaller chunks. Specifically, we
first chunk the input data into equal-sized chunks, and the
last chunk may be smaller. That is, if 𭟋 is the number of
symbols in the equal-sized chunks, then the last chunk has
mod (𝑁, 𭟋) symbols, where 𝑁 is the total number of symbols
in the input data and mod(·, ·) is the remainder operator.
Next, we apply the proposed rearranging method to each
chunk individually. The encoded stream of each chunk
is serialized into the final encoded stream, maintaining
the original ordering. To support direct access, we require
paying a small amount of additional space to record the
indices of chunk boundaries in the final encoded stream.
Consequently, to direct access the 𝑖-th symbol, we first
retrieve the ⌈𝑖/𭟋⌉-th chunk’s boundary, then operate on the
⌈𝑖/𭟋⌉-th chunk-encoded sequence to decode the 𝑖-th symbol.
In this case, we decode at most 𭟋 symbols to obtain the 𝑖-
th symbol, reducing the number of bits read. Table 4 gives
the direct access performance with 𭟋 = 10, 000, where the
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additional space ratio for the input data 𝑇 is defined as

Additional space ratio =
⌊ 𝑁𭟋 ⌋ × ⌈𝑙𝑜𝑔2 |C(𝑇) |⌉

|C(𝑇) | , (13)

where |C(𝑇) | is the final encoded stream length, and ⌊ 𝑁𭟋 ⌋
is the number of indexes recorded with the first index
(referring to index 0) omitted. The larger ratio in the nic
file is mainly because the nic file itself is a low entropy file,
and its encoded length is quite large. From the comparison
with Figure 7, it is observed that by paying a small price
in storage space (approximately 0.057% additional storage
space in the simulation), the number of bits per access read
in the proposed method is reduced by about 90%. Indeed,
the direct access performance in the improved version is
tied to the chosen chunk size. A smaller chunk size results
in a better access performance but at the cost of a higher
additional space ratio. Table 5 tabulates the results when
𭟋 = 30 is chosen. In Table 5, columns 2–4 list the additional
space ratios for Huf-RS, Nbss and Ours. It can be seen that
the proposed method has a lower additional space ratio than
both Huf-RS and Nbss. Columns 5–8 give the direct access
performance of Huf-RS, Nbss, Ours and Ours_cano. One
can see that the proposed method can provide comparable
performance to Huf-RS. Further, Ours_cano can sometimes
even achieve better direct access performance than Huf-
RS. In summary, when the improved version increases the
proportion of additional space ratio (but still less than that in
Huf-RS and Nbss), it can achieve direct access performance
comparable to Huf-RS and Nbss.

5.2 Analysis

The cost of accessing a symbol is the total number of bits
read. When the average number of bits in a block is denoted
by 𝑡, decoding the 𝑖-th symbol by the conventional method
requires reading 𝑖 blocks, and each block has around 𝑡 bits.
Thus the cost is 𝑖 × 𝑡 bits. Similarly, in the proposed method,
assuming that it reads 𝜂 blocks to decode the 𝑖-th symbol,
where 𝜂 ∈ N+, thus the cost is 𝜂×𝑡 bits. Therefore, on average,
comparing the number of bits read by the two methods can
be approximated as the number of blocks they read.

Let 𝑋 be a random variable, which denotes the number
of blocks read to decode a symbol in the conventional
method. Let P(𝑋 = 𝑖) denote the probability of decoding a
symbol that requires reading 𝑖 blocks, and the total number
of symbols is 𝑁 . Then, the expected value of the random
variable 𝑋 is expressed as

E(𝑋) =
𝑁∑︁
𝑖=1

P(𝑋 = 𝑖) × 𝑖. (14)

Similar to the work in [30], we consider the case that
each symbol has an equal probability of being decoded.
Therefore,

E(𝑋) =
𝑁∑︁
𝑖=1

1
𝑁
× 𝑖 = 𝑁 + 1

2
. (15)

Let 𝑌 be a random variable, which denotes the number of
blocks required to decode a symbol in the proposed method.
To show that the proposed method reads fewer bits than the

conventional method, it is necessary to prove that E(𝑌 ) ≤
E(𝑋), i.e.,

E(𝑌 ) ≤ 𝑁 + 1
2

. (16)

Before formally proving (16), we first define a new
structure called an envelope. Assuming that the proposed
coding scheme requires reading the sequences in block 𝑖,
block 𝑖 + 1, · · · , block 𝑖 + 𝜆 to decode the 𝑖-th symbol, where
1 ≤ 𝑖 ≤ 𝑁 , 𝜆 ∈ N. Let 𝐿 (𝑖) = 𝑖, 𝐻 (𝑖) = 𝑖 + 𝜆 denote the
start and end block indices when decoding the 𝑖-th symbol,
respectively. Note that as blocks are cyclic, there may be
𝐻 (𝑖) > 𝑁 , i.e., the (𝑁 + 𝑖)-th block and the 𝑖-th block refer to
the same block. For any 𝑖, 𝑗 ∈ N+, let [𝑖, 𝑗] := {𝑖, 𝑖 + 1, · · · , 𝑗},
the definition of an envelope is given below.

Definition 1. For any 𝑗 ∈ [𝑖 + 1, 𝑁 + 𝑖 − 1], if it does not exist

𝐿 (𝑖) < 𝐿( 𝑗) < 𝐻 (𝑖) < 𝐻 ( 𝑗), (17)

then we define ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩ to be an envelope, and the set of block
indices in the envelope can be expressed as 𝑒𝑖 = {𝐿 (𝑖), 𝐿(𝑖) +
1, . . . , 𝐻 (𝑖)}, thus the length of ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩ is 𝐻 (𝑖) − 𝐿 (𝑖) + 1.
It is worth noting that there may be an envelope consisting of a
single block, i.e., 𝐿 (𝑖) = 𝐻 (𝑖), which we call a closed envelope.

Fig. 8: An envelope example ⟨𝐿 (1), 𝐻 (1)⟩

Fig. 9: 𝐿 (𝑖) < 𝐿( 𝑗) < 𝐻 (𝑖) < 𝐻 ( 𝑗)

In Figure 8, an envelope ⟨𝐿 (1), 𝐻 (1)⟩ is shown, where
𝐿 (1) = 1, 𝐻 (1) = 9, the head and tail of the blue arc point
to the block indices where decoding starts and ends, respec-
tively, and the green circles represent the closed envelopes.

Based on the above definition, we prove below that in
the proposed coding scheme, the ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩ obtained by
decoding any symbol are all envelopes.

Lemma 1. For a source sequence of 𝑁 symbols, the ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩
obtained by the proposed coding scheme to decode the 𝑖-th
symbol is an envelope, where 1 ≤ 𝑖 ≤ 𝑁 , that is, for any
𝑗 ∈ [𝑖 + 1, 𝑁 + 𝑖 − 1], the inequality 𝐿 ( 𝑗) < 𝐻 (𝑖) < 𝐻 ( 𝑗) does
not hold.

Proof. We prove this by contradiction. It is assuming 𝐿 ( 𝑗) <
𝐻 (𝑖) < 𝐻 ( 𝑗) holds, such as in Figure 9. According to the
neighbor-based storage scheme, the free space in block 𝐻 (𝑖)
should first store the overflow of the 𝑗-th codeword. If the
overflow of the 𝑗-th codeword is all stored and there is still
free space, the overflow of the 𝑖-th codeword can be stored
there. Therefore, the end block index of decoding the 𝑗-th
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TABLE 4: Direct access performance when 𭟋 = 10, 000 is chosen

File Additional space ratio(%) Direct access (𝑏𝑖𝑡𝑠/𝑎𝑐𝑐𝑒𝑠𝑠)
Ours Ours_cano

book1 0.0477 605.16 447.79
book2 0.0455 1015.12 744.35

alice29.txt 0.0428 328.44 108.94
asyoulik.txt 0.0396 125.90 37.79

dickens 0.0568 6073.30 4136.81
nci 0.1108 1645.43 907.06

webster 0.0560 17235.11 3720

TABLE 5: Direct access performance when 𭟋 = 30 is chosen

File Additional space ratio(%) Direct access (𝑏𝑖𝑡𝑠/𝑎𝑐𝑐𝑒𝑠𝑠)
Huf-RS [35] Nbss [20] Ours Huf-RS [35] Nbss [20] Ours Ours_cano

book1 39.25 31.58 16.08 25.27 31.32 24.13 19.72
book2 38.30 24.22 15.20 26.25 148.45 28.45 21.16

alice29.txt 38.61 30.15 14.45 25.30 18.65 16.10 12.52
asyoulik.txt 27.65 23.97 13.76 26.62 61.81 24.31 20.45

dickens 39.82 31.29 18.95 25.20 87.76 27.16 23.50
nci 47.54 104.91 36.92 13.34 187.46 12.23 10.16

webster 39.12 19.76 18.65 27.54 94.17 27.62 24.47

symbol cannot exceed 𝐻 (𝑖); that is, 𝐻 ( 𝑗) > 𝐻 (𝑖) does not
hold. The proof is completed. □

Next, we define another structure called the maximum
envelope.

Definition 2. Given 𝑁 envelopes {⟨𝐿 ( 𝑗), 𝐻 ( 𝑗)⟩}𝑁
𝑗=1, if it does

not exist 𝑒𝑖 ⫋ 𝑒 𝑗 , where ⫋ denotes proper subset. Then we call
⟨𝐿 (𝑖), 𝐻 (𝑖)⟩ the maximum envelope.

For the two envelopes ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩ and ⟨𝐿 ( 𝑗), 𝐻 ( 𝑗)⟩, if
𝑒𝑖 ⫋ 𝑒 𝑗 , we say that ⟨𝐿 ( 𝑗), 𝐻 ( 𝑗)⟩ contains ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩. In
the proposed scheme, by Definition 2, the envelope not con-
tained in the other envelopes is maximum. Next, we define
the corresponding maximum envelope ⟨𝐿 (𝑚𝑖), 𝐻 (𝑚𝑖)⟩ of an
envelope ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩. Specifically, if ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩ itself is a
maximum envelope, let ⟨𝐿 (𝑚𝑖), 𝐻 (𝑚𝑖)⟩ = ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩; other-
wise, according to the store rules and Lemma 1, there must
be a larger envelope ⟨𝐿 ( 𝑗), 𝐻 ( 𝑗)⟩ that contains ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩,
where ⟨𝐿 ( 𝑗), 𝐻 ( 𝑗)⟩ is larger than ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩ refers to 𝑒𝑖 ⫋
𝑒 𝑗 . For example, in Figure 8, we have ⟨𝐿 (1), 𝐻 (1)⟩ larger
than ⟨𝐿 (2), 𝐻 (2)⟩. Furthermore, Definition 1 indicates that
the total number of envelopes in the proposed scheme is
𝑁 , thus among all envelopes larger than ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩, there
must be the largest envelope. Let this largest envelope
be the corresponding maximum envelope of ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩.
Therefore, it can be seen that each envelope in the proposed
scheme has a unique corresponding maximum envelope.

Below we show that in the proposed scheme, the 𝑁

envelopes obtained by decoding can be seen as a union of 𝛾
disjoint maximum envelopes, where 𝛾 ∈ [1, 𝑁].

Lemma 2. For a source sequence of 𝑁 symbols, all ⟨𝐿 (𝑖), 𝐻 (𝑖)⟩
obtained in the proposed coding scheme, where 𝑖 ∈ [1, 𝑁], can
be seen as a union of 𝛾 disjoint maximum envelopes, where 𝛾 ∈
[1, 𝑁].

Proof. As each envelope has a unique maximum envelope,
we can first find the maximum envelope ⟨𝐿 (𝑚1), 𝐻 (𝑚1)⟩ of
⟨𝐿 (1), 𝐻 (1)⟩. Then, we try to find〈

𝐿 (𝑚𝐻 (𝑚1 )+1), 𝐻 (𝑚𝐻 (𝑚1 )+1)
〉

of ⟨𝐿 (𝐻 (𝑚1) + 1), 𝐻 (𝐻 (𝑚1) + 1)⟩, and continue this step until
all the maximum envelopes found contains the 𝑁 envelopes.
Therefore, these 𝑁 envelopes can be seen as a union of 𝛾
disjoint maximum envelopes, where 𝛾 ∈ [1, 𝑁]. The proof is
completed. □

The following theorem shows that the proposed method
reads fewer bits than the conventional method, i.e., E(𝑌 ) ≤
𝑁+1

2 .

Theorem 1. In the proposed coding scheme, E(𝑌 ) ≤ 𝑁+1
2 always

holds.

Proof. For a given source sequence of 𝑁 symbols, suppose
the lengths of the 𝛾 disjoint maximum envelopes in Lemma
2 are 𝜃1, 𝜃2, · · · , 𝜃𝛾 , respectively, then we have

∑𝛾

𝑖=1 𝜃𝑖 = 𝑁 .
Since in a maximum envelope of length 𝜃𝑖 , it requires
reading at most 𝜃𝑖 − 𝑗 + 1 blocks to decode the 𝑗-th block
within the maximum envelope, where 𝑗 ∈ [1, 𝜃𝑖]. Therefore,
decoding all blocks in a maximum envelope of length 𝜃𝑖

requires reading at most 𝜃𝑖 + (𝜃𝑖 − 1) + · · · + 1 =
(1+𝜃𝑖 )×𝜃𝑖

2
blocks. Therefore, for the source sequence of 𝑁 symbols, we
have

E(𝑌 ) ≤
(
(1 + 𝜃1) × 𝜃1

2
+ · · · +

(1 + 𝜃𝛾) × 𝜃𝛾
2

)
× 1
𝑁

(18)

=
1

2𝑁
×

(
𝑁 +

𝛾∑︁
𝑖=1

𝜃2
𝑖

)
(19)

≤ 1
2𝑁
× ©­«𝑁 +

(
𝛾∑︁
𝑖=1

𝜃𝑖

)2ª®¬ (20)

=
𝑁 + 1

2
. (21)

Note that the equality in (20) holds only when 𝛾 = 1. For
𝛾 > 1, 𝑖 ∈ [1, 𝛾], as 𝜃𝑖 ≥ 1, (20) is always restrictedly less than
(19). On average, the upper bound on the number of blocks
that need to be read to access a symbol in the proposed
scheme is 𝑁+1

2 . The proof is completed. □
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6 CONCLUSION

This paper proposes a rearranging method for prefix codes
to support direct access to the encoded stream without
requiring additional data space. Then, a novel lookup table
construction method and fast decoding algorithm are pre-
sented. The simulation results show that when the encoded
stream does not allow additional space, the number of bits
per access read of the proposed method is above two orders
of magnitude less than the conventional method. However,
on average, the alternative solution consumes at least one
more bit per symbol than the proposed method to support
direct access. In other words, the proposed method can
achieve a good trade-off between space usage and access
performance. In addition, by paying a small amount of ad-
ditional storage space (in the simulation, it is approximately
0.057%), the number of bits per access read in the proposed
method can be significantly reduced by 90%. Furthermore,
we show that the number of bits per access read of the
proposed method can be further reduced for a canonical
form code. Finally, we prove that the number of bits per
access read in the proposed method is no more than that in
the conventional method under the same amount of space
usage.
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