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Abstract—This paper investigates distributed detection of
sparse stochastic signals with quantized measurements under
Byzantine attacks, where sensors may send falsified data to the
Fusion Center (FC) to degrade system performance. Here, the
Bernoulli-Gaussian (BG) distribution is used to model sparse
stochastic signals. Several detectors with significantly improved
detection performance are proposed by incorporating estimates
of attack parameters into the detection process. In the case of
unknown sparsity degree and attack parameters, we propose the
generalized likelihood ratio test with reference sensors (GLRTRS)
as well as the locally most powerful test with reference sensors
(LMPTRS). Our simulation results show that these detectors
outperform the LMPT and GLRT detectors designed in attack-
free environments and achieve detection performance close to
the benchmark likelihood ratio test (LRT) detector. In the case
of unknown sparsity degree and known fraction of Byzantine
nodes in the network, we further propose enhanced LMPTRS
(E-LMPTRS) and enhanced GLRTRS (E-GLRTRS) detectors by
filtering out potential malicious sensors in the network, resulting
in improved detection performance compared to GLRTRS and
LMPTRS detectors.

Index Terms—Byzantine attacks, wireless sensor networks,
distributed detection, compressed sensing.

I. INTRODUCTION

With the development of compressive sensing (CS) [1]–[4]
in recent years, the sensors in sensor networks often send low-
dimensional compressed measurements to the Fusion Center
(FC) instead of high-dimensional sparse data, thereby im-
proving bandwidth efficiency and reducing the communication
overhead. A high-dimensional signal is sparse when only a
few entries in the signal are non-zero, and others are zeros.
Under the CS framework, the reconstruction and the detection
of sparse signals have received considerable attention. In
this paper, we are interested in detecting compressed sparse
signals.

The problem of compressed sparse signal detection in sensor
networks has been studied in the literature [5]–[13]. In these
studies, the recovery of sparse signals was not necessarily
required. In [5]–[7], partly or completely reconstructed sparse
signals are required to derive the test statistics for sparse
signal detection, while in [8]–[12], the test statistics are
directly derived from compressed measurements to perform
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sparse signal detection. In [5] and [6], the authors proposed
orthogonal matching pursuit algorithms to detect the presence
of a sparse signal based on single measurement vectors and
multiple measurement vectors, respectively, by estimating only
a fraction of the support set of a sparse signal. In [8], the
Bernoulli-Gaussian (BG) distribution was utilized to model
the random sparsity of sparse signals, and the generalized
likelihood ratio test (GLRT) was proposed to address the
unknown degree of sparsity. Note that under the BG model
(which is widely used to model the sparsity of signals [8],
[14]–[17]), the sparse signal has zero sparsity degree if the
signal is absent, but a nonzero sparsity degree that approaches
zero if the signal is present. Due to this property, parameter
testing based on the sparsity degree can be employed for sparse
signal detection by formulating the problem as a one-sided and
close hypothesis testing problem. In [9], instead of GLRT,
a method based on the locally most powerful test (LMPT),
which is a popular tool for the problems of one-sided and close
hypothesis testing, was proposed for detecting sparse signals
in sensor networks. The test statistic of the LMPT detector was
directly derived from the compressed measurements without
any signal recovery. The detectors proposed in [5], [6], [8],
[9] assume that the raw signals are transmitted within the
network. However, due to limited bandwidth constraints in
practical scenarios, it is necessary to consider the case where
only quantized data is transmitted over sensor networks. To
satisfy this requirement, many studies have been conducted
on the design of sparse signal detectors based on quantized
data [7], [10]–[13], [18], [19].

A two-stage detector based on the GLRT, where sparse
signal recovery is integrated into the detection framework, was
proposed in [7] for sparse signal detection from 1-bit CS-based
measurements. However, due to substantial information loss
caused by 1-bit quantization, there is a noticeable performance
gap compared to the clairvoyant detector based on analog
measurements [18]. To address this issue, the authors in [13]
proposed a quantized LMPT detector that enables the system
to achieve detection performance comparable to a clairvoyant
LMPT detector by selecting a reasonable number of refer-
ence sensors. The work was extended in [10] to consider
generalized Gaussian noise. Additionally, [11] proposed an
improved-1-bit LMPT detector that optimizes the quantization
process and reduces the required number of sensor nodes to
compensate for the performance loss caused by 1-bit quantiza-
tion. The authors of [12] proposed a computationally-efficient
generalized LMPT detector for the detection of distributed
sparse signals when non-ideal reporting channels between
the sensors and the FC are considered. In [19], the authors
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proposed an energy-efficient censoring-based LMPT detector
in clustered sensor networks to address the excessively high
energy consumption caused by data transmission in existing
centralized LMPT detectors. In this scheme, the cluster head
sensors and the ordinary sensors only transmit data that is
sufficiently informative to the FC.

In this paper, we address the resilience and detection per-
formance of GLRT-based detectors [7], [8] and LMPT-based
detectors [9]–[12] in the presence of Byzantine attacks, where
one or more sensors in the network may get compromised
and may send falsified data to the FC to degrade the detection
performance of the system [20]–[27]. Unlike previous studies
that focused on attack-free environments, we investigate the
impact of compromised sensors and falsified data on the detec-
tion performance, and enhance the resilience of the detectors.
More specifically, we consider the GLRT-based and LMPT-
based detectors with unknown random sparse signals operating
under Byzantine attacks. The random unknown sparse signals
are still characterized by the BG distribution as in [7]–[12],
[14], [15]. When such a system is under Byzantine attacks, two
factors need to be taken into account: the unknown sparsity of
the signal and the presence of unidentified attacks. We assume
that the Byzantines do not have perfect knowledge about the
actual state of the phenomenon of interest and attack based on
their local decisions, and we also assume that the system does
not have perfect knowledge about the attack strategy. Under
such assumptions, we evaluate the performance of the GLRT-
based and the LMPT-based detectors. The simulation results
show that the detectors are vulnerable to Byzantine attacks
because their performance degrades.

To improve the resilience of the system in the presence
of Byzantine attacks, intuitively, we need more information
about the attack parameters. In this work, we develop a
framework for estimating unknown parameters that are in-
spired by the works in [28], [29], where supervised machine
learning was utilized as quality of transmission estimator for
optical transport networks. In [28] and [29], a fraction of the
total data is used to obtain a sufficiently accurate estimate
of the unknown underlying parameters. Correspondingly, a
subset of the sensors in this work is randomly selected, with
their decisions serving as training samples for estimating the
unknown attack parameters in the network. We introduce the
notion of reference sensors to represent those sensors whose
local decisions serve as training samples in our problem and
propose the generalized likelihood ratio test with reference
sensors (GLRTRS) and the locally most powerful test with
reference sensors (LMPTRS) with adaptive thresholds, given
that the sparsity degree and the attack parameter are unknown.
The proposed detectors allow us to yield excellent system
performance. When the fraction of Byzantines in the networks
is assumed to be known, we propose enhanced LMPTRS
(E-LMPTRS) and enhanced GLRTRS (E-GLRTRS) detectors
which can further improve the detection performance of the
system. The main contributions of this work are summarized
as follows.

• We perform a comprehensive performance analysis of
existing GLRT-based and LMPT-based detectors in the
presence of Byzantine attacks. Our analysis and simula-

tion results reveal the degree to which both detectors are
vulnerable to attacks.

• We propose a novel approach to design resilient GLRT
and LMPT based detectors by considering the potential
existence of adversarial Byzantine attacks. Specifically,
we integrate the estimation of attack parameters into the
detection process.

• Given that the sparsity degree and the attack parameters
(i.e., the fraction of Byzantine nodes and the probability
that Byzantines flip local decisions) are unknown, we
propose GLRTRS and LMPTRS detectors with adap-
tive thresholds. Our simulation results indicate that both
GLRTRS and LMPTRS detectors are resilient to Byzan-
tine attacks. They can achieve detection performance
close to that of the benchmark likelihood ratios test (LRT)
detector, which has perfect knowledge of the sparsity
degree and attack parameters.

• When the fraction of Byzantines in the networks is
assumed to be known, we propose E-GLRTRS and E-
LMPTRS detectors, which further improve the detection
performance of the system by filtering out potential
malicious sensors. Our simulation results show that the
proposed enhanced detectors outperform LMPTRS and
GLRTRS detectors.

The paper is organized as follows. We present our system
model in Section II. The performance of GLRT and quantized
LMPT detectors under Byzantine attacks is evaluated in Sec-
tion III. The resilient GLRTRS, LMPTRS, E-GLRTRS, and
E-LMPTRS detectors with adaptive thresholds are proposed
in Section IV. We present our simulation results in Section V
and conclude in Section VI.

Notation: Throughout this paper, we use bold lowercase
letters for vectors (e.g., xi, hi) and normal font letters for
scalars (e.g., ni). For a vector xi, we use xi,m to denote its
m-th element. The function Q(·) denotes the tail distribution
function of the standard normal distribution. The function
Φ(·) denotes the cumulative distribution function (CDF) of
the standard normal distribution. The function E(·) denotes
the expected value function, and Var(·) denotes the variance
function. (·)T denotes the transpose operation. The function
I(a, b) is an indicator function that returns 1 if a equals b and
returns 0 otherwise. x ∼ N (µ, σ) represent the case where x
follow Gaussian distribution with mean µ and variance σ.

II. SYSTEM MODEL

Consider the binary hypothesis testing problem of detecting
sparse signals where hypotheses H1 and H0 indicate the
presence and absence of the sparse signal, respectively. We
consider a distributed network consisting of one fusion center
(FC) and N sensors that observe the signals that share the
joint sparsity pattern1 as shown in Fig. 1. Let yi be the received
observation at sensor i ∈ {1, 2, . . . , N}. We assume that all the
observations are independent and identically distributed (i.i.d.)

1Joint sparsity pattern indicates that non-zero elements of all the signals
occur at the same locations, and the sparsity pattern is the same across all
signals. This assumption of joint sparsity pattern can be readily observed in
the field of compressed sensing, e.g., [30]–[33].
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Fig. 1: System model of distributed network. The red
sensors are malicious.

conditioned on the hypotheses. For sensor i, the observation
yi is modeled as

yi =

{
ni under H0

hi
Txi + ni under H1,

(1)

where xi ∈ ℜM×1 is the sparse signal received by sensor
i, hi ∈ ℜM×1 is the channel gain of sensor i, which is
modeled as a random vector to account for the variability and
uncertainty in the communication channel, and ni is Gaussian
noise with zero mean and variance σ2

n. Based on the received
compressed measurements {yi}Ni=1 from all the sensors, the
FC makes a global decision about the absence or presence of
the sparse signals.

We adopt the BG distribution introduced in [7]–[12], [14],
[15] to model the sparse signals where the joint sparsity pattern
is shared among all the signals observed by the sensors. The
locations of nonzero coefficients in xi are assumed to be the
same across all the sensors. Let s ∈ ℜM×1 describe the joint
sparsity pattern of {xi}Ni=1, where{

sm = 1, for {xi,m ̸= 0, i = 1, 2, . . . , N}
sm = 0, for {xi,m = 0, i = 1, 2, . . . , N}

(2)

for m = 1, 2, . . . ,M . {sm}Mm=1 are assumed to be i.i.d.
Bernoulli random variables with a common parameter p (p →
0+), where P (sm = 1) = p and P (sm = 0) = 1 − p. In
other words, p represents the sparsity degree of the sparse
signal xi for ∀i ∈ {1, 2, . . . , N}. Moreover, each element of xi

is assumed to follow an i.i.d. Gaussian distribution N (0, σ2
x)

[34]. Therefore, the BG distribution is imposed on xi,m as

xi,m ∼ pN (0, σ2
x) + (1− p)δ(xi,m), (3)

where δ(·) is the Dirac delta function. Due to the limited band-
width, the sensors send their quantized observations instead
of raw observations {yi}Ni=1 to the FC. We assume that a
fraction α of the total N sensors, namely, αN sensors, are
compromised by the Byzantines. We also assume that the
compromised sensors are uniformly distributed in the network.
In other words, a sensor i can be honest (H) with probability
1 − α or Byzantine (B) with probability α. The Byzantines
may intentionally send falsified local decisions to the FC with
an attack probability, i.e., the probability that Byzantines flip
their decision. The fraction of Byzantines α and the probability
that Byzantines flip their decision, PA, are considered attack
parameters. Note that the fusion rule is assumed not to be

altered by Byzantine nodes.2 Let zi denote the actual quantized
observation at sensor i ∈ {1, 2, . . . , N}. The q-bit quantizer
at the ith sensor is defined as

zi =


v1 τi,0 ≤ yi ≤ τi,1

v2 τi,1 ≤ yi ≤ τi,2
...

...
v2q τi,2q−1 ≤ yi ≤ τi,2q ,

(4)

where vk is the binary code word with vk ∈ {0, 1}q that repre-
sents the quantized observation and {τi,l, l = 0, 1, 2, . . . , 2q}
are the quantization thresholds. For example, given q = 2,
we have v1 = 00, v2 = 01, v3 = 10 and v4 = 11. Let
ui be the binary vector sent to the FC, which represents one
of the possible quantizer observations {vk : k = 1, ...2q}.
ui can also be interpreted as a (soft) decision. If sensor i
is honest, we have P (ui = zi|i = H) = 1, otherwise we
have P (ui ̸= zi|i = B) = PA. Here, the probability density
function (PDF) of the local decision ui if i is honest is given
as

P (ui|i = H,Hh) =P (zi|i = H,Hh)

=

2q∏
j=1

P (zi = vj|i = H,Hh)
I(zi,vi) (5)

for h = 0, 1, where

P (zi=vj|i=H,Hh)=P (τi,j−1 ≤ yi ≤ τi,j |i = H,Hh) (6)

based on (4) and I(zi,vi) is an indicator function that returns 1
if zi is element-wise equal equal to vi and returns 0 otherwise.
In (5), we need to know the PDF of yi, for i = 1, 2, . . . , N .
According to [38], both yi|H0 and yi|H1 follow Gaussian
distributions as shown in (7), where β2

i,0 = σ2
n, β2

i,1 =

σ2
n+pσ2

x||hi||22 and b
a∼ f(b) means variable b asymptotically

follows PDF f(b).

yi|H0 ∼ N (0, β2
i,0) (7a)

yi|H1
a∼ N (0, β2

i,1), (7b)

The proof of (7b) is provided in [ [38], Appendix B], where
the Lyapounov Central Limit Theorem (CLT) is utilized to
derive the results. Let Ai,j,h represent the probability that yi
falls within the range of [τi,j−1, τi,j ] when sensor i is honest
under hypothesis Hh, i.e., P (τi,j−1 ≤ yi ≤ τi,j |i = H,Hh).
Then Ai,j,h is given by

Ai,j,h = Q(
τi,j−1

βi,h
)−Q(

τi,j
βi,h

) (8)

for h = 0, 1, where Q(·) denotes the tail distribution function
of the standard normal distribution. If sensor i is Byzantine, ui

does not have to be equal to zi. The attack model for Byzantine
nodes is illustrated in Fig. 2. According to the chain rule, the
PDF of local decision ui is given as (11), where

P (ui = vj|ui = zi, zi = vk, i = B,Hh) =

{
1 j = k

0 j ̸= k,
(9)

2This assumption aligns with some related works such as [20], [35]–[37].
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Fig. 2: Attack model for a Byzantine node i. With a
probability of PA/(2

q − 1), each Byzantine node decides to
send a soft decision that differs from the one it believes to
be correct. With probability 1− PA, the Byzantine nodes
send the soft decision that they believe to be correct.

P (ui=vj|ui ̸=zi, zi=vk, i=B,Hh)=

{
0 j=k

1
2q−1 j ̸=k,

(10)

P (ui ̸= zi|zi = vk, i = B,Hh) = PA, P (ui = zi|zi =
vk, i = B,Hh) = 1 − PA and P (zi = vk|i = B,Hh) =
Q(

τi,k−1

βi,h
) −Q(

τi,k
βi,h

) for h = 0, 1. Note that (9) and (10) are

equivalent to I(i, k) and 1−I(i,k)
2q−1 , respectively. Hence, (11)

can be rewritten as

P (ui|i = B,Hh) =

2q∏
j=1

P (ui = vj|i = B,Hh)
I(ui,vj)

=

2q∏
j=1

{
2q∑
k=1

Ai,k,h

[
(1− PA)I(j, k) +

PA(1− I(i, k))

2q − 1

]}I(ui,vj)

=

2q∏
j=1

{
2q∑
k=1

Ai,k,h

[
(1− PA − PA

2q − 1
)I(j, k) +

PA

2q − 1

]}I(ui,vj)

=

2q∏
j=1

{
Ai,j,h(1− PA) + (1−Ai,j,h)

PA

2q − 1

}I(ui,vj)

. (12)

Due to the statistical independence of the local decisions
{u1, u2, . . . , uN}, we have

P (U|Hh)=

N∏
i=1

2q∏
j=1

∑
X=B,H

P (ui=vj|i=X,Hh)P (i=X)

I(ui,vj)

(13)

for h = 0, 1.

III. GLRT AND QUANTIZED LMPT DETECTORS

In this section, we start with a brief review of the GLRT
and the quantized LMPT detectors where all the sensors are
assumed to be honest so that they send uncorrupted decisions
to the FC, i.e., ui = zi. Then, the performance of the GLRT
and the quantized LMPT detectors under Byzantine attacks
is evaluated. The sparse signals here are characterized by the
BG model. Under the BG model, the problem of distributed
detection of sparse stochastic signals can be formulated as a
problem of one-sided and close hypothesis testing which is
given as {

H0 : p = 0

H1 : p → 0+.
(14)

A. Fusion Rule for GLRT and Quantized LMPT Detectors with
Honest Sensors

1) GLRT Detector: The fusion rule of the GLRT detector
is given by

maxp P (U|H1; p)

P (U|H0; p = 0)

H1

≷
H0

λ′, (15)

We can obtain the estimated sparsity degree p̂ via maximum-
likelihood estimation (MLE) which is given as p̂ =
argmaxp P (U|H1; p). By replacing p by p̂ in (15) and taking
the logarithm of both sides of (15), the fusion rule can be
expressed as

ΓGLRT =

N∑
i=1

2q∑
j=1

I(zi = vj)Gi,j

H1

≷
H0

λ1, (16)

where Gi,j = Âi,j,1 − Âi,j,0, Âi,j,1 = Q(
τi,j−1√
σ2
n+p̂σ2

x

) −

Q(
τi,j√

σ2
n+p̂σ2

x

) and Âi,j,0 = Ai,j,0.

2) Quantized LMPT Detector: Since the sparsity degree p
is positive and close to zero under H1, and p = 0 under
H0, the problem of distributed detection of sparse stochastic
signals can be performed via locally most powerful tests as
shown in [10]. Firstly, the logarithm form of the LRT, which
is given by

lnP (U|H1; p)− lnP (U|H0)
H1

≷
H0

ln(p0/p1), (17)

is considered for decision-making at the FC, where
P (U|Hh) =

∏N
i=1 P (ui|Hh, i = H) and P (Hh) = ph for

h = 0, 1. Due to the fact that the sparsity degree p is close to
zero, the first-order Taylor’s series expansion of lnP (U|H1; p)
around zero is given as

lnP (U|H1; p)= lnP (U|H1; p=0)+p

(
∂lnP (U|H1; p)

∂p

)
p=0

.

(18)

By substituting (18) in (17), the test statistic of the quantized
LMPT detector is given by(

∂lnP (U|H1; p)

∂p

)
p=0

H1

≷
H0

ln(p0/p1)

p
= λ2, (19)

where

∂lnP (U|H1; p)

∂p
=

N∑
i=1

∂lnP (ui|H1, i = H; p)

∂p

=

N∑
i=1

2q∑
j=1

wi,jI(ui = vj) (20)

and wi,j =
σ2
x||hi||22
2β3

i,1

[
τi,j−1Φ(

τi,j−1

βi,1
)− τi,jΦ(

τi,j
βi,1

)
]
A−1

i,j,1.
Here, Φ(·) denotes the CDF of the standard normal distri-
bution. Hence, the decision rule is given as

ΓLMPT =

N∑
i=1

2q∑
j=1

I(ui = vj)w̃i,j

H1

≷
H0

λ2, (21)

where w̃i,j = (wi,j)p=0.
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P (ui|i = B,Hh) =

2q∏
j=1

P (ui = vj|i = B,Hh)
I(ui,vj)

=

2q∏
j=1

[

2q∑
k=1

P (zi = vk|i = B,Hh)P (ui = zi|zi = vk, i = B,Hh)P (ui = vj|ui = zi, zi = vk, i = B,Hh)

+ P (zi = vk|i = B,Hh)P (ui ̸= zi|zi = vk, i = B,Hh)P (ui = vj|ui ̸= zi, zi = vk, i = B,Hh)]
I(ui,vj) (11)

B. Performance Analysis of the GLRT and the Quantized
LMPT Detectors in the Presence of Byzantines

In this subsection, we evaluate the detection performance of
the GLRT and the quantized LMPT detectors in the presence
of Byzantines. We also derive the optimal attack strategy of
the Byzantines.

Let L =
∑N

i=1 Li denote the global statistic for the fusion
rule given in (16) or (21), where Li =

∑2q

j=1 I(ui = vj)di,j
and di,j ∈ {w̃i,j , gi,j}. According to the Lyapunov CLT,
L approximately follows a Gaussian distribution with mean
E(
∑N

i=1 Li) and variance V ar(
∑N

i=1 Li) when N is suffi-
ciently large. Under both hypotheses, E(L) and V ar(L) are
given as

E(L|Hh) =

N∑
i=1

E(Li|Hh) =

N∑
i=1

E

 2q∑
j=1

I(ui = vj)di,j


=

N∑
i=1

2q∑
j=1

P (ui = vj|Hh)di,j

=

N∑
i=1

2q∑
j=1

[P (ui = vj|Hh, i = H)(1− α)

+ P (ui = vj|Hh, i = B)α]di,j (22)

and

V ar(L|Hh)=

N∑
i=1

V ar(Li|Hh)=

N∑
i=1

[
E
(
L2
i |Hh

)
−E(Li|Hh)

2
]

=

N∑
i=1

E


 2q∑

j=1

I(ui = vj)di,j

2
− E(L|Hh)

2

=

N∑
i=1

2q∑
j=1

P (ui = vj|Hh)d
2
i,j − E(L|Hh)

2

=

N∑
i=1

2q∑
j=1

[P (ui = vj|Hh, i = H)(1− α)

+P (ui=vj|Hh,i=B)α]d2i,j−E(L|Hh)
2, (23)

respectively. Using the expression in (22) and (23), the prob-
abilities of detection and false alarm can be calculated as

Pd = P (L > λ|H1) = Q

(
λ− E(L|H1)√
V ar(L|H1)

)
(24)

and

Pf = P (L > λ|H0) = Q

(
λ− E(L|H0)√
V ar(L|H0)

)
, (25)

respectively, where λ ∈ {λ1, λ2}.
Next, we investigate the optimal attack strategy that can

be adopted by Byzantines. From the attackers’ perspective,
the optimal strategy is to render the system blind, aiming to
achieve a probability of detection equal to 1/2. To determine
the optimal attack strategy, we utilize the deflection coefficient,
which provides a simple and yet effective measure of the
global probability of detection. The deflection coefficient is
defined as Df = (E(L|H1)−E(L|H0))

2

V ar(L|H1)
. Thus, to blind the FC,

Byzantines need to strategically design the attack parameters
so that Df = 0, i.e., E(L|H1) = E(L|H0). By utilizing (22),
we can obtain

αPA=

∑N
i=1

∑2q

j=1(Ai,j,1−Ai,j,0)di,j∑N
i=1

∑2q

j=1

[
1

2q−1+(1− 1
2q−1 )(Ai,j,1−Ai,j,0)

]
di,j

.

(26)

When αPA equals the right-hand side of (26), the attackers
are able to blind the FC. From the simulation results presented
later in Sec. V, both the GLRT and the quantized LMPT detec-
tors are very vulnerable to Byzantine attacks, even if the attack
parameter PA is very small. A possible explanation is that,
since detectors make their decisions based on observations
with the same mean and slightly different variances under the
two hypotheses, it is easy for them to make incorrect decisions
in the presence of Byzantines.

IV. RESILIENT FUSION RULE

In order to improve the resilience of the detector, we
attempt to elicit some additional information regarding the
attack parameters from the local decisions of some sensors and
incorporate it into the design of the fusion rule. In general, a
detector’s performance improves as additional information is
obtained, e.g., sparsity degree p, the fraction of Byzantines α,
and attack probability PA. Intuitively, a GLRT detector can be
designed, which takes both the unknown sparsity degree and
the unknown attack parameters into consideration, as shown
in (27).

maxp,PA,α P (U|H1; p)

maxPA,α P (U|H0; p = 0)

H1

≷
H0

λ′′. (27)

If we assume that the sparse signals are weak and the number
of sensors is large, the MLE attains its asymptotic PDF, and an
appropriate threshold λ′′ can be found based on the asymptotic
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detection performance of the GLRT detectors (see Sec. 6.5
in [39]). However, sparse signals need not be weak. In that
case, it is not tractable to obtain an appropriate threshold value
λ′′. Moreover, the presence of nuisance parameters PA and α
results in a degradation of the detection performance of GLRT
detectors.

To overcome these problems, as alluded to earlier, we
randomly select a fraction of the sensors as reference sensors
from the set of all sensors and estimate unknown parameters
(i.e., α, PA and p) in two steps. In the first step, nuisance attack
parameters are estimated based on the local decisions coming
from the reference sensors. In the second step, the estimated
attack parameters are utilized to estimate the unknown sparsity
degree p based on the local decisions from the remaining
sensors. The proposed GLRTRS detector is based on the
above parameter estimates. As the LMPT-based detector does
not require the knowledge of the sparsity degree p, the only
estimation occurs in the first step, which is the estimation of
the nuisance attack parameters. Later in this section, we will
provide details about the proposed GLRTRS and LMPTRS
detectors.

Since we carry out the entire estimation process in two
steps, we would like to minimize the performance loss caused
by partitioning the estimation process. Let us take the GLRT
detector presented in (27) as an example. Suppose we want
to partition the entire estimation process into two steps, as
described above. In that case, we want to ensure that the per-
formance degradation caused by the unknown sparsity degree
p is negligible while estimating the attack parameters. In other
words, the two pairs of estimated attack parameters we obtain,
which are {αH1

, PA,H1
} = argmaxα,PA

P (U|H1, p, α, PA)
and {αH0 , PA,H0} = argmaxα,PA

P (U|H0, p = 0, α, PA),
should be very close to each other. To complete this task, we
introduce reference sensors to assist us. We randomly select
a set of reference sensors from the set of all the sensors
to estimate the unknown nuisance attack parameters PA and
α.3 At the reference sensors, we employ different predefined
thresholds so that the decisions of the reference sensors satisfy
Assumption 1 below.

Assumption 1: The probability Pr(zi = v2q |Hh) (or
Pr(zi = v1|Hh)) is approximately equal to 1 for h = 0, 1.

Note that the condition in Assumption 1 can be attained
when reference sensors send v2q (or v21 ) with a probability
that is close to 1, regardless of the underlying true hypothesis
Hh. To satisfy Assumption 1, one of the simplest methods
is to either set τ̃j,2q−1 ≪ τi,1 or τi,2q ≪ τ̃j,1. This is
because the limit limτ̃j,2q−1→−∞ Pr(zi = v2q |Hh) = 1 (or
limτ̃j,1→+∞ Pr(zi = v1|Hh) = 1) always holds.4 Therefore,
if Assumption 1 is satisfied, it is highly likely that the reference

3Since we have assumed that α fraction of Byzantine nodes are uniformly
distributed in the network, there are α fraction of Byzantine nodes within
both the set of reference sensors and remaining sensors.

4Based upon (7), the observation yi for i ∈ {1, 2, . . . , N} has zero mean
and different variances that are related to sparsity degree p given different
hypotheses. Since a sparse signal is considered in the paper for which the
sparsity degree p tends to 0, it is possible to design reasonable quantizer
thresholds for reference nodes. A reasonable quantizer threshold refers to a
quantizer threshold that is not excessively large or small. From experiments,
it has been shown that τi,1 − τ̃j,2q−1 = 6 (or τ̃j,1 − τi,2q = 6) is sufficient
to satisfy Assumption 1 for the reference sensors.

sensors will continue to send the same decision regardless
of the true underlying hypothesis. It allows us to ensure that
the performance degradation caused by the unknown sparsity
degree p is negligible while the attack parameters are being
estimated.

In the following subsections, we consider two cases: (i) The
sparsity degree p and the attack parameters {α, PA} are all
unknown; (ii) α is known, but sparsity degree p and attack
probability PA are unknown.

A. Networks with Unknown p, α and PA

Two detectors are proposed in this subsection: the GLRTRS
detector that requires the estimation of unknown parameter p,
and the LMPTRS detector that does not require the estimation
of p.

a) GLRTRS detector: According to (13), we are able to
obtain

P (U|Hh)=

N∏
i=1

2q∏
j=1

[
Ai,j,h+x

(
1

2q−1
−Ai,j,h−

Ai,j,h

2q−1

)]I(ui,vj)

(28)

where x = αPA. For convenience, instead of considering the
two attack parameters α and PA separately, we consider a
single attack parameter x. The problem of distributed detection
of a sparse stochastic signal can be formulated as{

H0 : p = 0, 0 ≤ x ≤ 1

H1 : p → 0+, 0 ≤ x ≤ 1
. (29)

The fusion rule of the GLRTRS detector is given by

maxp
∏N

i=Nref+1 P (ui|H1, p, x̂)∏N
i=Nref+1 P (ui|H0, p = 0, x̂)

H1

≷
H0

λ, (30)

where Nref is the number of reference sensors and they are
labelled as 1, 2, 3 . . . , Nref . The estimate of the unknown
attack parameter x, i.e., x̂ is made via MLE based on the
reference sensors data. Here, the estimated attack parameter x
is given as

xHh
= argmax

x
P (Uref |Hh, p, x) (31)

for h = 0, 1. P (Uref |Hh, p, x) in (31) is the joint pmf of
local decisions coming from the reference sensors and it is
given as

P (Uref |Hh, p, x)

=

Nref∏
i=1

2q∏
j=1

 ∑
X=B,H

P (ui=vj|i=X,Hh)P (i=X)

I(ui,vj)

=

Nref∏
i=1

2q∏
j=1

[
Ci,j,h+x

(
1

2q−1
−Ci,j,h−

1

2q−1
Ci,j,h

)]I(ui=vj)

(32)

for h = 0, 1, where Ci,j,h = Q(
τ̃i,j−1

βi,h
)−Q(

τ̃i,j
βi,h

).
Note that if Assumption 1 holds employed at any q-bit quan-

tizer of reference sensors, i.e., Pr(zi = v2q |H1) ≈ Pr(zi =
v2q |H0) ≈ 1 for any reference sensor i, the absolute value of
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Fig. 3: E versus τ̃j,2q−1 given p = 0.05, σ2
x = 5, σ2

n = 5,
q = 1 and ||hi||2 = 1 for all i.

τ̃j,2q−1 will be sufficiently large, thus, the difference between
the probabilities Pr(zi = v2q |H1) and Pr(zi = v2q |H0) will
be really small. Let Ei = Pr(zi = v2q |H1) − Pr(zi =
v2q |H0) denote the difference between the probabilities of
local decisions under H1 and H0 for any reference sensor i.
According to Eq. (7), we have Ei = Q(

τ̃j,2q−1

βi,1
)−Q(

τ̃j,2q−1

βi,0
).

The values of Ei as a function of τ̃j,2q−1 are shown in Fig. 3.
We can observe that for a sufficiently large (or small) value of
τ̃j,2q−1, for example, τ̃j,2q−1 = −6, E becomes significantly
small, with E < 10−6.

Based on the above discussion, we can easily derive
P (ui|Hh, p, x) ≈ (1 − x)I(ui=v2q )

∏2q−1
j=1 ( x

2q−1 )
I(ui=vj) for

any reference sensor i. So the difference between the estimated
x under different hypotheses will be significantly small and
can be assumed negligible, i.e., xH0 ≈ xH1 . This result is
employed in the following theorem stating that the estimator
considered in (31) is an efficient MLE when Assumption 1 is
satisfied.

Theorem 4.1: The MLE of the unknown attack parameter
x based on the data from the reference sensors is unbiased,
and it attains the Cramér–Rao lower bound (CRLB) of the
problem, which equals (1−x)x

Nref
.

Proof: Please see Appendix A.
By replacing x̂ by xH1

in P (ui|H1, p, xH1
) and x̂ by xH0

in P (ui|H1, p = 0, xH0) in (30), the fusion rule can be
reformulated as

maxp
∏N

i=Nref+1 P (ui|H1, p, xH1
)∏N

i=Nref+1 P (ui|H0, p = 0, xH0)

H1

≷
H0

κ, (33)

where P (ui|Hh, p, xHh
) =

∏2q

j=1 P (ui = vj|Hh, p, xHh
).

Since xH0
is approximately the same as xH1

, i.e., xH0
≈

xH1
, choosing xH0

or xH1
as the estimated x under both

hypotheses, or choosing the average of xH0
and xH1

as the
estimated x under both hypotheses are all acceptable options.
Here, we opt to replace both xH1 and xH0 in (33) with their
averaged estimate xH =

xH1
+xH0

2 . The fusion rule then can
be simplified as follows:∏N

i=Nref+1 P (ui|H1, p, xH)∏N
i=Nref+1 P (ui|H0, p = 0, xH)

H1

≷
H0

κ, (34)

where κ is the threshold to be set in order to ensure the
desired probability of false alarm PFA. Next, we calculate

the estimated sparsity degree p̂, which is given as p̂ =
argmaxp

∏N
i=Nref+1 P (ui|H1, p, xH). Upon taking the loga-

rithm of both sides of (34), the simplified fusion rule is given
as

ΓGLRTRS =

N∑
i=Nref+1

2q∑
j=1

I(ui = vj)Fi,j

H1

≷
H0

κ′, (35)

where κ′ = log(κ), Fi,j = fi,j,1 − fi,j,0, fi,j,h = Âi,j,h +

xH

(
1

2q−1 − Âi,j,h − 1
2q−1 Âi,j,h

)
, Âi,j,1 = Q(

τi,j−1√
σ2
n+p̂σ2

x

) −

Q(
τi,j√

σ2
n+p̂σ2

x

) and Âi,j,0 = Ai,j,0. Assume that N −NNef is

sufficiently large, the global statistic ΓGLRTRS then follows
a Gaussian distribution with mean

E(ΓGLRTRS |Hh)=

N∑
i=Nref+1

2q∑
j=1

Fi,jP (ui = vj|Hh, xH , p)

(36)

and variance

V ar(ΓGLRTRS |Hh) =

N∑
i=Nref+1

2q∑
j=1

F 2
i,jP (ui = vj|Hh, xH , p)

− E2(ΓGLRTRS |Hh) (37)

for h = 0, 1. With (36) and (37), the probabilities of detection
and false alarm are respectively given as

Pd =Q

(
κ′ − E(ΓGLRTRS |H1)√

V ar(ΓGLRTRS |H1)

)
, (38)

Pf =Q

(
κ′ − E(ΓGLRTRS |H0)√

V ar(ΓGLRTRS |H0)

)
. (39)

For a given false alarm PFA, we can obtain the suboptimal
adaptive threshold used by the FC as shown in (40).5

κ′=Q−1(PFA)
√
V ar(ΓGLRTRS |H0)+E(ΓGLRTRS |H0)

(40)

b) LMPTRS detector: Similarly, after we obtain the es-
timated attack parameter xH , the test statistic of the proposed
LMPTRS detector can be expressed as(

∂lnP (U|H1, p, xH)

∂p

)
p=0

H1

≷
H0

ln(p0/p1)

p
, (41)

where

∂lnP (U|H1, p, xH)

∂p
=

N∑
i=1

∂lnP (ui|H1, p, xH)

∂p

=

N∑
i=1

2q∑
j=1

σ2
x||hi||22I(ui=vj)

2(pσ2
x||hi||22+σ2

n)
3
2

[
τi,j−1Φ(

τi,j−1√
pσ2

x||hi||22 + σ2
n

)

−τi,jΦ(
τi,j√

pσ2
x||hi||22+σ2

n

)

]
1− xH − xHAi,j,1

Ai,j,1+xH(1−xH−xHAi,j,1)

=

N∑
i=1

2q∑
j=1

I(ui = vj)gi,j . (42)

5Since we obtain the adaptive threshold based on the estimated attack
parameter, it is a suboptimal threshold that approximately satisfies a desired
false alarm.
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The fusion rule can be reformulated as

ΓLMPTRS =

N∑
i=1

2q∑
j=1

I(ui = vj)g̃i,j
H1

≷
H0

γ′, (43)

where γ′ = ln(p0/p1)
p and g̃i,j = (gi,j)p=0. Like the

one employed earlier, we can derive the threshold
γ′ in (43) for a given false alarm PFA. We can
obtain that γ′ = Q−1 (PFA)

√
V ar(ΓLMPTRS |H0) +

E(ΓLMPTRS |H0) , where E(ΓLMPTRS |H0) =∑N
i=Nref+1

∑2q

j=1 w̃i,jP (ui = vj|H0, xH , p = 0) and

V ar(ΓLMPTRS |H0) =
∑N

i=Nref+1

∑2q

j=1 w̃
2
i,jP (ui =

vj|H0, xH , p = 0)− E2(ΓLMPTRS |H0).

B. Networks with Known α, Unknown p and Unknown PA

When it is assumed that we know the fraction of Byzan-
tine nodes α in the network, we can obtain more accurate
information and achieve better detection performance. In this
subsection, the GLRTRS and the LMPTRS detectors are
further enhanced by introducing a local decision filter at the
FC, which allows us to select sensors that are more likely to
be honest. The proposed enhanced detectors are referred to as
the E-GLRTRS and the E-LMPTRS detectors.

Upon receiving local decisions {U(1), . . . ,U(t)} until time
step t, where U(t) = {u1(t), . . . ,uN(t)}, each sensor’s
statistical behavior is used to filter local decisions. The local
decision filter distinguishes malicious nodes from honest nodes
at time t by the following

2q∑
j=1

|Rj−p̃t(ui=vj)|
bi(t)=1

≷
bi(t)=0

τ,∀i ∈ {Nref +1, . . . , N}, (44)

where Rj=min(P (ui=vj|i=H,H1), P (ui=vj|i=H,H0)) is
a benchmark value to filter out the potential malicious sensors6

and bi(t) represents the behavioral identity of sensor i at time
t. If bi(t) = 1, the sensor i is regarded as an honest node;
otherwise, it is regarded as a potential Byzantine node. p̃t(ui =
vj) is the empirical probability of ui = vj until time step t
according to the history of local decisions and it is given as

p̃t(ui = vj) =

∑t
q=1 I(ui(q),vj)

t
, (45)

where ui(q) is the ui at time step q. The left side of (44)
measures the deviation of the empirical probability of ui = vj

from the benchmark value Rj . Sensors are potential Byzantine
nodes if the deviation exceeds a predefined threshold τ . Based
on the behavioral identity of all the sensors {bi(t)}Ni=1 at time
step t, we can obtain the fusion rules of enhanced detectors.
Note that both GLRTRS and LMPTRS have the form

N∑
i=Nref+1

2q∑
j=1

I(ui = vj)Wi,j

H1

≷
H0

η, (46)

6Note that based upon (7), the observation yi,∀i ∈ {1, 2, . . . , N} has zero
mean and different variances that are related to the sparsity degree p given
different hypotheses. Regardless of the quantizer thresholds that have been
chosen, sensors tend to transmit the same decisions with slightly different
probabilities based upon different hypotheses, i.e, P (ui = vj|i = H,H1)
and P (ui = vj|i = H,H0) are slightly different. The simplest method of
choosing Rj is to take the minimum value between P (ui = vj|i = H,H1)
and P (ui = vj|i = H,H0).

where (Wi,j , η) ∈ {(g̃i,j , γ′), (Fi,j , κ
′)}. Hence, the enhanced

fusion rule at time step t is given by

ΓE(t) =

N∑
i=Nref+1

2q∑
j=1

bi(t)I(ui(t)=vj)Wi,j(t)
H1

≷
H0

η(t). (47)

Let αt(t) and PA(t) denote the probability that a sensor is
a Byzantine node and the probability that a Byzantine node
attacks at time step t, respectively, and let α be the initial
value of αt. We first obtain the estimated attack probability
p̂A(0) = xH(0)/α at time t = 0 as initial value of P̂A, where
xH(0) =

xH1
(0)+xH0

(0)

2 and xHh
(0) is given in (31) for h =

0, 1. After filtering the possible Byzantine nodes, the value of
αt at time step t = 0 is updated according to {bi(0)}Ni=Nref+1.
The updating rule is given as

αt(0) = α−
∑N

i=Nref+1 bi(0)

N −Nref
. (48)

At the next time step, the updated αt(0) is employed as
the new prior to estimate p̂A(2) and P̂A(1) =

∑1
i=0 p̂A(i)

2 .
The value of αt is also updated at time step t = 1 ac-
cording to {bi(1)}Ni=Nref+1 in the same manner as (48),

i.e., α(1) = α(0) −
∑N

i=Nref+1 bi(1)

N−Nref
, and becomes the new

prior at the next time step. Thus, at time step t, αt(t −
1) = αt(t − 2) −

∑N
i=Nref+1 bi(t−1)

N−Nref
is utilized to obtain

P̂A(t) =
∑t

i=0 p̂A(i)

t+1 . By replacing xH and Fi,j with XH(t) =

P̂A(t)αt(t − 1) and bi(t)Wi,j , respectively, in (36) and (37),
we can obtain E(ΓE(t)|Hh) and V ar(ΓE(t)|Hh). Similarly,
for a given false alarm PFA, we can obtain the threshold
used by the FC at time step t, which is given as η(t) =
Q−1 (PFA)

√
V ar(ΓE(t)|H0) + E(ΓE(t)|H0). To compare

the detectors over all of the scenarios we consider, we provide
a summary table shown in Table I.

V. SIMULATION RESULTS

In this section, we present the simulation results to evaluate
the performance of the proposed detectors in the presence
of Byzantine attacks and compare them with the quantized
LMPT-based detector (proposed in [10]) and the commonly
used GLRT-based detector. Via simulations, we analyze the
performance of the proposed schemes in terms of the proba-
bility of error in the system. The channel gains {hi}Ni=1 are
all assumed to be sampled from normal distribution with a
homogeneous scenario so that ||hi||2 = 1,∀i as described in
[10]. Table II presents the parameter settings for reference.
Unless otherwise noted, we assume the number of sensors N
to be 280. When reference sensors are employed, we employ
Nref = 80 out of 280 sensors as reference sensors, except
when we evaluate system performance as a function of Nref .

TABLE II: Summary of parameter settings.

N Nref σ2
n σ2

x ∥|hi||2
value 280 80 1 5 1

α PFA π1 µw p
value 0.3 0.4 0.5 0 0.05
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TABLE I: Summary of GLRT-based and LMPT-based detectors under different scenarios.

unknown {PA, α, p} known α and unknown {PA, p}

GLRTRS:
∑N

i=Nref+1

∑2q

j=1 I(ui = vj)Fi,j

H1

≷
H0

κ′ E-GLRTRS:
∑N

i=Nref+1

∑2q

j=1 bi(t)I(ui(t)=vj)Fi,j(t)
H1

≷
H0

κ′(t)

LMPTRS:
∑N

i=1

∑2q

j=1 I(ui = vj)g̃i,j
H1

≷
H0

γ′ E-LMPTRS:
∑N

i=Nref+1

∑2q

j=1 bi(t)I(ui(t)=vj)g̃i,j(t)
H1

≷
H0

γ′(t)

commonly used GLRT-based detector:
∑N

i=1

∑2q

j=1 I(ui = vj)Gi,j

H1

≷
H0

λ1

LMPT-based detector [10]:
∑N

i=1

∑2q

j=1 I(ui = vj)w̃i,j

H1

≷
H0

λ2

In Fig. 4, we demonstrate the error probabilities of the
LRT detector with perfect knowledge of {PA, α, p}, the GLRT
detector, and the proposed GLRTRS detector. Two different
quantizers are employed, i.e., q = 1 and q = 2. The error
probability of the LRT detector with perfect knowledge of
{PA, α, p} shown in Fig. 4 is used as the benchmark to assess
the performance of the proposed detectors. It can be observed
that the GLRT detector is extremely vulnerable to attacks
for both one-bit quantization and multilevel quantization, and
a small fraction of Byzantine nodes α with a small attack
parameter PA are sufficient to break down the entire system.
However, the proposed GLRTRS detector can obtain an error
probability close to that of the LRT detector with perfect
knowledge of {PA, α, p}. We can observe from Fig. 4 that
in the cases of q = 1 and q = 2, the GLRTRS detector
outperforms the commonly used GLRT-based detector in the
presence of attacks, with a performance close to the bench-
mark LRT detector. Note that the GLRTRS detector uses only
200 sensors for detection purposes and exhibits performance
close to the benchmark detector that uses 280 sensors for
detection purposes. Hence, when no attacks are present, the
commonly used GLRT-based detector performs slightly better.
The number of quantization levels also affects the performance
of the GLRTRS detector. As shown in Fig. 4, with an increase
in q, the error probability of the proposed GLRTRS detector
further decreases due to the reduction of performance losses
caused by quantization. From Fig. 4, we can also observe
that the difference between the benchmark error probability
and the error probability of the proposed GLRTRS detector is
larger when the value of q increases. It is because the GLRTRS
detector is a sub-optimal detector, while the benchmark LRT
detector is an optimal one.

If we assume that the fraction of Byzantine nodes α is
known to the system, The error probability of the system
can be further reduced by employing the E-GLRTRS detector.
As shown in Fig. 5, the error probability of the E-GLRTRS
detector decreases with an appropriately designed threshold τ
compared to the GLRTRS detector. We can filter out different
numbers of potential Byzantine nodes with different values
of the threshold τ in (44). A potential Byzantine node can
be either an actual Byzantine or a falsely identified one. It
is obvious that a smaller threshold results in greater false
filtering, while a larger threshold results in greater miss
filtering. False filtering implies that honest nodes are falsely
filtered out, whereas miss filtering implies that malicious nodes
remain unfiltered. Both false filtering and miss filtering result

Fig. 4: Comparison of Pe for the GLRTRS, LRT and GLRT
detectors.

Fig. 5: Pe versus PA when different values of q and the
different values of threshold τ are utilized for the
E-GLRTRS detectors.

in degrading the system’s performance. Therefore, the system
will likely perform better if the threshold τ is set appropriately.
As shown in Fig. 5, τ = 0.5 is more appropriate than
τ = 0.7. It can be observed that when τ = 0.5, q = 1
and PA > 0.3, the E-GLRTRS detector outperforms the LRT
detector with perfect knowledge of {PA, α, p}. This is because
the E-GLRTRS detector filters out potential Byzantine nodes
and utilizes the rest of the sensors for detection. In contrast, the
benchmark LRT detector utilizes all the sensors for detection
purposes. Although the E-GLRTRS detector is inferior to the
benchmark LRT detector when q = 1 and PA < 0.3, the
difference in error probabilities is not too significant.

In Fig. 6, the error probability and the convergence rate
of the GLRTRS detector with different number of reference
nodes are presented. The number of sensors used for detection
purposes in the GLRTRS detectors with different values of
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Fig. 6: Pe versus the number of iterations when different
values of Nref are utilized for the GLRTRS detector.

Fig. 7: Comparison of Pe for the LMPTRS, LRT and
quantized LMPT detectors.

Nref are equal to 200, i.e., N−Nref = 200. It can be observed
that the convergence rate is faster, and the error probability is
lower when more reference nodes are used.

Fig. 7 shows the error probabilities of the LRT detector
with perfect knowledge of {PA, α, p}, the quantized LMPT
detector (proposed in [10]) and the proposed LMPTRS de-
tector for q = 1 and q = 2, respectively. We can observe
that the quantized LMPT detector proposed in [10] is also
extremely vulnerable to attacks for both one-bit and multilevel
quantization when all the p, PA and α are unknown. However,
it can be observed that when q = 1, the proposed LMPTRS
detector is capable of obtaining an error probability close to the
benchmark error probability that is obtained by employing the

Fig. 8: Pe versus PA when different values of q are utilized
for the LMPTRS and the E-LMPTRS detectors.

Fig. 9: Pe versus PA for benchmark LRT, LMPT and
LMPTRS detectors under Laplace distributed noise. The
noise has a mean of µw = 0 and a variance of σ2

w with
probability of false alarm (PFA = 0.4). The sparse signals
are assumed to asymptotically follow Gaussian distribution
with mean 0 and variance pσ2

x||hi||22.

LRT detector with perfect knowledge of the attack parameters
{PA, α, p}. Similar to the conclusion we obtained from Fig.
4, the LMPTRS detector outperforms the quantized LMPT
detector proposed in [10] in the presence of attacks. The error
probability of the proposed LMPTRS detector decreases with
increasing q, and a higher value of q increases the difference
between the benchmark error probability and the proposed
LMPTRS detector error probability. It is also possible to
further reduce the error probability of the system by assuming
that the fraction of Byzantine nodes α is known to the system.
As shown in Fig. 8, the E-LMPTRS detector outperforms both
the quantized LMPT detector and the benchmark LRT detector
with perfect knowledge of the attack parameters by filtering
potential Byzantine nodes when q = 1. When q increases
(e.g., q = 2), the E-LMPTRS detector still outperforms the
quantized LMPT detector. In Fig. 9, we demonstrate the
performance of our proposed detectors, which were originally
designed for the simple Gaussian case, in the presence of
one realization of generalized Gaussian noise. The noise here
is assumed to follow the Laplace distribution, which is a
special case of the generalized Gaussian distribution with
parameter β = 1. We also note that according to [10], all
types of generalized Gaussian distributed high-dimensional
sparse signals asymptotically follow Gaussian distributions.
We can observe that our proposed detector exhibits a certain
level of resilience to the Byzantine attack when the tail of the
distribution is not heavy.

VI. CONCLUSION

The distributed detection problem of sparse stochastic sig-
nals with quantized measurements in the presence of Byzan-
tine attacks was investigated in this paper. The sparse stochas-
tic signals were characterized by their sparsity degrees, and the
BG distribution was utilized to model sparsity. We proposed
the LMPTRS and GLRTRS detectors with adaptive thresholds,
given that the sparsity degree p and the attack parameters, i.e.,
α and PA are unknown. The simulation results showed that the
LMPTRS and GLRTRS detectors outperformed the LMPT de-
tector under attack and achieved detection performance close
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to the benchmark LRT detector with perfect knowledge of the
attack parameters and sparsity degree p. When the fraction of
Byzantines α in the networks is assumed to be known, the E-
LMPTRS and E-GLRTRS detectors were proposed to further
improve the detection performance of the system by filtering
out potential malicious sensors. Simulation results showed that
the proposed enhanced detectors outperform LMPTRS and
GLRTRS detectors.

In this work, the predefined quantizer thresholds we utilized
come from [9]. In the future, we intend to consider the
optimization of the predefined quantizer thresholds for our
proposed detectors and the design of resilient quantized LMPT
detector under noisy channels.

APPENDIX A
PROOF OF THEOREM 4.1

We first consider the scenario where sensors send binary
decisions to the FC, i.e., q = 1. After that, we consider the
system where sensors send q-bit decisions to the FC (q ≥
2). Here, we only consider the assumption that τ̃j,2q ≪ τi,1.
Nevertheless, we can reach similar conclusions if we assume
τi,2q ≪ τ̃j,1.

1) When sensors send binary decisions (q=1): The joint
pmf of local decisions coming from the reference sensors un-
der hypothesis Hh is given as P (Uref |Hh, p, x) =

∏Nref

i=1 (1−
x)uix1−ui for h = 0, 1. Take the logarithm of both sides, we
have

logP (Uref |Hh, p, x)=

Nref∑
i=1

[ui log(1− x) + (1− ui) log x]

=Y log(1−x)+(Nref−Y ) log x, (49)

where Y =
∑Nref

i=1 ui. Let ∂P (Uref |Hh,p,x)
∂x = 0, we are able

to obtain the estimated attack parameter x̂h under hypothesis
Hh which maximizes logP (Uref |Hh, p, x) and the estimated
attack parameter x̂h is given as x̂h = 1− Y

Nref
.

In order to evaluate the estimator performance, it should be
noted that it is unbiased since

E[x̂h] = 1− 1

Nref

Nref∑
i=1

E[ui] = x (50)

The variance of the estimator is given as

E[x̂h] =E[x̂2
h]− E2[x̂h] = E

[(
1− Y

Nref

)2
]
− x2

=1− x2 − 2

Nref
E[Y ] +

1

N2
ref

E[Y 2]

=
(1− x)x

Nref
(51)

To evaluate the performance of the estimator, the CRLB
can be calculated which is − 1

E[∂2P (Uref |Hh,p,x)/∂x2] . Taking
the second derivative of P (Uref |Hh, p, x) with respect to
x, we have ∂2P (Uref |Hh,p,x)

∂x2 =
∑Nref

i=1

[
− ui

(1−x)2 − 1−ui

x2

]
.

Subsequently, taking the expectation of the above equation,
we have

E

[
∂2P (Uref |Hh, p, x)

∂x2

]
=

Nref∑
i=1

E

[
∂2P (ui|Hh, p, x)

∂x2

]
=− Nref

(1− x)x
. (52)

Therefore, the CRLB is (1−x)x
Nref

which is the same as (51).
This indicates that the proposed estimator attains the CRLB;
that is, it is an efficient estimator when sensors in the network
send binary decisions.

2) When sensors send q-bit decisions (q ≥ 2): The joint
pmf of local decisions coming from the reference sensors un-
der hypothesis Hh is given as P (Uref |Hh, p, x) =

∏Nref

i=1 (1−
x)I(ui=v2q )

∏2q−1
j=1 ( x

2q−1 )
I(ui=vj) for h = 0, 1. Take the

logarithm of both sides, we have

logP (Uref |Hh, p, x)

=

Nref∑
i=1

I(ui = 2q) log(1− x) +

2q−1∑
j=1

I(ui = vj) log(
x

2q − 1
),

(53)

Taking the first derivative of P (Uref |Hh, p, x) with respect
to x, we have

∂P (Uref |Hh, p, x)

∂x
=

Nref∑
i=1

−1
1−x

I(ui=2q)+

2q−1∑
j=1

1

x
I(ui=vj)

=
−Y1

1−x
+
Nref−Y1

x
(54)

where Y1 =
∑Nref

i=1 I(ui = v2q ). Let ∂P (Uref |Hh,p,x)
∂x = 0, we

are able to obtain the estimated attack parameter x̂ which max-
imizes logP (Uref |Hh, p, x). The estimated attack parameter
x̂h under hypothesis Hh is given as x̂h = 1− Y1

Nref
.

In order to evaluate the estimator performance, it should be
noted that it is unbiased since

E[x̂h] =1− 1

Nref
E[Y1] = x (55)

Similarly, the variance of the estimator is given as

E[x̂h] =E[x̂2
h]− E2[x̂h] = E

[(
1− Y1

Nref

)2
]
− x2

=1− x2 − 2

Nref
E[Y1] +

1

N2
ref

E[Y 2
1 ]

=
(1− x)x

Nref
(56)

To evaluate the performance of the estimator, the CRLB can
be calculated which is − 1

E[∂2P (Uref |Hh,p,x)/∂x2] . Taking the
second derivative of P (Uref |Hh, p, x) with respect to p, we
have

∂2P (Uref |Hh, p, x)

∂x2
=

Nref∑
i=1

−I(ui=2q)

(1−x)2
−

2q−1∑
i=1

I(ui=vj)

x2

=

Nref∑
i=1

−I(ui=2q)

(1− x)2
− 1−I(ui=2q)

x2
(57)
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Subsequently, taking the expectation of the above equation,
we have

E

[
∂2P (Uref |Hh, p, x)

∂x2

]
=

Nref∑
i=1

E

[
∂2P (ui|Hh, p, x)

∂x2

]

=

Nref∑
i=1

− 1

(1− x)2
(1− x)− 1

x2
x

=− Nref

(1− x)x
(58)

Therefore, the CRLB is (1−x)x
Nref

which is the same as (56).
This indicates that the proposed estimator attains the CRLB;
that is, it is an efficient estimator when sensors in the network
send q-bits decisions. This completes our proof.
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