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An !∗-Based Algorithm for
Constructing Reversible Variable Length Codes with

Minimum Average Codeword Length
Yuh-Ming Huang, Member, IEEE, Ting-Yi Wu, and Yunghsiang S. Han, Senior Member, IEEE

Abstract�—Variable length codes (VLCs) are widely adopted in
many compression standards due to their good coding efciency
on average codeword length. However, an inherent problem with
a VLC is that an error of even one bit can cause serious error
propagation and thus loss of synchronization at the receiver,
which would lead to a series of non-correctly decoded symbols.
Reversible variable length codes (RVLCs) were introduced to
signicantly mitigate this phenomenon. In this work, a method
to nd an optimal RVLC in terms of the minimum average code-
word length is rst formulated as a tree-searching problem, and
then, instead of performing an exhaustive search, an !∗-based
construction algorithm is proposed to nd an optimal RVLC.
The proposed algorithm has been applied to several benchmarks
for sources and has found respective optimal symmetric and
asymmetric RVLCs.

Index Terms�—Source coding, reversible variable length codes,
A* algorithm.

I. INTRODUCTION

THE Huffman class of Variable Length Codes (VLCs)
have been shown to be highly efcient entropy codes

and are therefore widely adopted in many well-known com-
pression standards, including JPEG and MPEG-2. However,
a Huffman-encoded bitstream is vulnerable to bit errors.
When transmitted over a noisy channel, even one bit error
in the bitstream may cause serious error propagation, and
thus synchronization loss at the receiver. This phenomenon
leads to decoding failure and produces a series of non-
correctable symbols. Several reversible variable length codes
(RVLCs) [1]�–[12], which were modied from VLCs, have
been presented to mitigate this phenomenon by admitting
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instantaneous decoding in either direction (forward and back-
ward), but at the cost of compression loss. In recent years,
more compression standards, such as JPEG-2000, H.263+,
and MPEG-4, have adopted RVLCs to enhance their error-
resilient capabilities. Furthermore, as shown elsewhere [13]�–
[17], although an RVLC increases code redundancy, which
represents the difference between the entropy and the average
codeword length, this redundancy can be regarded as a means
of implicit channel protection and can be used by the decoder
to provide the error-correcting capacity of the RVLC.

An RVLC is a x-free code in which no codeword is a
prex or a sufx of any other codeword. Hence, an RVLC-
encoded bitstream can be instantaneously decoded in both
the forward and backward directions. RVLCs can be divided
into two categories - symmetric and asymmetric. A symmetric
RVLC has an additional constraint - that the two bitstreams
respectively obtained by parsing a codeword in the forward
and backward directions are identical. In contrast, an asym-
metric RVLC does not have this property. Because of the
additional constraint, symmetric RVLCs are associated with
smaller search spaces than asymmetric RVLCs. Hence, this
constraint simplies the design of optimal codes. As expected,
an asymmetric RVLC never provides less coding efciency
than a symmetric one, since codewords can be selected more
exibly in the construction of an asymmetric RVLC.

Algorithms for constructing RVLCs typically follow two
methodologies. One constructs an RVLC with its average
codeword length as close to that of the Huffman code (with
the best coding efciency) as possible. The other reduces the
size of the search tree to easily locate an optimal (or a nearly
optimal) solution. 1

Based on a given Huffman code and its codeword length
distribution, Takishima et al. [1] rst specied how to con-
struct both asymmetric and symmetric RVLCs. Later, Tsai et
al. [2], [3] improved methods that were proposed elsewhere [1]
using heuristic codeword selection mechanisms. In two other
works, [4] and [6], further improvements were achieved
using another heuristic codeword selection mechanism for
asymmetric RVLCs. At each level of the code tree, these

1In Section II, the problem of constructing an RVLC is converted into a tree-
searching problem, in which all of the asymmetric RVLCs can be represented
in binary tree ! .

The process of implementing each existing construction algorithm can be
described by its own search tree, for example Fig. 3 of [9]. Essentially, this
search tree can be seen as a subset of binary tree ! if each branch of Fig. 3
is decomposed into a series of smaller branches.
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algorithms assign a number of RVLC codewords that is as
close to the number of Huffman codewords as possible.
While more available RVLC codewords can be chosen, a
heuristic codeword selection mechanism is applied to guide the
selection procedure. When fewer available RVLC codewords
can be chosen, the length of some RVLC codewords must
be increased, and so the coding efciency of the constructed
RVLC is worse than that of a Huffman code. Basically, a
trade off exists between the coding efciency and the time-
complexity of the codeword selection mechanism. Since a
heuristic codeword selection mechanism with higher time-
complexity may explore more information, it is more likely
to nd an optimal code. Among the algorithms in [3], [4],
and [6], that in [4] has the highest time-complexity and that
in [3] has the lowest time-complexity. For example, for the
Canterbury Corpus le set, the search results given in [6] are
almost better than those given in [3]. Owing to its exponential
time-complexity, Lin et al. [6] showed that the algorithm given
in [4] can only be applied to some source benchmarks taken
from the Canterbury Corpus le set. Moreover, the codeword
selection mechanism in [4] is not an optimal scheme that
always results in an optimal code. Using the algorithms in [3]
and [4], Wang et al. [5] improved the search results given in
those works, in relation to the coding efciency, by iteratively
optimizing the distribution of the codeword lengths.

Rather than utilizing a xed distribution of codeword
lengths associated with a given Huffman code, Tseng et
al. [7] proposed a new approach for constructing symmetric
RVLCs by employing a backtracking technique. This tech-
nique eliminates one codeword from a currently constructed
RVLC codeword list, such that more available shorter RVLC
codewords can be selected. Accordingly, a new codeword
list of the same size, which has a shorter average codeword
length, can be generated. Later, Lin et al. [8] proposed two
backtracking-based construction algorithms for asymmetric
RVLCs, whose results improved those presented in [3], with
either smaller average codeword lengths or shorter maximum
codeword lengths. In 2004, Tseng et al. [9] extended the
algorithm that they had proposed in [7] to construct asymmet-
ric RVLCs. However, some of their constructed codes given
in [9] were still worse than those found by the Huffman
code-based algorithm [5] in terms of coding efciency. By
exploiting the property of a convex function, Jeong et al. [10]
constructed asymmetric RVLCs with greater coding efciency
than those given in [8] and [5]; however, some constructed
asymmetric RVLCs have a larger average codeword length
than those given in [9]. Many of the above algorithms have
the phenomenon that different initial values must be assigned
heuristically according to the source statistics. Moreover, none
of the aforementioned methods is superior to the others for all
search results.

None of the above construction algorithms can be guar-
anteed to nd an optimal RVLC because the corresponding
search tree of each algorithm is not always large enough to
capture an optimal solution. Although an exhaustive search on
binary tree " can nd an optimal RVLC, its use is impractical
because of the extremely high time-complexity.

Recently, Savari [11] proposed two approaches for nding
optimal symmetric RVLCs. First, she extended the idea given

in another work [18] to RVLCs, and found that, a small binary
symmetric RVLC has few dominant length vectors. After all
of these dominant length vectors are found, they can be tested
to determine which is the best in terms of the minimum
average codeword length for a given source probability vector.
This approach just requires a one-time computational cost
to nd all of the dominant length vectors and can easily
construct a new optimal symmetric RVLC when the source
probability vector is changed. Although Savari also pointed
out two properties that may be utilized to quickly generate
all of the dominant length vectors and their corresponding
codes, no explicit algorithm was given in her original work.
An explicit algorithm was given in her later work [19]. Unlike
our proposed algorithm, which can nd optimal symmetric
RVLCs with large sizes, only optimal symmetric RVLCs with
small sizes were given in [11]. Second, this work proposed a
searching scheme that traverses the set of various partial length
vectors in order to locate the full length vector associated with
an optimal code. Given a source probability vector, a threshold
can be calculated that is equal to the average codeword length
of a known best symmetric RVLC. Apparently, this threshold
is an upper bound on the average codeword length of an
optimal code. According to the source probability vector and
the threshold, a partial length vector (and all of its possible
extensions) is eliminated to speed up the search after it is
determined to not have an extension corresponding to an
optimal code. However, unlike our proposed algorithm, which
can nd optimal symmetric RVLCs with large sizes, only an
optimal symmetric symmetric RVLC for the English alphabet
was given in [11].

In [12], Savari rst proposed two low-complexity heuristic
approaches for constructing sub-optimal asymmetric RVLCs
for the English alphabet. Although the resultant RVLCs were
not better than those given in [9], Savari pointed out that
the Kraft-sum of a code is an important heuristic parameter
for the design of an optimal code. She then proposed two
�“bounding�” schemes that rened the searching approach given
in [11] and applied them to nd optimal asymmetric RVLCs.
She also showed that the decision and assignment problem
�“to determine whether or not there is a x-free code for a
given set of codeword lengths and a procedure to generate
such a code if it exists�” could be converted into an equiv-
alent Boolean satisability problem (SAT), which is an NP-
complete problem [20]. As Savari pointed out, the open source
SAT solver (http://een.se/niklas/Satzoo) was always able to
quickly determine satisability and provide a corresponding
bit assignment for a given length vector. However, even
though it could sometimes quickly determine unsatisability,
it was often extremely slow in doing so. Moreover, the author
didn�’t explicitly give a systematic and efcient algorithm to
determine the order of the length vectors checked through the
SAT solver in order to quickly eliminate dominated length
vectors and easily nd all of the dominant length vectors. An
explicit algorithm was given in her later work [19]. How to
extend and traverse the partial length vectors more efciently
in order to quickly nd the optimal code was also not provided.
Hence, only an optimal RVLC for the English alphabet was
found in [12] and no optimal RVLCs with large sizes for the
Canterbury Corpus le set were presented.
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In this work, all of the asymmetric RVLCs of size ! are
represented by a binary tree, and then, an "∗-based sequential
algorithm is proposed to search for an asymmetric RVLC with
a minimum average codeword length, as an alternate to an
exhaustive search. The proposed algorithm can also be applied
to nd an optimal symmetric RVLC with far lower time-
complexity by considering the additional �“symmetry�” con-
straint. It is the rst searching approach described in complete
detail and where the algorithm solves larger problems than
those discussed in Savari�’s papers.

This paper is organized as follows. Section II presents a
binary-tree representation of all of the RVLCs and converts
the problem of constructing an optimal RVLC into a tree-
searching problem. Section III presents the proposed "∗-based
sequential algorithm along with its search tree and proves that
the proposed algorithm will always nd an optimal RVLC.
Section IV compares the search results obtained using the pro-
posed method with those presented in previous works [5], [7],
[9], [11], [12]. The time-complexity and memory requirement
of the proposed algorithm are also evaluated. Conclusions are
nally drawn in Section V, which also includes recommenda-
tions for future research.

II. BINARY-TREE REPRESENTATION OF RVLCS

Let # be a set of ! independent source symbols
{#1, #2, #3, ⋅ ⋅ ⋅ , ##} with respective to occurrence probabili-
ties {%1, %2, %3, ⋅ ⋅ ⋅ , %#} in decreasing order. Let Ψ be the set
of all RVLCs such that each RVLC in Ψ has ! codewords. Let
' = {&1, &2, &3, ⋅ ⋅ ⋅ , &#} ∈ Ψ and the length of each codeword
in ' is respectively denoted as ℓ(&$), 1 ≤ ( ≤ ! . The goal of
our construction algorithm is to nd a code '̂ corresponding
to # with the minimum average codeword length, that is:

'̂ = )*+min
"∈Ψ

#∑

$=1

%$ × ℓ(&$). (1)

All of the RVLCs in Ψ can be represented in binary tree
" where each leaf node of the tree denotes an RVLC. In
other words, each path of the tree explicitly depicts the
process of constructing an RVLC. Fig. 1 shows a simple
example for N=3, where codeword list ' and candidate
list + are used to describe the process. ' records the
currently selected codewords and + is a list of legitimate
codeword candidates in lexicographic order. There are
two branches leaving from each node. The lower branch
shows that the rst available candidate in + is selected,
while the upper branch shows that this candidate is
non-selected. Let us consider the thicken path shown in
Fig. 1. Initially, ' and + are respectively assigned to be ∅ and
{0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ⋅ ⋅ ⋅}.
In the rst branch of the path, the rst codeword �“0�” in +
is selected and hence codeword �“0�” is eliminated from +
and included in '. + is further updated by removing the
codewords {00, 01, 10, 000, ⋅ ⋅ ⋅} that are not prex-free or
sufx-free with respect to codeword �“0.�” In the second branch
of the path, the rst codeword �“1�” in + is not selected. So
the content of list ' is unchanged and �“1�” is eliminated from
+. In the third branch of the path, the rst codeword �“11�”
in + is selected and the codeword �“11�” is included in '.

Fig. 1. All of the asymmetric RVLCs of size 3 are represented in binary
tree ! . ■ shows a leaf in ! .

The codewords {111, 1011, ⋅ ⋅ ⋅} are also excluded from + to
maintain the x-free property for each codeword in + with
respect to codeword �“11.�” In the nal branch of the path, after
selecting the codeword �“101�” from +, we obtain an RVLC
as {0, 11, 101}. The dotted branch shown in Fig. 1 indicates
that it will not be expanded since list + will become empty
after the codeword �“1�” is selected.

A complement of a code (a set) is the code that contains
complements of all of the elements of this code (set). Since an
RVLC and its complement have the same average codeword
length, the complement of each RVLC is disregarded here.
Therefore, for each newly expanded node, one can simply
stipulate that the rst selected codeword in - is required to
start with a zero-valued bit. Therefore, as shown in Fig. 1,
the dashed branches are pruned to further simplify the binary
tree " . In fact, in our implementation, only ! -∣-∣ candidates2

are kept in list +, where ∣-∣ denotes the number of selected
codewords in -. Once binary tree " is constructed, nding
the desired '̂ becomes a tree-search problem in " .

The "∗ algorithm [21] is a very famous search algorithm
on a graph in articial intelligence. In the graph, a cost
is associated with each branch and the algorithm nds the
shortest path from the starting node to a goal node with
minimum path cost, which is the accumulated branch costs
along the path. A heuristic function is imposed to the cost of
each path in the graph to reduce the search space. When a
better heuristic function is used, the search visits fewer nodes.
The cost of each path (partial or full) is composed of two parts:
the accumulated cost from the starting node to the ending node
of the path and the heuristic function that estimates the cost
from the ending node of the path to a goal node. In Section III,
an "∗-based algorithm for constructing optimal RVLCs will
be presented after the cost of each node is specied. It will be
proved that the proposed algorithm always nds an optimal
RVLC as a shortest path is found by the "∗ algorithm.

Without loss of generality, the relationship between a parent
node and its two children nodes in " is illustrated in Fig. 2,

2The actual contents of # change adaptively according to the codewords
selected in !. Our goal is to nd a code of size " . Hence, it is just enough
to keep the rst " -∣!∣ candidates during the implementation.
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Fig. 2. Relationship between a parent node and its two children nodes in
! .

where the costs of nodes . , / , and 0 are specied.3 Since
our goal is to nd an optimal RVLC, we need to specify
the cost of each node in the binary tree according to (1). By
constructing " , it is easy to see that the branch cost assigned
to each branch should be %$ × 1(&$), if &$ is selected in this
branch, or 0, if no codeword is selected. Let 2(. ) denote
the cost of node . and dene it as:

2(. ) =
%∑

$=1

%$ × 1(&$)

︸ ︷︷ ︸
&(' )

+

#∑

$=%+1

%$ × 1(3$−%)

︸ ︷︷ ︸
ℎ(' )

, (2)

where +(. ) denotes the accumulated branch cost from the
root of " (the starting node) to node . (i.e., the accumulated
average codeword length over the codewords &$�’s with respect
to their occurrence probabilities %$�’s, 1 ≤ ( ≤ 4), and ℎ(. )
denotes an estimate on the cost of the path from node . to
any goal (leaf) node. Note that we design ℎ(. ) as the average
codeword length over the !− 4 shortest codewords among all
of the remaining codewords that can be legally selected while
traversing any path starting from node . . Let ℎ∗(. ) denote
the minimum cost among all of the possible paths from node
. to a goal node. It can be easily observed that:

ℎ(. ) ≤ ℎ∗(. )

and

+(. ) + ℎ(. ) ≤ +(. ) + ℎ∗(. ), (3)

i.e., ℎ(. ) is a lower bound of ℎ∗(. ).
As shown in Fig. 2, node . is associated with two lists,

'' and +' . The child node / on the left hand side adds the
rst codeword 31 in +' into '' . Thus, the codeword list is
now:

') = '' ∪ {31}
= {&1, &2, ⋅ ⋅ ⋅ , &%, 31}. (4)

3Since we deal with a tree in our work, the ending node is used to represent
a path. Hence, the cost associated with the path is the same as that associated
with its ending node.

Next, the candidate list +' is updated as:

+) = {3̂1, 3̂2, 3̂3, ⋅ ⋅ ⋅ } (5)

by removing all non-x-free codewords in +' with respect
to 31. Hence, the cost of node / is equal to:

2(/) = [
%∑

$=1

%$ × 1(&$)] + %%+1 × 1(31)

︸ ︷︷ ︸
&())

+

#∑

$=%+2

%$ × 1(3̂$−%−1)

︸ ︷︷ ︸
ℎ())

. (6)

For child node 0 on the right hand side, the content of the
codeword list is unchanged, i.e., '* = '' . +* is obtained
by just eliminating the codeword 31 from +' , i.e.,

+* = +' ∖ {31}
= {32, 33, 34, ⋅ ⋅ ⋅ }. (7)

Then, the cost of node 0 is calculated as:

2(0 ) =
%∑

$=1

%$ × 1(&$)

︸ ︷︷ ︸
&(* )

+
#∑

$=%+1

%$ × 1(3$−%+1)

︸ ︷︷ ︸
ℎ(* )

. (8)

III. "∗-BASED ALGORITHM FOR CONSTRUCTING

OPTIMAL RVLCS

Equipped with the denitions and notations given in Sec-
tion II, an "∗-based construction algorithm for designing op-
timal RVLCs with respect to the minimum average codeword
length is presented as follows:
< "1+7*(4ℎ2 1 >

Step 1. Set 9:7;<= equal to the average codeword length
of an existing RVLC.
Initially, the Stack has only one root node > with

'+ = ∅,++ = {31 = 0, 32 = 1, 33 = 00, 34 = 01,

35 = 10, 36 = 11, ⋅ ⋅ ⋅ }

and

+(>) = 0,2(>) = ℎ(>)(=
#∑

$=1

%$ × 1(3$)).

Step 2. Pop the top node . (for the rst time . = >) from
the Stack.
If '' ∪ {31, 32, ⋅ ⋅ ⋅ , 3#−%} is a valid RVLC,
then the algorithm stops and we obtain an optimal
RVLC.

Step 3. Generate two children nodes / and 0 of node .
and construct the lists ') , +) and '* , +* .
If +) is empty and the size of ') is less than ! ,
then discard node / .
If the rst selected codeword in ') does not start
with a zero-valued bit, then discard node / .
Calculate the cost values of the remaining children
nodes.
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If the cost value of/ (or0 ) is greater than9:7;<=,
then discard node / (or 0 ).

Step 4. Insert the remaining children nodes into the Stack
and reorder the Stack according to ascending cost
values. Go to Step 2.

We next prove that the proposed algorithm will always
construct an optimal RVLC. That is, sequential-type searching
in the above algorithm can locate a leaf node with minimum
cost in " .

Lemma 1: The cost at each node is a non-decreasing func-
tion along any path in " .

Proof: As shown in Fig. 2, we need to show that
2(. ) = +(. ) + ℎ(. ) ≤ 2(/) = +(/) + ℎ(/) and
2(. ) ≤ 2(0 ) = +(0 ) + ℎ(0 ). Note that the candidate
list is in lexicographic order. Then, we have 1(32) ≤ 1(3̂1),
1(33) ≤ 1(3̂2),⋅ ⋅ ⋅ , 1(3#−%) ≤ 1(3̂#−%−1) due to the fact that
") is a subset of "' . Hence,

2(. ) =
%∑

$=1

%$ × 1(&$) +
#∑

$=%+1

%$ × 1(3$−%)

≤
(

%∑

$=1

%$ × 1(&$) + %%+1 × 1(31)

)
+

#∑

$=%+2

%$ × 1(3̂$−%−1)

= +(/) + ℎ(/) = 2(/).

Similarly we have 2(. ) ≤ 2(0 ).
By Lemma 1, the cost along any path is non-decreasing.

Then, any average codeword length of an existing RVLC can
be an upper bound on the cost of an optimal path in the binary
tree [11], [12], [22]. This upper bound can be used to reduce
the size of the stack since any newly generated node with a
cost that is not less than this upper bound can be eliminated
from the stack. By using this technique, the size of the stack
can be shortened and the search can be sped up at the same
time. This speed-up is beneted from the fact that a shorter
stack has a faster sorting procedure than a longer one.

Theorem 1: The proposed "∗-based Algorithm always nds
an optimal RVLC.

Proof: As indicated in Step 2 of the above algorithm,
if '' ∪ {31, 32, ⋅ ⋅ ⋅ , 3#−%} is a valid RVLC, the algorithm
stops and reports that an optimal RVLC has been found. From
the denition of the cost for a node, 2(. ) is not only the
cost of node . but also the average codeword length of this
RVLC. The costs of other nodes are not less than 2(. ) and,
by Lemma 1, the costs of their successors are also not less
than 2(. ). Hence, any further search in the tree will not
result in an RVLC with a lower minimum average codeword
length. This proves that the proposed algorithm always nds
an optimal RVLC.
Example 1: Consider a set of four independent source sym-
bols {#1, #2, #3, #4} with respective occurrence probabilities
{%1, %2, %3, %4} = {0.68, 0.13, 0.11, 0.08}. The search tree and
the stack contents for this example are respectively shown in
Fig. 3 and Fig. 4. Initially, the stack has only one node 0 with
cost 2(0) = 1.19 (+(0) = 0 and ℎ(0) = 0.68×1+0.13×1+
0.11×2+0.08×2 = 1.19). In round 1, we pop out node 0 from

Fig. 3. The search tree in Example 1.

Fig. 4. Stack contents in Example 1.

the stack. Two children nodes (node 1 and node 2) of node
0 are generated with 2(1) = 1.27 (+(1) = 0.68× 1 = 0.68,
ℎ(1) = 0.13×1+0.11×2+0.08×3 = 0.59) and 2(2) = 1.32
(+(2) = 0, ℎ(2) = 0.68 × 1 + 0.13 × 2 + 0.11 × 2 +
0.08 × 2 = 1.32). They then are pushed into the stack in
the order of ascending cost values. In round 2, node 1 is
popped out from the stack and only its child on the right
hand side (node 4) with 2(4) = 1.51 (+(4) = 0.68 × 1,
ℎ(4) = 0.13× 2 + 0.11 × 3 + 0.08× 3 = 0.83) is generated
and inserted into the stack. Since the size of '3 is less than 4
and list +3 becomes empty, we discard node 3. In round 3,
node 2 is popped out from the stack and only its child on the
right hand side (node 6) with 2(6) = 2 (+(6) = 0, ℎ(6) =
0.68× 2 + 0.13× 2 + 0.11× 2 + 0.08× 2 = 2) is generated
and inserted into the stack. Since '5(= {1}) is complemented
with list '4(= {0}) kept by node 4 in the current stack, we
discard node 5. In round 4, we pop out node 4 from the stack,
and then generate its two children (node 7 and node 8) with
2(7) = 1.59 (+(7) = 0.68 × 1 + 0.13 × 2 = 0.94, ℎ(7) =
0.11 × 3 + 0.08 × 4 = 0.65), and 2(8) = 1.72 (+(8) =
0.68×1 = 0.68, ℎ(8) = 0.13×3+0.11×3+0.08×4 = 1.04).
Since '7∪{101, 1001} is a valid RVLC, an asymmetric RVLC
{0, 11, 101, 1001}with the minimum average codeword length
is obtained immediately after node 7 is popped out.

It has been shown that with a larger estimated ℎ, fewer
nodes are visited in the "∗ algorithm search [22], [23].
However, in order to guarantee that an optimal solution will
be found in the search, the value of ℎ(?) must be no more
than ℎ∗(?) for each node ? in " , where ℎ∗(?) denotes the
minimum cost among all possible paths from node ? to a goal
node. Increasing the value of ℎ(?) can be easily achieved by
applying the following ℎ−@#4(2)4@ subroutine to the subtree
rooted at node ? in " . A temporary local stack is created
for node ? to store the generated nodes in the subtree while
calculating ℎ(?). A node is called expanded if its two children
are generated in the subroutine. When the number of nodes
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Fig. 5. The search tree in Example 1 with larger estimate.

Fig. 6. Stack contents in Example 1 with larger estimate.

expanded by the subroutine, which is denoted as A! , is larger
in the subtree, fewer rounds are required by "1+7*(4ℎ2 1. In
addition, this technique can be used to efciently reduce the
memory requirement. Even though the computational cost for
ℎ(?) increases when the number of expanded nodes is larger
in the subtree, the overall speed of the proposed algorithm will
not degrade signicantly. Sometimes the overall speed even
becomes faster when the A! value increases. This is due to
the reduction in the number of rounds. Moreover, when A!
is sufciently large, an RVLC can be found immediately and
its average codeword length is a lower bound of all of the
possible RVLCs in this subtree rooted at node ? . That is, we
don�’t need to extend node ? anymore. A detailed ℎ−@#4(2)4@
subroutine is presented as follows:
< ℎ−@#4(2)4@(?,A!) >

// ? may represent node >, node / , or node 0 in
"1+7*(4ℎ2 1.

Step 1. Copy node Z and its ', , +, , and g(Z), which are
calculated in Algorithm 1, into the temporary Stack.
i = 0. // Initially, the temporary Stack is empty.

Step 2. Pop the top node . (for the rst time . = ?) from
the temporary Stack.
If the size of -' is equal to ! -1, then -, = -'

∪ {31} and go to Step 5. // I.e. 2(. ) is a lower
bound of all of the possible RVLCs in this subtree
rooted at node ? .
If i = A! , then go to Step 5.

Step 3. Generate two children nodes, / and 0 , of node .
and construct the lists ') , +) and '* , +* .
If +) is empty and the size of ') is less than ! ,
then discard node / .
If the rst selected codeword in ') does not start
with a zero-valued bit, then discard node / .
If the size of ') is equal to ! -1 and 2(/) <

9:7;<=, then 9:7;<= = 2(/). // Note that ')
∪ {31} is a valid RVLC, hence 2(/) is a new
upper bound.
If the cost value of/ (or 0 ) is greater than9:7;<=,
then discard node / (or 0 ).

Step 4. Insert the remaining children nodes into the tempo-
rary Stack and reorder the temporary Stack accord-
ing to ascending cost values.
i = i + 1.
If the temporary Stack is empty, then return ∞. //
I.e. a subtree rooted at node ? in " is pruned.
else go to Step 2.

Step 5. Return m(W). // I.e., the new estimated ℎ(?) is
equal to m(W)-g(Z).

In Section IV, different setups for A! will be simulated.
For an easy illustration, the value of A! is set to one here.
Hence, except for node 1 and node 2 in Fig. 3, the estimated
ℎ(?) of node ? is now replaced with min{2(B ),2(C)}4-
+(?), where B and C are the two children of node ? . For
example, ℎ(0) = min{2(1),2(2)}−+(0) = 1.27 and ℎ(4) =
min{2(7),2(8)} − +(4) = 0.91. As for node 1 and node 2,
since node 3 and node 5 don�’t exist, ℎ(1) = 2(4)−+(1) = 0.83
and ℎ(2) = 2(6)− +(2) = 2. By increasing the estimate, the
new resultant search tree and the stack contents in Example 1
can be obtained as shown in Fig. 5 and Fig. 6. Notice that the
number of rounds in Fig. 6 is reduced by one in comparison to
that in Fig. 4. For the English alphabet, the number of rounds
required in our proposed algorithm is reduced from 15702 to
7438 if the number of expanded nodes is set to two. Moreover,
the maximum number of nodes in the stack is also reduced
from 6222 to 2940.

IV. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on the
English alphabet and various source benchmarks taken
from the Canterbury Corpus le set (available at
http://corpus.canterbury.ac.nz). These benchmarks were
designed specically for testing new compression algorithms.
The achievable performance of the proposed algorithm and
that of the algorithms presented by [7], [5], [9], and [11], [12]
are listed and assessed in Table I−Table V. The Huffman
code [24] is also given in all of the tables for reference. Our
experiments were done using Bloodshed Dev-C++ run on an
Acer Travel/Mate 6293 Notebook with an Intel Core 2 Duo
P8600 2.4 GHz CPU and 3G bytes of RAM. There are two
kinds of primary storage in our program. One is an array used
for storing the codewords and corresponding indices, where
all of the codewords in a full binary code tree are arranged
in lexicographic order and indexed incrementally from zero.
For example, the index of the codeword 11 is represented
by 5. The other type of storage is for the information of
each node . in the stack that is kept in a record, which
stores the costs, +(. ) and 2(. ) and the lists, '' and +' .
List '' and +' respectively record the indices of selected
codewords and candidate codewords. The indices are chained
together by pointers. Notice that the total number of indices
kept in '' and +' is equal to ! .

4min{#, %} denotes the smaller one between # and %.
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TABLE I
HUFFMAN CODE AND SYMMETRIC/ASYMMETRIC RVLCS CONSTRUCTED BY THE PROPOSED ALGORITHM AND THOSE OF [7], [9], [11], AND [12] FOR

THE ENGLISH ALPHABET.

symmetric RVLCs asymmetric RVLCs
English Probability Huffman [24] Tseng et al. [7] Ours Tseng et al. [9] Ours

Alphabet (Savari [11]) (Savari [12])
E 0.14878570 001 000 000 101 000

(0.14878610)
T 0.09354149 110 010 010 111 011
A 0.08833733 0000 101 101 000 110
O 0.07245769 0100 111 111 0110 0010
R 0.06872164 0110 0110 0110 1001 0100
N 0.06498532 1000 1001 1001 0010 0101
H 0.05831331 1010 00100 00100 0011 1001
I 0.05644515 1110 01110 01110 0100 1010
S 0.05537763 0101 10001 10001 1100 1111
D 0.04376834 00010 11011 11011 01010 00111
L 0.04123298 10110 001100 001100 11010 10001
U 0.02762209 10010 011110 011110 01110 10111
P 0.02575393 11110 100001 100001 10001 11100
F 0.02455297 01111 110011 110011 01011 11101
M 0.02361889 10111 0010100 0010100 11011 001100
C 0.02081665 11111 0011100 0011100 011110 001101
W 0.01868161 000111 0111110 0111110 100001 100001
G 0.01521216 011100 1000001 1000001 0111110 101100
Y 0.01521216 100110 1100011 1100011 1000001 101101
B 0.01267680 011101 1101011 1101011 01111110 1000001
V 0.01160928 100111 00111100 00111100 10000001 10000001
K 0.00867360 0001100 01111110 01111110 011111110 100000001
X 0.00146784 00011011 10000001 10000001 100000001 1000000001
J 0.00080064 000110101 11000011 11000011 0111111110 10000000001
Q 0.00080064 0001101001 011111110 001010100 1000000001 100000000001
Z 0.00053376 0001101000 100000001 001101100 01111111110 1000000000001
Average codeword length 4.15572284 4.46463681 4.46463681 4.18734808 4.17280313

(4.46463801) (4.17280433)

TABLE II
HUFFMAN CODE AND SYMMETRIC/ASYMMETRIC RVLCS CONSTRUCTED BY THE PROPOSED ALGORITHM AND THOSE OF [7], [5], AND [9] FOR THE

CANTERBURY CORPUS FILE SET.
Symmetric RVLCs

Huffman [24] Tseng et al. [7] Ours
File Number of codewords Average codeword length
asyoulik.txt 68 4.84464646 5.21025119 5.21025119
alice29.txt 74 4.61244402 4.93155363 4.93155363
xargs.l 74 4.92382304 5.33995697 5.33995697
grammar.lsp 76 4.66433754 5.01773571 5.01773571
plrabn12.txt 81 4.57524019 4.89526695 4.89526695
lcet10.txt 84 4.6971159 5.01682473 5.01682473
cp.html 86 5.26716254 5.81172993 5.81172993
elds.c 90 5.04089686 5.46331826 5.46331826
ptt5 159 1.66091275 1.75991768 1.75991768
sum 255 5.36503661 6.03917365 6.03917365
kennedy.xls 256 3.59337466 4.27209103 4.21507667

Asymmetric RVLCs
Huffman [24] Wang et al. [5] Tseng et al. [9] Ours

File Number of codewords Average codeword length
asyoulik.txt 68 4.84464646 4.92273 4.86816504 4.85172460
alice29.txt 74 4.61244402 4.70569 4.65799667 4.65015261
xargs.l 74 4.92382304 5.00166 4.94511430 4.93494159
grammar.lsp 76 4.66433754 4.80247 4.72104143 4.71539776
plrabn12.txt 81 4.57524019 4.71036 4.63937150 4.62281489
lcet10.txt 84 4.69711590 4.80024 4.73408573 4.72663178
ptt5 159 1.66091275 1.69580 1.69717583 1.67596446

The codewords and average codeword lengths of symmet-
ric/asymmetric RVLCs for the English alphabet found by the
algorithm of Tseng et al. [7], [9] and our proposed algorithm
are given in Table I. Table I shows that both our algorithm
and the algorithm of [7] can nd an optimal symmetric RVLC
with minimum average codeword length. Our algorithm could
also nd an optimal asymmetric RVLC, while the algorithm
of [9] did not. Note that although the Huffman code has the
least average codeword length since it is an optimal code
without reversible and symmetrical constraints, the average

codeword length of the asymmetric RVLC found by our
proposed algorithm is very close to that of the Huffman code.
In [11] and [12], optimal symmetric and asymmetric RVLCs
for the English alphabet were also provided. However, the
average codeword lengths of these RVLCs are different from
those presented in Table I. This is due to the fact that the
probability of the rst source symbol shown in Table I of [11],
[12] was incremented by 0.0000004 to make the total sum of
the source probabilities equal to one. In order to compare our
results with those given in [5], [7], and [9], we still keep the
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TABLE III
THE MAXIMUM CODEWORD LENGTHS (MAX.) AND THE CODEWORD LENGTH VECTORS OF HUFFMAN CODE AND THE SYMMETRIC RVLCS

CONSTRUCTED BY THE PROPOSED ALGORITHM AND THAT OF [7] FOR THE CANTERBURY CORPUS FILE SET.

File Algorithm Max. Codeword length vector
asyoulik.txt Huffman[24] 15 (0,0,1,6,8,7,11,8,5,11,5,1,0,3,2)
(68 codewords) Tseng et al.[7] 12 (0,0,3,2,5,5,7,6,10,9,16,5)

Ours 12 (0,0,3,2,5,5,7,6,10,9,16,5)
alice29.txt Huffman[24] 16 (0,1,0,4,9,8,6,5,4,13,12,3,0,1,4,4)
(74 codewords) Tseng et al.[7] 12 (0,0,3,2,5,5,7,6,10,9,16,11)

Ours 12 (0,0,3,2,5,5,7,6,10,9,16,11)
xargs.l Huffman[24] 12 (0,0,1,6,9,6,8,9,6,8,11,10)
(74 codewords) Tseng et al.[7] 12 (0,0,3,2,5,5,7,6,10,9,16,11)

Ours 12 (0,0,3,2,5,5,7,6,10,9,16,11)
grammar.lsp Huffman[24] 12 (0,1,0,4,8,8,8,8,5,15,9,10)
(76 codewords) Tseng et al.[7] 12 (0,1,1,2,5,5,6,7,9,10,15,15)

Ours 12 (0,1,1,2,5,5,6,7,9,10,15,15)
plrabn12.txt Huffman[24] 19 (0,0,2,7,3,9,4,4,7,14,5,2,6,1,1,7,4,3,2)
(81 codewords) Tseng et al.[7] 14 (0,0,4,2,4,4,6,4,8,6,12,8,18,5)

Ours 14 (0,0,4,2,4,4,6,4,8,6,12,8,18,5)
lcet10.txt Huffman[24] 16 (0,0,1,8,4,9,5,7,12,13,10,6,2,3,0,4)
(84 codewords) Tseng et al.[7] 13 (0,0,3,3,4,4,7,5,10,8,15,11,14)

Ours 13 (0,0,3,3,4,4,7,5,10,8,15,11,14)
cp.html Huffman[24] 14 (0,0,0,6,12,8,5,11,13,13,6,5,5,2)
(86 codewords) Tseng et al.[7] 12 (0,0,2,2,6,6,8,8,12,12,20,10)

Ours 12 (0,0,2,2,6,6,8,8,12,12,20,10)
elds.c Huffman[24] 13 (0,1,0,3,7,11,7,17,16,17,3,4,4)
(90 codewords) Tseng et al.[7] 12 (0,0,2,2,6,6,8,8,12,12,20,14)

Ours 12 (0,0,2,2,6,6,8,8,12,12,20,14)
ptt5 Huffman[24] 17 (1,0,0,1,2,14,11,9,9,7,10,9,13,20,16,11,26)
(159 codewords) Tseng et al.[7] 16 (1,0,0,2,3,3,5,5,8,8,13,12,22,23,41,13)

Ours 16 (1,0,0,2,3,3,5,5,8,8,13,12,22,23,41,13)
sum Huffman[24] 14 (0,1,0,0,3,20,16,24,25,45,30,56,29,6)
(255 codewords) Tseng et al.[7] 15 (0,1,0,1,5,5,9,10,15,14,26,24,44,43,58)

Ours 15 (0,1,0,1,5,5,9,10,15,14,26,24,44,43,58)
kennedy.xls Huffman[24] 12 (1,0,1,3,1,0,0,1,1,74,146,28)
(256 codewords) Tseng et al.[7] 17 (1,0,1,0,3,1,1,4,8,8,17,16,31,29,59,56,21)

Ours 17 (1,0,1,2,1,1,1,3,7,7,13,13,23,22,43,41,77)

TABLE IV
THE MAXIMUM CODEWORD LENGTHS (MAX.) AND THE CODEWORD LENGTH VECTORS OF HUFFMAN CODE AND THE ASYMMETRIC RVLCS

CONSTRUCTED BY THE PROPOSED ALGORITHM AND THAT OF [9] FOR THE CANTERBURY CORPUS FILE SET

File Algorithm Max. Codeword length vector
asyoulik.txt Huffman[24] 15 (0,0,1,6,8,7,11,8,5,11,5,1,0,3,2)
(68 codewords) Tseng et al.[9] 11 (0,0,1,6,7,8,9,10,11,13,3)

Ours 12 (0,0,1,5,9,8,12,8,9,8,3,5)
alice29.txt Huffman[24] 16 (0,1,0,4,9,8,6,5,4,13,12,3,0,1,4,4)
(74 codewords) Tseng et al.[9] 11 (0,0,1,6,7,8,9,10,11,12,10)

Ours 12 (0,0,1,6,8,8,7,5,8,10,14,7)
xargs.l Huffman[24] 12 (0,0,1,6,9,6,8,9,6,8,11,10)
(74 codewords) Tseng et al.[9] 11 (0,0,1,6,7,8,9,10,12,10,11)

Ours 12 (0,0,1,5,9,9,8,11,10,10,7,4)
grammar.lsp Huffman[24] 12 (0,1,0,4,8,8,8,8,5,15,9,10)
(76 codewords) Tseng et al.[9] 11 (0,0,1,6,7,8,9,10,11,12,12)

Ours 12 (0,0,1,5,9,9,9,7,14,10,7,5)
plrabn12.txt Huffman[24] 19 (0,0,2,7,3,9,4,4,7,14,5,2,6,1,1,7,4,3,2)
(81 codewords) Tseng et al.[9] 12 (0,0,1,6,7,8,9,10,11,12,13,4)

Ours 12 (0,0,1,7,7,7,4,5,7,10,15,18)
lcet10.txt Huffman[24] 16 (0,0,1,8,4,9,5,7,12,13,10,6,2,3,0,4)
(84 codewords) Tseng et al.[9] 12 (0,0,1,6,7,8,9,10,11,12,13,7)

Ours 12 (0,0,1,7,5,8,7,10,16,16,5,9)
ptt5 Huffman[24] 17 (1,0,0,1,2,14,11,9,9,7,10,9,13,20,16,11,26)
(159 codewords) Tseng et al.[9] 13 (1,0,1,0,3,3,11,9,16,15,24,35,41)

Ours 13 (1,0,0,1,3,9,9,12,12,12,22,38,40)
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TABLE V
THE EXECUTION TIME AND MEMORY REQUIREMENT OF OUR PROPOSED ALGORITHM WHILE CONSTRUCTING THE SYMMETRIC RVLCS FOR THE

ENGLISH ALPHABET AND THE CANTERBURY CORPUS FILE SET.

Number of rounds
(Number of & functions executed)

Execution Time {Number of ℎ functions executed} Maximum stack size
Number of 0 2 4 0 2 4 0 2 4

Source codewords nodes nodes nodes nodes nodes nodes nodes nodes nodes
English 26 0.036 0.038 0.039 46 26 21 16 5 3
alphabet (88) (198) (249)

{88} {151} {212}
asyoulik.txt 68 0.068 0.115 0.120 223 141 98 50 23 16

(441) (1169) (1312)
{441} {893} {1121}

alice29.txt 74 0.070 0.127 0.136 205 124 90 47 21 18
(405) (1041) (1206)
{405} {798} {1031}

xargs.l 74 0.081 0.119 0.132 218 133 97 51 21 16
(431) (1107) (1294)
{431} {847} {1105}

grammar.lsp 76 0.072 0.123 0.127 228 129 84 56 26 19
(451) (1083) (1156)
{451} {830} {993}

plrabn12.txt 81 0.082 0.128 0.128 144 86 59 31 16 11
(283) (713) (788)
{283} {546} {675}

lcet10.txt 84 0.079 0.156 0.182 195 121 95 45 21 17
(385) (1003) (1236)
{385} {766} {1051}

cp.html 86 0.073 0.128 0.139 253 149 107 67 26 21
(500) (1229) (1417)
{500} {938} {1210}

elds.c 90 0.130 0.259 0.268 525 288 175 132 75 42
(1045) (2458) (2501)
{1045} {1889} {2158}

ptt5 159 0.135 0.240 0.285 98 63 51 26 10 9
(194) (508) (638)
{194} {386} {540}

sum 255 4.100 7.400 7.600 3195 1693 1075 880 445 275
(6384) (14682) (15541)
{6384} {11303} {13398}

kennedy.xls 256 7.300 15.300 16.400 4881 2543 1520 4854 2533 1512
(9759) (25402) (27308)
{9759} {20321} {24272}

original source probability in our experiments.

The number of codewords and the average codeword lengths
of the symmetric/asymmetric RVLCs for the Canterbury Cor-
pus le set found by the algorithm of Tseng et al. [7], [9]
and our proposed algorithm are given in Table II. As given
in Table II, all of the symmetric RVLCs constructed by our
proposed algorithm are no worse than those constructed by the
algorithm of [7]. Since the algorithm of [7] is suboptimal, it
failed to nd an optimal symmetric RVLC for �“kennedy.xls."
In Table II, we also add the results found in [5] since there are
three better codes found by the algorithm of [5] than that by
the algorithm of [9]. All asymmetric RVLCs constructed by
our proposed algorithm are better than those constructed by the
algorithms of [9] and [5]. Since the algorithms of [9] and [5]
are suboptimal, they failed to nd optimal asymmetric RVLCs
for all of the test les. Unlike when constructing the symmetric
RVLCs, our proposed algorithm has better performance in
relation to lowering the average codeword length for asymmet-
ric RVLCs. Since no results other than those for the English
alphabet were given in [11] and [12], no comparison with [11]
and [12] are presented here for source benchmarks taken from
the Canterbury Corpus le.

Table III and Table IV respectively list the codeword length

vectors and the maximum codeword lengths of the Huffman
code, the symmetric/asymmetric RVLCs constructed by the
proposed algorithm, and those of [7] and [9]. The value of
the (-th entry of each codeword length vector given in this
table denotes the number of codewords of length (. It can be
observed that the symmetric RVLCs found by our proposed
algorithm have the same codeword length vectors as those
found in [7] except the last one for �“kennedy.xls," where our
algorithm found an optimal RVLC but the algorithm of [7]
did not. In contrast, the asymmetric RVLCs found by our
proposed algorithm have different codeword length vectors
from those found in [9] since our proposed algorithm found
optimal asymmetric RVLCs but that of [9] did not.

Table V and Table VI respectively list the execution time (in
seconds), the number of rounds (and the number of +/ℎ func-
tions executed), and the maximum stack size (in number of
nodes) required in our proposed algorithm while constructing
symmetric and asymmetric RVLCs for the English alphabet
and the Canterbury Corpus File Set. The values inside the
parentheses and brackets shown in Table V and Table VI
respectively denote the number of + functions executed and
the number of ℎ functions executed. The maximum temporal
local stack size is equal to A!+1. The results were simulated
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TABLE VI
THE EXECUTION TIME AND MEMORY REQUIREMENT OF OUR PROPOSED ALGORITHM WHILE CONSTRUCTING THE ASYMMETRIC RVLCS FOR THE

ENGLISH ALPHABET AND THE CANTERBURY CORPUS FILE SET.

Number of rounds
(Number of & functions executed)

Execution Time {Number of ℎ functions executed} Maximum stack size
Number of 50 300 500 50 300 500 50 300 500

Source codewords nodes nodes nodes nodes nodes nodes nodes nodes nodes
English 26 1.3 1.4 1.3 537 110 62 158 36 17
alphabet (84935) (99251) (90542)

{83868} {99035} {90423}
asyoulik.txt 68 9620 11094 11554 2531735 449589 271571 722584 123564 74532

(410148601) (426159962) (427445134)
{405085137} {425260781} {426901994}

alice29.txt 74 3770 4194 4445 842429 141866 84695 247498 43452 26118
(135985087) (136860099) (136436434)
{134300239} {136564069} {136249582}

xargs.l 74 − 15942 16841 − 525620 318797 − 172211 97293
(−) (504862186) (506282063)
{−} {503810906} {505644425}

grammar.lsp 76 − 22119 23968 − 699801 424933 − 217029 122187
(−) (659572509) (661516574)
{−} {658172907} {660666713}

plrabn12.txt 81 2143 2025 2773 322391 54934 33487 200335 21934 14106
(61808597) (54411908) (56357032)
{61163825} {54302040} {56290048}

lcet10.txt 84 6641 6573 8165 1109105 189078 112323 465093 62426 36607
(199637376) (183668882) (181573546)
{197419174} {183290726} {181348902}

ptt5 159 41 52 74 3780 844 604 3775 839 601
(762914) (1010178) (1203218)
{755358} {1008494} {1202014}

when the number of expanded nodes in a subtree were set
to 0, 2, and 4 and 50, 300, and 500 for symmetric RVLCs
and asymmetric RVLCs, respectively. From the results given
in Table V and Table VI, one can see that when the number
of expanded nodes in a subtree is set to be larger, the number
of rounds and the memory requirement decrease, which is
due to better estimation (or a larger value of ℎ). Since a
larger number of expanded nodes in a subtree results in
higher computation complexity when calculating values of ℎ,
the overall execution time increases, except for �“alphabet,�”
�“plrabn12.txt,�” and �“lcet10.txt.�” The fact that the overall
execution times for 300 expanded nodes were slightly smaller
than those for 50 expanded nodes for �“plrabn12.txt�” and
�“lcet10.txt�” indicates that increasing the number of expanded
nodes does not always increase the overall execution time.
In Table VI, the results denoted by �“−�” are those that could
not be obtained successfully due to a memory limitation. Our
proposed algorithm was not able to nd optimal asymmetric
RVLCs for �“cp.html,�” �“elds.c,�” �“sum,�” and �“kennedy.xls�”
in a limited time. Without the �“symmetry�” constraint, the
codeword selection can be more exible in constructing an
asymmetric RVLC. As a result, the cost values of the nodes
in the corresponding search tree are closer to each other than
those when constructing a symmetric RVLC. Hence, for a
given source, it is harder to nd an optimal asymmetric RVLC
than an optimal symmetric RVLC because we have to search
back and forth and the number of rounds performed by our
proposed algorithm increases drastically when ! becomes
large. However, it is possible that the search will still be fast.
For example, since the probability of the most occurring sym-
bol in the �“ptt5" le is relatively high (up to 0.87124914), the
resultant search tree associated with our proposed algorithm

will remain within a reasonable size. Hence, our algorithm can
easily locate the path corresponding to the optimal code. It
only needs 41 seconds to nd the optimal asymmetric RVLC,
whereas the algorithm proposed in [4] needs about 1018 years
(This data was shown in Table III of [6]) just to nd a sub-
optimal asymmetric RVLC.

V. CONCLUSIONS AND FUTURE WORK

Based on the "∗ algorithm concept, a unied approach for
constructing symmetric RVLCs and asymmetric RVLCs with
the minimum average codeword length was presented. Some
of optimal asymmetric RVLCs for the Canterbury Corpus
le set, which were not found in the past, were constructed
systematically in a limited time. Even though our proposed
algorithm is still exponential in the worst case, it successfully
found optimal asymmetric RVLCs for all of the benchmarks
except for four test les. A method to further improve the
search speed of our proposed algorithm will certainly be
investigated in our future work.

There are still many interesting research areas about
RVLCs, such as the balance of 0/1 bits [25], free distance [13],
error detection/synchronization [26], and error resiliency mea-
surement [27]. Therefore, instead of just considering coding
efciency, in the future, we expect to nd more efcient
RVLCs in regard to possessing the additional features of
higher balance in 0/1 bits, larger free distance, or stronger
synchronization capability.
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