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Extended Versions of Polynomial Remainder Codes
and Chinese Remainder Codes
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Abstract—A polynomial remainder code, derived from the
Chinese remainder theorem, is a class of linear block codes, where
the Reed-Solomon code is a special case. In this letter, an extended
version of polynomial remainder codes is introduced, where the
class of doubly-extended Reed-Solomon codes is a special case.
Furthermore, the extended version of Chinese remainder codes
is also presented. The erasure decoding methods for both codes
are proposed. Finally, an application of the extended polynomial
remainder codes is discussed.

I. INTRODUCTION

Polynomial remainder codes, derived from the Chinese
remainder theorem, were introduced by Stone [1], and Reed-
Solomon (RS) codes are a special case of polynomial re-
mainder codes. Nowadays, the properties of these codes have
been extensively discussed. [1] considered the codes with
fixed symbol sizes that the moduli have the same degree.
Mandelbaum [2] pointed out that using the moduli with
various degrees, the polynomial remainder codes are suitable
for error correction. Yu and Loeliger [3], [4] discussed the
property of distances of the codes, proposed the corresponding
decoding rules for them, introduced the partial-inverse problem
for polynomials, and developed its application to decoding
polynomial remainder codes [5], [6]. Xiao and Xia [7]–[9]
considered a robust reconstruction problem for polynomial
remainder codes with non-pairwise coprime moduli.

In contrast, the Chinese remainder codes were constructed
over an integral domain [10]. Guruswani et al. [10] proposed
a new algorithm for solving the soft-decision decoding of
the Chinese remainder codes. The robust reconstruction of
Chinese remainder codes were considered in [11]–[13].

As aforementioned, the singly-extended RS code (including
the RS code) is a special case of polynomial remainder
codes; however, the doubly-extended RS code [14] is not. To
handle this issue, this paper introduces a class of codes, called
extended polynomial remainder codes, to include the doubly-
extended RS code as a special case. Furthermore, the extended
version of Chinese remainder codes is also presented. The
contributions of this paper are summarized as follows.
• The extended version of polynomial remainder codes

is introduced to include the doubly-extended RS code
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as a special case. An erasure decoding method for this
proposed class of codes is proposed. The minimum
Hamming distance of this class of codes is determined.

• An error correction decoding approach for the extended
polynomial remainder codes is proposed based on the
decoding method given in [3].

• The extended-version Chinese remainder code is intro-
duced, and an erasure decoding method for them is
proposed.

The rest of this paper is organized as follows. Section II
introduces the polynomial remainder codes and Chinese re-
mainder codes, as well as their decoding procedures. In
Section III, we introduce the new symbol and propose the
definition of extended polynomial remainder codes as well
as the decoding method for them. Section IV discusses some
related issues. Section V concludes this work.

II. PRELIMINARIES

Let Fq denote a finite field with q elements {αi}q−1i=0 , and
Fq[x] be the ring of polynomials over Fq . Furthermore, let Z
and Zm denote the integral domain and the ring of integers
modulo m, respectively. Let Rem(f0, f1) denote the residual
of dividing f0 by f1.

A. Polynomial remainder codes

This subsection gives the definition of the polynomial
remainder codes from [4]. An erasure decoding based on the
Chinese remainder theorem is also introduced.

Let {mi(x)}n−1i=0 ⊆ Fq[x] denote a set of monic polynomials
such that any two polynomials in it are pairwise relatively
prime. The degree of mi(x) is denoted as wi = deg(mi(x))
for i = 0, 1, . . . , n− 1, and we assume that w0 ≤ w1 ≤ · · · ≤
wn−1. Given a message polynomial

S(x) = s0 + s1x+ s2x
2 + . . .+ sK−1x

K−1 (1)

in Fq[x] and deg(S(x)) < K, a set of polynomials is defined
as {Wi(x)}n−1i=0 , where

Wi(x) , Rem(S(x),mi(x)). (2)

Equivalently, Wi(x) ≡ S(x) (mod mi(x)), and each
deg(Wi(x)) < wi. A polynomial remainder code is defined
as

C , {(c0, · · · , cn−1) :ci = Wi(x), i = 0, 1, . . . , n− 1,

S(x) ∈ Fq[x],deg(S(x)) < K},
(3)

where each symbol Wi(x) is defined in (2) and K =∑k−1
i=0 wi.
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First, we assume that the decoder receives the first k sym-
bols, {Wi(x)}k−1i=0 , in the transmitted codeword. In this case,
the message polynomial S(x) can be uniquely determined via
Chinese remainder theorem [15]. Precisely, we have

S(x) ≡Wi(x) (mod mi(x)) (4)

for i = 0, 1, . . . , k − 1. As gcd(mi(x),mj(x)) = 1 for any
i 6= j, Chinese remainder theorem shows that S(x) can be
uniquely determined. The interpolation formula is expressed as
S(x) =

∑k−1
j=0 Lj(x)Λj(x), where Λj(x) =

∏
0≤i≤k−1

i6=j
mi(x),

and Lj(x) is determined by

Lj(x)Λj(x) ≡Wj(x) (mod mj(x)). (5)

Note that (5) can be solved via extended Euclidean algorithms.
It can be seen that the above argument can be applied to the
case when the decoder receives any k symbols, {W`i(x)}k−1`i=0,
in the transmitted codeword.

B. Chinese remainder codes

The Chinese remainder code is similar to the polynomial
remainder code, instead of that it is constructed in Z. Let
{mi}n−1i=0 ⊂ Z denote a set of positive integers such that any
two integers in it are pairwise relatively prime, and m0 ≤
m1 ≤ · · · ≤ mn−1. The Chinese remainder code is defined as

Ĉ , {(c0, · · · , cn−1) :ci = Rem(s,mi),

i = 0, 1, . . . , n− 1, s ∈ ZMk
},

(6)

where Mk =
∏k−1

i=0 mi.
Next we consider the erasure decoding of the Chinese

remainder codes. Assume that the decoder receives the first
k symbols, {ci}k−10 , in the transmitted codeword, and ci = s

(mod mi), for i = 0, 1, · · · , k−1. As Mk ≤
∏k−1

i=0 mi, s can
be reconstructed uniquely via Chinese remainder theorem [15].
Then the interpolation formula is given by

s =
k−1∑
j=0

ljΛj mod Mk,

where each
Λj =

∏
0≤i≤k−1

i6=j

mi,

and each lj is determined by

ljΛj ≡ cj (mod mj). (7)

Note that (7) can be solved via extended Euclidean algorithm
and the decoding method can also be applied to the case when
the decoder receives any k symbols.

III. EXTENDED VERSIONS OF CODES

This section presents the extended polynomial remainder
codes and their erasure decoding and error correction decod-
ing. Extended Chinese remainder codes are also proposed.

A. Code constructions

Given a positive integer w∞ < K =
∑k−1

i=0 wi and

K ≤ w∞ +
k−2∑
i=0

wi. (8)

The message polynomial is divided by xK−w∞ , resulting in

S(x) = W∞(x) · xK−w∞ +R∞(x), (9)

where deg(R∞(x)) < K − w∞.
An extended polynomial remainder code is defined as

C′ , {(c0, · · · , cn−1, c∞) : ci = Wi(x), i = 0, 1, . . . , n− 1,

S(x) ∈ Fq[x],deg(S(x)) < K, c∞ = W∞(x)},
(10)

where Wi(x), for i ≤ n−1, is defined in (2), W∞(x) is defined
in (9). Clearly, the code length of C′ is n + 1 by appending
an extra symbol W∞(x) to C.

It has been proved in [4] that the minimum Hamming
distance of the polynomial code defined in Subsection II-A
is n − k + 1. Next we give the minimum Hamming distance
of the extended polynomial code defined in (10).

Theorem 1. The extended polynomial code C′ defined in (10)
has minimum Hamming distance n− k + 2. Hence, the error
correction capability of this code is

⌊
n−k+1

2

⌋
.

Proof. Note that the original and the extended polynomial
remainder codes are linear. Hence, finding the minimum
Hamming distance of the extended polynomial remainder code
is equivalent to finding the minimum Hamming weight for
nonzero codewords. We prove that, for any nonzero codeword
in the original code with minimum Hamming weight, the
appended symbol is never zero by contradictions.

Assume that (c0, · · · , cn−1) is a nonzero codeword in the
original code with minimum Hamming weight. Then there
are k − 1 zero symbols in it since its Hamming weight
is n − k + 1. Let ci1 , ci2 , . . . , cik−1

are zeros. Hence, the
information polynomial corresponding to this codeword is
S(x) = q(x)

∏ik−1

j=i1
mj(x). The degree of S(x) is then

deg(S(x)) ≥
ik−1∑
j=i1

wj ≥
k−2∑
j=0

wj . (11)

Now assume that the symbol c∞ appended to this codeword
is zero. That is, W∞(x) = 0 and S(x) = R∞(x). Recall that
deg(R∞(x)) < K − w∞. Hence, by (8), we have

deg(S(x)) = deg(R∞(x)) < K − w∞ ≤
k−2∑
j=0

wj

which contradicts to (11). This completes the proof.

B. Erasure decoding

As the definition of W∞(x) is distinct from others
{Wi(x)}n−1i=0 , it is necessary to show that S(x) can also be
uniquely determined by W∞(x) and k − 1 other symbols.

The decoding procedure is now presented below. Assume
that the decoder receives k symbols {Wj(x)}k−2j=0 ∪{W∞(x)}
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defined in (2) and (9). With any decoding method based
on Chinese remainder theorem given in Section II-A, a
polynomial S(x) can be determined by the k − 1 symbols
{Wj(x)}k−2j=0 , and

deg(S(x)) <
k−2∑
j=0

deg(mj(x)). (12)

Let

Λ(x) =
k−2∏
i=0

mi(x).

The above result conducts

S(x) ≡ S(x) (mod Λ(x)). (13)

That is, we have

S(x) = S(x) + q(x)Λ(x) (14)

for some q(x). According to (9), (14) becomes

R∞(X) = S(x)−W∞(x)xK−w∞ + q(x)Λ(x). (15)

By (9) and the assumption (8), we have

deg(R∞(x)) < K − w∞ ≤ deg(Λ(x)). (16)

Dividing both sides of (15) by Λ(x) and keep the remainders,
we have

R∞(X) = Rem(S(x)−W∞(x)xK−w∞ ,Λ(x)).

From (9), S(x) is determined by

S(x) =W∞(x) · xK−w∞

+ Rem(S(x)−W∞(x)xK−w∞ ,Λ(x)).
(17)

Thus, the message polynomial S(x) can be uniquely deter-
mined by {Wj(x)}k−2j=0 ∪ {W∞(x)}.

The major complexity of the erasure decoding is to deter-
mine S(x) in (14), which is similar to that of the classical
algorithm with the Chinese remainder theorem. One extra step
is required when the extra symbol is among the received k
symbol. This step is given in (17), where the major complexity
is to determine Rem(S(x)−W∞(x)xK−w∞ ,Λ(x)). This step
involves finding the remainder when a division between two
polynomials is performed. This complexity is much smaller
compared with solving k − 1 congruences by the Chinese
remainder theorem to determine S(x).

It can be seen that the first k − 1 received symbols can
be any symbols in the transmitted codeword except the last
symbol in it. Furthermore, if the received k symbols do not
contain W∞(x), the erasure decoding procedure is the same
as given in Section II-A.

C. Error correction decoding

This subsection proposes the error correction decoding
approach for extended polynomial remainder codes, which
is based on the decoding method given in [3], the Yu and
Loeliger’s method.

By Section III-A, we know that an extended polynomial
remainder code is constructed by adding a new symbol W∞(x)

to the original code. From the definition (10), the extra symbol
is different from other symbols. Therefore, in error correction
decoding, calculating the information polynomial might ignore
the added symbol such that we can directly apply Yu and
Loeliger’s method. Based on the construction of the code,
the general process of error correction decoding method is as
follows: first, obtain S(x) by using Yu and Loeliger’s method;
then, evaluate the correctness of the added symbol. Next we
give the detailed process of error correction decoding.

Let C′ be an extended polynomial remainder code. The
decoder receives y = c + e, where c ∈ C′ is the transmitted
codeword and e is an error pattern. The code lengths of
y and e are n + 1. The received polynomial Y (x) can be
obtained by Chinese remainder theorem from symbols yi
where 0 ≤ i ≤ n − 1. Then by using Yu and Loeliger’s
method, S(x) can be uniquely determined. Next W∞(x) can
be recalculated by S(x) to verify whether there is an error in
this position or not. Note that, similar to the doubly-extended
RS codes, the error correction capability of the above decoding
method is the same as the original codes unless one extra
error occurs in the appended symbol in the last position of the
transmitted codeword.

D. Extended Chinese remainder codes
This subsection gives the definition of extended Chinese

remainder codes, and their erasure decoding method. Given a
positive integer K ′ ≤ Mk =

∏k−1
i=0 mi, an extended Chinese

remainder code is constructed by appending a new symbol

c∞ =
⌊ s

K ′

⌋
(18)

to the Chinese remainder code, where bxc denotes the largest
integer that is less than or equal to x. The extended Chinese
remainder code is defined as

Ĉ
′
, {(c0, · · · , cn−1, c∞) : ci = Rem(s,mi),

i = 0, 1, . . . , n− 1, s ∈ ZMk
, c∞ =

⌊ s

K ′

⌋
},

(19)

where

Mk ≤ K ′c∞ +
k−2∏
i=0

mi. (20)

Since the erasure decoding of the extended Chinese remain-
der codes is similar to the extended polynomial remainder
codes given in Section III-B, the erasure decoding is briefly
explained below.

Assume that the decoder receives k symbols {cj}k−2j=0∪{c∞}
in the transmitted codeword in (19). Let

Λ =
k−2∏
i=0

mi.

Then we have
s ≡ s mod Λ, (21)

where s can be determined by k − 1 symbols {cj}k−2j=0 with
Chinese remainder theorem. From (20), we have

s−K ′c∞ < Λ. (22)

Finally we have

s = K ′c∞ + Rem(s−K ′c∞,Λ). (23)
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IV. DISCUSSIONS

In this section, some issues for the proposed codes are
discussed. First, we show that the extended RS codes are
special cases of extended polynomial remainder codes. Then
an application of polynomial remainder codes to the weighted
secret sharing is given.

A. Comparisons with extended RS codes

In this subsection, we show that the doubly-extended RS
codes [14] is a subclass of extended polynomial remainder
codes. The singly-extended RS code, which includes RS
code [16], is defined as

RS(q,K) , {(S(αi))
q−1
i=0 : S ∈ Fq[x],deg(S) < K}. (24)

Clearly, RS(q,K) is a subclass of polynomial remainder codes
by letting n = q and

mi(x) = x− αi, ∀i = 0, 1, . . . , q − 1. (25)

The definition of doubly-extended RS codes is given as

ERS(q + 1,K) , {(S(α0), S(α1), . . . , S(αq−1), S(∞)) :

S ∈ Fq[x],deg(S) < K},
(26)

where S(∞) denotes the coefficient of xK−1 in S. When
w∞ = 1, (9) gives

W∞(x) = sk−1 = S(∞).

Thus, ERS(q + 1,K) is a subclass of extended polynomial
remainder codes given in (10) by setting n = q + 1, w∞ = 1
and (25).

B. Application to weighted secret sharing

This subsection introduces the application of the extended
polynomial remainder codes to the weighted secret sharing
scheme. We briefly reviewed the concept of the weighted
secret sharing scheme [17]. Let {wi}n−1i=0 denote the weights
of n shares, and let K denote a threshold. Given {wi}n−1i=0 and
K, the weighted secret sharing scheme produces n shares as

{Si = (Wi(x), i, wi)}n−1i=0 },

where Wi(x) is a polynomial of degree less than wi. Suppose
one has k shares {Slj}kj=1. If K ≤

∑k−1
j=0 wlj , the secret can

be recovered.
The extended polynomial remainder code can be applied to

the weighted secret sharing schemes as follows. In the secret
sharing scheme, the secret is stored in s0 of S(x) in (1), and
other coefficients of S(x) are filled with random numbers. In
the polynomial remainder code, let

mi(x) = (x− αi)
wi (27)

in (2), such that deg(Wi) < wi and S(x) is uniquely
determined according to Section II-A. Notably, m0(x) is
inapplicable in secret sharing, as the constant term of
Rem(S(x),m0(x)) is the secret s0. This implies that the
weight secret sharing supports q − 1 users with polynomial
remainder codes, where q denotes the size of the finite field.

We can add an extra share S∞ = (W∞(x),∞, w∞) in the
weighed secret sharing scheme. Similarly, if W∞(x) satisfies
(8), the secret can be successfully recovered according to
Section III-B. The advantage of extended polynomial codes is
to increase the length of the original codes without increasing
the size of the finite field. Thus, when n = q − 1, we can
design a weighted secrete sharing scheme with n + 1 users
without increasing the size of the finite field.

V. CONCLUSIONS

In this letter, the extended versions of polynomial remainder
codes and Chinese remainder codes are proposed by appending
one more symbol to these codes. The erasure decoding for
both codes are proposed. We also show that the class of the
doubly-extended RS codes is a special case of the extended
polynomial remainder codes. In the future work, We will inves-
tigate the efficient decoding algorithm of extended polynomial
remainder codes based on [5], [6].
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