
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 12, DECEMBER 2010 3459

Early-Elimination Modication for
Priority-First Search Decoding

Shin-Lin Shieh, Po-Ning Chen, Senior Member, IEEE,
Yunghsiang S. Han, Senior Member, IEEE, and Ting-Yi Wu

Abstract�—In order to release the growing demand for computa-
tional complexity with respect to increasing information sequence
length in the priority-rst search decoding algorithm, a path
elimination modication is proposed and also analyzed in this
work. Specically, we propose to directly eliminate all paths
whose end nodes are Δ-level prior to the farthest node among
those that have been visited thus far by the priority-rst search.
Following the argument on random coding, we then analyze the
path elimination window Δ that results in a larger exponent
for additional decoding error caused by path elimination than
the exponent of the maximum-likelihood error performance, and
hence guarantees exponentially negligible performance degrada-
tion. Our analytical results indicate that under additive white
Gaussian noise (AWGN) channels, the path elimination window
required for exponentially negligible performance degradation is
just three times the code constraint length for rate one-half con-
volutional codes. It can be further reduced to 1.7-fold of the code
constraint length when rate one-third convolutional codes are
considered instead. Simulation results conrm these analytical
window sizes. As a consequence, the priority-rst search decoding
algorithm can considerably reduce its computation burden and
memory consumption by directly eliminating a large number of
paths with nearly no performance degradation. This makes the
priority-rst search decoding algorithm with path elimination
suitable for applications that demand low-complexity software
implementation with near optimal performance.

Index Terms�—Priority-rst search decoding, maximum-
likelihood, soft-decision, random coding.

I. INTRODUCTION

ONE of the commonly used decoding algorithms for
convolutional codes is the Viterbi algorithm. It operates

on a convolutional code trellis and has been shown to be a
maximum-likelihood (ML) decoder [8]. When the information
sequence is long, path truncation is proposed for practical im-
plementation of the Viterbi algorithm [8]. Instead of recording
all trellis branches of survivor paths in the decoder memory,
only a certain number of the most recently visited trellis
branches are retained, and a decision is forced on the oldest

Paper approved by A. K. Khandani, the Editor for Coding and Information
Theory of the IEEE Communications Society. Manuscript received December
14, 2009; revised March 30, 2010 and July 6, 2010.

S. L. Shieh is with HT mMobile Inc., Hsinchu Science Park, Tai-
wan, R.O.C., and also with the Graduate Institute of Communication
Engineering, National Taipei University, Taipei, Taiwan, R.O.C. (e-mail:
slshieh@mail.ntpu.edu.tw).

P. N. Chen and T. Y. Wu are with the Department of Electrical Engineering,
National Chiao-Tung University, Hsinchu City, Taiwan, R.O.C. (e-mail:
poning@faculty.nctu.edu.tw, mavericktywu@gmail.com).

Y. S. Han is with the Department of Electrical Engineering, National
Taiwan University of Science and Technology, Taiwan, R.O.C. (e-mail:
yshan@mail.ntust.edu.tw).

Digital Object Identier 10.1109/TCOMM.2010.101910.090766

trellis branch whenever new data arrives at the decoder. Three
strategies have been proposed in regard to this kind of forceful
decision: (i) The majority vote strategy traces back from all
states, and outputs the decision that occurs most often; (ii) The
best state strategy only traces back from the state with the best
metric, and outputs the information bits corresponding to the
path being traced; (iii) The random state strategy randomly
traces back from one state, and outputs the information bits
corresponding to the path being traced. Although none of these
three strategies guarantee maximum-likelihood performance,
their performance degradation can be made negligible as long
as the truncation window is sufciently large.

Forney [4] proved that a truncation window that is 5.8-fold
of the code constraint length sufces to provide negligible
performance degradation for the best state strategy under a
very noisy channel. Hemmati and Costello [7] later derived
an upper performance bound as a function of the truncation
window and distance property of a given code, and suggested
that at very high signal-to-noise ratio, a truncation length
larger than the code free distance is sufcient to achieve near-
optimal performance for the best state strategy. McEliece and
Onyszchuk [11] studied the tradeoff between the truncation
window size and performance loss for the random state
strategy under both binary symmetric channels and additive
white Gaussian noise (AWGN) channels, concluding that
the truncation window for the random state strategy should
be about twice as large as that for the best state strategy.
Onyszchuk [12] continued to investigate the truncation lengths
for the best state strategy under AWGN channels, and sug-
gested that the truncation lengths for codes with constraint
length greater than seven are in general larger than 5.8 times
the code constraint length.

Another well-known decoding algorithm for convolutional
codes is the sequential decoding algorithm [8]. Although it
is suboptimal in performance, its decoding complexity does
not depend on the code constraint length in contrast to the
exponential growth of the Viterbi decoder. This makes the
sequential decoding algorithm especially suitable for convo-
lutional codes with large constraint length. For this reason, it
has recently been used in the decoding of the so-called �“super-
code�” that considers the joint effect of multi-path channel and
convolutional code [6]. Furthermore, sequential-type search
algorithms have been shown promising for sphere detector
in communication systems with high-order modulation and
multiple antennae [9][10].

In 2002, by replacing the Fano metric with one derived

0090-6778/10$25.00 c⃝ 2010 IEEE

3460 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 12, DECEMBER 2010

from maximum-likelihood criteria, a variant of the sequential
decoding algorithm was established in [5]. The same paper
showed that with the new metric, optimal performance can
be obtained by following the priority-rst search procedure
of sequential decoding. Thus, the performance of the priority-
rst search decoding algorithm (PFSDA) proposed therein is
exactly the same as that of the Viterbi algorithm. As far as the
software complexities1 of the two equal-performance decoding
algorithms are concerned, it has been shown by simulations
that the algorithmic complexity of the proposed PFSDA is in
general smaller [5].

When compared with the sequential decoding algorithm
using the Fano metric, the PFSDA has four advantages. Firstly,
in contrast to the asymptotical maximum-likelihoodness of
the sequential decoding algorithm, the PFSDA is an exact
maximum-likelihood (ML) decoding algorithm for codes of
any given nite blocklength. Secondly, by adding another
stack for the examination of path merging, the PFSDA can
operate over a code trellis without sacricing its optimality
in performance. Thirdly, the decoding metric used by the
PFSDA does not depend on the channel signal-to-noise ratio
(SNR) under AWGN channels, and hence no estimation of
channel SNR is necessary at the receiver end. Fourthly, the
decoding metric of the PFSDA is less sensitive to quantization
distortion than the sequential decoding algorithm. As such
distortion is unavoidable during the practical implementation
of a decoding algorithm, it will be shown in this work that 4-bit
quantization causes only 0.05 dB loss on block error rate for
the PFSDA, while the same quantization distortion leads to an
evident performance loss for the sequential decoding algorithm
(cf. Figure 10). These factors make the PFSDA suitable for
systems that provide only a simple quantizer but no channel
SNR estimator.

Analogous to both of the Viterbi algorithm and the sequen-
tial decoding algorithm, the computational complexity and
memory consumption of the PFSDA grow with the length
of information sequence. An effective approach to reduce
the growing computational effort with respect to increasing
information sequence length is perhaps to restrict the number
of paths involved in the computations. Specically, we propose
to directly eliminate the paths whose end nodes are Δ-level-
prior to the farthest one among all nodes that have been
visited thus far by the priority-rst search. This process is
referred to as early elimination. Following the random coding
argument used by Forney [4], we analyze the early-elimination
window Δ that achieves exponentially negligible performance
degradation in the sense that the exponent of additional error
introduced by early-elimination is larger than the exponent
of the ML error performance. Our analytical results indicate
that the required early-elimination window for exponentially
negligible performance degradation is around three times
the code constraint length for half-rate convolutional codes.
This window can be further reduced to 1.7-fold of the code
constraint length when rate one-third convolutional codes are
considered. Simulations are then performed, and are found
to conform to our analytical results. Consequently, the com-

1By software complexity (as contrast to hardware complexity), we mean the
decoder is programmed and executed in a sequential fashion, and no parallel
processing technique is employed in its implementation.

putational burden and memory consumption of the PFSDA
can be considerably reduced by introducing early-elimination
modication with nearly no sacrice in performance.

It should be emphasized that the early-elimination window
for the PFSDA functions differently in its notion from the
path truncation window for the Viterbi algorithm. The former
is the window to eliminate paths from the stacks in order to
reduce the maintenance burden of a large stack, while the
latter is used by the Viterbi algorithm to truncate the paths
under consideration (without eliminating any of them) and its
objective is to provide a timely decoding output. As such,
path truncation can also be applied to the PFSDA together
with the early-elimination scheme when timely decision is
also required. Simulations show that by adopting the best state
strategy over (2, 1, 12) convolutional codes, the path trunca-
tion window for the PFSDA with early elimination window
Δ = 40 ≈ 3(12+1) should be no less than 110 ≈ 8.5(12+1)
under AWGN channels, if 0.05 dB performance degradation
from the ML decoder is required for block error rate less than
10−2. This number is exactly the same as that required by the
Viterbi algorithm under an identical requirement. Thus, the
decision delays for both the Viterbi algorithm and the early-
elimination PFSDA are comparable.

The rest of the paper is organized as follows. The system
model and the PFSDA are introduced in Section II. The early-
elimination scheme is presented in Section III. Numerical and
simulation results are summarized and remarked in Section IV.
Section V concludes the paper.

II. PRELIMINARIES

We use "∼ to denote a binary (#, $,%) convolutional code
with input information sequence of $ × & bits, followed by
$×% zeros for the purpose of clearing the encoder memory.
Thus, "∼ forms an (',() linear block code with effective code
rate) ≜ (/' , where (≜ $& and ' ≜ #(& + %). With
this setting, the code rate, the memory order and the constraint
length2 of "∼ are given by $/#, % and % + 1, respectively.

Let a binary codeword of "∼ be represented by ! ≜
(+0, +1, . . . , +!−1), where each +" ∈ {0, 1}, and denote a
portion of it by !(#,%) ≜ (+#, +#+1, . . . , +%). For convenience,
we drop the subscripts 0 and ' − 1 whenever they appear
in notation !(#,%); hence, !(0,%) and !(0,!−1) are abbreviated
respectively as !(%) and !. The same abbreviation will be
applied to other vector notations.

Assume that the binary codeword is transmitted over a time-
discrete channel with channel output " ≜ (,0, ,1, . . . , ,!−1).
Dene the hard-decision sequence # ≜ (-0, -1, . . . , -!−1)
corresponding to " as:

-" ≜
{

1, if ." < 0;
0, otherwise,

(1)

where

." ≜ log
0(," ∣+" = 0)

0(," ∣+" = 1)
,

2A formal denition of the memory order is ! ≜ max1≤!≤" "!, where
"! is the length of the #th shift register in a convolutional encoder. This
leads to another known denition of the constraint length, i.e.,

∑"
!=1 "! (See

for example [8, Denition 11.3]). In this work, by following [16], we adopt
! + 1 as the constraint length so as to be consistent with the analysis of
early-elimination windows (cf. (4)).

SHIEH et al.: EARLY-ELIMINATION MODIFICATION FOR PRIORITY-FIRST SEARCH DECODING 3461

and 0(," ∣+") denotes the channel transition probability density
for ," given +" .3 It can then be obtained [5] that the maximum-
likelihood decoding output !̂ for received vector " is given by:

!̂ = # ⊕ $∗, (2)

where $∗ is the error pattern with the smallest
∑!−1

"=0 1" ∣." ∣
among all $ ∈ {0, 1}! satisfying $ℍ& = #ℍ& , and ℍ is the
parity check matrix of the (',() linear block code "∼. In the
above sentence, �“⊕�” is the bitwise exclusive-OR operation,
and superscript �“2 �” denotes the matrix transpose operation.
Based on the observation in (2), a sequential-type decoder
has been established in [5] by replacing the Fano metric in
the sequential decoding algorithm with a metric dened as:

3
(
%(ℓ(−1)

)
≜

ℓ(−1∑

"=0

3(4"), (3)

where %(ℓ(−1) = (40, 41, . . . , 4ℓ(−1) ∈ {0, 1}ℓ(represents
the code word label of a path ending at level ℓ in the (#, $,%)
convolutional code tree, and 3(4") ≜ (-" ⊕ 4")∣." ∣ is the
bit metric. Since the decoding metric 3 is nondecreasing
along all code paths, and since nding $∗ is equivalent to
nding the code path with the smallest metric in the code
tree, it was also proven in [5] that the proposed sequential-
type decoder (referred to as Priority-First Sequential Decoding
Algorithm or PFSDA) guarantees locating the maximum-
likelihood codeword.

By adding a second stack, the PFSDA can be made to
operate on a code trellis instead of a code tree [5]. The two
stacks are referred to as the Open Stack and the Closed Stack,
respectively. The Open Stack contains all paths that end at
the frontier part of the trellis being explored thus far, as
exemplied in Figure 1. It is called the Open Stack because
it functions the same as the single stack in the sequential
decoding algorithm and hence its elements are still open
for further expansion. An efcient management of the Open
Stack can be obtained by using the HEAP data structure [2].
This structure can reduce the computational burden of path
insertion down to the order of 6(log 7), where 7 is the size of
the Open Stack. The Closed Stack stores the information of
the ending states and the ending levels of paths that had been
the top paths of the Open Stack. Analogously, it is named the
Closed Stack because its elements will not be further expanded
and thus are seemingly closed.

In order to facilitate the introduction of early-elimination
modication, the trellis-based PFSDA [5] is reproduced below.

Step 1. Load the Open Stack with the path consisting of
only the origin node, and initialize its metric to be
zero.

Step 2. Put into the Closed Stack both the state and level
of the end node of the top path in the Open Stack.
Compute the path metric for each of the successor
paths of the top path in the Open Stack by adding
the branch metric of the extended branch to the path
metric of the top path. Delete the top path from the
Open Stack.

3For discrete channels, it is understood that the log-likelihood ratio $#
becomes log[Pr(%# ∣&# = 0)/Pr(%# ∣&# = 1)]. All the analyses in this work
are accordingly valid for discrete channels.

Close Stack
Open Stack

max

Early Elimination Threshold

A

D

B

C

Fig. 1. Early-elimination window Δ in the trellis-based PFSDA.

Step 3. Discard those successor paths in Step 2, which end
at a node that has the same state and level as any
entry in the Closed Stack. If any successor path
ends at the same node as a path already in the Open
Stack, eliminate the path with higher path metric.4

Step 4. Insert the remaining successor paths into the Open
Stack in order of ascending path metrics. If two (or
more) paths in the Open Stack have equal metric,
sort them in order of descending levels. If they
happen to end at the same level, sort them randomly.

Step 5. If the top path in the Open Stack reaches the end of
the convolutional code trellis, the algorithm stops;
otherwise go to Step 2.

III. EARLY-ELIMINATION MODIFICATION FOR

PRIORITY-FIRST SEARCH DECODING ALGORITHM

The motivation behind early-elimination modication can
be indicated by the following two observations. As shown in
Figure 1, suppose that the path ending at node 8 is the portion
of the nal code path found at the end of priority-rst search,
and suppose that the path ending at node 9 happens to be the
current top path. Then, expanding node 9 until its offspring
gradually accumulate adequate decoding metrics to exceed the
decoding metric of the path ending at node 8 will consume a
considerable but unnecessary amount of computational effort.
On the other hand, due to the nondecreasing nature of the
adopted decoding metric along paths on the code trellis, a top
path ending at a level much smaller than ℓmax, where ℓmax

is the largest level for all nodes having been expanded thus
far by the priority-rst search, is with high probability not the
nal code path located at the end of decoding process. These
two observations jointly suggest that by setting a proper level
threshold Δ and directly eliminating the top path whose level
is no larger than (ℓmax − Δ), the computational complexity
of the priority-rst search algorithm may be reduced without
sacricing much of the performance. We call this scheme early
elimination.

In its implementation, because the decoding complexity is
mainly contributed by the branch metric computations follow-
ing the node expansion of the top path in the Open Stack,
we propose to examine the path early-elimination condition
only on the top paths prior to their expansions. This can save

4For discrete channels, it may occur that the successor path not only ends
at the same node as some path already in the Open Stack but also has equal
path metric to it. In such case, just randomly eliminate one of them.

3462 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 12, DECEMBER 2010

the extra effort of keeping tract of those paths momentarily
ending at the least level in addition to the maintenance of the
top paths with the least metric value. As such, only Step 2 in
the trellis-based PFSDA needs to be modied.

Initialize at the beginning of the algorithm ℓmax = 0.
Step 2′′. Perform the following check before executing the

original Step 2.
∙ If the top path in the Open Stack ends at a node

whose level is less than or equal to (ℓmax−Δ),
then directly eliminate the top path and go
to Step 5; otherwise, update ℓmax if ℓmax is
smaller than the ending level of the current top
path.

It is worth mentioning that since the decoding metric is
monotonically nondecreasing along the path to be searched,
it is guaranteed that the path that updates the current ℓmax

is exactly the one with the smallest path metric among all
paths ending at the same level [5]. This is the key that leads
to that the priority-rst search using a monotonic maximum-
likelihood metric dened in (3) guarantees that the rst top
path that reaches the last level of the code trellis is the
maximum-likelihood code path.

A natural question that follows is how to analytically
determine the early-elimination window size Δ that can result
in exponentially negligible performance degradation. For this
purpose, we derive a lower bound for the exponent of addi-
tional decoding error introduced by early-elimination modi-
cation, and choose an early-elimination window, of which the
corresponding exponent lower bound is larger than the known
error exponent of the maximum-likelihood error performance.
This window can therefore guarantee exponentially negligible
performance degradation. In particular, we show in Appendix
A that for codes with code rate) above the channel cutoff
rate, the additional decoding error due to early elimination
becomes exponentially negligible if

Δ/(% + 1) > ;c())/;el()), (4)

where ;el()) and ;c()) are functions dened in (14) and
(15), respectively. In the next section, we will examine the
near-optimal early-elimination windows for various codes by
simulations, and compare them with the ones obtained analyt-
ically from (4).

IV. NUMERICAL AND SIMULATION RESULTS UNDER

AWGN CHANNEL

Inequality (4) is valid only for those code rates no less
than the channel cutoff rate)0. Although lack of general
evidence, the cutoff rate is widely believed to be the rate
beyond which the communication cost dramatically increases
[1, pp. 184]. This is especially true for sequential decoders
for which the decoding complexity grows rapidly when the
code rate is increased above)0. The code rate taken into (4)
is accordingly suggested to be an �“implementation-feasible"
number no larger than)0. As a result,) =)0 is the only
choice that can simultaneously meet this requirement and (4).
The same choice has also been used by Forney to show that
under very noisy channels, 5.8-fold of the code constraint

1 0.5 0 0.5 1 1.5 2 2.5 3 3.5
10

20

30

40

50

60

70

80

90

100

110

E
b
 / N

0

R=3/4
R=2/3
R=1/2
R=1/3
R=1/4

Fig. 2. The lower bound (! + 1)(c())/(el()) of the early-elimination
window Δ for various code rates, ! = 12 and)0 ≤) < +. The extension
dotted black line along each curve corresponds to rates below)0, for which
(! + 1)min{(sp()), (x}/(el()) is plotted instead (See Footnote 8.)

length is suggested for the path truncation window at the cutoff
rate [4], [15].

As a complement to the above discussion, Figure 2 depicts
the lower bounds of Δ according to (4) with respect to various
code rates and % = 12. By considering only the range
corresponding to)0 ≤) < 8, where 8 is the channel
capacity, Figure 2 clearly indicates that (%+1);c())/;el())
peaks at) =)0 as the SNR varies. Since what we concern is
an early-elimination window Δ that guarantees exponentially
negligible performance degradation, this gure again suggests
taking the peak Δ value at) =)0 is sufcient for all
SNRs under consideration. For the SNRs beyond)0 (i.e.,
0 ≤) <)0), one can perhaps derive an analytically
suggested Δ value using (16) as remarked in Footnote 8. The
later simulations however consistently show that taking the
minimum Δ satisfying (4) at) =)0 has already provided
almost exact performance to an ML decoder; hence, it is not
necessary to further increase Δ as implied by (16). A side and
reasonable observation from the same gure is that Δ should
be made larger for higher code rates.

By choosing noise variances <2 = 0.567 and <2 = 0.940
to respectively approach the cutoff rates 1/2 and 1/3 under
AWGN channels, it can be established from (4) that the
suggested early-elimination windows at rates equal to the
cutoff rates are respectively:

Δ >
0.500

0.164
× (%+1) ≈ 3.05(%+1) for rate 1/2 codes (5)

and

Δ >
0.333

0.195
× (% + 1) ≈ 1.71(% + 1) for rate 1/3 codes.

The exponent functions ;el()) and ;)()) for the above
AWGN channels are plotted in Figure 3.

Condition (5) then indicates that for (2,1,6), (2,1,8),
(2,1,10), and (2,1,12) convolutional codes, taking Δ = 22, 28,
34 and 40, respectively, should sufce to result in exponen-
tially negligible performance degradation. Simulations are next
performed and summarized in Figure 4, which conrms that
the performance of the early-elimination PFSDA with these

SHIEH et al.: EARLY-ELIMINATION MODIFICATION FOR PRIORITY-FIRST SEARCH DECODING 3463

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rate(bit/symbol)

E
rr

or
 E

xp
on

en
t

E
c
(R), 2=0.567

E
c
(R), 2=0.940

E
el

(R), 2=0.567

E
el

(R), 2=0.940

E
sp

(R), 2=0.567

E
sp

(R), 2=0.940

E
x
, 2=0.567

E
x
, 2=0.940

Fig. 3. Exponent lower bound (el()) of additional decoding error due
to early elimination, and exponent lower bound (c()) and upper bounds
(sp()) and (x of the ML decoding error for time-varying convolutional
codes. The solid red curves correspond to the region in which (c()) =
(sp()), i.e.,)0 ≤) < +. The noise variances of the AWGN channels
considered are -2 = 0.567 and -2 = 0.940, respectively.

1 1.5 2 2.5 3 3.5 4 4.5
10

4

10
3

10
2

10
1

10
0

E
b
 / N

0

B
lo

ck
 E

rr
or

 R
at

e

Rate One Half Code with Information Length L=200

(2,1,6) =18
(2,1,6) ML or =22
(2,1,8) =22
(2,1,8) ML or =28
(2,1,10) =26
(2,1,10) ML or =34
(2,1,12) =30
(2,1,12) ML or =40

Fig. 4. Performance for rate one-half convolutional codes for the ML decoder
and the PFSDA with early-elimination window Δ. The message length is
/ = 200. The generator polynomials for ! = 6, 8, 10, 12 are [554,744],
[561,753], [4672,7542], and [42554,77304] (in octal), respectively.

suggested window sizes is almost indistinguishable from the
maximum-likelihood decoder.5

By simulations, we also examine the Δ values that result in
at most 0.1 dB performance degradation, and plot their corre-
sponding performance curves also in Figure 4. The simulation
results show that the Δ values are reduced down to 18, 22, 26
and 30 for (2,1,6), (2,1,8), (2,1,10) and (2,1,12) convolutional
codes, respectively, when performance degradation of 0.1 dB
is acceptable. This indicates that although one can adopt the
Δ values directly derived from (4), these values tend to be
larger than what are usually required from the viewpoint of
practical applications.

The discussions in the above two paragraphs can be likewise

5Since their performance curves are indistinguishable, the near-ML early-
elimination PFSDA and the ML decoder are therefore combined in one in the
legends of Figures 4 and 5.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

4

10
3

10
2

10
1

10
0

E
b
 / N

0

B
lo

ck
 E

rr
or

 R
at

e

Rate One Third Code with Information Length L=200

(3,1,6) =11
(3,1,6) ML or =13
(3,1,8) =12
(3,1,8) ML or =16
(3,1,10) =16
(3,1,10) ML or =19
(3,1,12) =17
(3,1,12) ML or =23

Fig. 5. Performance for rate one-third convolutional codes for the ML
decoder and the PFSDA with early-elimination window Δ. The message
length is / = 200. The generator polynomials for ! = 6, 8, 10, 12 are
[554,624,764], [557,663,711], [4726,5562,6372], and [42554,43364,77304]
(in octal), respectively.

1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

10
4

E
b
 / N

0

A
ve

ra
ge

 n
um

be
r o

f b
ra

nc
h

m
et

ric
 c

om
pu

ta
tio

ns
 p

er
 in

fo
rm

at
io

n
bi

t

PFSDA
PFSDA =40
PFSDA =30
PFSDA =40, =8192
PFSDA =8192
Software Viterbi Decoder

Fig. 6. Average number of branch metric computations per information bit
for (2,1,12) convolutional codes decoded by the Viterbi decoder, the PFSDA
with and without early elimination and also with and without nite stack size
constraint Γ under AWGN channels. The message length is / = 200.

observed in Figure 5 for rate one-third convolutional codes,
and hence their discussions are omitted.

The reduction of computational complexity due to early
elimination is illustrated in Figure 6. For sequential-type
decoders, the decoding complexity is clearly determined not
only by the number of branch metrics evaluated but also by
the cost of searching and reordering of the stack elements.
The latter cost however has been proved to be of comparable
order to the former one [3]. It is therefore justied to consider
the branch metric computations as the key determinant of
algorithmic complexity. Figure 6 then shows that for (2, 1, 12)
convolutional code with message length & = 200 and at
;b/'0 = 2.5 dB, the average number of branch metric
computations to decode one information bit is 123 for the

3464 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 12, DECEMBER 2010

1 1.5 2 2.5 3
10

4

10
3

10
2

10
1

10
0

E
b
 / N

0

B
lo

ck
 E

rr
or

 R
at

e

PFSDA = 40, = 8192
ML or PFSDA = 40

Fig. 7. Performance for (2,1,12) convolutional codes decoded by the ML
decoder, the PFSDA with early-elimination window Δ, and the PFSDA with
early-elimination window Δ and nite stack size Γ. The message length is
/ = 200.

PFSDA with early-elimination window Δ = 40. This number
is only 4.4% of that (specically, 2994) for the PFSDA without
early elimination. One can further reduce the average decoding
complexity down to 53 computations per information bit at a
price of 0.1 dB performance degradation, if Δ decreases down
to 30. The above simulations conrm our anticipation that with
early-elimination modication, the PFSDA can achieve near-
optimal performance with considerable reduction of computa-
tional complexity.

Although we have anticipated that by early elimination, the
stack size requirement for the PFSDA is reduced, we have
been surprised by the amount of the reduction. By setting
a stack size limit Γ to be the same as that required by
the Viterbi decoder, i.e., 2 × 2*, and simply deleting the
path with the smallest level when the stack size exceeds this
limit,6 only 0.05 dB performance degradation is resulted in
comparison with the ML decoder as shown in Figure 7. With
such a small stack size limit, the computational complexity
can be further reduced from 123 down to 96 computations per
information bit at ;b/'0 = 2.5 dB as observed from Figure
6. Notably, this computational complexity is much smaller
than the PFSDA with only the stack size limit but without
early elimination, where 629 computations are required to
decode one information bit at the same ;b/'0. Thus, the
early-elimination modication is more crucial in complexity
reduction than the limitation of stack size.

Figure 6 also presents the number of per-information-bit
metric computations required by the Viterbi decoder. From
this gure, one may question that even though the early-
elimination PFSDA has a much smaller number of branch
metric computations than the Viterbi decoder, the management

6For the purpose of locating the path with the smallest ending level, an
additional HEAP is implemented with the key being the ending levels of the
paths in the Open Stack. The maintenance complexity of the original HEAP
based on path metric indices still remains logarithm of the stack size. A brief
of the HEAP data structure as well as necessary modication for the PFSDA
with nite stack size can be found in Appendix B.

1 1.5 2 2.5 3
10

5

10
4

10
3

10
2

E
b
 / N

0

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

ec
on

ds
) p

er
 in

fo
rm

at
io

n
bi

t

PFSDA = 40
PFSDA = 40, = 8192
PFSDA = 8192
Software Viterbi Decoder

Fig. 8. Average decoding time (in seconds) per information bit for (2,1,12)
convolutional codes decoded by the Viterbi decoder, the PFSDA with early-
elimination window Δ, and the PFSDA with early-elimination window Δ
and nite stack size Γ. The message length is / = 200.

of two stacks, such as insertion and deletion of stack elements,
may consume more time in each computation. In order to have
a better understanding in this practical issue, an experiment
was performed on an IBM System x3800 server, and the
resulting average execution times per information bit are
summarized in Figure 8. In this simulation, two implicit
observations that are not shown in this gure can be added.
Firstly, by using the HEAP data structure, the execution time
per branch computation is nearly a constant with respect to
the signal-to-noise ratios for the PFSDA, and this average
execution time is around 13 times that of the Viterbi decoder
when the PFSDA with Δ = 40 and Γ = 8192 is regarded.
Secondly, the PFSDA without stack size limitation needs a
little more time in each computation at low SNR because the
stack size may grow slightly larger in a noisier environment.
Accordingly, to place a moderately small upper limit (such
as Γ = 2 × 212 for (2, 1, 12) convolutional codes) on the
stack size together with the early-elimination modication can
provide the best decoding efciency subject to near-optimal
performance. Figure 8 substantiates this conclusion, which
shows that the PFSDA with early-elimination window Δ = 40
and stack size limit Γ = 8192 is seven times faster than the
Viterbi algorithm at ;b/'0 = 2.5 dB when both decoders are
implemented by software.

Timely or on-the-y decision outputs are sometimes re-
quired for certain applications. We next examine the path
truncation window 2 beyond which the corresponding infor-
mation bits can be forcefully decided or well estimated for
the early-elimination PFSDA. Respective comparison with the
Viterbi decoder was also performed. The best state strategy
that traces back the top path in the Open Stack and outputs
the information bits corresponding to the path being traced is
adopted. Figure 9 then implies that for (2, 1, 12) convolutional
code,

both the early-elimination PFSDA and the Viterbi algorithm
require a path truncation window 110 ≈ 8.5(12+1) to achieve
0.05 dB performance degradation from the ML performance

SHIEH et al.: EARLY-ELIMINATION MODIFICATION FOR PRIORITY-FIRST SEARCH DECODING 3465

1 1.5 2 2.5 3
10

4

10
3

10
2

10
1

10
0

E
b
 / N

0

B
lo

ck
 E

rr
or

 R
at

e

PFSDA =40, T=90
Viterbi T=90
PFSDA =40, T=110
Viterbi T=110
ML

Fig. 9. Performance for (2,1,12) convolutional codes decoded by the ML
decoder, the Viterbi decoder with truncation window 0 , and the PFSDA with
early-elimination window Δ = 40 and truncation window 0 under AWGN
channels.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

4

10
3

10
2

10
1

10
0

E
b
 / N

0

B
lo

ck
 E

rr
or

 R
at

e

(2,1,12) Convolutional Codes with Quantization for Information Length L=200

Fano metric (Q=4)
Fano metric (Q=)
PFSDA (=40, Q=4)
ML

Fig. 10. Performance with metric quantization for (2,1,12) convolutional
codes decoded by the sequential decoding algorithm and the PFSDA with
early elimination under AWGN channels. The number of quantization levels
is 2$.

at block error rate (BLER) = 10−2. Our result agrees with
the conclusion in [12] where the path truncation window of
5.8(% + 1) as suggested by Forney [4] may not be enough
to secure near-optimal performance under AWGN channels.
In particular, by simulations, Onyszchuk [12] suggested a
path truncation window of 59 ≈ 6.6(8 + 1) for (2, 1, 8)
convolutional codes, and hint that the ratio of the near-optimal
path truncation window against the code constraint length may
further increase for codes of larger constraint length.

One of the advantages of the PFSDA in distinction to the se-
quential decoding algorithm is that unlike the Fano metric, its
decoding metric is independent of channel SNRs. In addition,
its decoding metric is less sensitive to quantization distortion.
The former advantage of the PFSDA clearly remains after the
introduction of early elimination. Therefore, we only examine

whether the insensitiveness to quantization distortion remains
after applying early-elimination modication. As shown in
Figure 10, the PFSDA with early elimination exhibits only
0.05 dB performance degradation under 4-bit quantization.
This gure also shows that the sequential decoding algorithm
with perfect knowledge on channel SNR results in about 0.3
dB degradation in comparison with the ML performance under
4-bit quantization. In this simulation, the uniform quantization
method7 adopted follows from [13]. Since the decoding metric
of the PFSDA is irrelevant to channel SNRs, no further
performance degradation will be produced in the particular
situation where channel SNRs cannot be accurately estimated.

V. CONCLUDING REMARKS

In this work, we propose to improve the computational com-
plexity and memory requirement of the priority-rst search
decoding algorithm by early elimination. The random cod-
ing analysis of the sufcient early elimination window for
exponentially negligible performance degradation, as well as
the subsequent simulations, conrms our anticipated improve-
ment.

Since our result justies the tness of the PFSDA with early
elimination for applications that dictate near-ML performance
with limited support in computational power and memory, fu-
ture research of practical interest could apply the PFSDA with
early elimination to sphere detector [9][10] as well as joint
multi-path channel equalization and convolution decoding [6].
In addition, the hardware implementation of the PFSDA may
become feasible with early elimination, and hence, could be
another future work of practical interest.

APPENDIX A
ANALYSIS OF THE WINDOW SIZE WITH EXPONENTIALLY

NEGLIGIBLE PERFORMANCE DEGRADATION

In the analysis of near-optimal early-elimination window,
we rst observe, as exemplied in Figure 1, that the current top
path that ends at node = with label %(ℓ(−1) is early-eliminated
if, and only if, node 8 is expanded earlier than node =,
provided that ℓ ≤ ℓmax −Δ. It then follows from the PFSDA
algorithm and the nondecreasingness of the path metric along
the path to be searched that node 8 being expanded earlier
than node = implies that

3
(
%(ℓ(−1)

)
≥ 3

(
%̃(ℓmax(−1)

)
,

7The 1-bit uniform quantization for a decoding metric actually involves
two steps: the rst step decides the 2$ uniform partitions on the alphabet of
the received scalar, while the second step determines the 1-bit representative
metric value for each partition. By following [13], the step size of the uniform
partitions that maximize the cutoff rate of the resultant 2-input-2$ -output
quantized channel is adopted, which, for (%/20 = 1 dB, is 0.296 in
Figure 10 as the step size should be chosen for the lowest operational (%/20
so that the quantizer can work well, even not optimally, for higher SNRs. For
the Fano metric 3F, the second step is tricky because it has to map the
highly asymmetric metric values (e.g., −12 ≤ 3F ≤ 0.5 for 1 = 4) to
either −2$−1, . . . , 0, . . . , 2$−1 − 1 or 0, 1, . . . , 2$ − 1. Apparently, one
has to scale, round to the nearest integer, shift and possibly clip the original
metric value in order to obtain a 4-bit representative metric mapping that
performs well (e.g., max{0,Round(3F ×2)+14} for 1 = 4). Note that the
shifted counterpart of the decoding metric in (3) can be directly applied in
the PFSDA; however, the shifted Fano metric must subtract the shift constant
before it is used to locate the next path to be extended, which introduces
additional subtraction operations in metric computations. Since we restrict
the system to only use 1-bit arithmetic logics, the shift constant should also
be a 1-bit representable number (e.g., 14 for 1 = 4).

3466 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 12, DECEMBER 2010

equivalently,

ℓ(−1∑

"=0

3(4") ≥
ℓmax(−1∑

"=0

3(4̃"), (6)

where %̃(ℓmax(−1) labels the path ending at node 8. By noting
that (6) can be rewritten using 3(4") = (4" − -")." and
3(4̃") = (4̃" − -")." as:

ℓ(−1∑

"=0

(4̃" − 4")." +
ℓmax(−1∑

"=ℓ(

4̃"." −
ℓmax(−1∑

"=ℓ(

-"." ≤ 0,

and by reformuating the unequal-length log-likelihood ratio
as:

log
0("(ℓ(−1)∣%(ℓ(−1))

0("(ℓmax(−1)∣%̃(ℓmax(−1))

=
ℓ(−1∑

"=0

[log 0(," ∣+" = 0)− 4"."]

−
ℓmax(−1∑

"=0

[log 0(," ∣+" = 0) − 4̃"."]

=
ℓ(−1∑

"=0

(4̃" − 4")." +
ℓmax(−1∑

"=ℓ(

4̃"."

−
ℓmax(−1∑

"=ℓ(

log 0(," ∣+" = 0),

we found that (6) is equivalent to:

Φ1("(ℓ(,ℓmax(−1)) ⋅ 0
(
"(ℓ(−1)

∣∣%(ℓ(−1)

)

≤ 0
(
"(ℓmax(−1)

∣∣ %̃(ℓmax(−1)

)
, (7)

where 0(⋅∣⋅), ." and -" have been dened in (1), and

logΦ1("(ℓ(,ℓmax(−1))

≜
ℓmax(−1∑

"=ℓ(

[(1− -") log 0(," ∣+" = 0) + -" log 0(," ∣+" = 1)]

=
ℓmax(−1∑

"=ℓ(

log (max {0(," ∣+" = 0), 0(," ∣+" = 1)}) .

Since the path that updates the current ℓmax is exactly the one
with the smallest path metric among all paths ending at the
same level [5], (7) can be equivalently rewritten as:

Φ1("(ℓ(,ℓmax(−1)) ⋅ 0
(
"(ℓ(−1)

∣∣%(ℓ(−1)

)

≤ max
!̃(ℓmax"−1)∈ &∼ℓmax

0
(
"(ℓmax(−1)

∣∣ %̃(ℓmax(−1)

)
,(8)

where "∼ℓmax is the set of all path labels of length ℓmax#,
whose corresponding paths consist of different branches from
path >= after node >. Consequently, new decoding error (in
addition to the usual ML decoding error) is introduced by
early elimination if (8) is valid for some ℓ and ℓmax, satisfying
ℓ ≤ ℓmax − Δ, and the transmitted % labels the ML code
path. Since our goal is to nd an upper probability bound
for additional decoding error due to early elimination, we can

include those cases in which % does not label the ML code
path when evaluating the probability of the occurrence of (8).

Continue the derivation by replacing ℓmax with ? to simplify
the notation. The probability @(ℓ, ?) that (8) occurs is given
by:

@(ℓ, ?) =

∫

ℜ#"

Φ0

(
"(+(−1)

)
0
(
"(+(−1)

∣∣%(+(−1)

)
A"(+(−1),

where Φ0

(
"(+(−1)

)
= 1 if (8) is valid, and 0, otherwise. From

Φ0

(
"(+(−1)

)

≤

⎡

⎢⎢⎢⎣

∑

!̃(#"−1)∈ &∼#

0
(
"(+(−1)

∣∣ %̃(+(−1)

)1/(1+-)

Φ1("(ℓ(,+(−1))1/(1+-)0
(
"(ℓ(−1)

∣∣%(ℓ(−1)

)1/(1+-)

⎤

⎥⎥⎥⎦

-

for B ≥ 0,

we obtain:

!(ℓ, $)

≤
∫

ℜ#"

⎡

⎢⎢⎢⎣

∑

!̃(#"−1)∈ %∼#

%
(
!(&'−1)

∣∣ "̃(&'−1)

)1/(1+))

Φ1(!(ℓ',&'−1))1/(1+))%
(
!(ℓ'−1)

∣∣"(ℓ'−1)

)1/(1+))

⎤

⎥⎥⎥⎦

)

×%
(
!(&'−1)

∣∣"(&'−1)

)
&!(&'−1).

Taking the expected value of @(ℓ, ?) with respect to random
selection of codewords of length ?# according to code bit
selection distribution & = (C0, C1), where C0 and C1 are the
probabilities respectively for bits 0 and 1, yields that:

@(ℓ, ?) ≤
∫

ℜ#"

Φ1("(ℓ(,+(−1))
−-/(1+-)

×

⎛

⎝
∑

!̃(#"−1)∈ &∼#

0
(
"(+(−1)

∣∣ %̃(+(−1)

)1/(1+-)

⎞

⎠
-

×0
(
"(ℓ(−1)

∣∣%(ℓ(−1)

)1/(1+-)

×0
(
"(ℓ(,+(−1)

∣∣%(ℓ(,+(−1)

)
A"(+(−1) (9)

≤
∫

ℜ#"

Φ1("(ℓ(,+(−1))
−-/(1+-)

×

⎛

⎝
∑

!̃(#"−1)∈ &∼#

0
(
"(+(−1)

∣∣ %̃(+(−1)

)1/(1+-)

⎞

⎠
-

×0
(
"(ℓ(−1)

∣∣%(ℓ(−1)

)1/(1+-)

×0
(
"(ℓ(,+(−1)

∣∣%(ℓ(,+(−1)

)
A"(+(−1) (10)

= ∣ "∼+ ∣-
∫

ℜ#"

Φ1("(ℓ(,+(−1))
−-/(1+-)

SHIEH et al.: EARLY-ELIMINATION MODIFICATION FOR PRIORITY-FIRST SEARCH DECODING 3467

×
(
0
(
"(+(−1)

∣∣ %̃(+(−1)

)1/(1+-)
)-

×0
(
"(ℓ(−1)

∣∣%(ℓ(−1)

)1/(1+-)

×0
(
"(ℓ(,+(−1)

∣∣%(ℓ(,+(−1)

)
A"(+(−1)

= ∣ "∼+ ∣-
{∫

ℜℓ"

(
0
(
"(ℓ(−1)

∣∣ %̃(ℓ(−1)

)1/(1+-)
)-

×0
(
"(ℓ(−1)

∣∣%(ℓ(−1)

)1/(1+-)
A"(ℓ(−1)

}

×
{∫

ℜ(#−ℓ)"

Φ1("(ℓ(,+(−1))
−-/(1+-)

×
(
0
(
"(ℓ(,+(−1)

∣∣ %̃(ℓ(,+(−1)

)1/(1+-)
)-

×0
(
"(ℓ(,+(−1)

∣∣%(ℓ(,+(−1)

)
A"(ℓ(,+(−1)

}
,

where (9) holds since any labels in "∼+ are selected inde-
pendently, and (10) is valid due to the concavity of function
D(4) = 4- with 0 ≤ B ≤ 1 and Jensen�’s inequality. Finally,
by noting that ∣ "∼+ ∣ ≤ 2.+ = 2(+/, we obtain:

@(ℓ, ?) ≤ 2−ℓ([−-/+00(-,")] ⋅ 2−(+−ℓ)([−-/+01(-,")],(11)

where

;0(B,&) ≜ − log2

⎡

⎣
∫

ℜ

(
1∑

1=0

C10(,∣+ = E)1/(1+-)

)1+-

A,

⎤

⎦

and

;1(B,&)

≜ − log2

[∫

ℜ
(max {0(,∣+ = 0), 0(,∣+ = 1)})−-/(1+-)

×
(

1∑

1=0

C10(,∣+ = E)
1

(1+$)

)- (1∑

1=0

C10(,∣+ = E)

)
A,

]
.

Inequality (11) provides an upper probability bound that a
top path ending at level ℓ is early-eliminated. Based on (11),
we can proceed to derive the bound for the probability Fel that
an incorrect codeword is claimed at the end of the priority-rst
search because the transmitted path is early-eliminated during
the decoding process.

As only linear codes are considered in this paper, we may
assume without loss of generality that the all-zero codeword

0 is transmitted. Then,

Fel ≤ Pr

(
2−Δ∪

ℓ=1

0(ℓ−1 is early-eliminated

)

≤
2−Δ∑

ℓ=1

2−ℓ([−-/+00(-)]2−Δ([−-/+01(-)], (12)

where the last inequality follows from (11) by letting ;0(B) ≜
max" ;0(B,&) = ;0(B,&∗) and ;1(B) ≜ ;1(B,&∗), and also
from the fact that ? − ℓ ≥ Δ. Denoting G ≜ ;0(B)− B), we
continue the derivation from (12):

Fel ≤ 2−Δ([−-/+01(-)]
2−Δ∑

ℓ=1

2−ℓ(3

≤ 2−Δ([−-/+01(-)]
∞∑

ℓ=1

2−ℓ(3

= ((⋅ 2−Δ([−-/+01(-)],

where ((= 2−(3/(1 − 2−(3) is a constant, independent of
Δ. Consequently,

lim inf
(→∞

− 1

#
log2 Fel ≥ Δ[−B) + ;1(B)] + G

≥ Δ[−B) + ;1(B)],

subject to G = −B) + ;0(B) > 0 over 0 ≤ B ≤ 1, which
immediately implies:

lim inf
(→∞

− 1

#
log2 Fel ≥ Δ ⋅ ;el()), (13)

where

;el()) ≜ max
{-∈[0,1] : 00(-)>-/}

[−B) + ;1(B)]. (14)

Note that by

1∑

1=0

C10(,∣+ = E)1/(1+-)

=
1∑

1=0

C10(,∣+ = E)0(,∣+ = E)−-/(1+-)

≥ (max {0(,∣+ = 0), 0(,∣+ = 1)})−-/(1+-)

×
(

1∑

1=0

C10(,∣+ = E)

)
,

we obtain that ;1(B) ≥ ;0(B); hence, ;el()) ≥ 0.
It is noteworthy that the above analysis can also be applied

to discrete channels by replacing 0(⋅∣⋅) with the binary-input-
and-H-ary-output channel probability mass function. In such
case, (13) is valid in the sense that ;el()) is redened
according to

;0(B,&)

≜ − log2

⎡

⎣
5∑

"=1

(
1∑

1=0

C1 Pr(, = I∣+ = E)1/(1+-)

)1+-
⎤

⎦

3468 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 12, DECEMBER 2010

and

;1(B,&)

≜ − log2

[

5∑

"=1

(max {Pr(, = I∣+ = 0),Pr(, = I∣+ = 1)})−-/(1+-)

×
(

1∑

1=0

C1 Pr(, = I∣+ = E)
1

(1+$)

)-

×
(

1∑

1=0

C1 Pr(I = I∣+ = E)

)]
.

After the establishment of the lower bound of additional
decoding error exponent introduced by early elimination, we
can subsequently quote the result from [14] that the exact
error exponent of the maximum-likelihood decoding error for
convolutional codes of rates above channel cutoff rate)0 is
given by (% + 1);c()), where

;c()) ≜ max
{-∈[0,1] : 00(-)>-/}

;0(B). (15)

We then follow a similar argument in [4] to conclude that
for code rates above channel cutoff rate)0, the additional
decoding error due to early elimination in the PFSDA becomes
exponentially negligible8 if

Δ ⋅ ;el()) > (% + 1);c()). (17)

APPENDIX B
A BRIEF INTRODUCTION OF HEAP DATA STRUCTURE

HEAP is a tree-based data structure with a key assigned to
each node. It satises the following two properties: E) If > is a
child node of =, then the key associated with > is no less than
the key associated with =, and EE) all leaves are located at the
same tree level, and the leaf nodes are lled from left to right.
The rst property implies that the root node is always the one
with the smallest key. Since the PFSDA needs to extend the
node with the smallest metric, this makes the HEAP a suitable
structure for its implementation.

A binary HEAP tree can be easily implemented using an
array structure. As a simple example shown in Figure 11, the

8For rate below the cutoff rate, an early elimination window Δ that
sufciently guarantees exponentially negligible performance degradation can
be obtained using the sphere-packing bound (sp()) and straight-line bound
(x [14] as:

Δ ⋅(el()) > (! + 1)min{(sp()), (x} (16)

where (sp()) ≜ max{)∈[0,∞) : ,̂0())>).} (̂0(5) with (̂0(5) being the
concave hull of (0(5), and (x = 1/[4-2 log(2)] for antipodal-input AWGN
channels. These two bounds may suggest a slightly larger window size than
the one derived from (17) at) =)0. As an example from Figure 2, (16)
indicates that for (2, 1, 12) convolutional codes, Δ could be as large as 45,
while (17) only requires Δ = 40 at) =)0. Our simulations however
consistently show that taking Δ values that equate (17) at) =)0 are
already sufcient to secure ML performance even for (b/20 outside the
valid region of (17) (cf. Figures 4 and 5), and (16) indeed overestimates the
required Δ. This conforms to the general impression that the sphere-packing
bound as well as the straight-line bound is perhaps loose at low rates. This
paper will then focus on the Δ value derived from (17) specically at) =)0
as adopted similarly in [4].

Fig. 11. Example of a binary HEAP and its respective array.

indexes of the parent, left child and right child of a node
with index E are given by ⌊(E − 1)/2⌋, 2E + 1 and 2E + 2,
respectively. Insertion and deletion of a node can then be done
over the array. Specically, the insertion process will rst place
the inserted node 4 at the end of the array, and then repeat
exchanging the new node with its parent until either its key is
no less than the key of its parent or 4 becomes a root node. The
deletion of an existing node - requires three steps: E) Set the
key of the node to be deleted as −∞ (the minimum value), and
then keep exchanging the node with its parent until it becomes
a root node; EE) Exchange the root node - with the last node
J in the array, and then delete -; EEE) Repeat exchanging J
with its child of smaller key until either no children have a
smaller key than J or J becomes a leaf. Both processes can be
completed within 6(log 7) exchanges, where 7 is the number
of nodes in the current HEAP.

Now, for the PFSDA with nite stack size, the path with
the smallest level should be efciently located and deleted
once the stack size exceeds its limit. To fulll this goal,
two binary HEAPs are implemented for the Open Stack. The
metric HEAP uses the path metric as its key, while the level
HEAP associates its nodes with level keys. An additional
mutual link is then maintained for each node in these two
HEAPs. In other words, the node in the metric HEAP will be
linked to its counterpart in the level HEAP, and vice versus.
By this way, the PFSDA can efciently locate, for example,
the node with the smallest level, and delete it as well as its
counterpart in the metric HEAP within 6(log 7) exchanges.

REFERENCES

[1] R. E. Blahut, Principles and Practice of Information Theory. Addison-
Wesley Publishing Company, 1988.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: MIT Press, 2001.

[3] L. Ekroot and S. Dolinar, �“A decoding of block codes," IEEE
Trans. Commun., vol. 44, pp. 1052-1056, Sep. 1996.

[4] G. D. Forney, Jr., �“Convolutional codes II: maximum likelihood decod-
ing," Inform. Control, 25:222-66, July 1974.

[5] Y. S. Han, P.-N. Chen, and H.-B. Wu, �“A maximum-likelihood soft-
decision sequential decoding algorithm for binary convolutional codes,"
IEEE Trans. Commun., vol. 50, no. 2, pp. 173-178, Feb. 2002.

[6] C. Heegard, S. Coffey, S. Gummadi, E. J. Rossin, M. B. Shoemake and
M. Wilhoyte, �“Combined equalization and decoding for IEEE 802.11b
devices," IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 125-138, Feb.
2003.

SHIEH et al.: EARLY-ELIMINATION MODIFICATION FOR PRIORITY-FIRST SEARCH DECODING 3469

[7] F. Hemmati and D. J. Costello, Jr., �“Truncation error probability in
Viterbi decoding," IEEE Trans. Commun., vol. 25, no. 5, pp. 530-532,
May 1977.

[8] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, 2nd edition. Upper Saddle River, NJ: Pearson Prentice-
Hall, 2004.

[9] M. Myllylä, J. Cavallaro, and M. Juntti, �“A list sphere detector based
on Dijkstra�’s algorithm for MIMO-OFDM systems," in Proc. IEEE Int.
Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Athens, Greece,
Sep. 2007.

[10] M. Myllylä, J. Cavallaro, and M. Juntti, �“Implementation aspects of list
sphere detector algorithms," in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), Washington, D.C., USA, Nov. 2007.

[11] R. J. McEliece and I. M. Onyszchuk, �“Truncation effects in Viterbi
decoding," in Proc. MILCOM �’89, Oct. 1989, pp. 29.3.1-29.3.5.

[12] I. M. Onyszchuk, �“Truncation length for Viterbi decoding," IEEE
Trans. Commun., vol. 39, no. 7, pp. 1023-1026, July 1991.

[13] I. M. Onyszchuk, K.-M. Cheung, and O. Collins, �“Quantization loss in
convolutional decoding," IEEE Trans. Commun., vol. 41, no. 2, pp. 261-
265, Feb. 1993.

[14] A. J. Viterbi, �“Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm," IEEE Trans. Inf. Theory, vol. IT-13,
no. 2, pp. 260-269, Apr. 1967.

[15] A. J. Viterbi and J. K. Omura, Priciples of Digital Communications and
Coding. New York: McGraw-Hill, 1979.

[16] S. B. Wicker, Error Control Systems for Digital Communications and
Storage. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Shin-Lin Shieh was born in Kinmen, Taiwan,
R.O.C., in 1977. He received the B.Sc. and M.Sc.
degrees in electrical engineering from the National
Tsing-Hua University, Hsinchu, Taiwan, in 1999 and
2001, respectively, and a Ph.D. degree in the depart-
ment of communications engineering from National
Chiao-Tung university, Hsinchu, Taiwan.

After serving in the military for three months,
he joined the Wireless Communication Technology
Department, Computer and Communication Labora-
tory (CCL), Industrial Technology Research Institute

(ITRI), Taiwan, in 2002, where he was engaged in several projects on the
development of baseband communication algorithms. In 2005, he switched
to the WidebandCode Division Multiple Access (WCDMA) Project, Sunplus
Technology Company, Ltd. He continued to work with the HT mMobile, Inc.,
Hsinchu, a subsidiary spun-off from the Sunplus Technology Company, Ltd.
in 2008, and was involved in designing baseband algorithms of enhanced
data rates for global system for mobile communications evolution (EDGE),
WCDMA, high-speed downlink packet access (HSDPA), long-term evolution
(LTE) and other communication systems. Started from August 2010, he joined
the Graduate Institute of Communication Engineering at National Taipei
university, Taipei, Taiwan, as an assistant professor.

Po-Ning Chen (S�’93-M�’95-SM�’01) was born in
Taipei, R.O.C. in 1963. He received the B.S. and
M.S. degrees in electrical engineering from the
National Tsing-Hua University, Taiwan in 1985 and
1987, respectively, and the Ph.D. degree in electrical
engineering from University of Maryland, College
Park, in 1994.

From 1985 to 1987, he was with Image Processing
Laboratory in National Tsing-Hua University, where
he worked on the recognition of Chinese characters.
During 1989, he was with Star Tech. Inc., where

he focused on the development of nger-print recognition systems. After the
reception of Ph.D. degree in 1994, he jointed Wan Ta Technology Inc. as a
vice general manager, conducting several projects on Point-of-Sale systems. In
1995, he became a research staff in Advanced Technology Center, Computer
and Communication Laboratory, Industrial Technology Research Institute
in Taiwan, where he led a project on Java-based Network Managements.
Since 1996, he has been an Associate Professor in the Department of
Communications Engineering at the National Chiao-Tung University, Taiwan,
and was promoted to a full professor since 2001. He was elected to be
the Chair of the IEEE Communications Society Taipei Chapter in 2006 and
2007, during which the IEEE ComSoc Taipei Chapter has won the 2007
IEEE ComSoc Chapter Achievement Awards (CAA) and 2007 IEEE ComSoc
Chapter of the Year (CoY).

He has served as the chairman of the Department of Communications
Engineering, National Chiao-Tung University, during 2007-2009. Dr. Chen
received the annual Research Awards from the National Science Council,
Taiwan, R.O.C., ve years in a row since 1996. He then received the 2000
Young Scholar Paper Award from Academia Sinica, Taiwan. His Experimen-
tal Handouts for the course of Communication Networks Laboratory have
been awarded as the Annual Best Teaching Materials for Communications
Education by the Ministry of Education, Taiwan, R.O.C., in 1998. He has
been selected as the Outstanding Tutor Teacher of the National Chiao-Tung
University in 2002. He was also the recipient of the Distinguished Teaching
Award from the College of Electrical and Computer Engineering, National
Chiao-Tung University, Taiwan, in 2003. His research interests generally lie
in information and coding theory, large deviation theory, distributed detection
and sensor networks.

Yunghsiang S. Han was born in Taipei, Taiwan,
on April 24, 1962. He received B.Sc. and M.Sc.
degrees in electrical engineering from the National
Tsing Hua University, Hsinchu, Taiwan, in 1984
and 1986, respectively, and a Ph.D. degree from
the School of Computer and Information Science,
Syracuse University, Syracuse, NY, in 1993.

He was from 1986 to 1988 a lecturer at Ming-Hsin
Engineering College, Hsinchu, Taiwan. He was a
teaching assistant from 1989 to 1992, and a research
associate in the School of Computer and Information

Science, Syracuse University from 1992 to 1993. He was, from 1993 to 1997,
an Associate Professor in the Department of Electronic Engineering at Hua
Fan College of Humanities and Technology, Taipei Hsien, Taiwan. He was
with the Department of Computer Science and Information Engineering at
National Chi Nan University, Nantou, Taiwan from 1997 to 2004. He was
promoted to Professor in 1998. He was a visiting scholar in the Department
of Electrical Engineering at University of Hawaii at Manoa, HI from June
to October 2001, the SUPRIA visiting research scholar in the Department of
Electrical Engineering and Computer Science and CASE center at Syracuse
University, NY from September 2002 to January 2004, and the visiting scholar
in the Department of Electrical and Computer Engineering at University
of Texas at Austin, TX from August 2008 to June 2009. He was with
the Graduate Institute of Communication Engineering at National Taipei
University, Taipei, Taiwan from August 2004 to July 2010. From August
2010, he is with the Department of Electrical Engineering at National Taiwan
University of Science and Technology. His research interests are in error-
control coding, wireless networks, and security. Dr. Han was a winner of the
1994 Syracuse University Doctoral Prize.

Ting-Yi Wu was born in Tainan, Taiwan, in 1983.
He received the B.Sc. and M.Sc. degrees in Com-
puter Science and Information Engineering from Na-
tional Chi-Nan University, Nantou, Taiwan, in 2005
and 2007, respectively. From 2007 to 2009, he was a
research assistant of the Graduate Institute of Com-
munication Engineering, National Taipei University,
Taipei, Taiwan. He is currently pursuing the Ph.D.
degree in Institute of Communications Engineering,
National Chiao-Tung University, Hsinchu, Taiwan.
His current research interests include error-control

coding and information theory.

