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Abstract— In this paper, we consider the distributed classi-
fication problem in wireless sensor networks. Local decisions
made by local sensors, possibly in the presence of faults,
are transmitted to a fusion center through fading channels.
Classification performance could be degraded due to the errors
caused by both sensor faults and fading channels. Integrating
channel decoding into the distributed fault-tolerant classification
fusion algorithm, we obtain a new fusion rule that combines
both soft-decision decoding and local decision rules without
introducing any redundancy. The soft decoding scheme is utilized
to combat channel fading, while the distributed classification
fusion structure using error correcting codes provides good
sensor fault-tolerance capability. Asymptotic performance of the
proposed approach is also investigated. Performance evaluation
of the proposed approach with both sensor faults and fading
channel impairments is carried out. These results show that the
proposed approach outperforms the system employing the MAP
fusion rule designed without regard to sensor faults and the
multiclass equal gain combining fusion rule.

Index Terms— Distributed classification, wireless sensor net-
works, coding, soft-decision decoding, decision fusion, multisen-
sor fusion, fading channels.

I. INTRODUCTION

W IRELESS sensor networks (WSN) form an emerging
area that has attracted enormous attention in recent

years [1]. Its envisaged applications include, among others,
monitoring of environments and performing tasks such as
detection, classification and tracking of objects [2]–[7]. In this
paper, we consider the problem of event or target classification
based on observations from distributed sensors. In a decen-
tralized multiclass classification problem, each local detector
(sensor) may perform multiclass classification and transmit its
decision (classification result) to a fusion center [8], [9] where
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a final classification decision is made. The fusion center may
be a central decision unit, or, in clustered-based WSN, may
simply be a cluster head. Thus the algorithm developed in
this paper applies to different levels of classification fusion
problems. The sensor-level decision can be represented by
�log2M� information bits, where M is the number of classes
to be distinguished.

However, there are many limitations for this mechanism in
WSN applications. In particular, in sensor networks involving
a large number of unattended sensors operating on irre-
placeable power, the cost, bandwidth, and energy constraints
may dictate that sensors transmit as few bits as possible. In
fact, in some recent work sensors transmit binary decisions
to the fusion center at which they are combined to yield
multiclass decisions [10]–[12]. This approach was adopted
in our previous work [13], where fault tolerant fusion rules
have been developed that are robust to the presence of sensor
faults. Also, it has been indicated that, in a WSN, fault-
tolerance capability is critical since sensors can be damaged,
blocked or run out of battery energy [1], [2]. Notice that
at the heart of the distributed classification fusion approach
using error correcting codes (DCFECC) is the fault-tolerant
fusion rule. Unlike the conventional approach that employs the
Chair-Varshney fusion rule1 that assumes no faults [14], the
fault-tolerant fusion rule provides enough distance between
the decision regions corresponding to different hypotheses
by a careful design and exploitation of a code matrix. The
observed local decision vectors could still fall into correct
decision regions even when several sensor faults are present.
We provide a brief introduction to the DCFECC approach in
Section II.

Although the DCFECC approach has shown excellent fault-
tolerance capability in the presence of sensor faults [13],
the effect of communication in WSN, and, in particular, the
impact of fading channels [15], has not been considered.
Fading induced transmission errors will cause degradation
of the classification performance. Thus, in this paper, we
explore decoding rules that are robust to fading channels at
the fusion center. We name this new approach distributed
classification fusion using soft-decision decoding (DCSD).
Simulation results have shown that when the effect of channel
fading is taken into account, the performance of the proposed

1Chair-Varshney fusion rule is the optimal fusion rule given the local
decision rules.
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new decoding rule is much better than that presented in [13].
Another proposed enhancement from DCFECC is that a

D-ary (D ≥ 2) decision can be sent out from local sensors
if needed (Note that in the DCFECC approach local sensors
can only make binary local decisions). In this new scheme, a
single fixed binary code matrix is used at the fusion center
for all values of D. That is, DCSD can process multiple-
bit local decision information while the code matrix is still
binary. It will be shown later that when more bits of local
decision information are sent, and when the channel status is
good, further improvement in classification performance can
be obtained when the total energy output from each sensor is
fixed.

Asymptotic performance analysis for the DCSD approach
is also provided in this paper. The results show that the
probability of error for DCSD approaches zero under certain
conditions that are not difficult to satisfy in practice.

For performance evaluation, we compare the DCSD ap-
proach with the system employing the MAP fusion rule. The
results show that the DCSD approach has better performance
in the presence of sensor faults. We also employ the multiclass
equal gain combining (MEGC) fusion rule for the purpose
of comparison. This rule is an extension of the equal gain
combining (EGC) fusion rule for the distributed binary detec-
tion problem proposed in [16], [17]. Simulation results show
that DCSD has the best fault-tolerance capability among these
three approaches even though the MEGC rule also has robust
performance. Finally, the performance is evaluated with fixed
total energy sent out from each sensor node when multiple-bit
local decision information is used.

This paper is organized in the following manner. A brief
introduction to the DCFECC approach is given in Section II.
System description of the DCSD approach is given in Sec-
tion III. Section IV provides the derivation of the local
decision rule by the person-by-person optimization (PBPO)
procedure and the derivation of the DCSD fusion rule. The-
oretical performance analysis is provided in Section V. In
Section VI and Section VII, performance evaluation of the
DCSD approach is provided. Finally, we conclude this paper
in Section VIII.

II. A BRIEF INTRODUCTION TO THE DCFECC APPROACH

The DCFECC approach was used to solve the fault-tolerant
multiclass classification problem [13]. The system architecture
for the DCFECC system can be obtained from the system
shown in Fig. 1, by replacing the fading channels with
binary symmetric channels. The local sensors send binary
information to the fusion center based on the observations
y1, y2, . . . , yN . However, the fusion center makes the final
decision in favor of one of the multiclass options based on the
binary vector formed by the received binary local decisions.
Several researchers have considered the design of fault-tolerant
detection systems given a priori fault probability [18]–[20].
However, they only considered the binary detection problem.
Moreover, the a priori fault probability which is needed in
those approaches is difficult to estimate in many real world
applications. In contrast, the DCFECC approach employs a
fault-tolerant fusion rule by using error-correcting codes to

provide good fault-tolerance in the multiclass classification
problem.

The key to the DCFECC approach is the design and
exploitation of a code matrix T . Let H�, where � =
0, 1, . . . ,M − 1 and M ≥ 2, denote the M hypotheses
under test at each of the N sensors. The code matrix T
is an M × N matrix with binary elements t�j ∈ {0, 1},
� = 0, . . . ,M − 1, j = 1, . . . , N . Each hypothesis H� ∈ Ω =
{H0, H1, . . . , HM−1} is associated with a row in the code
matrix T in the following manner. The �th row vector of the
matrix is the “codeword” corresponding to the �th hypothesis,
while its jth column vector provides the decision rule for the
jth sensor. That is, if the jth sensor “decides” on hypothesis
H�, it sends a binary decision whose value equals t�j to the
fusion center. Thus, assuming ideal transmission and no sensor
faults, one needs at least �log2M� sensors for classifying
M hypotheses. With more sensors, i.e., N > �log2M�, the
redundancy can be exploited for fault-tolerance.

In [13], the DCFECC system is designed as follows. First,
a good error-correcting code matrix needs to be found. It
can be obtained based on the simulated annealing or the
cyclic column replacement algorithm as proposed in [13]. The
obtained code matrix is then employed at the fusion center
to implement the fault-tolerant fusion rule. The local decision
rule at each local sensor is designed based on the minimization
of the misclassification error criterion. We follow the PBPO
approach given the designed code matrix. To provide fault-
tolerance ability, the fusion center then performs minimum
distance decoding (the fault-tolerant fusion rule) to decide
on the hypotheses based on the binary inputs received (the
received vector) from the local sensors. That is, the fusion
center decides on the codeword that is closest in Hamming
distance to the received vector, where the Hamming distance
between two binary vectors is defined as the number of distinct
positions between these vectors. The decision on a codeword
is equivalent to making a multiclass classification decision.
While the system performance in the DCFECC approach also
depends on the patterns of columns in the code matrix, a
larger minimum Hamming distance of the code employed
usually provides the capability to tolerate more faults. The
justification for this can be found in the asymptotic analysis
and an example provided in [13].

It should be pointed out that large scale wireless sensor
networks often have many nodes and sensor nodes are usu-
ally aggregated into several groups (or clusters) to reduce
the amount of power spent on long distance data transmis-
sions [21]. Hence, the members of each group (or cluster)
are within transmission range of each other and the number
of members of each group (or cluster) is 10 to 40 [1]. It
is possible for each group (or cluster) to run the DCFECC
scheme separately [21]. Collaborative detection processing is
carried out among nodes within a group (or cluster) under
the control of a manager node (or cluster head) where the
fusion process is carried out. This cluster based architecture
is attractive from computational point of view.

III. PROBLEM STATEMENT

The multiclass classification problem considered by the
DCSD approach in WSN is formulated in this section and
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Fig. 1. Distributed classification fusion architecture for fading channels.

the system structure is depicted in Fig. 1. The a priori prob-
abilities of the M hypotheses are denoted by P (H�) = P�,
respectively. The observation at each local sensor or detector
is represented by yj , where j = 1, . . . , N . Assume that the
distribution function of yj under each hypothesis is known
with the conditional probability density functions of these
observations denoted by P (yj|H�).

As in the DCFECC approach, a code matrix T to perform
distributed classification fusion is designed in advance by ei-
ther the simulated annealing or the cyclic column replacement
algorithm presented in [13]. Unlike the problem formulated
in [13] where we assumed binary local sensor decisions,
we consider the case where each local sensor processes its
observations and makes a multilevel decision based on the
corresponding column of matrix T . More precisely, each
sensor employs a decision rule gj(yj) to make a multilevel
D-ary decision uj = d, where d = 0, . . . , D − 1 and D ≥ 2.
Since the multilevel local decision rule in the DCSD approach
is designed according to a binary code matrix T , a new
distance metric, instead of the Hamming distance used in the
DCFECC approach, must be employed to measure the distance
between the multilevel local decision vector and the codeword
in the given binary code matrix. This distance metric will
be used to design the optimal local fusion rule whereby the
fusion center employs soft-decision decoding. In this paper,
we use the distance metric between u = (u1, . . . , uN ) and
T � = (t�1, . . . , t�N) defined as

d(u,T �) =
N∑
j=1

dj(uj, t�j) for � = 0, . . . ,M − 1,

where
dj(uj , t�j) = |uj − t�j × (D − 1)|.

This definition implies that different levels of a multilevel
D-ary local decision have different distances from elements
t�j ∈ {0, 1} in a binary code matrix. Moreover, the distances
between all adjacent decision levels are equal. Consider an
example of 4-ary local decisions, the distance between the
local decision uj = 3 and t�j = 0 is dj(uj = 3, 0) = 3,
and the distance between the local decision uj = 3 and

t�j = 1 is dj(uj = 3, 1) = 0. Note that each local sensor
makes its decision by itself based on its own observations
and is independent of the other sensors. After processing
the observations locally, possibly in the presence of faults,
the local decisions uj are mapped to a binary signal vector
bj = (bj1, . . . , bjS), where S = �log2D� is the number of bits
to represent the local decision uj = d, d = 0, . . . , D − 1. In
this paper, we assume that all local decisions, uj , take values
from 0 up to D − 1. For instance, a four-level local decision
is transmitted by means of one of the 2-bit binary signal
vectors, {11, 10, 01, 00}. Each bit of the binary signal vectors
is transmitted to the fusion center over channels sequentially
and is assumed to undergo independent fading. Due to the fact
that low bit rate (long symbol duration) and short range (hence
small delay spread) are used in most WSN [16], the fading
channels are assumed flat. We further make the assumption of
phase coherent reception. Hence, the effect of fading channels
is further simplified as a real scalar multiplication given the
transmitted signal.

We assume that binary antipodal signalling is employed for
transmission. This results in a received vector at the fusion
center consisting of real numbers, R = (r1, r2, . . . , rn), rj =
(rj1, . . . , rjS), where j = 1, . . . , N . The rjs, for s = 1, . . . , S,
can be expressed as rjs = αjs(−1)bjs

√
Eb + njs, where Eb

is the energy per channel bit and njs is a noise sample from a
Gaussian process with two-sided power spectral density N0/2.
αjs is the attenuation factor that models the fading channel.

By taking advantage of the structure of the fault-tolerant
fusion rule for the DCFECC approach, the received vectors
at the fusion center can be treated as codewords sent from
a transmitter using a channel coding scheme. That is, the
local decisions uj, j = 1, . . . , N form a D-ary codeword
u = (u1, u2, . . . , uN) which is transmitted to the fusion
center. Soft distance metric between received real vectors
R = (r1, , r2, . . . , , rN ) and T �, � = 0, . . . ,M − 1, can then
be obtained based on the MAP criterion. Soft-decision decod-
ing [22]–[25] at the fusion center can then provide a channel
error protection capability. We provide a detailed derivation
of soft-decision decoding in Section IV. The fault-tolerance
capability for sensor faults is also achieved due to the structure
of error correcting codes. Note that, in our earlier work [13],
the error-correcting code matrix is only used in the decision
fusion process and does not provide error correction for the
local decisions transmitted over real channels. The research
reported in this paper integrates channel coding/decoding to
combat the effects of fading with the DCFECC classification
fusion algorithm. We obtain a new soft-decision fusion rule
that takes into consideration local decision rules. The soft-
decision decoding scheme is utilized to combat channel fading,
while the DCFECC fusion structure provides good sensor
fault-tolerance ability. In the next section, we give a detailed
description of the DCSD scheme.

IV. THE DCSD SCHEME

In this section, we derive the local decision rules and the
fusion rule for the DCSD approach. For simplicity, in the
design of local decision rules, the received vector at the fusion
center is assumed to consist of multilevel D-ary decisions u =
(u1, u2, . . . , uN), where uj = d, and d = 0, . . . , D − 1, and
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TABLE I

THE CODE MATRIX OBTAINED BY SIMULATED ANNEALING IN [13]

H0 0 0 0 1 0 1 0 0 1 1
H1 1 0 0 0 0 0 0 1 0 1
H2 1 1 1 0 1 0 1 1 0 0
H3 0 1 0 1 1 1 1 0 0 0

that local decisions are transmitted over error-free channels.
That is, the design of local decision rules is based on receiving
multilevel quantized decisions instead of real numbers at the
fusion center. The design of the DCSD fusion rule (decoding
rule), however, assumes real-valued channel output. Note that
it will have infinitely many cases (real-valued vectors) that
will need to be considered if the soft decoding rule and the
local decision rules are jointly optimized. Naturally, this will
be computationally prohibitive.

A. The Derivation of Local Decision Rules

Define C�i1,i2,...,iN , where i1, i2, . . . , iN ∈ {0, 1, . . . , D−1},
as the cost that the received word at the fusion center u
equals (i1, i2, . . . , iN ) and the true hypothesis is H�. These
costs C�i1,i2,...,iN can be determined by the decision regions
of codewords. Note that these costs are based on D-ary
decisions. In order to determine these costs based on the binary
codeword, the distance metric d(u,T �) defined in Section III
is used. According to the designed code matrix, the decision
region Ψ of a codeword T ∈ Tw is given as follows:

Ψ(t) = {u|d(u, t) ≤ d(u, t′) for all t′ ∈ Tw},

where Tw = {t�|� = 0, . . . ,M − 1} is the set of all
codewords, i.e., all rows of the code matrix. In order to
minimize the probability of misclassification, set C�i1,...,iN = 0
if (i1, . . . , iN ) is in the decision region of t� that is the
row of T corresponding to the hypothesis H�; otherwise set
C�i1,...,iN = 1. Whenever a received vector (i1, . . . , iN) simul-
taneously belongs to decision regions of tk0 , tk1 , . . . , tkq−1 ,
where q > 1, for all � = 0, . . . , q − 1, set C�i1,...,iN =
(1 − 1/q), i.e., we assume the fusion center randomly picks
one codeword among the codewords which are at the same
distance from the received word u. For instance, given
the code matrix T illustrated in Table I and D = 4,
we have C0

3,2,1,2,1,2,3,0,3,3 = 0, C1
3,2,1,2,1,2,3,0,3,3 = 1,

C2
3,2,1,2,1,2,3,0,3,3 = 1, and C3

3,2,1,2,1,2,3,0,3,3 = 1, since the
distance between u = (3, 2, 1, 2, 1, 2, 3, 0, 3, 3) and codeword
t0 is the smallest.

Based on the costs assigned above, the probability of
misclassification can be written as

Pe =
∑

i1,...,iN ,�

∫
y1,...,yN

P�P (u1 = i1|y1) × · · · ×

P (uN = iN |yN )P (y1, . . . , yN |H�)C�i1,...,iN , (1)

if the local sensors make local decisions based on their own
observations independent of the hypothesis present.

Let us follow the person-by-person optimization (PBPO)
procedure described in [8]. The probability of error Pe can be

minimized if we set the local decision rule at sensor k as

P (uk = ik|yk) =

⎧⎪⎪⎨
⎪⎪⎩

1, if I∗
k(ik) ≤ I∗

k(m) for all ik and
m such that ik �= m, and ik,
m = 0, . . . , D − 1;

0, otherwise,
(2)

where,

I∗
k(ik) =

∑
�

P (yk|H�)
∑

i1,...,ik−1,ik+1,...,iN

P�

P (u1 = i1|H�) × · · · × P (uk−1 = ik−1|H�) ×
P (uk+1 = ik+1|H�) × · · · × P (uN = iN |H�)
×C�i1,...,ik,...,iN (3)

under the assumption of conditionally independent observa-
tions given any hypothesis.

It is easy to see that the local decision rule at sensor k
depends on the decision rule at the other sensors. In order
to obtain the PBPO local decision rules, we must solve these
coupled equations. An algorithm that could be used to search
for the PBPO decision rules is the iterative Gauss-Seidel cyclic
coordinate descent algorithm [26], although it only converges
to a local optimum and depends on the chosen initial values
of P (u1|H�), P (u2|H�), . . . , P (uN |H�).

B. DCSD Fusion (Decoding) Rule

As mentioned earlier, the essence of the fusion process
in the DCFECC approach is decoding. This coding structure
enables us to consider the received vector at the fusion center
as a codeword transmitted collectively from all local sensors.
Consequently, the DCSD fusion rule is able to jointly consider
the local decision rules and word-by-word decoding to achieve
robust system performance via its sensor fault-tolerance and
channel error correction capability.

Let codeword tk be chosen for transmission before local
decision making when the true hypothesis Hk is present. The
process of local decision making can be seen as a transmission
channel, and P (uj|tkj) can be seen as a transition probability
for the channel at local sensor j. Employing the MAP crite-
rion, the fusion rule can be stated below given the received
vector R:

set Ĥ = H� if

P (t�|R) ≥ P (tk|R), for all tk ∈ Tw. (4)

If we assume equal prior probability of each hypothesis,
then the MAP decoding rule is equivalent to the maximum-
likelihood decoding (MLD) rule. Thus, (4) becomes

P (R|t�) ≥ P (R|tk), for all tk ∈ Tw. (5)

Assuming conditional independence of observations at the sen-
sors and discrete memoryless channels between local decision
outputs and the fusion center, (5) can be rewritten as

N∏
j=1

P (rj |t�j) ≥
N∏
j=1

P (rj |tkj), for all tk ∈ Tw,
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where rj = (rj1, rj2, . . . , rjS) is the jth component of the
received vector R. The above equation can be further rewritten
as
N∏
j=1

D−1∑
d=0

P (rj |uj = d)P (uj = d|t�j)

≥
N∏
j=1

D−1∑
d=0

P (rj |uj = d)P (uj = d|tkj), for all tk ∈ Tw,

since the received rj does not depend on the code matrix we
designed given the local decision uj . Taking the logarithm on
both sides of the above equation, we have, for all tk ∈ Tw,

N∑
j=1

ln
∑D−1

d=0 P (rj |uj = d)P (uj = d|t�j)∑D−1
d=0 P (rj |uj = d)P (uj = d|tkj)

≥ 0.

For a binary code matrix, we can define reliability of bit j of
the received vector as

φj = ln
∑D−1
d=0 P (rj |uj = d)P (uj = d|0)∑D−1
d=0 P (rj |uj = d)P (uj = d|1)

, (6)

where

P (rj |uj = d) = P (rj1|bj1)P (rj2|bj2) · · ·P (rjt|bjS)

can be obtained from the statistical model of the fading
channel,2 and

P (uj = d|s) =
M−1∑
�=0

P (uj = d|H�)Pj(H�|s), s ∈ {0, 1}.

The probability of P (uj = d|H�) can be obtained from the
local decision rule, while Pj(H�|s) is the probability that the
hypothesis H� is true given s present at the bit j (column j
of the code matrix) before local decision making, and can be
expressed as

Pj(H�|s) =
Pj(s|H�)P�∑M−1
�=0 Pj(s|H�)P�

,

where

Pj(s|H�) =
{

1, if t�j = s;
0, if t�j �= s

.

Then,

N∑
j=1

ln
∑D−1

d=0 P (rj |uj = d)P (uj = d|t�j)∑D−1
d=0 P (rj |uj = d)P (uj = d|tkj)

≥ 0

⇔
N∑
j=1

((−1)t�jφj − (−1)tkjφj) ≥ 0

⇔
N∑
j=1

(φj − (−1)t�j )2 ≤
N∑
j=1

(φj − (−1)tkj )2.

Let us define dF (φ, tk) =
∑N

j=1(φj − (−1)tkj )2, where φ =
(φ1, . . . , φN ). The DCSD fusion rule is then

set Ĥ = H�, if � = arg min
0≤k≤M−1

dF (φ, tk). (7)

2Recall that the local decision uj is mapped into a binary signal vector
(bj1, bj2, . . . , bjS) that is sent over the channel.

Note that the probabilities P (uj = d|0) and P (uj =
d|1), where j = 1, . . . , N , and d = 0, . . . , D − 1, can
be computed in advance before the on-line operation if the
channel and measurement statistics at the deployed locations
are known. When the fusion center receives the real vector R,
the reliability of each sensor can be computed by (6), and the
DCSD fusion rule in (7) can then be employed.

C. A Brief Description of Code Design by Simulated Anneal-
ing

As mentioned in [13], the code matrix design can not be
viewed as the independent design of individual column vec-
tors. This makes the analytical design of the code matrix quite
difficult. Thus, heuristic algorithms are adopted to efficiently
solve the code design problem. Since the code matrix used
in the performance evaluation in this paper is designed by
simulated annealing, presentation of the main ideas of the
code design by simulated annealing algorithm is in order. For
details, the readers please refer to [13].

1) The energy function required by the annealing process
is set to the probability of misclassification as shown in
(1).

2) Random changes in the code configuration are achieved
by perturbation of the code matrix in the previous itera-
tion until the pre-specified minimum Hamming distance
constraint is satisfied. The minimum Hamming distance
constraint is set to meet the fault-tolerance requirement.

3) Each time a new code matrix is generated, the local
decision rules (2) and (3) are optimized by the Gauss-
Seidel algorithm. Specifically, for each sensor j, j =
1, . . . , N , compute the probability P (uj |H�) by (2) and
(3) with updated values of P (uj|H�), . . ., P (uj−1|H�),
P (uj+1|H�), . . ., P (uN |H�).

Code design by simulated annealing could be computation-
ally intensive if the number of sensors becomes very large.
But this optimization process is actually performed off-line
and the compuation issue is not that critical. Moreover, as
mentioned in Section II, large scale wireless sensor networks
are usually aggregated into several clusters and the number of
members of each cluster is 10 to 40. For such cluster-based
networks, the computational load is acceptable.

V. ASYMPTOTIC PERFORMANCE ANALYSIS

In [13], [27] the asymptotic analysis for the DCFECC
approach has been provided. The major results from the
analysis in [13], [27] are that the DCFECC decoding error
vanishes as the minimum Hamming distance of the employed
code matrix approaches infinity if local classification is such
that βmax <

1
2 , where βmax � max0≤i≤M−1 1− hi,i and hj,i

is the probability of classifying Hj given that Hi is the true
hypothesis. Note that the probabilities hj,i, 0 ≤ j, i ≤ M − 1
are assumed the same for all local sensors in [13], [27].

In this section, we give the asymptotic analysis for the
proposed DCSD approach. Unlike the analysis in [13], [27],
we do not assume that the probabilities hj,i, 0 ≤ j, i ≤M −1
are the same for all the sensors.
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For simplicity, we only consider the case of binary local
sensor decisions in this asymptotic analysis. The case of D-
ary (D > 2) local decisions can be easily obtained in a similar
manner. We also assume Eb = 1 without losing any generality.
E[n2

j ] is equal to N0/2 as assumed in the section III. Thus,
the reliability of bit j of the received vector can be expressed
as

φj = log
q00,jP (rj |uj = 0) + q10,jP (rj |uj = 1)
q01,jP (rj |uj = 0) + q11,jP (rj |uj = 1)

,

where qds,j = P (uj = d|t�j = s). We assume qds > mq > 0
here, where mq is any nonzero constant. In the following, we
will omit the second subscript j in qds,j if this does not cause
any confusion. We first present the following lemma without
giving the proof.

Lemma 1: Let φ̃j = φj − E[φj |H�], then

E
{
φ̃j

2|H�

}
≤ 8
σ4

{
E[α4

j ] +
1
2
E[α2

j ]N0

}
.

In the case of Rayleigh fading, which is considered in the
performance evaluation in this paper, E[α4

j ] is bounded. Thus,

E
{
φ̃j

2|H�

}
is also bounded for the Rayleigh fading channel.

Let S(tk, t�) be defined as the set {j|tkj �= t�j, 1 ≤
j ≤ N}. The performance of DCSD can be seen from the
following theorem.

Theorem 1: If
∑

j∈S(tk,t�)

Z�kj E[φj |H�] → ∞ , where Z�kj =

1
2 ((−1)t�j − (−1)tkj ), then the probability of error for DCSD
approaches zero.
Proof:

Pe =
1
M

M−1∑
�=0

Pr (decision �= H�|H�)

≤ 1
M

M−1∑
�=0

Pr (dF (φ, t�) ≥

min
0≤k≤M−1,k �=�

dF ( φ, tk)|H�)

≤ 1
M

M−1∑
�=0

∑
0≤k≤M−1,k �=�

Pr (dF (φ, t�) ≥ dF (φ, tk) |H�)

=
1
M

M−1∑
�=0

∑
0≤k≤M−1,k �=�

Pr

⎛
⎝ N∑
j=1

(
φj − (−1)t�j

)2 ≥

N∑
j=1

(
φj − (−1)tkj

)2∣∣∣∣∣∣H�

⎞
⎠

=
1
M

M−1∑
�=0

∑
0≤k≤M−1,k �=�

Pr

⎛
⎝ ∑
j∈S(tk,t�)

Z�kj φj < 0

∣∣∣∣∣∣H�

⎞
⎠

=
1
M

M−1∑
�=0

∑
0≤k≤M−1,k �=�

Pr

⎛
⎝ ∑
j∈S(tk,t�)

Z�kj φ̃j

< −
∑

j∈S(tk,t�)

Z�kj E[φj |H�]

∣∣∣∣∣∣H�

⎞
⎠ (8)

Let σ2
φ̃

=
∑

j∈S(tk,t�)

E
{
(Z�kj φ̃j)

2|H�

}
=

∑
j∈S(tk,t�)

E
{
φ̃j

2|H�

}
, then (8) can be rewritten as

Pe ≤ 1
M

M−1∑
�=0

∑
0≤k≤M−1,k �=�

Pr

⎛
⎝ 1
σφ̃

∑
j∈S(tk,t�)

Z�kj φ̃j <

− 1
σφ̃

∑
j∈S(tk,t�)

Z�kj E[φj |H�]

∣∣∣∣∣∣H�

⎞
⎠ (9)

Since E
{
φ̃j

2|H�

}
is bounded and thus the Lindeberg con-

dition [28] holds, 1
σφ̃

∑
j∈S(tk,t�)

Z�kj φ̃j tends to the normal

distribution with zero mean and unit variance by the Linde-
berg central limit theorem [28]. Since σφ̃ will grow slower

than
∑

j∈S(tk,t�)

Z�kj E[φj |H�] when
∑

j∈S(tk,t�)

Z�kj E[φj |H�] →

∞, the right hand side of (9) approaches zero if∑
j∈S(tk,t�)

Z�kj E[φj |H�] → ∞. �

This theorem tells us that as long as the summation of
positive Z�kj E[φj |H�] for bit j ∈ S(tk, t�) asymptotically
beats the summation of negative Z�kj E[φj |H�] for bit j ∈
S(tk, t�), the probability of error for DCSD tends to zero. In
the i.i.d case when all the local sensors employ an identical
decision rule, the condition becomes Z�kj E[φj |H�] > 0 and
the minimum Hamming distance goes to infinity when the
number of sensors approaches infinity. By Gilbert’s lower
bound on achievable minimum distance [29], for a given M ,
such code matrix exists with the minimum Hamming distance
at least satisfying

lim
N→∞

log2M

N
= 1 −H2 (δ) ,

where δ = lim
N→∞

dmin

N
, dmin is the minimum Hamming

distance, and H2 is the binary entropy function. Hence, for
a fixed M , the minimum Hamming distance of the employed
code matrix can easily increase to infinity when the number of
sensors goes to infinity, and the condition will only fail when
the code happens to use poor local classifications infinitely
many times or the channel status is very bad.

VI. PERFORMANCE EVALUATION OF THE

FAULT-TOLERANCE CAPABILITY OF DCSD

In this section, we investigate the performance of the
DCSD approach. We compare the performance of the DCSD
approach with the system employing the soft-decision MAP
fusion rule (SMAPF) and the multiclass equal gain combining
(MEGC) fusion rule in the presence of stuck-at faults and
channel transition errors. Both SMAPF and MEGC fusion
rules are obtained by extending their binary detection versions
given in [16]. In the following, we give brief descriptions of
the multiclass classification version of these two fusion rules.
The details of derivations can be found in [30].
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Soft-Decision MAP Fusion Rule (SMAPF)

The fusion rule provided here is obtained by extending the
optimal likelihood ratio fusion rule for the binary detection
problem given in [16]. However, unlike the rule provided
in [16], we do not assume that the attenuation factor αjs
corresponding to the fading channel is known at the fusion
center. Assume that the local decision rules and the probabili-
ties P (rj |uj = d), where j = 1, . . . , N , and d = 0, . . . , D−1,
corresponding to the fading channel are known. The optimal
fusion rule given the local decision rules in this case is the
MAP fusion rule:

Assign Ĥ to H�, if � = arg max
0≤k≤M−1

P (R|Hk)Pk. (10)

Using the assumption of conditional independence of obser-
vations at the sensors and discrete memoryless channels, we
have the following result:

P (R|Hk) =
N∏
j=1

D−1∑
d=0

P (rj |uj = d)P (uj = d|Hk). (11)

Multiclass Equal Gain Combining Fusion Rule

The MEGC fusion rule is also obtained by extending the
result for the binary classification problem considered in [16],
[17], where EGC is shown to be the low signal to noise ratio
approximation of the optimal likelihood ratio fusion rule when
only the channel fading statistics are available. When the local
sensors only make binary decisions and the fusion center does
not know the attenuation factor α of fading channels (only the
channel signal-to-noise ratio is known), the following MEGC
fusion rule can be employed,

Assign Ĥ to H�, if � = arg max
0≤k≤M−1

N∑
j=1

qjkrj , (12)

where qjk = P (uj = 0|Hk).
As mentioned in [16], [17], for the distributed binary

detection problem in wireless sensor networks, the EGC fusion
rule outperforms the maximum ratio combining (MRC) fusion
rule in the sense that the detection performance is robust for
a wider range of channel signal-to-noise ratio (CSNR).

Example 1

The performance of the DCSD, SMAPF, and MEGC
schemes are evaluated in both fault-free (without stuck-at
faults) and faulty situations (sensors in the presence of stuck-
at faults), while the decisions of local sensors are transmitted
over Rayleigh fading channels to the fusion center. The CSNR
is defined as γ = Eb/N0 × E[α2

js].
A system with a fusion center and ten independent local

sensors is considered for the multiclass classification of four
equally likely hypotheses H0, H1, H2, and H3. Note that each
local sensor makes a binary decision in this evaluation. We
further assume that all the sensor observations have the same
characteristics, i.e. the distributions of observations at all the
sensors are identical.3 The probability density function for

3This assumption has been made for simplicity in this illustrative example.
It may not be true in practice due to the different distances between the target
and each sensor.
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Fig. 2. Performance comparison of DCSD, MEGC, and SMAPF at 5 dB
CSNR without any sensor faults.

each hypothesis is assumed to be a Gaussian distribution with
the same variance (σ2 = 1) but with different means 0, V, 2V ,
and 3V , respectively. We define the observation signal-to-noise
ratio (OSNR) at each local sensor as 20 log10 V .

The code matrix employed in the DCSD approach is ob-
tained from [13] and shown in Table I. It is easy to see that the
minimum Hamming distance between any two codewords in
the resulting code matrix is 5. After the code matrix is chosen,
the local sensor decision rules are given by equation (2) where
the coefficients can be determined from (3). For the DCSD
approach, the fusion rule given in (7) is employed, while
the reliability is computed by using (6). As for SMAPF and
MEGC, (10) and (12) are used to compute the fusion rule
respectively.

In the performance comparison, we first fix the CSNR at 5
dB, and then consider the OSNR ranging from 0 dB to 12 dB
with step size equal to 1 dB. For each OSNR, the computations
of the local decision rules for DCSD, SMAPF, and MEGC
approaches employ the Gauss-Seidel iterative algorithm. We
initialize the Gauss-Seidel algorithm with the probability
P (uk|H�) when all the local sensors operate independently
with their optimal decision rule (analytically designed) for
classification corresponding to the columns of the code matrix
designed for the DCSD approach. For performance evaluation
with stuck-at faults, we assume that the faulty sensors always
send decision 1 to the fusion center. Performance in terms
of probability of misclassification is obtained by 105 Monte
Carlo runs for each OSNR point.

Fig. 2 and Fig. 3 present simulation results for DCSD,
MEGC and SMAPF approaches corresponding to no faulty
sensor and two faulty sensors, respectively. The CSNR is fixed
at 5 dB. From Fig. 2, when local sensors are in a fault-free
state, the MEGC rule has the worst performance among all
three approaches. This can be justified from the fact that the
MEGC fusion rule is derived as a low CSNR approximation
of the optimal likelihood ratio fusion rule. As shown in Fig. 3,
DCSD has the best fault-tolerance capability even though
MEGC also possesses good fault-tolerance ability.

Fig. 2 and Fig. 3 also reveal two important observations.
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Fig. 3. Performance comparison of DCSD, MEGC, and SMAPF at 5 dB
CSNR when two faults are present.
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Fig. 4. Performance comparison of DCSD and SMAPF at 5 dB CSNR when
three faults are present.

First, the performance of DCSD in the presence of two faulty
sensors is better than that of SMAPF at most OSNR values
except when OSNR is less than 1 dB. A possible reason for
this situation is that the error resulting from two faulty sensors
is smaller than the error resulting from the overall decision
error of the network at very low OSNRs. Note that the decision
error in this section means classification error resulting from
the local decision rules and the fusion rule designed for the
sensor networks for fault-free sensors. That is, the decision
errors dominate the system performance at very low OSNRs.
Second, the performance of DCSD without any fault is worse
than that of the SMAPF approach at most OSNRs except at 9.0
dB. This is obvious since SMAPF employs the MAP fusion
rule, which is optimal given the local decision rule. There
is one unusual situation at 9.0 dB where the performance
of DCSD is better. This is because the local decision rules
determined by the Gauss-Seidel iterative algorithm depend on
the initial conditions and do not necessarily yield the global
optimum.

Fig. 4 shows the simulation results when faults occur at
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Fig. 5. Performance comparison of DCSD, MEGC, and SMAPF at 5 dB
OSNR in faulty and fault-free situations.

three sensors (j = 1, 2, 3). We can see, unlike the results
with two faulty sensors, that the performance of the DCSD
approach is better than that of the SMAPF approach at all
OSNR values considered. That is, the decision errors of the
network do not dominate the performance any more at low
OSNRs when the number of sensor faults increases.

Fig. 5 presents the simulation results corresponding to the
performance when the OSNR is fixed at 5 dB and CSNR
ranges from -10 dB to 10 dB. From this figure, one can see
that the MEGC approach has the worst performance while
DCSD and SMAPF have similar performance in the absence
of faults. However, in the presence of faulty sensors, MEGC
provides a more robust performance than SMAPF, yet DCSD
still is the most favorable fusion rule in this case.

Although the SMAPF and the MEGC schemes have worse
fault-tolerance capability as compared with the DCSD, both
schemes require less off-line computation since they do not
need to search for the code matrix.

VII. PERFORMANCE EVALUATION OF DCSD WITH

MULTIBIT INFORMATION

In this section, we evaluate the performance of the DCSD
approach for both 1-bit and 2-bit local decision information
cases, while the total energy sent out from each sensor node,
E, is fixed. Since E = S × Eb, where S is the number of
bits that represent the local decision, this implies that the 2-
bit local decision has a 3 dB degradation of per bit energy
compared with the 1-bit decision. We also compare their
performance with the performance of the two stage DCFECC
approach. For the two stage DCFECC approach, the fusion
center first estimates the local decision uj ∈ {0, 1} based
on the received rj , and then performs hard-decision decoding
according to the DCFECC fault-tolerant fusion rule [13]. Since
the maximum likelihood estimate (MLE) for uj is

ûj =
{

0, if rj > 0;
1, otherwise,
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Fig. 6. Performance comparison of 1-bit DCSD, 2-bits DCSD, and two stage
DCFECC (hard-decision decoding) at E/N0 = 10 dB.
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Fig. 7. Performance comparison of 1-bit DCSD, 2-bits DCSD, and two stage
DCFECC (hard-decision decoding) at 10 dB OSNR.

given the statistical model of the Rayleigh fading channel [31],
the fusion rule for the two stage DCFECC is

Assign y to H�, if

� = argmin
k

N∑
j=1

(ûj − tkj)2, k = 0, . . . ,M − 1. (13)

Note that DCSD employs soft-decision decoding, while the
DCFECC only performs hard-decision decoding.

Example 2

In this example, ten local sensors and one fusion center are
used to classify the objects coming from five equally likely
hypothesesH0, H1, H2, H3, and H4. The distribution function
for each hypothesis is assumed to be a Gaussian distribution
with the same variance (σ2 = 1), but different means, −2V ,
−V , 0, V , and 2V , respectively. In this example, we design
a code matrix by the simulated annealing algorithm and the
result is shown in Table II. For the purpose of comparison, we
first compute the performance of classification as a function of

TABLE II

THE CODE MATRIX FOR 5 HYPOTHESES AND 10 SENSORS OBTAINED BY

SIMULATED ANNEALING

H0 1 0 0 1 0 1 0 0 0 1
H1 1 1 0 0 0 0 0 1 1 1
H2 0 1 1 0 1 1 0 0 1 0
H3 0 1 1 1 1 0 1 1 0 0
H4 0 0 0 0 0 0 1 0 0 0

OSNR while the E/N0 is fixed at a high value. Similarly, we
also investigate the performance of classification as a function
of E/N0 when OSNR is large. These two cases reduce the
combined effect caused by communication channel errors and
observation noise. This is then followed by the performance
comparison when both OSNR and E/N0 are moderate.

Fig. 6 shows the performance comparison of 1-bit DCSD,
2-bit DCSD, and the two stage 1-bit DCFECC when E/N0

is fixed at 10 dB, considered as "good" channels. Thus,
the performance will be mostly affected by the decision
errors with different number of information bits. From this
figure, One can observe that the 2-bit DCSD scheme has the
best performance, especially at low OSNRs. Therefore, the
performance of DCSD can be improved by using more bits to
convey local decision information when the E/N0 is at a high
value. From this figure, the performance of 1-bit DCFECC
almost matches the performance of 1-bit DCSD. The reason
for this result is that we simulate the performance at very high
E/N0 (10 dB) and, therefore, the performance advantage by
using soft decision decoding is not significant.

Fig. 7 shows the performance comparison of 1-bit DCSD,
2-bit DCSD, and two stage 1-bit DCFECC when the OSNR is
fixed at 10 dB. One can see that the system employing soft-
decision decoding results in improved performance over two
stage DCFECC that employs hard-decision decoding. From
this figure, one can also observe that the performance of 2-bit
DCSD is only better when E/N0 is greater than 6 dB. The
reason about this phenomenon will be explained later.

Figs. 8 and 9 illustrate the performance caused by the
combined effect of both channel errors and observation noise.
Fig. 8 shows the performance comparison of these three
schemes when E/N0 is at 0 dB. One can see that the system
employing soft-decision decoding provides improved perfor-
mance over the two stage 1-bit DCFECC, which employs
hard-decision decoding. Unlike the result shown in Fig. 6, the
performance of two stage 1-bit DCFECC does not achieve the
performance of 1-bit DCSD, since the effect of channel errors
is large when E/N0 is low. Fig. 9 shows the performance
comparison when the OSNR is fixed at 5 dB. One can still see
that the system employing soft-decision decoding improves the
performance of two stage 1-bit DCFECC, which is employing
hard-decision decoding, even though the OSNR is moderate.

From Figs. 7, 8, and 9, one can see that using more bits
(fixed total energy E) to convey local decision information can
only improve the performance when the status of communica-
tion channel is good (i.e., E/N0 is high). When the status of
channel becomes worse (i.e., E/N0 is low), the performance is
degraded when more bits are used since the effect of channel
errors is amplified with more bits to convey local decision
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Fig. 8. Performance comparison of 1-bit DCSD, 2-bits DCSD, and two stage
DCFECC (hard-decision decoding) at E/N0 = 0 dB.
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Fig. 9. Performance comparison of 1-bit DCSD, 2-bits DCSD, and two stage
DCFECC (hard-decision decoding) at 5 dB OSNR.

information due to the degradation of bit SNR. In this case,
the performance lost due to the channel errors is greater than
the performance gained by using more bits of local decision
information 4.

VIII. CONCLUSIONS

In this paper we incorporated soft-decision decoding into
the error-correcting code based distributed classification fu-
sion algorithm. By exploiting the structure of the DCFECC
approach, the received vectors at the fusion center can be soft-
decision decoded. Thus, the sensor fault-tolerance capability
and communication channel errors can both be handled in the
proposed DCSD approach without introducing any additional
redundancy that may reduce channel bandwidth.

Theoretical performance analysis for the DCSD was also
provided in this paper. According to this analysis, the con-
dition that the probability of error for the DCSD approach

4This justification is only true in our performance evaluation under the
assumption that no error correction coding is employed on the information
sent out from local sensors and the total energy E is fixed.

vanishes asymptotically is not difficult to hold in real appli-
cations.

It is shown through computer simulations that even though
the system that employs the optimal fusion rule has slightly
better performance than that of the proposed DCSD approach
in the fault-free sensor case, the DCSD approach performs
much better when sensors are faulty. We also compare the
performance of DCSD with that of the multiclass equal gain
combining fusion rule approach. The results show that even
though MEGC exhibits good fault-tolerance capability similar
to DCSD, it has much worse performance in the fault-free
sensors case. Finally, the performance comparison of 1-bit
DCSD and 2-bit DCSD with fixed total energy sent out from
the output of each sensor node is also investigated. Simulation
results show that by using more bits to convey local decision
information can improve the performance when the status of
channel is good, but degrades the performance if the channel
status is poor.
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