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Abstract— In this paper, we consider the task of target localiza-
tion using quantized data in wireless sensor networks. We propose
a computationally efficient localization scheme by modeling it
as an iterative classification problem. We design coding theory
based iterative approaches for target localization where at every
iteration, the fusion center (FC) solves an M-ary hypothesis
testing problem and decides the region of interest for the next
iteration. The coding theory based iterative approach works well
even in the presence of Byzantine (malicious) sensors in the
network. We further consider the effect of non-ideal channels.
We suggest the use of soft-decision decoding to compensate for
the loss due to the presence of fading channels between the local
sensors and FC. We evaluate the performance of the proposed
schemes in terms of the Byzantine fault tolerance capability and
probability of detection of the target region. We also present
performance bounds, which help us in designing the system. We
provide asymptotic analysis of the proposed schemes and show
that the schemes achieve perfect region detection irrespective
of the noise variance when the number of sensors tends to
infinity. Our numerical results show that the proposed schemes
provide a similar performance in terms of mean square error as
compared with the traditional maximum likelihood estimation
but are computationally much more efficient and are resilient to
errors due to Byzantines and non-ideal channels.

Index Terms— Target localization, wireless sensor networks,
error correcting codes, Byzantines.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been exten-
sively employed to monitor a region of interest (ROI)

for reliable detection/estimation/tracking of events [1]–[4].
In this paper, we focus on target localization in WSNs.
Localization techniques proposed in the literature for sensor
networks include direction of arrival (DOA), time of arrival
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(TOA), and time-difference of arrival (TDOA) based methods
[5], [6]. Recent research has focused on developing techniques
which do not suffer from imperfect time synchronization.
Received signal strength based methods, which do not suffer
from imperfect synchronization and/or extensive processing,
have been proposed which employ least-squares or maximum-
likelihood (ML) based source localization techniques [7], [8].
In WSNs, due to power and bandwidth constraints, each
sensor, instead of sending its raw data, sends quantized data
to a central observer or Fusion Center (FC). The FC combines
these local sensors’ data to estimate the target location.

Secure localization is very important as potential malicious
sensors may attempt to disrupt the network and diminish its
capability. Only in the recent past, researchers have investi-
gated the problem of security threats [9] on sensor networks.
We focus on one particular class of security attacks, known
as the Byzantine data attack [10] (also referred to as the Data
Falsification Attack). A Byzantine attack involves malicious
sensors within the network which send false information to
the FC to disrupt the global inference process. In our previous
work [11], we have analyzed target localization in WSNs in the
presence of Byzantines. By considering the Posterior Cramér
Rao bound or Posterior Fisher Information as the performance
metric, we analyzed the degradation in system performance in
the presence of Byzantines. We showed that the FC becomes
‘blind’ to the local sensor’s data when the fraction of Byzan-
tines is greater than 50%. When the FC becomes ‘blind’, it
is not able to use any information received from the local
sensors and estimates the target location based only on prior
information. In order to make the network robust to such
attacks, we considered mitigation techniques. We proposed a
Byzantine identification scheme which observes the sensors’
behavior over time and identifies the malicious sensors. We
also proposed a dynamic non-identical threshold design for
the network which makes the Byzantines ‘ineffective’.

An important element of WSNs is the presence of non-
ideal wireless channels between sensors and the FC [12],
[13]. These non-ideal channels corrupt the quantized data sent
by the local sensors to the FC. This causes errors which
deteriorates the inference performance at the FC. One way
to handle the channel errors is to use error correcting codes
[14], [15]. In [16], target localization based on maximum
likelihood estimation at the FC was considered and coding
techniques were proposed to handle the effect of imperfect
channels between sensors and fusion center.

In this work, we propose the use of coding theory tech-
niques to estimate the location of the target in WSNs. In our
preliminary work [17], [18], we have shown the feasibility
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of our approach by providing simulation/numerical results.
In this paper, we develop the fundamental theory and derive
asymptotic performance results. We first consider the code
design problem in the absence of channel errors and Byzantine
faults. The proposed scheme models the localization problem
as an iterative classification problem. The scheme provides
a coarse estimate in a computationally efficient manner as
compared to the traditional ML based approach. We present
performance analysis of the proposed scheme in terms of
detection probability of the correct region. We show analyt-
ically that the scheme achieves perfect performance in the
asymptotic regime. We address the issues of Byzantines and
channel errors subsequently and modify our scheme to handle
them. The error correction capability of the coding theory
based approach provides Byzantine fault tolerance capability
and the use of soft-decoding at the FC provides tolerance to
the channel errors. In the remainder of the paper, we refer
to this coding theory based localization approach as “coding
approach”. The schemes proposed in this paper show the
benefit of adopting coding theory based techniques for signal
processing applications.

The remainder of the paper is organized as follows: In
Section II, we describe the system model used and lay out
the assumptions made in the paper. We also present a brief
overview of Distributed Classification Fusion using Error
Correcting Codes (DCFECC) [19] and Distributed Classi-
fication Fusion using Soft-decision Decoding (DCSD) [20]
approaches. We propose our basic coding scheme for target
localization in Section III. The performance of the proposed
scheme in terms of region detection probability is analyzed in
this section. We extend this scheme to the exclusion method
based coding scheme in Section IV to mitigate the effect of
Byzantines in the network. We present some numerical results
showing the benefit of the proposed schemes compared to the
traditional maximum likelihood based scheme. We also present
a discussion on system design based on the performance
analysis carried out in this section. We consider the presence
of non-ideal channels in Section V and modify our decoding
rule to make it robust to fading channels. We conclude our
paper in Section VI with some discussion on possible future
work.

II. PRELIMINARIES

A. System Model

Let N sensors be randomly deployed (not necessarily in
a regular grid) in a WSN as shown in Fig. 1 to estimate
the unknown location of a target at θ = [xt , yt ], where xt

and yt denote the coordinates of the target in a 2-D Cartesian
plane. We assume that the location of the sensors is known
to the Fusion Center (FC). We also assume that the signal
radiated from this target follows an isotropic power attenuation
model [2]. The signal amplitude ai received at the i th sensor
is given by

a2
i = P0

(
d0

di

)n

, (1)

where P0 is the power measured at the reference distance
d0, di �= 0 is the distance between the target and the i th

Fig. 1. Wireless sensor network layout for target localization.

sensor whose location is represented by Li = [xi , yi ] for
i = 1, 2 · · · , N and n is the path loss exponent. In this work,
without loss of generality, we assume d0 = 1 and n = 2.
The signal amplitude measured at each sensor is corrupted by
independent and identically distributed (i.i.d.) zero-mean addi-
tive white noise with complementary cumulative distribution
function given by F̄(·; σ 2):

si = ai + ni , (2)

where si is the corrupted signal at the i th sensor and the noise
ni ∼ F̄(·; σ 2) with variance σ 2.

Due to energy and bandwidth constraints, the local sensors
quantize their observations using threshold quantizers and send
binary quantized data to the FC:

Di =
{

0 si < ηi

1 si > ηi
, (3)

where Di is the quantized data at the i th sensor and ηi is
the threshold used by the i th sensor for quantization. The FC
fuses the data received from the local sensors and estimates the
target location. Traditional target localization uses MLE [2]:

θ̂ = arg max
θ

p(u|θ), (4)

where u = [u1, u2, . . . , uN ] is the vector of quantized obser-
vations received at the FC. As pointed out in the later sections,
u and D can be different due to the presence of Byzantines
and/or imperfect channels between local sensors and FC.

B. An Overview of Distributed Classification Approaches

1) DCFECC [19]: In this subsection, we give a brief
overview of Distributed Classification Fusion using Error
Correcting Codes (DCFECC) approach proposed in [19]. In
[19], the authors propose an approach for M-ary distributed
classification using binary quantized data. After processing the
observations locally, possibly in the presence of sensor faults,
the N local sensors transmit their local decisions to the FC.
In the DCFECC approach, a code matrix C is selected to
perform both local decision and fault-tolerant fusion at the
FC. The code matrix is an M × N matrix with elements
c( j+1)i ∈ {0, 1}, j = 0, 1, . . . ,M − 1 and i = 1, . . . , N .
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Each hypothesis H j is associated with a row in the code
matrix C and each column represents a binary decision rule at
the local sensor. The optimal code matrix is designed off-line
using techniques such as simulated annealing or cyclic column
replacement [19]. After receiving the binary decisions u from
local sensors, the FC performs minimum Hamming distance
based fusion and decides on the hypothesis H j for which the
Hamming distance between row of C corresponding to H j

for j = 0, . . . ,M − 1 and the received vector u is minimum.
It is important to note that the above scheme is under the
assumption that N > M and the performance of the scheme
depends on the minimum Hamming distance dmin of the code
matrix C .

2) DCSD [20]: In this subsection, we present a brief
overview of Distributed Classification using Soft-decision
Decoding (DCSD) approach proposed in [20]. This approach
uses a soft-decision decoding rule as opposed to the hard-
decision decoding rule used in DCFECC approach. The use
of soft-decision decoding makes the system robust to fading
channels between the sensors and the FC. The basic difference
between the two approaches (DCFECC and DCSD) is the
decoding rule. In DCFECC, the minimum Hamming distance
rule is used. In the presence of fading channels, the received
data at the FC is analog although the local sensors transmit
quantized data based on the code matrix C as described before.
Then, the FC can use hard-decision decoding to determine the
quantized data sent by the local sensors and use minimum
Hamming distance rule to make a decision regarding the class.
However, in [20], the authors show that the performance can
deteriorate when hard-decision decoding is used. Instead, they
propose a soft-decision decoding rule based on the channel
statistics to make a decision regarding the class. We skip the
derivation of the soft-decision decoding rule but present the
decoding rule here for the case when binary quantizers are
used at the local sensors, i.e., the elements of the code matrix
are 0 or 1.

Let the analog data received at the FC from the local sensors
be v = [v1, . . . , vN ] when the local sensors transmit u =
[u1, . . . , uN ], where ui = 0/1 is decided by the code matrix C .
For fading channels between the local sensors and the FC, vi

and ui are related as follows

vi = hi (−1)ui
√

Eb + ni , (5)

where hi is the channel gain that models the fading channel,
Eb is the energy per bit and ni is the zero mean additive white
Gaussian noise. Define the reliability of the received data vi

as

ψi = ln
P(vi |ui =0)P(ui =0|0)+ P(vi |ui = 1)P(ui =1|0)
P(vi |ui =0)P(ui =0|1)+ P(vi |ui =1)P(ui =1|1)

(6)

for i = {1, . . . , N}. Here P(vi |ui ) can be obtained from the
statistical model of the fading channel considered and P(ui =
d|s) for s, d = {0, 1} is the probability that the decision is d
given s is present at the bit i before local decision making and

Fig. 2. Equal region splitting of the ROI for the M-hypothesis test.

is given as follows

P(ui = d|s) =
M−1∑
j=0

P(ui = d|H j)Pi (H j |s). (7)

P(ui = d|H j) depends on the code matrix while Pi (H j |s) is
the probability that the hypothesis H j is true given s is present
at the bit i (column i of the code matrix) before local decision
making, and can be expressed as

Pi (H j |s) = Pi (s|H j )∑M−1
l=0 Pi (s|Hl)

(8)

where

Pi (s|Hl) =
{

1, if c(l+1)i = s

0, if c(l+1)i �= s.
(9)

Then the decoding rule is to decide the hypothesis H j where
j = arg min

0≤ j≤M−1
dF (ψ, c j+1). Here dF (ψ, c j+1) = ∑N

i=1(ψi −
(−1)c( j+1)i )2 is the distance between ψ = [ψ1, . . . , ψN ] and
( j + 1)th row of C .

III. LOCALIZATION USING ITERATIVE CLASSIFICATION

In this section, we propose the localization scheme using
iterative classification. Our algorithm is iterative in which at
every iteration, the ROI is split into M regions and an M-ary
hypothesis test is performed at the FC to determine the ROI
for the next iteration. The FC, through feedback, declares this
region as the ROI for the next iteration. The M-ary hypothesis
test solves a classification problem where each sensor sends
binary quantized data based on a code matrix C . The code
matrix is of size M × N with elements c( j+1)i ∈ {0, 1},
j = 0, 1, . . . ,M − 1 and i = 1, . . . , N , where each row
represents a possible region and each column i represents
i th sensor’s binary decision rule. After receiving the binary
decisions u = [u1, u2, . . . , uN ] from local sensors, the FC
performs minimum Hamming distance based fusion. In this
way, the search space for target location is reduced at every
iteration and we stop the search based on a pre-determined
stopping criterion. The optimal splitting of the ROI at every
iteration depends on the topology of the network and the
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distribution of sensors in the network. For a given network
topology, the optimal region split can be determined offline
using k-means clustering [21] which yields Voronoi regions
[22] containing equal number of sensors in every region.
For instance, when the sensors are deployed in a regular
grid, the optimal splitting is uniform as shown in Fig. 2. In
the remainder of the paper, we consider a symmetric sensor
deployment such as a grid. Such a deployment results in a one-
to-one correspondence between sensors across regions which
is required in our derivations. Further discussion is provided
in the later part of this section. In this section, the sensors
are assumed to be benign and the channels between the local
sensors and the FC are assumed to be ideal. Therefore, in
this section, the binary decisions received at the FC are the
same as the binary decisions made by the local sensors, i.e.,
ui = Di , for i = 1, . . . , N . We relax these assumptions in the
later sections. The FC estimates the target location using the
received data u.

A. Basic Coding Based Scheme

In this subsection, we present the basic coding based scheme
for target localization. Since there are N sensors which are
split into M regions, the number of sensors in the new
ROI after every iteration is reduced by a factor of M . After
k iterations, the number of sensors in the ROI are N

Mk and,
therefore, the code matrix at the (k + 1)th iteration would be
of size M × N

Mk .1 Since the code matrix should always have
more columns than rows, kstop < logM N , where kstop is the
number of iterations after which the scheme terminates. After
kstop iterations, there are only N

Mkstop sensors present in the

ROI and a coarse estimate θ̂ = [θ̂x , θ̂y] of the target’s location
can be obtained by taking an average of locations of the N

Mkstop

sensors present in the ROI:

θ̂x = Mkstop

N

∑
i∈RO Ikstop

xi (10)

and θ̂y = Mkstop

N

∑
i∈RO Ikstop

yi , (11)

where RO Ikstop is the ROI at the last step.
Since the scheme is iterative, the code matrix needs to be

designed at every iteration. Observing the structure of our
problem, we can design the code matrix in a simple and
efficient way as described below. As pointed out before, the
size of the code matrix Ck at the (k +1)th iteration is M × N

Mk ,
where 0 ≤ k ≤ kstop. Each row of this code matrix Ck

represents a possible hypothesis described by a region in the
ROI. Let Rk

j denote the region represented by the hypothesis
H j for j = 0, 1, . . . ,M − 1 and let Sk

j represent the set of
sensors that lie in the region Rk

j . Also, for every sensor i , there
is a unique corresponding region in which the sensor lies and
the hypothesis of the region is represented as rk(i). It is easy
to see that Sk

j = {i ∈ RO Ik |rk(i) = j}. The code matrix is
designed in such a way that for the j th row, only those sensors

1We assume that N is divisible by Mk for k = 0, 1, . . . , logM N − 1.

that are in Rk
j have ‘1’ as their elements in the code matrix.

In other words, the elements of the code matrix are given by

ck
( j+1)i =

{
1 if i ∈ Sk

j

0 otherwise,
(12)

for j = 0, 1, . . . ,M − 1 and i ∈ RO Ik .
The above construction can also be viewed as each sensor i

using a threshold ηk
i for quantization (as described in (3)).

Let each region Rk
j correspond to a location θ k

j for j =
0, 1, . . . ,M − 1, which in our case is the center of the region
Rk

j . Each sensor i decides on a ‘1’ if and only if the target
lies in the region Rk

rk (i)
. Every sensor i , therefore, performs a

binary hypothesis test described as follows:

H1 : θ k ∈ Rk
rk (i)

H0 : θ k /∈ Rk
rk (i)

. (13)

If di,θk
j

represents the Euclidean distance between the i th

sensor and θ k
j for i = 1, 2, . . . , N and j = 0, 1, . . . ,M − 1,

then rk(i) = arg min
l

di,θk
l

. Therefore, the condition θ k ∈ Rk
rk (i)

can be abstracted as a threshold ηk
i on the local sensor signal

amplitude given by

ηk
i =

√
P0

di,θk
rk (i)

. (14)

This ensures that if the signal amplitude at the i th sensor is
above the threshold ηk

i , then θ k lies in region Rk
rk (i)

leading
to minimum distance decoding.

B. Performance Analysis

In this subsection, we present the performance analysis of
the proposed scheme. Although the performance metric in this
framework is the Mean Square Error (MSE), it is difficult
to obtain a closed form representation for MSE. Therefore,
typically, one uses the bounds on MSE to characterize the
performance of the estimator. In our previous works [2],
[11], we analytically derived the expressions of MSE bound
(Posterior Cramér Rao Lower Bound) on target localization
under both non-adversarial [2] and adversarial scenarios [11].
An analytically tractable metric to analyze the performance
of the proposed scheme is the probability of detection of the
target region. It is an important metric when the final goal of
the target localization task is to find the approximate region
or neighborhood where the target lies rather than the true
location itself. Since the final ROI could be one of the M
regions, a metric of interest is the probability of ‘zooming’
into the correct region. In other words, it is the probability
that the true location and the estimated location lie in the same
region.

The final region of the estimated target location is the same
as the true target location, if and only if we ‘zoom’ into the
correct region at every iteration of the proposed scheme. If
Pk

d denotes the detection probability (probability of correct
classification) at the (k + 1)th iteration, the overall detection
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probability is given by

PD =
kstop∏
k=0

Pk
d . (15)

1) Exact Analysis: Let us consider the (k+1)th iteration and
define the received vector at the FC as uk = [uk

1, uk
2, . . . , uk

Nk
],

where Nk are the number of local sensors reporting their data
to FC at (k + 1)th iteration. Let Dk

j be the decision region of
j th hypothesis defined as follows:

Dk
j = {uk |dH (uk, ck

j+1) ≤ dH (uk, ck
l+1) for 0 ≤ l ≤ M − 1},

where dH (·, ·) is the Hamming distance between two vectors,
and ck

j+1 is the codeword corresponding to hypothesis j in

code matrix Ck . Then define the reward r j,k
uk associated with

the hypothesis j as

r j,k
uk =

{
1

quk
when uk ∈ Dk

j

0 otherwise
, (16)

where quk is the number of decision regions to whom uk

belongs to. Note that quk can be greater than one when there
is a tie at the FC. Under such scenarios when quk > 1, we
break the tie using random decision. Since the tie-breaking
rule is to choose one of them randomly, which is successful
with probability 1

quk
, the reward is given by (16). According

to (16), the detection probability at the (k + 1)th iteration is
given by

Pk
d =

M−1∑
j=0

P(H k
j )

∑
uk∈{0,1}Nk

P(uk |H k
j )r

j,k
uk

= 1

M

M−1∑
j=0

∑
uk∈Dk

j

⎛
⎝ Nk∏

i=1

P(uk
i |H k

j )

⎞
⎠ 1

quk
, (17)

where P(uk
i |H k

j ) denotes the probability that the sensor i sends
the bit uk

i ∈ {0, 1}, i = 1, 2, . . . , Nk , when the true target is in
the region Rk

j corresponding to H k
j at the (k + 1)th iteration.

From the system model described before, we get

P(uk
i = 1|H k

j ) = Eθ |Hk
j

[
P(uk

i = 1|θ, H k
j )
]
. (18)

Since (18) is complicated, it can be approximated using θ k
j

which is the center of the region Rk
j . (18) now simplifies to

P(uk
i = 1|H k

j ) ≈ F̄
(
ηk

i − ak
i j ; σ 2

)
, (19)

where ηk
i is the threshold used by the i th sensor at kth iteration,

σ 2 is the noise variance, ak
i j is the signal amplitude received

at the i th sensor when the target is at θ k
j and F̄(x; σ 2) is the

complementary cumulative distribution function of noise at the
local sensors.

Using (15), the probability of detection of the target region
can be found as the product of detection probabilities at
every iteration k. It is clear from the derived expressions that
the exact analysis of the detection probability is complicated
and, therefore, we derive some analytical bounds on the
performance of the proposed scheme.

2) Performance Bounds: In this section, we present the per-
formance bounds on our proposed coding based localization
scheme. For our analysis, we will use the lemmas in [23],
which are stated here for the sake of completeness.

Lemma 3.1 ([23]): Let {Z j }∞j=1 be independent antipodal
random variables with Pr [Z j = 1] = q j and Pr [Z j = −1] =
1 − q j . If λm

�=E[Z1 + · · · + Zm]/m < 0, then

Pr{Z1 + · · · + Zm ≥ 0} ≤ (1 − λ2
m)

m/2. (20)
Using this lemma, we now present the performance bounds

on our proposed scheme.
Lemma 3.2: Let θ ∈ Rk

j be the fixed target location. Let
Pk

e (θ) be the misclassification probability of the target region
given θ at the (k + 1)th iteration. For the received vector of
Nk = N/Mk observations at the (k + 1)th iteration, uk =
[uk

1, . . . , uk
Nk

], assume that for every 0 ≤ j, l ≤ M − 1 and
l �= j , ∑

i∈Sk
j ∪Sk

l

qk
i, j <

Nk

M
= N

Mk+1 , (21)

where qk
i, j = P{zk

i, j = 1|θ}, zk
i, j = 2(uk

i ⊕ ck
( j+1)i) − 1, and

Ck = {ck
( j+1)i} is the code matrix used at the (k+1)th iteration.

Then

Pk
e (θ) ≤

∑
0≤l≤M−1,l �= j

⎛
⎜⎝1 −

(∑
i∈Sk

j ∪Sk
l
(2qk

i, j − 1)
)2

d2
m,k

⎞
⎟⎠

dm,k/2

(22)

≤ (M − 1)

(
1 −

(
λk

j,max(θ)
)2
)dm,k/2

, (23)

where dm,k is the minimum Hamming distance of the code
matrix Ck given by dm,k = 2N

Mk+1 due to the structure of our
code matrix and

λk
j,max(θ)

�= max
0≤l≤M−1,l �= j

1

dm,k

∑
i∈Sk

j ∪Sk
l

(2qk
i, j − 1). (24)

Proof: Let dH (·, ·) be the Hamming distance between two
vectors, for fixed θ ∈ Rk

j ,

Pk
e (θ)

= P
{

detected region �= Rk
j |θ
}

≤ P

{
dH (uk, ck

j+1) ≥ min
0≤l≤M−1,l �= j

dH (uk, ck
l+1)|θ

}

≤
∑

0≤l≤M−1,l �= j

P
{

dH (uk, ck
j+1) ≥ dH (uk, ck

l+1)|θ
}

=
∑

0≤l≤M−1,l �= j

P

⎧⎨
⎩

∑
{i∈[1,...,Nk ]:c(l+1)i �=c( j+1)i }

zk
i, j ≥ 0|θ

⎫⎬
⎭ .

(25)

Using the fact that ck
(l+1)i �= ck

( j+1)i for all i ∈ Sk
j ∪ Sk

l ,
l �= j , we can simplify the above equation. Also, observe
that {zi, j }Nk

i=1 are independent across the sensors given θ .
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According to (2) in [23],

λm = 1

dm,k

Nk∑
i=1

(ck
(l+1)i ⊕ ck

( j+1)i)(2qk
i, j − 1)

= 1

dm,k

∑
i∈Sk

j ∪Sk
l

(2qk
i, j − 1)

= 1

dm,k

⎛
⎜⎝ ∑

i∈Sk
j ∪Sk

l

2qk
i, j − 2Nk

M

⎞
⎟⎠ (26)

since ck
(l+1)i �= ck

( j+1)i for all i ∈ Sk
j ∪ Sk

l , l �= j . Here, we
have used the fact that cardinality of Sk

j = Nk/M for all j ,
and Sk

j and Sk
l are disjoint sets for all l �= j . Condition λm < 0

of Lemma 3.1 is then equivalent to condition (21). Therefore,
using Lemma 3.1 and (26), we have

P

⎧⎨
⎩

∑
{i∈[1,...,Nk ]:c(l+1)i �=c( j+1)i }

zk
i, j ≥ 0|θ

⎫⎬
⎭

≤
⎛
⎜⎝1 −

(∑
i∈Sk

j ∪Sk
l
(2qk

i, j − 1)
)2

d2
m,k

⎞
⎟⎠

dm,k/2

. (27)

Substituting (27) into (25), we have (22). Note that condi-
tion (21) (λm < 0) implies λk

j,max(θ) < 0 by definition. Hence,
(23) is a direct consequence from (22).

The probabilities qk
i, j = P{uk

i �= ck
( j+1)i |θ} can be easily

computed as below. For 0 ≤ j ≤ M − 1 and 1 ≤ i ≤ Nk , if
i ∈ Sk

j ,

qk
i, j = P{uk

i = 0|θ}
= 1 − F̄

(
ηk

i − ai ; σ 2
)
, (28)

where ηk
i is the threshold used by the i th sensor at (k + 1)th

iteration, σ 2 is the noise variance, ai is the amplitude received
at the i th sensor given by (1) when the target is at θ . If i /∈ Sk

j ,
qk

i, j = 1 − P{uk
i = 0|θ}.

Before we present our main theorem, for ease of analysis,
we give an assumption that will be used in the theorem. Note
that, our proposed scheme can still be applied to those WSNs
where the assumption does not hold.

Assumption 3.3: For any target location θ ∈ Rk
j and any

0 ≤ k ≤ kstop, there exists a bijection function f from Sk
j to

Sk
l , where 0 ≤ l ≤ M − 1 and l �= j , such that

f (i j ) = il,

ηk
i j

= ηk
il ,

and
di j < dil ,

where i j ∈ Sk
j , il ∈ Sk

l , and di j (dil ) is the distance between
θ and sensor i j (il).

One example of WSNs that satisfies this assumption is given
in Fig. 3. For every sensor i j ∈ Sk

j , due to symmetric region
splitting, there exists a corresponding sensor il ∈ Sk

l which is

Fig. 3. ROI with an example set of paired sensors.

symmetrically located as described in the following: Join the
centers of the two regions and draw a perpendicular bisector
to this line as shown in Fig. 3. The sensor il ∈ Sk

l is the
sensor located symmetrically to sensor i j on the other side
of the line L. These are the sensors for which the thresholds
are the same. In other words, due to the symmetric placement
of the sensors, ηk

i j
= ηk

il
(c.f. (14)). Clearly, when θ ∈ Rk

j ,
di j < dil .

Theorem 3.4: Let PD be the probability of detection of
the target region given by (15), where Pk

d is the detection
probability at the (k + 1)th iteration. Under Assumption 3.3,

Pk
d ≥ 1 − (M − 1)

(
1 − (λk

max)
2
)dm,k/2

, (29)

where
λk

max
�= max

0≤ j≤M−1
λk

j,max

and
λk

j,max
�= max
θ∈Rk

j

λk
j,max(θ).

Proof: First we prove that condition (21) is satisfied by the
proposed scheme for all θ when the noise variance, σ 2 < ∞.
Hence, the inequality (23) can be applied to the proposed
scheme. The probabilities qk

i, j given by (28) are

qk
i, j =

{
1 − F̄

(
ηk

i − ai ; σ 2
)
, for i ∈ Sk

j

F̄
(
ηk

i − ai; σ 2
)
, for i ∈ Sk

l

. (30)

By Assumption 3.3, there exists a bijection function f from
Sk

j to Sk
l . The sum

∑
i∈Sk

j ∪Sk
l

qk
i, j of (21) can be evaluated by

considering pairwise summations as follows. Let us consider
one such pair (i j ∈ Sk

j , f (i j ) = il ∈ Sk
l ). Hence, their

thresholds are ηk
i j

= ηk
il

= η. Then, from (30),

qk
i j , j + qk

il , j = 1 − F̄
(
η − ai j ; σ 2

)
+ F̄

(
η − ail ; σ 2

)
(31)

= 1 −
[

F̄
(
η − ai j ; σ 2

)
− F̄

(
η − ail ; σ 2

)]
.

(32)

Now observe that, by the assumption,

ai j =
√

P0

di j

>

√
P0

dil
= ail
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and, therefore, F̄
(
η − ai j ; σ 2

)
> F̄

(
η − ail ; σ 2

)
for all finite

values of noise variance σ 2. From (32), the sum qk
i j , j +qk

il , j is

strictly less than 1. Therefore, the sum
∑

i∈Sk
j ∪Sk

l
qk

i, j <
Nk
M =

N
Mk+1 = dm,k

2 . Therefore, the condition in (21) is satisfied for
the code matrix used in this scheme. Hence, Pk

e (θ) can always
be bounded by (23).

By using (23), Pk
d can be bounded as follows:

Pk
d

= 1 −
M−1∑
j=0

P{θ ∈ Rk
j }P

{
detected region �= Rk

j |θ ∈ Rk
j

}

= 1 − 1

M

M−1∑
j=0

∫
θ

P{θ |θ ∈ Rk
j }P

{
detected region �= Rk

j |θ, θ ∈ Rk
j

}
dθ

= 1 − 1

M

M−1∑
j=0

∫
θ∈Rk

j

P{θ |θ ∈ Rk
j }Pk

e (θ) dθ

≥ 1 − 1

M

M−1∑
j=0

∫
θ∈Rk

j

P{θ |θ ∈ Rk
j }(M − 1)

(
1 −

(
λk

j,max(θ)
)2
)dm,k/2

dθ

≥ 1 − M − 1

M

M−1∑
j=0

(
1 −

(
λk

j,max

)2
)dm,k/2

∫
θ∈Rk

j

P{θ |θ ∈ Rk
j } dθ (33)

≥ 1 − M − 1

M

M−1∑
j=0

(
1 −

(
λk

max

)2
)dm,k/2

(34)

= 1 − (M − 1)

(
1 −

(
λk

max

)2
)dm,k/2

. (35)

Both (33) and (34) are true since λk
j,max < 0 and λk

max < 0.

Next we analyze the asymptotic performance of the scheme,
i.e., we examine PD when N approaches infinity.

Theorem 3.5: Under Assumption (3.3), lim
N→∞ PD = 1.

Proof: We have

λk
j,max = max

0≤l≤M−1,l �= j

1

dm,k

∑
i∈Sk

j ∪Sk
l

(2qk
i, j − 1)

>
Mk+1

2N

∑
i∈Sk

j ∪Sk
l

(−1) = −1 (36)

for all 0 ≤ j ≤ M − 1 since not all qk
i, j = 0. Hence, by

definition, λk
max is also greater than −1. Since −1 < λk

max < 0,
we have 0 < 1 − (λk

max)
2 < 1. Under the assumption that the

number of iterations are finite, for a fixed number of regions
M , we can analyze the performance of the proposed scheme
under asymptotic regime. Under this assumption, dm,k = 2N

Mk+1

grows linearly with the number of sensors N for 0 ≤ k ≤

TABLE I

TARGET REGION DETECTION PROBABILITY FOR FIXED NOISE

VARIANCE (σ = 4) WITH VARYING N (M = 4)

kstop. Then

lim
N→∞ PD = lim

N→∞

kstop∏
k=0

Pk
d

≥
kstop∏
k=0

lim
N→∞

[
1 − (M − 1)(1 − (λk

max)
2)dm,k/2

]

=
kstop∏
k=0

(
1 − (M − 1) lim

N→∞

[
(1 − (λk

max)
2)dm,k/2

])

=
kstop∏
k=0

[1 − (M − 1)0]

=
kstop∏
k=0

1 = 1.

Hence, the overall detection probability becomes ‘1’ as the
number of sensors N goes to infinity. This shows that
the proposed scheme asymptotically attains perfect region
detection probability irrespective of the value of finite noise
variance.
Note that the above result also holds when M increases with N
as long as dm,k = 2N

Mk+1 grows with the number of sensors N
for 0 ≤ k ≤ kstop. In other words, our theory can be extended
to scenarios when M increases with N as long as N

Mk+1 → ∞
as N → ∞ for 0 ≤ k ≤ kstop.

C. Numerical Results

We now present some numerical results which justify the
analytical results presented in the previous subsection and
provide some insights. In the previous subsection, we have
observed that the performance of the basic coding scheme
quantified by the probability of region detection asymptotically
approaches ‘1’ irrespective of the finite noise variance. Fig. 4
shows that the region detection probability approaches ‘1’
uniformly as the number of sensors approaches infinity for
Gaussian sensor observation noise with variance σ 2. Observe
that for a fixed noise variance, the region detection probability
increases with increase in the number of sensors. This can also
be observed from Table I. Also, for a fixed number of sensors,
the region detection probability decreases with σ when the
number of sensors is small. But when the number of sensors
is large, the reduction in region detection probability with σ
is negligible and as N → ∞, the region detection probability
converges to 1.
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Fig. 4. Region detection probability versus the standard deviation of noise
with varying number of sensors.

IV. LOCALIZATION IN THE PRESENCE OF BYZANTINES

Let us now consider the case when there are Byzantines in
the network. As discussed before, Byzantines are local sensors
which send false information to the FC to deteriorate the
network’s performance. We assume the presence of B = αN
number of Byzantines in the network. In this paper, we assume
that the Byzantines attack the network independently [11]
where the Byzantines flip their data with probability ‘1’ before
sending it to the FC. Note that the Byzantines can flip with any
probability ε. However, since it has been shown in [11] that
the optimal independent attack strategy for the Byzantines is
to flip their data with probability ‘1’, we focus on the optimal
attack case which is ε = 1. In other words, the data sent by
the i th sensor is given by:

ui =
{

Di if i th sensor is honest

D̄i if i th sensor is Byzantine
. (37)

For such a system, it has been shown in [11] that the FC
becomes ‘blind’ to the network’s information for α ≥ 0.5.
Therefore, for the remainder of the paper, we analyze the
system when α < 0.5. For the basic coding scheme described
in Section III-A, each column in Ck contains only one ‘1’
and every row of Ck contains exactly N

Mk+1 ‘1’s. Therefore, the
minimum Hamming distance of Ck is 2N

Mk+1 and, at the (k+1)th

iteration, it can tolerate a total of at most N
Mk+1 −1 faults (data

falsification attacks) due to the presence of Byzantines in the
network. This value is not very high and we would like to
extend the basic scheme to a scheme which can handle more
Byzantine faults.

A. Exclusion Method With Weighted Average

As shown above, the scheme proposed in Section III-A
has a Byzantine fault tolerance capability which is not very
high. The performance can be improved by using an exclusion
method for decoding where the two best regions are kept for
next iteration and a weighted average is used to estimate the
target location at the final step. This scheme builds on the basic
coding scheme proposed in Section III-A with the following
improvements:

• Since after every iteration two regions are kept, the code
matrix after the kth iteration is of size M × 2k N

Mk and the
number of iterations needed to stop the localization task
needs to satisfy kstop < logM/2 N .

• At the final step, instead of taking an average of the sensor
locations of the sensors present in the ROI at the final
step, we take a weighted average of the sensor locations
where the weights are the 1-bit decisions sent by these
sensors. Since a decision ui = 1 would imply that the
target is closer to the sensor i , a weighted average ensures
that the average is taken only over the sensors for which
the target is reported to be close.

Therefore, the target location estimate is given by

θ̂x =
∑

i∈RO Ikstop
ui xi∑

i∈RO Ikstop
ui

(38)

and θ̂y =
∑

i∈RO Ikstop
ui yi∑

i∈RO Ikstop
ui

. (39)

One can extend this scheme to consider other weights such
as based on Euclidean distance which can be determined after
processing the initial data to derive a coarse estimate of the
target location. However, further processing is required for
this and, therefore, we have not used such a scheme. The
exclusion method results in a better performance compared to
the basic coding scheme since it keeps the two best regions
after every iteration. This observation is also evident in the
numerical results presented in Section IV-C.

B. Performance Analysis

1) Byzantine Fault Tolerance Capability: When the exclu-
sion based scheme described in Section IV-A is used, since
the two best regions are considered after every iteration, the
fault tolerance performance improves and we can tolerate a
total of at most 2k+1 N

Mk+1 − 1 faults. This improvement in the
fault tolerance capability can be observed in the simulation
results presented in Section IV-C.

Proposition 4.1: The maximum fraction of Byzantines that
can be handled at the (k + 1)th iteration by the proposed
exclusion method based coding scheme is limited by αk

f =
2
M − Mk

2k N
.

Proof: The proof is straight forward and follows from the
fact that the error correcting capability of the code matrix Ck

at (k +1)th iteration is at most 2k+1 N
Mk+1 −1. Since there are 2k N

Mk

sensors present during this iteration, the fraction of Byzantine
sensors that can be handled is given by αk

f = 2
M − Mk

2k N
.

The performance bounds on the basic coding scheme pre-
sented in Section III-B can be extended to the exclusion based
coding scheme presented in Section IV-A. We skip the details
for the sake of brevity of the paper. When there are Byzantines
in the network, the probabilities qk

i, j of (28) become

qk
i, j =
1 −

[
(1 − α)F̄

(
ηk

i − ai ; σ 2
)

+ α
(

1 − F̄
(
ηk

i − ai ; σ 2
))]

.

We have shown in Section III-B that the detection prob-
ability at every iteration approaches ‘1’ as the number of
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sensors N goes to infinity. However, this result only holds
when the condition in (21) is satisfied. Notice that, in the
presence of Byzantines, we have

qk
i, j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − α)
(
1 − F̄

(
ηk

i − ai; σ 2
))+ α F̄

(
ηk

i − ai ; σ 2
)
,

for i ∈ Sk
j

(1 − α)F̄
(
ηk

i − ai ; σ 2
)+ α

(
1 − F̄

(
ηk

i − ai ; σ 2
))
,

for i ∈ Sk
l

which can be simplified as

qk
i, j =

{
(1 − α)− (1 − 2α)F̄

(
ηk

i − ai ; σ 2
)
, for i ∈ Sk

j

α + (1 − 2α)F̄
(
ηk

i − ai ; σ 2
)
, for i ∈ Sk

l

.

(40)
Now using the pairwise sum approach discussed in
Section III-B, we can re-write (32) as follows:

qk
i j , j + qk

il , j

= 1 − (1 − 2α)
[

F̄
(
η − ai j ; σ 2

)
− F̄

(
η − ail ; σ 2

)]
, (41)

which is an increasing function of α since F̄
(
η − ai j ; σ 2

)
>

F̄
(
η − ail ; σ 2

)
for all finite σ as discussed before. Therefore,

when α < 0.5, the pairwise sum in (41) is strictly less than 1
and the condition (21) is satisfied. However, when α ≥ 0.5,∑

i∈Sk
j ∪Sk

l
qk

i, j ≥ Nk
M . Therefore, the condition fails when

α ≥ 0.5. It has been shown in [11] that the FC becomes ‘blind’
to the local sensor’s information when α ≥ 0.5. Next we state
the theorem when there are Byzantines in the network.

Theorem 4.2: Let α be the fraction of Byzantines in the net-
works. Under Assumption (3.3), when α < 0.5, lim

N→∞ PD = 1.

Note that the performance bounds derived can be used
for system design. Let us consider N sensors uniformly
deployed in a square region. Let this region be split into
M equal regions. From Proposition 4.1, we know that αk

f
is a function of M and N . Also, the detection probability
equations and bounds derived in Section III-B are functions
of M and N . Hence, for given fault tolerance capability and
region detection probability requirements, we can find the
corresponding number of sensors (Nreq ) to be used and the
number of regions to be considered at each iteration (Mreq ).
We now present guidelines for system design of a network
which adopts the proposed approach. Let us suppose that we
need to design a system such that we split into M = 4 regions
after every iteration. How should a system designer decide
the number of sensors N in order to meet the target region
detection probability and Byzantine fault tolerance capability
requirements? Table II shows the performance of the system in
terms of the target region detection probability and Byzantine
fault tolerance capability with varying number of sensors
found using the expressions derived in Proposition 4.1 and
in Section III-B.

From Table II, we can observe that the performance
improves with increasing number of sensors. However, as a
system designer, we would like to minimize the number of
sensors that need to be deployed while assuring a minimum
performance guarantee. In this example, if we are interested

TABLE II

TARGET REGION DETECTION PROBABILITY AND BYZANTINE FAULT

TOLERANCE CAPABILITY WITH VARYING N (M = 4)

Fig. 5. MSE comparison of the three localization schemes.

in achieving a region detection probability of approximately
0.7 and a Byzantine fault tolerance capability close to 0.5, we
get N = 512 sensors to be sufficient.

C. Simulation Results

In this section, we present the simulation results to evaluate
the performance of the proposed schemes in the presence of
Byzantine faults. We analyze the performance using two per-
formance metrics: mean square error (MSE) of the estimated
location and probability of detection (PD) of the target region.
We use a network of N = 512 sensors deployed in a regular
8 × 8 grid as shown in Fig. 2. Let α denote the fraction of
Byzantines in the network that are randomly distributed over
the network. The received signal amplitude at the local sensors
is corrupted by AWGN noise with standard deviation σ = 3.
The power at the reference distance is P0 = 200. At every
iteration, the ROI is split into M = 4 equal regions as shown in
Fig. 2. We stop the iterations for the basic coding scheme after
kstop = 2 iterations. The number of sensors in the ROI at the
final step are, therefore, 32. In order to have a fair comparison,
we stop the exclusion method after kstop = 4 iterations, so that
there are again 32 sensors in the ROI at the final step.

Fig. 5 shows the performance of the proposed schemes
in terms of the MSE of the estimated target location when
compared with the traditional maximum likelihood estimation
described by (4). The MSE has been found by performing
1 × 103 Monte Carlo runs with the true target location
randomly chosen in the 8 × 8 grid.
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Fig. 6. Probability of detection of target region as a function of α.

As can be seen from Fig. 5, the performance of the exclusion
method based coding scheme is better than the basic coding
scheme and outperforms the traditional MLE based scheme
when α ≤ 0.375. When α > 0.375 the traditional MLE based
scheme has the best performance. However, it is important to
note that the proposed schemes provide a coarse estimate as
against the traditional MLE based scheme which optimizes
over the entire ROI. Also, the traditional scheme is computa-
tionally much more expensive than the proposed coding based
schemes. In the simulations performed, the proposed schemes
are around 150 times faster than the conventional scheme when
the global optimization toolbox in MATLAB was used for the
optimization in ML based scheme. The computation time is
very important in a scenario when the target is moving and a
coarse location estimate is needed in a timely manner.

Fig. 6 shows the performance of the proposed schemes in
terms of the detection probability of the target region. The
detection probability has been found by performing 1 × 104

Monte Carlo runs with the true target randomly chosen in the
ROI. Fig. 6 shows the reduction in the detection probability
with increase in α when more sensors are Byzantines sending
false information to the FC.

In order to analyze the effect of the number of sensors
on the performance, we perform simulations by changing the
number of sensors and keeping the number of iterations the
same as before. According to Proposition 4.1, when M = 4,
the proposed scheme can asymptotically handle up to 50% of
the sensors being Byzantines. Figs. 7 and 8 show the effect of
number of sensors on MSE and detection probability of the
target region respectively when the exclusion method based
coding scheme is used. As can be seen from both figures
(Figs. 7 and 8), the fault-tolerance capability of the proposed
scheme improves with increase in the number of sensors and
approaches αk

f = 0.5 asymptotically. Table III shows the
reduction of MSE with increasing N for a fixed fraction of
Byzantines, α.

V. SOFT-DECISION DECODING FOR

NON-IDEAL CHANNELS

In this section, we extend our scheme to counter the effect of
non-ideal channels on system performance. Besides the faults

Fig. 7. MSE of the target location estimate with varying N .

Fig. 8. Probability of detection of target region with varying N .

TABLE III

MSE OF THE TARGET LOCATION ESTIMATE FOR FIXED NUMBER

OF BYZANTINES (α = 0.25) WITH VARYING N

due to the Byzantines in the network, the presence of non-
ideal channels further degrades the localization performance.
To combat the channel effects, we propose the use of a
soft-decision decoding rule, at every iteration, instead of the
minimum Hamming distance decoding rule. Note that the code
design is independent of the hard-decoding or soft-decoding
since according to the code-design, a sensor sends a ‘1’ when
the sensor decides that the target is in the same region as the
sensor.

A. Decoding Rule

At each iteration, the local sensors transmit their local
decisions uk which are possibly corrupted due to the presence
of Byzantines. Let the received analog data at the FC be
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represented as vk = [vk
1, v

k
2 , . . . , v

k
Nk

], where the received
observations are related to the transmitted decisions as
follows:

vk
i = hk

i (−1)u
k
i
√

Eb + nk
i , ∀i = {1, . . . , Nk}, (42)

where hk
i is the fading channel coefficient, Eb is the energy per

channel bit and nk
i is the additive white Gaussian noise with

variance σ 2
f . In this paper, we assume the channel coefficients

to be Rayleigh distributed with variance σ 2
h .

We assume that the FC does not have knowledge of the
fraction of Byzantines α. Hence, instead of adopting the
reliability given in (6), we propose to use a simpler reliability
measure ψk

i in our decoding rule that is not related to local
decisions of sensors. It will be shown that this reliability
measure performs well when there are Byzantines in the
network. We define the reliability measure for each of the
received bits as follows:

ψk
i = ln

P(vk
i |uk

i = 0)

P(vk
i |uk

i = 1)
(43)

for i = {1, . . . , N}. Here P(vk
i |uk

i ) can be obtained from the
statistical model of the Rayleigh fading channel considered in
this paper. Define F-distance as

dF (ψ
k, ck

j+1) =
Nk∑

i=1

(ψk
i − (−1)c

k
( j+1)i )2,

where ψk = [ψk
1 , . . . , ψ

k
Nk

] and ck
j+1 is the j th row of the

code matrix Ck . Then, the fusion rule is to decide the region
Rk

j for which the F-distance between ψk and the row of Ck

corresponding to Rk
j is minimized.

B. Performance Analysis

In this section, we present some bounds on the performance
of the soft-decision decoding scheme in terms of the detection
probability. Without loss of generality, we assume Eb = 1.
As mentioned before in (15), the overall detection proba-
bility is the product of the probability of detection at each
iteration, Pk

d . We first present the following lemma without
proof which is used to prove the theorem stated later in this
section.

Lemma 5.1 ([20]): Let ψ̃k
i = ψk

i − E[ψk
i |θ ], then

E
[
(ψ̃k

i )
2|θ
]

≤ 8

σ 4

{
E[(hk

i )
4] + E[(hk

i )
2]σ 2

f

}
, (44)

where σ 2 is the variance of the noise at the local sen-
sors whose observations follow (2). For the Rayleigh fad-
ing channel considered in this paper, both E[(hk

i )
4] and

E[(hk
i )

2] are bounded and, therefore, the LHS of (44) is also
bounded.

Lemma 5.2: Let θ ∈ Rk
j be the fixed target location. Let

Pk
e, j (θ) be the misclassification probability of the target region

given θ ∈ Rk
j at the (k + 1)th iteration. For the reliability

vector ψk = [ψk
1 , . . . , ψ

k
Nk

] of the Nk = N/Mk observations

and code matrix Ck used at the (k + 1)th iteration,

Pk
e, j (θ) ≤

∑
0≤l≤M−1,l �= j

P

⎧⎪⎨
⎪⎩
∑

i∈Sk
j ∪Sk

l

Z j l
i ψ̃

k
i ≤ −

∑
i∈Sk

j ∪Sk
l

Z j l
i E[ψk

i |θ ]
∣∣∣∣θ
⎫⎪⎬
⎪⎭ , (45)

where Z jl
i = 1

2 ((−1)c
k
( j+1)i − (−1)c

k
(l+1)i ).

Proof:

Pk
e, j (θ)

= P{detected region �= Rk
j |θ}

≤ P

{
dF (ψ

k, ck
j+1) ≥ min

0≤l≤M−1,l �= j
dF (ψ

k, ck
l+1)|θ

}

≤
∑

0≤l≤M−1,l �= j

P
{

dF (ψ
k, ck

j+1) ≥ dF (ψ
k, ck

l+1)|θ
}

=
∑

0≤l≤M−1,l �= j

P

⎧⎨
⎩

Nk∑
i=1

(ψk
i − (−1)c

k
( j+1)i )2 ≥ (ψk

i − (−1)c
k
(l+1)i )2|θ

⎫⎬
⎭

=
∑

0≤l≤M−1,l �= j

P

⎧⎪⎨
⎪⎩
∑

i∈Sk
j ∪Sk

l

Z j l
i ψ

k
i ≤ 0

∣∣∣∣θ
⎫⎪⎬
⎪⎭

=
∑

0≤l≤M−1,l �= j

P

⎧⎪⎨
⎪⎩
∑

i∈Sk
j ∪Sk

l

Z j l
i ψ̃

k
i ≤−

∑
i∈Sk

j ∪Sk
l

Z j l
i E[ψk

i |θ ]
∣∣∣∣θ
⎫⎪⎬
⎪⎭ ,
(46)

where (46) comes from the fact that

(ψk
i − (−1)c

k
( j+1)i )2 − (ψk

i − (−1)c
k
(l+1)i )2 ≥ 0

⇐⇒ −2((−1)c
k
( j+1)i − (−1)c

k
(l+1)i )ψk

i ≥ 0

⇐⇒ Z jl
i ψ

k
i ≤ 0

Let σ 2
ψ̃
(θ)=∑i∈Sk

j ∪Sk
l

E
[
(Z jl

i ψ̃
k
i )

2|θ]=∑i∈Sk
j ∪Sk

l
E[(ψ̃k

i )
2| θ ],

then the above result can be re-written as

Pk
e, j (θ) ≤

∑
0≤l≤M−1,l �= j

P

⎧⎪⎨
⎪⎩

1

σψ̃ (θ)

∑
i∈Sk

j ∪Sk
l

Z j l
i ψ̃

k
i < − 1

σψ̃(θ)

∑
i∈Sk

j ∪Sk
l

Z j l
i E[ψk

i |θ ]
∣∣∣∣θ
⎫⎪⎬
⎪⎭ .
(47)

Under the assumption that N
Mk+1 → ∞ as N → ∞ for

k = 0, . . . , kstop, we have the following result for asymptotic
performance of the proposed soft-decision rule decoding based
scheme.

Theorem 5.3: Under Assumption (3.3), when α < 0.5,

lim
N→∞ PD = 1.
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Proof: First we prove that when α < 0.5, then
∑

i∈Sk
j ∪Sk

l

Z j l
i E[ψk

i |θ ] → ∞, (48)

where Z jl
i = 1

2 ((−1)c
k
( j+1)i − (−1)c

k
(l+1)i ). Based on our code

matrix design, Z jl
i for i ∈ Sk

j ∪ Sk
l is given as

Z jl
i =

{
−1, for i ∈ Sk

j

+1, for i ∈ Sk
l

. (49)

By using the pairwise summation approach discussed in
Section III-B, we notice that, for every sensor i j ∈ Sk

j and
its corresponding sensor il ∈ Sk

l , when θ ∈ Rk
j ,

Z jl
i j

E[ψk
i j
|θ ] + Z jl

il
E[ψk

il |θ ] = E[(ψk
il − ψk

i j
)|θ ]. (50)

Now, for a given sensor i , we have the following,

E[ψk
i |θ ]
= P(uk

i = 0|θ)E[ψk
i |θ, uk

i = 0]
+P(uk

i = 1|θ)E[ψk
i |θ, uk

i = 1] (51)

= (1 − P(uk
i = 1|θ))E[ψk

i |uk
i = 0]

+P(uk
i = 1|θ)E[ψk

i |uk
i = 1] (52)

= E[ψk
i |uk

i = 0]
+P(uk

i = 1|θ)
[

E[ψk
i |uk

i = 1] − E[ψk
i |uk

i = 0]
]
, (53)

where we used the facts that P(uk
i = 0|θ)+ P(uk

i = 1|θ) = 1
and that the value of ψk

i depends only on uk
i .

Note that the channel statistics are the same for both the
sensors. Therefore, E[ψk

i |uk
i = d] for d = {0, 1} given

by

E[ψk
i |uk

i = d] = E

[
ln

P(vk
i |uk

i = 0)

P(vk
i |uk

i = 1

∣∣∣∣uk
i = d

]

is the same for both the sensors.
The pairwise sum E[(ψk

il
− ψk

i j
)|θ ] now simplifies to the

following,

E[(ψk
il − ψk

i j
)|θ ] = E[ψk

i |uk
i = 0]

+P(uk
il

= 1|θ)
[

E[ψk
i |uk

i = 1] − E[ψk
i |uk

i = 0]
]

−E[ψk
i |uk

i = 0]
−P(uk

i j
= 1|θ)

[
E[ψk

i |uk
i = 1] − E[ψk

i |uk
i = 0]

]

=
(

P(uk
il = 1|θ)− P(uk

i j
= 1|θ)

)
[

E[ψk
i |uk

i = 1] − E[ψk
i |uk

i = 0]
]
. (54)

When θ ∈ Rk
j , we have

P(uk
i j

= 1|θ) = α + (1 − 2α)F̄
(
η − ai j ; σ 2

)
(55)

P(uk
il = 1|θ) = α + (1 − 2α)F̄

(
η − ail ; σ 2

)
(56)

since the thresholds corresponding to sensors i j and il are
same due to Assumption 3.3. Therefore,

P(uk
il

= 1|θ)− P(uk
i j

= 1|θ)
= (1 − 2α)

(
F̄
(
η − ail ; σ 2

)
− F̄

(
η − ai j ; σ 2

) )
. (57)

Note that, since θ ∈ Rk
j , F̄

(
η − ail ; σ 2

)
< F̄

(
η − ai j ; σ 2

)
.

Next we prove that

E[ψk
i |uk

i = 1] − E[ψk
i |uk

i = 0] < 0 (58)

for all finite noise variance of the fading channel (σ 2
f ).

E[ψk
i |uk

i = 1] − E[ψk
i |uk

i = 0]

= E

[
ln

P(vk
i |uk

i = 0)

P(vk
i |uk

i = 1)

∣∣∣∣uk
i = 1

]

−E

[
ln

P(vk
i |uk

i = 0)

P(vk
i |uk

i = 1)

∣∣∣∣uk
i = 0

]

=
∫ ∞

−∞
P(vk

i |uk
i = 1) ln

P(vk
i |uk

i = 0)

P(vk
i |uk

i = 1)
dvk

i

−
∫ ∞

−∞
P(vk

i |uk
i = 0) ln

P(vk
i |uk

i = 0)

P(vk
i |uk

i = 1)
dvk

i

= −D(P(vk
i |uk

i = 1)||P(vk
i |uk

i = 0))

−D(P(vk
i |uk

i = 0)||P(vk
i |uk

i = 1)), (59)

where D(p||q) is the Kullback-Leiber distance between proba-
bility distributions p and q . Since P(vk

i |uk
i = 1) �= P(vk

i |uk
i =

0) for all finite σ 2
f , we have D(P(vk

i |uk
i = 1)||P(vk

i |uk
i =

0)) > 0 and D(P(vk
i |uk

i = 0)||P(vk
i |uk

i = 1)) > 0.
This concludes that E[ψk

i |uk
i = 1] − E[ψk

i |uk
i = 0] < 0.

Hence, when α < 1/2, from (54), (57), and (58), E[(ψk
il

−
ψk

i j
)|θ ] > 0 and the condition

∑
i∈Sk

j ∪Sk
l

Z j l
i E[ψk

i |θ ] → ∞ is
satisfied.

We now show that when the condition (48) is satisfied,
the proposed scheme asymptotically attains perfect detection
probability.

lim
N→∞ PD = lim

N→∞

kstop∏
k=0

Pk
d =

kstop∏
k=0

lim
N→∞

[
1 −

M−1∑
j=0

P
{
θ ∈ Rk

j

}
P
{

detected region �= Rk
j |θ ∈ Rk

j

}]

=
kstop∏
k=0

lim
N→∞

[
1 − 1

M

M−1∑
j=0∫

θ
P
{
θ |θ ∈ Rk

j

}
P
{

detected region �= Rk
j |θ, θ ∈ Rk

j

}
dθ

]
.

(60)

Define
Pk

e, j,max
�= max
θ∈Rk

j

Pk
e, j (θ) (61)

and
Pk

e,max
�= max

0≤ j≤M−1
Pk

e, j,max. (62)
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Then,

lim
N→∞ PD

=
kstop∏
k=0

lim
N→∞

[
1 − 1

M

M−1∑
j=0

∫
θ

P
{
θ |θ ∈ Rk

j

}
Pk

e, j (θ)dθ

]

≥
kstop∏
k=0

lim
N→∞

[
1 − 1

M
M−1∑
j=0

∫
θ∈Rk

j

P
{
θ |θ ∈ Rk

j

}
Pk

e, j,maxdθ

]

=
kstop∏
k=0

lim
N→∞

[
1 − 1

M

M−1∑
j=0

Pk
e, j,max

∫
θ∈Rk

j

P
{
θ |θ ∈ Rk

j

}
dθ

]

≥
kstop∏
k=0

lim
N→∞

[
1 − Pk

e,max

M

M−1∑
j=0

1

]

=
kstop∏
k=0

[
1 − lim

N→∞ Pk
e,max

]
. (63)

Since E
[
(ψ̃k

i )
2|θ
]

is bounded as shown by Lemma 5.2,

Lindeberg condition [24] holds and 1
σψ̃ (θ)

∑
i∈Sk

j ∪Sk
l

Z j l
i ψ̃

k
i

tends to a standard Gaussian random variable by Lindeberg
central limit theorem [24]. Therefore, from (47), we have

lim
N→∞ Pk

e, j (θ)

≤ lim
N→∞

∑
0≤l≤M−1,l �= j

P

{
1

σψ̃(θ)

∑
i∈Sk

j ∪Sk
l

Z j l
i ψ̃

k
i <

− 1

σψ̃(θ)

∑
i∈Sk

j ∪Sk
l

Z j l
i E[ψk

i |θ ]
∣∣∣∣θ
}

(64)

=
∑

0≤l≤M−1,l �= j

lim
N→∞ Q

⎛
⎜⎝ 1

σψ̃ (θ)

∑
i∈Sk

j ∪Sk
l

Z j l
i E[ψk

i |H k
j ]
⎞
⎟⎠ .

Since, for a fixed θ , σψ̃ (θ) will grow slower than∑
i∈Sk

j ∪Sk
l

Z j l
i E[ψk

i |θ ] when
∑

i∈Sk
j ∪Sk

l
Z j l

i E[ψk
i |θ ] → ∞,

limN→∞ Pk
e, j (θ) = 0 for all θ . Hence, limN→∞ Pk

e,max = 0
and from (63), limN→∞ PD = 1 for all finite noise
variance.

Note that the detection probability of the proposed scheme
can approach ‘1’ even for extremely bad channels with very
low channel capacity. This is true because, when M increases
sub-linearly with N , i.e., when N

Mk+1 → ∞ as N → ∞ for
k = 0, . . . , kstop, as N approaches infinity, the code rate of the
code matrix approaches zero. Hence, even for extremely bad
channels, the code rate is still less than the channel capacity.

C. Numerical Results

In this section, we present some numerical results which
show the improvement in the system performance when soft-
decision decoding rule is used instead of the hard-decision
decoding rule in the presence of Byzantines and non-ideal

Fig. 9. MSE comparison of the basic coding scheme using soft- and hard-
decision decoding.

Fig. 10. Probability of detection of target region comparison of the basic
coding scheme using soft- and hard- decision decoding.

channels. As defined before, α represents the fraction of
Byzantines and we evaluate the performance of the basic
coding approach with soft-decision decoding at the FC. We
simulate the scenario with following system parameters: N =
512, M = 4, A = 82 = 64 sq. units, P0 = 200, local sensor
observations are corrupted with Gaussian noise with σ = 3,
Eb = 1, σ f = 3 and E[(hk

i )
2] = 1 which corresponds to

σ 2
h = 1 − π

4 . The basic coding approach is stopped after
kstop = 2 iterations. Note that in the presence of non-ideal
channels, αblind is less than 0.5 since the non-ideal channels
add to the errors at the FC. The number of Byzantine faults
which the network can handle reduces and is now less than 0.5.
In our simulations, we observe that the performance of the
schemes completely deteriorates when α → 0.4 (as opposed
to 0.5 observed before) and, therefore, we plot the results for
the case when α ≤ 0.4.

Fig. 9 shows the reduction in mean square error when the
soft-decision decoding rule is used instead of the hard-decision
decoding rule. Similarly, Fig. 10 shows the improvement
in target region detection probability when the soft-decision
decoding rule is used. The plots are for 5 × 103 Monte-Carlo
simulations.
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Fig. 11. MSE comparison of the exclusion coding scheme using soft- and
hard- decision decoding.

Fig. 12. Probability of detection of target region comparison of the exclusion
coding scheme using soft- and hard- decision decoding.

As the figures suggest, the performance deteriorates in
the presence of non-ideal channels. Also, the performance
worsens with an increase in the number of Byzantines. The
performance can be improved by using the exclusion method
based coding approach as discussed in Section IV in which
two regions are stored after every iteration. Figs. 11 and 12
show this improved performance as compared to the basic
coding approach. Note that the exclusion method based coding
approach also follows the same trend as the basic coding
approach with soft-decision decoding performing better than
hard-decision decoding.

In our theoretical analysis, we have shown that the proba-
bility of region detection asymptotically approaches ‘1’ irre-
spective of the finite noise variance. Fig. 13 presents this
result that the region detection probability approaches ‘1’ as
the number of sensors approach infinity. Observe that for a
fixed noise variance, the region detection probability increases
with increase in the number of sensors and approaches ‘1’
as N → ∞. However, as σ f increases, the convergence
rate decreases. For example, when σ f = 1.5, N = 4096 is
large enough to have PD close to 0.9. However, for σ f = 4,
N = 4096 results in PD = 0.65 which is not very large. It is

Fig. 13. Probability of detection of target region of the exclusive coding
scheme using soft- decision decoding with varying number of sensors (N ).

expected that PD → 1 much later for σ f = 4 and, therefore,
the convergence rate is less compared to when σ f = 1.5.

VI. CONCLUSION

In this paper, we considered the problem of target localiza-
tion in wireless sensor networks. Traditionally, research has
focused on conventional maximum likelihood approaches for
estimating the target location. However, maximum likelihood
based approaches are computationally very expensive. To
reduce the computational complexity, we proposed a novel
coding theory based technique for target localization. Mod-
eling the estimation problem as an iterative classification
problem, we can determine a coarse estimate of the target
location in a computationally efficient manner. This efficiency
in terms of computation becomes important in a scenario when
the target is not stationary. The proposed scheme estimates the
target location iteratively using M-ary classification at each
iteration. We provided the theoretical analysis of the proposed
scheme in terms of the detection probability of the target
region. Considering the presence of Byzantines (malicious
sensors) in the network, we modified our approach to increase
the fault-tolerance capability of the coding scheme used. This
approach, called the exclusion method based approach, is
more tolerant to the presence of Byzantines than the basic
coding scheme. We showed with simulations that the exclusion
method based scheme provides an accurate estimate of the
target location in a very efficient manner than the traditional
MLE based scheme and also has a better Byzantine fault
tolerance capability. We also considered the effect of non-
ideal channels between local sensors and the fusion center. To
minimize the effects of these non-ideal channels, we proposed
soft-decision decoding at the fusion center. We showed with
simulations, the improvement in performance of soft-decision
decoding rule based scheme over hard-decision decoding rule
based scheme in the presence of non-ideal channels. In the
future, we plan to extend our work by relaxing Assumption 3.3
and to also derive the convergence rates using Berry-Essen
inequalities. One can also extend this paper to the case of
target tracking when the target’s location is changing with
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time and the sensor network’s aim is to track the target’s
motion. The proposed schemes provide an insight on M-ary
search trees and show that the idea of coding based schemes
can also be used for other signal processing applications. For
example, the application involving ‘search’ such as rumor
source localization in social networks.
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