
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015 873

A Unified Form of Exact-MSR Codes via
Product-Matrix Frameworks

Sian-Jheng Lin, Wei-Ho Chung, Member, IEEE, Yunghsiang S. Han, Fellow, IEEE,
and Tareq Y. Al-Naffouri, Member, IEEE

Abstract— Regenerating codes represent a class of block
codes applicable for distributed storage systems. The [n, k, d]
regenerating code has data recovery capability while possessing
arbitrary k out of n code fragments, and supports the capability
for code fragment regeneration through the use of other
arbitrary d fragments, for k ≤ d ≤ n − 1. Minimum storage
regenerating (MSR) codes are a subset of regenerating codes
containing the minimal size of each code fragment. The first
explicit construction of MSR codes that can perform exact
regeneration (named exact-MSR codes) for d ≥ 2k − 2 has been
presented via a product-matrix framework. This paper addresses
some of the practical issues on the construction of exact-MSR
codes. The major contributions of this paper include as follows.
A new product-matrix framework is proposed to directly include
all feasible exact-MSR codes for d ≥ 2k − 2. The mechanism
for a systematic version of exact-MSR code is proposed to
minimize the computational complexities for the process of
message-symbol remapping. Two practical forms of encoding
matrices are presented to reduce the size of the finite field.

Index Terms— Distributed storage, maximum-distance-
separable (MDS) codes, MSR codes.

I. INTRODUCTION

IN A cloud storage system, data are stored in distributed
storage nodes in the network. Reliability is one of the

major challenges in the design of distributed storage systems.
A robust distributed system can tolerate one or more node
crashes. To improve system reliability, a well-known solu-
tion is to replicate data files on multiple distinct storage
nodes [1]. However, the replicate-and-store operation demands

Manuscript received January 27, 2014; revised August 28, 2014; accepted
November 16, 2014. Date of publication December 5, 2014; date of current
version January 16, 2015. This work was supported by the Ministry of
Science and Technology, Taiwan, under Grants NSC 102-2221-E-001-006-
MY2, MOST 103-3113-E-110-002, and NSC 101-2221-E-011-069-MY3. Part
of this work was presented at the 2013 IEEE 24th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC
2013).

S.-J. Lin was with the Research Center for Information Technology
Innovation, Academia Sinica, Taipei 11574, Taiwan. He is now with the
Computer, Electrical and Mathematical Sciences and Engineering Division,
King Abdullah University of Science and Technology, Thuwal 23955,
Saudi Arabia (e-mail: sjlin@citi.sinica.edu.tw).

W.-H. Chung is with the Research Center for Information
Technology Innovation, Academia Sinica, Taipei 11529, Taiwan (e-mail:
whc@citi.sinica.edu.tw).

Y. S. Han is with the Department of Electrical Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan (e-mail:
yshan@mail.ntust.edu.tw).

T. Y. Al-Naffouri is with the Computer, Electrical and Mathematical
Sciences and Engineering Division, King Abdullah University of Science
and Technology, Thuwal 23955, Saudi Arabia, and also with the Department
of Electrical Engineering, King Fahd University of Petroleum and Minerals,
Dhahran 34464, Saudi Arabia (e-mail: tareq.alnaffouri@kaust.edu.sa).

Communicated by O. Milenkovic, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2014.2378255

substantial storage space. Thus, erasure codes are employed
in the design of distributed storage systems to provide data
reliability and storage efficiency. One popular class of erasure
codes are maximum-distance-separable (MDS) codes, such as
Reed-Solomon (RS) codes [2]. RS codes have been applied on
Google [3] and Facebook distributed storage systems. In (n, k)
RS codes, k data symbols are encoded and then n encoded
symbols are distributed to n storage nodes. A client or a data
collector (DC) can recover the original data by downloading
encoded symbols from any k among all the storage nodes, by
applying a data reconstruction procedure.

Because a distributed storage system is built on an unstable
network environment, any storage node may fail, crash, or
become disconnected. The data stored in the failed nodes
must be reconstructed to maintain functionality of the system.
The process of reconstructing the data in the failed node is
called data regeneration. To reconstruct the failed node, a new
(blank) replacement node is placed in the storage network.
This replacement node connects to a subset of other active
nodes, and then downloads the symbols necessary to restore
the lost code fragment. A simple method for data regeneration
is that the replacement node downloads all the data stored in
k nodes, and then converts all the data to obtain the lost code
fragment. However, it is not efficient to retrieve the entire
set of B data symbols, to recover only a much smaller code
fragment stored in a failed node. The pioneer work [4], [5]
addressed this issue and introduced a new class of codes for
distributed storage systems, termed “regenerating codes.”

There exists a trade-off between the downloaded amount of
data for node repairing and the size of each fragment stored
in a node in regenerating codes. For the [n, k, d] regenerating
code, B message symbols are encoded into n code fragments,
and the size of each code fragment is defined by α sym-
bols. Each code fragment is distributed to and stored in its
corresponding storage node in the network. A data collec-
tor (DC) can reconstruct the lost data by collecting k code
fragments from various nodes. When a node failure occurs, the
replacement node accesses d surviving nodes and downloads
β symbols from each of them to perform code regeneration.
For a well designed regenerating coding scheme, the data
amount necessary to repair a failed node βd is expected to be
much smaller than the size of message B . The regenerating
code over G F(q) is associated with the following parameters

{n, k, d,α,β, B}
and the parameters follow the inequality

k ≤ d ≤ n − 1.

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



874 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

There exists a trade-off between the storage space for each
node and the total amount of downloaded data to repair a
node. The theoretical storage-bandwidth bound is given by
the cut-set bound of network coding [6]:

B ≤
k−1∑

i=0

min{α, (d − i)β}. (1)

Two extreme cases, termed as minimum bandwidth regen-
erating (MBR) and minimum storage regenerating (MSR),
have been adequately investigated in prior studies [7]–[9].
For MBR, one first minimizes β and then α such that

β = 2B/ (k(2d − k + 1)),

α = dβ.

Similarly, by first minimizing α and then β, for MSR, we have

α = B/k,

β = B/ (k(d − k + 1)).

In the case where the reconstructed fragment is exactly
the same as the fragment stored in the failed node, we
refer to this data regeneration as exact regeneration. This
is a highly desired property in practical implementations.
However, any effective and systematic approach to construct
the exact-regeneration codes at the interior points (or region)
of a storage-bandwidth bound curve [10] is typically unknown
except at MSR and MBR points.

There have been many studies that focus on the design of
regenerating codes [11]–[15]. In [16], the authors presented the
Exact-MSR code for n = d + 1 and k = 2. In [17], practical
Exact-MSR codes at [n = 4, k = 2, d = 3] and [n = 5,
k = 3, d = 4] via computer search algorithms were discov-
ered. The [n = d + 1, k, d] Exact-MBR codes with repair-by-
transfer ability were presented in [10]. The repair-by-transfer
ability is a property where the node-repairing process does not
require any arithmetic operations. Rashmi et al. [7] presented
a general construction of exact regenerating codes at MSR
and MBR points. By product-matrix form, they proposed a
class of Exact-MBR codes for all feasible parameters [n, k, d],
and a class of Exact-MSR codes for the set of parameters
[n, k, d ≥ 2k − 2]. (Notice that the construction of
Exact-MSR codes for d < 2k − 3 is non-achievable [18]
for β = 1.). [19] and [20] investigate the inequality for
parameters k and α on MSR codes at d = n − 1. Recently,
a number of exact regenerating codes between MSR and MBR
points [21]–[23] had been proposed. Those codes [21]–[23]
improve the storage-space-sharing scheme [10] based on MSR
and MBR codes. [24] showed a class of minimum-storage
cooperative regenerating (MSCR) code to repair two failures
cooperatively. The MSCR codes [24] is constructed directly
from Exact-MSR codes.

There are critical challenges for designing regenerating
codes, such as computational complexity, space complexity,
and size of the finite field. These issues directly influence the
overall efficiency of distributed storage systems. In this work,
we present a new class of [n, k, d ≥ 2k − 2] Exact-MSR
codes with lower computational complexity that operate using

smaller finite fields. The contributions of this work are listed
as follows.

1) A unified product-matrix form for [n, k, d ≥ 2k − 2]
Exact-MSR codes is presented. The proposed product-
matrix form can directly calculate the codes via matrix
products without applying shortening techniques in code
construction [7]. This property allows us to construct
Exact-MSR codes with d > 2k − 2 without first
constructing codes with d ′ = 2k ′ − 2.

2) A mechanism for a systematic version of Exact-MSR
code is proposed. First, a conversion method is proposed
to transform a valid instance of the encoding matrix
into another matrix whose systematic part includes
the minimum amount of non-zero entries. Second,
with this converted encoding matrix, the proposed
MSR codes can achieve lower leading factor in
computational complexity and lower update complexity
(See Section V-B for more details).

3) Two feasible forms of encoding matrices are presented.
The relationship between field sizes q and code parame-
ters [n, k, d] is studied. In particular, the second form
of encoding matrix requires a finite field Fq with q ≥ n
for q a power of two. This reduces the field size of the
product-matrix approach q ≥ n(n − k +1) shown in [7].

4) If the Vandermonde matrix is chosen as the encoding
matrix, a new decoding algorithm is proposed to reduce
the memory space used in the decoding process.

The rest of this paper is organized as follows. Section II
reviews the Exact-MSR codes constructed in [7]. Section III
presents the proposed product-matrix framework for
Exact-MSR code and the node-repairing procedure with data
reconstruction procedure on the proposed codes. Section IV
discusses two practical forms of encoding matrices, with an
analysis of the lower bounds of field sizes. Section V presents
the conversion method and the message-symbol remapping
procedure for a systematic version of the proposed codes.
Section VI compares existing Exact-MSR codes with the
proposed codes, in terms of time complexities, field sizes,
and update complexities. Section VII concludes this work.

II. PRELIMINARY BACKGROUND

Throughout this paper, we use the superscript t to denote
the transpose of a vector/matrix. For a matrix X , x (i) indicates
the i th column of matrix X , and x(i) indicates the i th row of
matrix X . The notation

Vander
m×n

(a1, a2, . . . , an)

denotes a Vandermonde matrix of size m × n, where the i th
column is given by

[
1 ai a2

i . . . am−1
i

]t
.

In the following, we review the Exact-MSR codes presented
in [7].

By applying a data striping technique, [n, k, d,α,β = 1, B]
regenerating codes can be used to construct [n, k, d,α′ =
α × i,β ′ = β × i, B ′ = B × i ] regenerating codes for
any positive integer i . Thus, one only needs to consider the



LIN et al.: UNIFIED FORM OF EXACT-MSR CODES VIA PRODUCT-MATRIX FRAMEWORKS 875

constructions of Exact-MSR codes at β = 1 over G F(q), and
thus

α = d − k + 1; β = 1; B = k(d − k + 1). (2)

In [7], the authors present the construction of Exact-MSR code
at d = 2(k − 1) = 2α. The construction can be represented as
the matrix product

U · G = C (3)

of an (k − 1) × d message matrix U and a d × n encoding
matrix G. The information sequence m = [m0, m1, . . . ,
m B−1] is arranged into

U =
[

Z1︸︷︷︸
(k−1)×(k−1)

Z2︸︷︷︸
(k−1)×(k−1)

]
, (4)

where Z1 and Z2 are symmetric matrices with dimension
(k − 1) × (k − 1). The encoding matrix

G =

⎡

⎢⎢⎣

Ḡ︸︷︷︸
(k−1)×n

Ḡ#︸︷︷︸
(k−1)×n

⎤

⎥⎥⎦ (5)

should satisfy the following conditions:
1) Any d columns of G are linearly independent;
2) # is a diagonal matrix and its n diagonal elements are

distinct;
3) Any k − 1 columns of Ḡ are linearly independent.

A feasible encoding matrix with G as a Vandermonde matrix
is suggested by [7]. In this case, the Ḡ is given by

Ḡ = Vander
(k−1)×n

(x1, x2, . . . , xn), (6)

where {xi }n
i=1 are n ≤ q distinct elements in G F(q). Each

element of

# = diag(λ1,λ2, . . . ,λn)

is defined as

λi = xk−1
i .

Since # requires all n elements of it to be distinct such that
n is the lower bound of the field size q . [7] indicates that a field
size n(d − k + 1) or higher suffices to make the Vandermonde
matrix a feasible solution of G. After obtaining C , node i
stores the i th column of C given by

c(i) = U ·
[

ḡ(i)

ḡ(i)λi

]
= Z1ḡ(i) + Z2 ḡ(i)λi .

A. Node-Repairing Procedure

Assume node h0 fails, and its stored data are

c(h0) = U ·
[

ḡ(h0)

ḡ(h0)λh0

]

= Z1 ḡ(h0) + Z2ḡ(h0)λh0 . (7)

To maintain the functionality of the storage system, a replace-
ment node is placed into the network to replace the role of

the failed node. The replacement node downloads a total of
d symbols

υh j = µh0 c(h j ), ∀ j ∈ { j}d
j=1 (8)

from d helper nodes {h j }d
j=1, where

µh0 = (ḡ(h0))t . (9)

In the replacement node, the d downloaded symbols form
a d-element row vector ϒrepair = [ υh1 υh2 · · · υhd ], that
possesses the equality

ϒrepair = µh0U Grepair

=
[
ḡh0 Z1 ḡh0 Z2

]
Grepair, (10)

where Grepair = [ gh1 gh2 · · · ghd ] is the submatrix of G
corresponding to d helper nodes. As Grepair is invertible
(By condition (1) of the encoding matrix),

ϒrepairG−1
repair =

[
ḡh0 Z1 ḡh0 Z2

]
. (11)

The (7) can be computed by
(
ḡh0 Z1 + λh0 ḡh0 Z2

)t
.

B. Data Reconstruction Procedure

To reconstruct the message, DC respectively downloads
k vectors {c(i j )}k

j=1 from k active nodes, where c(i j ) is the
i j th column of C . Let CDC =

[
c(i1) c(i2) . . . c(ik )

]
denote an

(k − 1) × k matrix, and GDC is a d × k matrix including
the corresponding k encoding columns in G. By definition,
we have

CDC = U GDC = Z1ḠDC + Z2ḠDC#DC. (12)

The CDC is pre-multiplied by the k × (k − 1) matrix Gt
DC to

obtain a k × k matrix

Ḡt
DCCDC = Ḡt

DCZ1ḠDC + Ḡt
DC Z2ḠDC#DC. (13)

(13) can be expressed as

P = Z̃1 + Z̃2#DC, (14)

where

P = Ḡt
DCCDC,

Z̃1 = Ḡt
DCZ1ḠDC, Z̃2 = Ḡt

DC Z2ḠDC. (15)

Since Z1 (and Z2) is symmetric, the congruence Z̃1 (and Z̃2)
is also symmetric. From Condition 2) of the encoding matrix,
all the non-diagonal entries of Z̃1 and Z̃2 can be solved.

Let ḠDC denote the k column vectors {ḡ(1), ḡ(2), . . . , ḡ(k)}.
Since all non-diagonal elements of Z̃1 are known, the k − 1
non-diagonal entries in the i th column are given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ḡ(1))t

...
(ḡ(i−1))t

(ḡ(i+1))t

...
(ḡ(k))t

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

Z1ḡ(i). (16)



876 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

The left-most matrix in (16) is a (k − 1) × (k − 1) matrix that
is invertible by Condition 3) of the encoding matrix. Thus, we
can obtain

{
Z1ḡ(i)|1 ≤ i ≤ k

}
.

Then, one can take the first k − 1 terms of Z1ḡ(i) to obtain

Z1[ḡ(1) . . . ḡ(k−1)].
The right matrix is also invertible such that we can solve Z1.
By following similar process, Z2 can be extracted from Z̃2.

III. EXACT-MSR CODE VIA UNIFIED

PRODUCT-MATRIX FRAMEWORK

In this section, we present the proposed product-matrix
framework for [n, k, d ≥ 2k − 2] Exact-MSR codes. In code
construction, the B message symbols in information sequence
m are arranged into an α × d message matrix U that is
multiplied by the d × n encoding matrix G to obtain a
α × n matrix C = U · G. The i th column of C , denoted
as c(i) = U · g(i), is stored in node i . The U and G matrices
should satisfy a number of conditions elaborated as follows.

The message matrix is given by

U =

⎡

⎢⎢⎣

Z1︸︷︷︸
(k−1)×(k−1)

Z2︸︷︷︸
(k−1)×(k−1)

T︸︷︷︸
(k−1)×ω

0︸︷︷︸
ω×(k−1)

T t
︸︷︷︸

ω×(k−1)

S︸︷︷︸
ω×ω

⎤

⎥⎥⎦, (17)

where ω = d − 2k + 2, 0 is a ω × (k − 1) zero matrix.
Z1 and Z2 are (k − 1)× (k − 1) symmetric matrices, and each
matrix includes

(k
2

)
distinct message symbols. Specifically, the

entries of the upper triangular part of Z1 and Z2, respectively,
are filled with message symbols, and other entries are filled
with corresponding values such that the symmetric property
holds. T is a (k − 1) × ω matrix filled with message symbols.
S is defined as a ω × ω matrix expressed as

S =
[

s0 s1
st

1 0

]
, (18)

where 0 is a (ω−1)×(ω−1) zero matrix, s0 is an information
symbol, and s1 is a (ω − 1)-element row vector. The message
matrix includes a total of
(

k
2

)
+

(
k
2

)
+ (k − 1)(d − 2k + 2) + (d − 2k + 2)

= k(d − k + 1)

information symbols,equal to the message size B given in (2).
The d × n encoding matrix is given by

G =

⎡

⎢⎢⎢⎢⎢⎢⎣

Ḡ#︸︷︷︸
(k−1)×n

Ḡ︸︷︷︸
(k−1)×n

(︸︷︷︸
ω×n

⎤

⎥⎥⎥⎥⎥⎥⎦
, (19)

where the sizes of matrices Ḡ, (, and # are (k − 1) × n,
ω × n, and n × n, respectively. A feasible encoding matrix is
required to satisfy the following conditions:

1) Any d columns of G are linearly independent;
2) # is a diagonal matrix and its n diagonal elements are

distinct;
3) Any k − 1 columns of Ḡ are linearly independent;
4) For d > 2k − 2, any k columns of

Ĝ =
[

Ḡ
δ(1)

]
, (20)

are linearly independent, where δ(1) denotes the first row
of (.

Notice that the first three conditions are the same as the
conditions [7] shown in Section II. When d = 2k − 2, the
encoding matrix and message matrix reduce to

U =
[

Z1 Z2
]
, G =

[
Ḡ#
Ḡ

]
, (21)

and are the same as those given in (4) and (5). With the
above four conditions, the node-repairing procedure and data
reconstruction procedure are presented as follows.

A. Node-Repairing Procedure

Assume the failed node is h0 whose stored data are

c(h0) = U · g(h0) = U

⎡

⎣
ḡ(h0)λh0

ḡ(h0)

δ(h0)

⎤

⎦

=
[

Z1ḡ(h0)λh0 + Z2 ḡ(h0) + T δ(h0)

T t ḡ(h0) + Sδ(h0)

]
. (22)

To reconstruct c(h0), the replacement node downloads a total
of d symbols

υh j = µh0 c(h j ) (23)

from d helper nodes {h j }d
j=1, where

µh0 =
[

ḡ(h0)

δ(h0)

]t

=
[

ḡ(h0) δ(h0)
]
. (24)

In the replacement node, the d downloaded symbols form
a d-element row vector ϒrepair = [ υh1 υh2 · · · υhd ], that
possesses the equality

ϒrepair

= µh0U Grepair

=
[

ḡ(h0) δ(h0)
] [

Z1 Z2 T
0 T t S

]
Grepair

=
[

ḡ(h0) Z1 ḡ(h0) Z2 + δ(h0)T
t ḡ(h0)T + δ(h0)S

]
Grepair,

(25)

where Grepair = [ gh1 gh2 · · · ghd ] is the submatrix of G
corresponding to d helper nodes. From condition 1) of the
encoding matrix, Grepair is invertible, and

ϒrepairG−1
repair

=
[

ḡ(h0) Z1 ḡ(h0)Z2 + δ(h0)T
t ḡ(h0)T + δ(h0)S

]
. (26)

From (26), the upper part of (22) can be solved by
(
λh0(ḡ(h0)Z1) + (ḡ(h0) Z2 + δ(h0)T

t )
)t

,

and the lower part of (22) is the transpose of ḡ(h0)T + δ(h0)S.



LIN et al.: UNIFIED FORM OF EXACT-MSR CODES VIA PRODUCT-MATRIX FRAMEWORKS 877

B. Data Reconstruction Procedure

To reconstruct the message, DC respectively downloads
k vectors {c(i j )}k

j=1 from k active nodes, where c(i j ) is the
i j th column of C . Let CDC =

[
c(i1) c(i2) . . . c(ik )

]
denote an

(k − 1) × k matrix, and GDC is a d × k matrix including
the corresponding k encoding columns in G. By definition,
we have

CDC = U GDC =
[

Z1 Z2 T
0 T t S

]⎡

⎣
ḠDC#DC

ḠDC
(DC

⎤

⎦. (27)

(27) can be split into two parts:

CU
DC =

[
Z1 Z2 T

]
⎡

⎣
ḠDC#DC

ḠDC
(DC

⎤

⎦, (28)

CL
DC =

[
T t S

] [
ḠDC
(DC

]
, (29)

where CU
DC denotes the upper part of CDC with k − 1 rows,

and CL
DC denotes the lower part of CDC with d − 2k + 2 rows.

We first solve (29) to obtain T and S. Then T is utilized for
solving (28) to obtain Z1 and Z2. Notice that when d = 2k−2,
there is no need to solve (29).

1) Solving (29): (29) can be reformulated as

CL
DC =

[
T̂ t Š

] [
ĜDC

(̌DC

]
, (30)

where ĜDC denotes GDC after appending the first row of (DC,
and (̌DC denotes (DC after removing its first row. Similarly,
T̂ t denotes T t after appending the first column of S, and Š
denotes S after removing its first column. Thus, by (18), we

have Š =
[

s1
0

]
, where the column vector

[
s0
st

1

]
is moved to

the last column of T̂ t .
Since all rows of Š are zero except the first row, the i th

row, i ̸= 1, of CL
DC can then be formulated as

(t̂(i))t ĜDC,

where t̂(i) denotes the the i th column of T̂ . By Condition 4)
of the encoding matrix, ĜDC is invertible. Thus, we can solve
all columns of T̂ except the first column. The first row of CL

DC
is formulated as

(t̂(1))t ĜDC + s1(̌DC. (31)

Since s1 has been solved in the last row of T̂ , we can solve (31)
to get t̂(1).

2) Solving (28): (28) can be reformulated as

CU
DC − T(DC = Z1ḠDC#DC + Z2ḠDC. (32)

By the obtained T , the left-hand side can be computed
directly. A feasible way of solving (32) had been addressed
in Section II-B. However, if ḠDC is a Vandermonde matrix,
Appendix B shows an alternative method to solve Z1 and Z2.
As compared with Section II-B, the alternative method does
not need to split P into two matrices Z̃1 and Z̃2. Instead, the
decoding operations are only applied to a single unique matrix
so that the arithmetic complexity and space complexity can be
reduced.

IV. ENCODING MATRICES

This section presents two versions of valid encoding
matrices based on Vandermonde matrices and its variants.
Each version of the encoding matrix gives a relationship
between finite field size q and code parameters [n, k, d],
that will also be discussed. Notice that the lower bounds of
the field sizes given in this section are for the constructions
under our approaches, rather than the lower bound for all
Exact-MSR codes by any constructions.

A. First Approach (Vandermonde Matrix)

In [7], the authors suggested to choose the Vandermonde
matrix as G, for d = 2k − 2. Here, we show that the
Vandermonde matrix can also be chosen as the encoding
matrix of proposed code. In this case, Ḡ is defined as

Ḡ = Vander
(k−1)×n

(x1, x2, . . . , xn),

that is the same with (6). Hence Condition 3) holds. ( is
defined as

( = Vander
ω×n

(x1, x2, . . . , xn) × diag(xk−1
1 , xk−1

2 , . . . , xk−1
n ).

Ĝ is given by combining Ḡ with the first row of (. It can be
seen that Ĝ is also a Vandermonde matrix, so Condition 4)
holds. # is defined as

# = diag(xd−k+1
1 , xd−k+1

2 , . . . , xd−k+1
n ). (33)

By the above definitions, it can be seen that G is a
Vandermonde matrix with moving Ḡ# to the last component
of G. Hence, Condition 1) holds.

To satisfy Condition 2), we should carefully choose the
elements {xi}n

i=1 such that {xd−k+1
i }n

i=1 are mutually distinct.
This is the major bottleneck of the field size and Section IV-C
will discuss this issue.

B. Second Approach (Shuffling Vandermonde Matrix)

In this approach, the encoding matrix is chosen as a modi-
fied Vandermonde matrix with reordering the rows in a specific
order. In this case, the diagonal matrix is defined as

# = diag(x1, x2, . . . , xn),

where {xi }n
i=1 are n distinct elements in G F(q), to meet

Condition 2). Ḡ is defined as

Ḡ = Vander
(k−1)×n

(x2
1 , x2

2 , . . . , x2
n).

We should carefully choose the elements {xi}n
i=1 such that

{x2
i }n

i=1 are mutually distinct. Then Ḡ is a Vandermonde
matrix and thus Condition 3) holds. Details will be discussed
in Section IV-C. It can be shown that Ĝ is a Vandermonde
matrix, so Condition 4) holds. The ( is defined as

( = Vander
ω×n

(x1, x2, . . . , xn)

× diag(x2k−2
1 , x2k−2

2 , . . . , x2k−2
n ).



878 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

Finally, G is expressed as

G =
⎡

⎣
Ḡ#
Ḡ
(

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 . . . xn

x3
1 x3

2 . . . x3
n

...

x2k−3
1 x2k−3

2 . . . x2k−3
n

1 1 . . . 1
x2

1 x2
2 . . . x2

n
...

x2k−4
1 x2k−4

2 . . . x2k−4
n

x2k−2
1 x2k−2

2 . . . x2k−2
n

x2k−1
1 x2k−1

2 . . . x2k−1
n

...

xd−1
1 xd−1

2 . . . xd−1
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The rows in G can be reordered by the exponents
of xi , to obtain the geometric progression in each column
[ 1 xi x2

i . . . xd−1
i ]t . Thus, G is a shuffled Vandermonde

matrix, and Condition 1) holds.

C. Size of Finite Fields

In both encoding matrices we should choose n distinct
elements {xi }n

i=1 in G F(q) such that {xb
i }n

i=1 are also
mutually distinct for b = d − k + 1 (the first version) or
b = 2 (the second version). The lower bound of field size q
can be proven with the following proposition.

Proposition 1: Let a be a generator of G F(q). Given a
constant b ∈ [2, q − 1], all elements of G F(q) are divided
into q−1

g + 1 non-overlapping sets, where g = gcd(b, q − 1),
as follows:

A−1 = {0};
Ai =

{
ai+ j (q−1)/g|0 ≤ j ≤ g − 1

}
,

∀i = 0, 1, . . . ,
q − 1

g
− 1.

These individual sets possess the following properties:
1. For any x ∈ Ai and i ≥ 0, we have xb = aib.
2. Let A = {0} ∪ {aib}(q−1)/g−1

i=0 . Then |A| = q−1
g + 1,

i.e., all elements in A are distinct.
Proof: Please see Appendix A. !

From Proposition 1, {xi}n
i=1 cannot include two distinct

elements in each set Ai ; otherwise, the two elements will equal
to the same value aib after taking them to the power of b.
Thus, the maximal size of {xi }n

i=1 is constructed by choosing
only one element from each set Ai . Moreover, 0 can also
be included in {xi }n

i=1, since each aib ̸= 0. From the above
observation, a corollary is obtained.

Corollary 1: Let {xi |xi ∈ G F(q)}n
i=1 denote a set subject

to

xi ̸= x j , and xb
i ̸= xb

j ,∀i ̸= j.

The n is thus bounded by

n ≤ q − 1
gcd(b, q − 1)

+ 1. (34)

With Corollary 1, we plug b = d − k + 1 and b = 2 to
determine the field sizes of encoding matrices. For the first
approach, substituting b = d − k + 1 into (34) to get

n ≤ q − 1
gcd(d − k + 1, q − 1)

+ 1. (35)

If (d − k + 1) and (q − 1) are co-prime, the field size q ≥ n
suffices for the code construction based on the first approach.
For the second approach, substituting b = 2 into (34) to get

n ≤ q − 1
gcd(2, q − 1)

+ 1. (36)

If field size q is a power of two, (36) implies n ≤ q;
otherwise n ≤ (q + 1)/2. In practical applications, codes are
usually constructed over characteristic-2 finite fields, and thus
q ≥ 2⌈log2 n⌉ suffices for the second approach.

The (35) can also be used to determine the field size of [7],
as the proposed code with the first approach encoding matrix
at [d = 2k − 2] is equivalent to the code [7]. By substituting
d = 2k−2 into (35), the field size of MSR code [7] is given by

n ≤ q − 1
gcd(k − 1, q − 1)

+ 1, (37)

which is tighter than the q ≥ n(n − k + 1) shown in [7].

V. SYSTEMATIC VERSION OF EXACT-MSR CODES

This section addresses the construction of the systematic
version of Exact-MSR codes. In [7], the authors indicated
that the systematic code can be constructed by applying a
message-symbol remapping procedure to the non-systematic
code. Let GSN denote a d×k matrix consisting of k columns of
encoding matrix G corresponding to the systematic positions
in the systematic node, and Ū denote an (α × k) information
matrix containing B message symbols. The message-symbol
remapping procedure is to solve U by

Ū = U GSN. (38)

Notice that U should follow the form (17). Clearly, the pro-
cedure of solving (38) is equivalent to the data-reconstruction
procedure. Thus, U and Ū are related in a linear way. After
obtaining U , it can be used to calculate the code matrix
C = U G. As GSN is a submatrix of G, C will include a part
that is exactly equivalent to the information matrix Ū , and thus
the code is systematic. Conversely, in the data reconstruction
process, we need to compute the information matrix Ū by (38)
after recovering U .

If GSN is sparse, the conversion (compute Ū by given U )
or the inversion (solve U by given Ū ) can take lower com-
putational cost. Moreover, a sparse GSN has lower update
complexity, and this issue will be discussed in Section VI-C.
In this section, we present a method to construct an encoding
matrix for systematic code, where the GSN embedded in the
encoding matrix is sparse. Section V-A will present a con-
version mechanism to convert a given valid encoding matrix
G(0) into an encoding matrix of the systematic code, that we
denote as GSC. Here the “valid” means that the encoding
matrix meets the conditions of the encoding matrix. The result
GSC is also valid and the GSN embedded in GSC is sparse and



LIN et al.: UNIFIED FORM OF EXACT-MSR CODES VIA PRODUCT-MATRIX FRAMEWORKS 879

achieves a minimum number of non-zero entries. If there is
no confusion, we also use GSN to indicate the systematic part
of GSC. With the result GSC, Section V-B presents a new
message symbol-remapping procedure with complexity of the
order O(B).

A. Conversion of Encoding Matrix

Given a valid encoding matrix

G(0) =
⎡

⎣
Ḡ(0)#(0)

Ḡ(0)

((0)

⎤

⎦,

this sub-section provides the conversion to generate a new
matrix GSC that includes the fewest possible non-zero entries
in the first k columns. Here we assume that the systematic
part is in the first k columns of GSC. The conversion consists
of two stages: the first stage converts the input G(0) into G(1),
and the second stage converts the G(1) into GSC. In each stage,
we show that the result matrix is valid as long as the input
matrix is valid.

1) First Stage: This stage converts G(0) into

G(1) =
⎡

⎣
Ḡ(1)#(1)

Ḡ(1)

((1)

⎤

⎦.

In the following, we present the procedure that converts G(0)

into G(1) such that the first k−1 columns of Ḡ(1) is an identity
matrix, the first k − 1 columns of ((1) is a zero matrix, and
the kth column of Ḡ(1)#(1) is a zero column.

First, given

#(0) = diag(λ(0)
1 ,λ(0)

2 , . . . ,λ(0)
n )

in G(0), the #(1) is defined as

#(1) = diag(λ(1)
1 ,λ(1)

2 , . . . ,λ(1)
n ), where λ(1)

i =(λ(0)
i − λ(0)

k ).

Notice that λ(1)
k = 0.

Second, let Ḡk−1
(0) denote the first k − 1 columns of Ḡ(0).

Ḡk−1
(0) is a (k − 1)× (k − 1) square matrix and invertible from

Condition 3). Then, Ḡ(1) is defined as

Ḡ(1) = (Ḡk−1
(0) )−1Ḡ(0),

whose first k − 1 columns are formed as a (k − 1) × (k − 1)
identity matrix.

Third, let ((k−1)
(0) denote the first k − 1 columns of ((0).

The size of ((k−1)
(0) is (d − 2k + 2) × (k − 1). ((1) is defined

as

((1) = ((0) − ((k−1)
(0) Ḡ(1).

As the first k−1 columns of Ḡ(1) constitute an identity matrix,
the first k − 1 columns of ((k−1)

(0) Ḡ(1) are ((k−1)
(0) . Hence, the

first k − 1 columns of ((1) are filled with zeros. The validity
of G(1) is demonstrated in Lemma 1 in Appendix C.

2) Second Stage: In this stage, we convert G(1) into a new
encoding matrix

GSC =
⎡

⎣
Ḡ(1)#(1)

Ḡ(1)

((2)

⎤

⎦.

In the following, we present the procedure that converts G(1)

into GSC such that the kth column of ((2) is i (1) = [10 . . . 0]t .
Assume the kth column of ((1) is[

δk[1] δk[2] · · · δk[d − 2k + 2]]t . The ((2) is computed
through

((2) = (TM
(2) ((1), (39)

where

(TM
(2) =

⎡

⎢⎢⎢⎣

1/δk[1] 0 . . . 0
δk[2]/δk[1] −1 . . . 0

...
...

. . .
...

δk[d − 2k + 2]/δk[1] 0 . . . −1

⎤

⎥⎥⎥⎦
. (40)

In (40), we should show that δk[1] ̸= 0. If δk[1] = 0, the
first row of ((1) will include k zero elements in the first,
and Condition 4) cannot be satisfied. Thus, δk[1] ̸= 0. Then,
GSC is the desired encoding matrix. the validity is
demonstrated in Lemma 2 in Appendix C.

Notably, by (59) and (62) in Appendix C, GSC is linearly
transformed from G(0) as

GSC = GTM
SC GTM

(1) G(0).

In Appendix C, Theorem 1 shows that the first k columns
of GSC achieve the lower bound of the number of non-zero
entries. The GSN embedded in GSC is expressed as

GSN =
⎡

⎣
#SN 0

I ḡ(k)
k

0 i (1)

⎤

⎦, (41)

where #SN = diag(λ1,λ2, . . . ,λk−1), ḡ(k)
k is the kth column

of Ḡ(1), and column vector i (1) has 1 in the first position and
0 elsewhere.

B. Message-Symbol Remapping Procedure

Given the information matrix Ū , this subsection presents the
method to solve Ū = U GSN, where GSN is defined in (41),
and the solved U is in the form (17). Based on (41), Ū is
divided into four non-overlapping parts

Ū =
[

Ū00 Ū01
Ū10 Ū11

]
, (42)

where the sizes of Ū00, Ū01, Ū10, Ū11 are (k − 1) × (k − 1),
(k − 1) × 1, ω × (k − 1), and ω × 1, respectively.
We have

Ū00 = Z1#(1) + Z2, (43)

Ū01 = Z2ḡ(k)
k + T i (1), (44)

Ū10 = T t , (45)

Ū11 = T t ḡ(k)
k + Si (1). (46)



880 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

TABLE I

ARITHMETIC COMPLEXITIES OF [7] AND PROPOSED CODES IN SYSTEMATIC CASE, WHERE i = d − 2k + 2

TABLE II

UPDATE COMPLEXITIES OF [7], [25], AND THE PROPOSED CODES

The steps are as follows.

1) Get T by (45).
2) Compute S via (46).
3) Compute non-diagonal entries of Z1 and Z2 by (43),

where

Z1[i, j ] = −Ū00[i, j ] + Ū00[ j, i ]
λi − λ j

,∀i ̸= j, (47)

Z2[i, j ] = λi

λi − λ j
Ū00[i, j ] + −λ j

λi − λ j
Ū00[ j, i ],
∀i ̸= j. (48)

4) Compute diagonal entries of Z2 by (44).
5) Compute diagonal entries of Z1 by (43), where

Z1[i, i ] = Ū00[i, i ] − Z2[i, i ]
λi

. (49)

The computational complexity of the above procedure is
analyzed as follows. Step 1) does not need any computational
cost to solve T consisting of ω(k − 1) symbols. In Step 2),
we solve ω symbols in S via computing Ū11 − T t ḡ(k)

k ,
which requires about ω(k −1) additions/multiplications. Thus,
in Steps 1) and 2), each symbol requires about 2 finite field
operations on average.

Step 3) solves (k − 1)(k − 2) symbols. (47) requires
1 addition and 1 multiplication, and (48) requires 1 addition
and 2 multiplications. Thus, each symbol takes about 2.5 finite
field operations. In step 4), we compute Ū01 − T i (1) − Z2ḡ(k)

k ,
where the diagonal entries of Z2 are assigned to zeros. Then
each element of above result vector is divided by each element
of ḡ(k)

k to get the diagonal entries of Z2. This step needs
about (k − 1)2 additions/multiplications. In step 5), (49) only
requires 1 addition/multiplication. In steps 3), 4) and 5), we
solve a total of (k − 1)2 entries, and take O((k − 1)(k − 2) +
(k−1)2+(k−1)) = O((k−1)2) operations. Thus, each symbol
solved in Steps 3), 4), and 5) also takes constant operations.
Thus, the computational complexity is proportional to the size
of message B , and subsequently the computational complexity
is O(B).

VI. DISCUSSIONS

This section presents comparisons of Exact-MSR codes
in [7] and the proposed version, in terms of field sizes, time
complexities, and update complexities. By of [7, Corollary 8]
the [n, k, d ≥ 2k −2] Exact-MSR codes [7] are the shortening
codes of [n′ = n + i, k ′ = k + i, d ′ = d + i ] codes, where
i = d − 2k + 2 ≥ 0. Thus, the size of the encoding matrix is
n × (2d − 2k + 2), and the size of the message matrix is
(2d − 2k + 2) × (d − k + 1). The analysis of code [7] is for
the parameter [n′, k ′, d ′]. Table I tabulates the results for time
complexities, and Table II tabulates the results for update
complexities.

A. Size of Finite Fields

In (2), the definition of [α,β, B] is in the number of symbols
over field G F(q). For each symbol of G F(q), the symbol
should take log2(q) bits to record the value. Thus, the bit
sizes of the [n, k, d] Exact-MSR code at β = 1 over G F(q)
is given by

α′′ = α · log2(q);
β ′′ = log2(q); B ′′ = k(d − k + 1) · log2(q). (50)

Hence, the field size q is important for the bit sizes of
codes. In of [7, Sec. V] the authors indicate that the field
size q ≥ n(d − k + 1) suffices for the Exact-MSR code at
d = 2k − 2. However, this bound is not tight, and a tight
bound is shown in (37). For d > 2k − 2, a precise value
of the required field size is obtained by plugging [n′, k ′, d ′]
into (37). In contrast, by using the encoding matrix defined
in Section IV-B, the field size n suffices for the proposed
code. The improvement is from two techniques: First, the
unified framework can directly generate the [n, k, d ≥ 2k − 2]
codes without applying shortening technique. Second, a new
encoding matrix (Section IV-B) is proposed to satisfy the four
conditions over smaller fields.

B. Time Complexities

In this subsection, we study the number of finite field opera-
tions in encoding, Node-regeneration, and Data-reconstruction
procedures.



LIN et al.: UNIFIED FORM OF EXACT-MSR CODES VIA PRODUCT-MATRIX FRAMEWORKS 881

Fig. 1. Average number of arithmetic operations (additions and multiplica-
tions) used in [7] and proposed codes, where n = 16, k = 4.

1) Encoding Procedure: As the points of the complexities
in systematic and non-systematic versions are the same, we
only discuss the complexities of systematic version. For the
systematic case, we do not need to calculate the systematic
part of codeword, since this part is known. The following
discussion is based on the observation.

The encoding procedure [7] is represented as a matrix prod-
uct C = U G, where the sizes of U and G are (d ′−k ′+1)×d ′

and d ′ × n′, respectively. If the columns corresponding to
systematic part are removed, the size of encoding matrix is
d ′ × (n − k). Thus, [7] requires a total of (d ′ − k ′ + 1)
(n − k)d ′ = (d − k + 1)(n − k)(d + i) multiplications and
(d ′ − k ′ + 1)(n − k)(d ′ − 1) = (d − k + 1)(n − k)(d + i − 1)
additions. For the proposed code, the sizes of U and G are
(d − k + 1) × d and d × n, respectively. After removing the
systematic part, the size of encoding matrix is d × (n − k).
Thus, it requires a total of (d − k + 1)(n − k)d multiplications
and (d − k + 1)(n − k)(d − 1) additions.

The message-symbol remapping procedure is an essential
part for systematic codes, that takes around 5k ′3 multiplica-
tions and 5k ′2(k ′ − 1) additions (the details will be addressed
later). For the proposed codes, the message-symbol remapping
procedure in Sec. V requires the complexity of order O(B),
which is lower than that for data-reconstruction O(k′3) in [7].
Furthermore, for d > 2k−2, the code shortening process in [7]
requires performing message-symbol remapping procedure to
convert the longer code into systematic form. Hence, the
message-symbol remapping procedure is required.

As shown in Table I, the gain of complexity reduction
depends on the value of i = d − 2k + 2. Moreover, the ratio
of leading constant is about 6 : 1. The primary cause is the
high cost of the message-symbol remapping procedure in [7].

Figure 1 gives an example for the number of arithmetic
operations (additions and multiplications) used in the encoding
of [7] and the proposed approach when n = 16, k = 4,
and 7 ≤ d ≤ 15. Since the number of arithmetic operations
is dependent on the information U , we average the number
over randomly generated U . In this example, the number of
operations used in the proposed algorithm is approximately
18% of [7] on average for d = 7, 8, . . . , 15.

2) Node-Regeneration Procedure: In node regeneration,
the replacement node receives d symbols from the
connected nodes. Then this node computes the code fragment
stored in the failed code. In [7], the complexity of solving a

code fragment is of the order O(d ′2), where d ′ = d + i =
2d − 2k + 2. In the proposed codes, the complexity of solving
a code fragment is O(d2).

3) Data-Reconstruction Procedure: The data reconstruction
procedure in [7] is elaborated upon in Section III-B2. The
domination of the complexity is the matrix multiplications
in the data-reconstruction procedure. (13) needs a matrix
multiplication. Moreover, after obtaining Z̃1 and Z̃2, one
need to solve (15) to get Z1 and Z2. Here, we treat this
step as by two matrix multiplications. In summary, the
data-reconstruction procedure requires about five matrix
multiplications, where the size of matrix is k ′ × k ′. Thus, it
takes about 5k ′3 multiplications and 5k ′2(k ′ − 1) additions.

For the proposed codes, data reconstruction consists of two
parts, as given in Sec. III-B1 and Sec. III-B2. To solve (29)
in Sec. III-B1, the number of arithmetic operations is no more
than (d − 2k + 2)(k2 + 1) multiplications and (d − 2k + 2)
(k2 + 1) additions. In Sec. III-B2, as the size of the matrix
is k × k, those matrix multiplications take approximately 5k3

multiplications and 5k3 additions. In summary, the proposed
codes require approximately k2(d + 3k + 2) multiplications
and k2(d + 3k + 2) additions. To emphasize the differences,
we use i = d − 2k + 2 ≥ 0; then, we have 5k ′3 = 5(k + i)3

and k2(d +3k +2) = k2(5k + i). Thus, the proposed code has
lower computational cost.

C. Update Complexities

Update complexity is defined as the maximal number of
codeword symbols that should be updated while a single
source symbol is modified. Consider Reed-Solomon codes,
the systematic versions have lower update complexities than
non-systematic versions. This is because the codeword in
systematic part does not need to be updated, except for the
source symbol we want to modify. Thus, [26], [25] proposed
a class of update-efficient exact regenerating codes based on
systematic Reed-Solomon codes. This section analyzes
update complexities of three practical versions of
Exact-MSR codes: [7], [25], and ours. Table II tabulates the
results.

Assume the source message is a zero sequence, and thus,
U and the generated code C = U G are zero matrices. Then,
a source symbol is assigned to non-zero to get a updated
massage matrix U ′ = [Z ′

1, Z ′
2], and the number of non-zero

entries in codeword C ′ = U ′G is the update complexity of
this code. W.L.O.G., assume the nonzero source symbol is
arranged in Z ′

1. Owing to the symmetry condition imposed
on Z ′

1, there are two non-zero entries Z ′
1[i, j ] and Z ′

1[ j, i ]
in Z ′

1, for i ̸= j . Otherwise, there is only one nonzero entry
Z ′

1[i, i ] in Z ′
1, for i = j .

1) Update Complexity of [7]: [7] presents the non-
systematic codes (at d = 2k − 2) and their systematic version
(for d ≥ 2k −2). For the non-systematic versions, suppose the
non-zero entry is at Z ′

1[i, j ] and Z ′
1[ j, i ], then the code matrix

C ′ = U ′G has non-zero entries at the i th and j th rows. Thus,
the number of non-zero entries in C ′ is 2n stored in n nodes.
Notably, when the modified element is at the diagonal of Z ′

1,
the update complexity is reduced to n.



882 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

The systematic version [7] is the shortening code of
[n′; k ′; d ′ = 2k ′ − 2]. In this case, U ′ is computed from
Ū ′ = U ′GSN, where Ū ′ is filled with zeroes excluding
a non-zero entry somewhere, and GSN is a Vandermonde
matrix. Application of the data reconstruction procedure shows
that most of the entries of U ′ are non-zero. Thus, the code
matrix C ′ = U ′G has numerous non-zero entries in the
non-systematic part. Hence, we should update up to a total
of (k − 1)(n − k) + 1 entries in (n − k + 1) nodes.1 The
analysis results have been included in Table II.

2) Update Complexity of [25]: Based on [n, k − 1]
systematic Reed-Solomon codes, [25] presents a class of
update-efficient Exact-MSR codes at d = 2k −2. [25] showed
that its proposed codes have lower update complexity.
As shown in [26, Sec. III] of, the encoding matrix is defined as

G =
[

Ḡ#
Ḡ

]
,

where Ḡ is the (k − 1) × n encoding matrix of an [n, k − 1]
systematic Reed-Solomon code. Since each row of G is with
n − k + 2 non-zero entries, the number of updated entries in
C ′ is 2(n − k +2) or n − k +2 when the modified element is a
diagonal entry in Z ′

1. As the codes in [25] are not systematic
codes, we list the analysis result in non-systematic column
of Table II.

3) Update Complexity of Proposed Code: The update
complexity of the proposed code is determined by the position
of the modified symbol. For the non-systematic version, we
choose the encoding matrix as the GSC shown in Section V.
By definition, the message matrix consists of four sub-matrices
Z1, Z2, T , and S. In the following, we consider the update
complexity by the position of the modified source symbol in
each submatrix:

• Z ′
1[i, j ] and Z ′

1[ j, i ]: In this case, the code matrix
C ′ = U ′G has non-zero entries at row i and row j .
By definition of GSN, there are two non-zero entries in
the first k − 1 columns of C ′, and the kth column of C ′

is a zero column. Thus, we should update 2(n − k) + 2
entries stored in n −k +2 nodes. Notably, if the modified
entry is at the diagonal position Z ′

1[i, i ], then C ′ = U ′G
has non-zero entries in row i . In this case, we should
update n − k + 1 entries stored in n − k + 1 nodes.

• Z ′
2[i, j ] and Z ′

2[ j, i ]: In this case, the code matrix
C ′ = U ′G has non-zero entries at row i and row j .
By definition of GSN, there are two non-zero entries in
the first k −1 columns of C ′, and two non-zero entries in
the kth column of C ′. Thus, we should update 2(n−k)+4
entries stored in n −k +3 nodes. Notably, if the modified
entry is at the diagonal position Z ′

2[i, i ] , then C ′ = U ′G
has non-zero entries in row i . In this case, we should
update n − k + 2 entries stored in n − k + 2 nodes.

• T ′[i, j ] and (T t )′[ j, i ]: In this case, the code matrix
C ′ = U ′G has non-zero entries at row i and row j +k−1.
By definition of GSN, there is a non-zero entry in the first
k − 1 columns of C ′. If j = 1, the kth column of C ′ has

1This has been verified by simulations for some MSR codes.

two non-zero entries; otherwise, the kth column of C ′

constitute a non-zero entry. Thus, we should update 2(n−
k) + 2 or 2(n − k) + 3 entries stored in n − k + 2 nodes.

• S′[i, 1] and S′[1, i ]: In this case, the code matrix
C ′ = U ′G has non-zero entries at row k − 1 + i .
By definition of GSN, it can be seen that the first k − 1
columns of C ′ is a zero matrix. Thus, we should update
n − k + 1 entries stored in n − k + 1 nodes.

Table II records the worst case when the modified source
symbol is at Z ′

2[i, j ] and Z ′
2[ j, i ], for i ̸= j . In this case,

we need to update 2(n − k) + 4 entries in n − k + 3 nodes.
For the systematic version, Ū in (42) can be divided into

four parts Ū00, Ū01, Ū10, and Ū11. In the following, we
consider the update complexity by the position of the modified
source symbol in each submatrix.

• Ū ′
00[i, j ]: By (47) and (48), the computed Z ′

1 and Z ′
2 in

U ′ have four non-zero entries Z ′
1[i, j ], Z ′

1[ j, i ], Z ′
2[i, j ],

and Z ′
2[ j, i ]. Hence, the code matrix C ′ = U ′G has

non-zero entries at row i and row j . Then by (44),
both Z ′

2[i, i ] and Z ′
2[ j, j ] are non-zeros entries. By (49),

Z ′
1[i, i ] and Z ′

1[ j, j ] are also non-zeros entries. As
the code is systematic, the systematic part of C ′ does
not include non-zero entries, except at the position of
the modified message symbol. Thus, we should update
2(n − k) + 1 entries stored in n − k + 1 nodes. Notably,
if the modified entry is a diagonal entry in Ū ′

00[i, i ], then
Z ′

1[i, i ] is non-zero, and C ′ = U ′G has non-zero entries
in row i . Thus, we should update n − k + 1 entries stored
in n − k + 1 nodes in this case.

• Ū ′
01[i ]: In this case, we have non-zero entries at Z ′

2[i, i ]
and Z ′

1[i, i ]. With this U ′, the code C ′ = U ′G has
non-zero entries at row i , and hence we should update
n − k + 1 entries stored in n − k + 1 nodes.

• Ū ′
11[i ]: If i ̸= 1, we have two non-zero entries at S′[1, i ]

and S′[i, 1]. Thus, the code matrix C ′ = U ′G has
non-zero entries at row k − 1 + i and row k, then we
should update 2(n − k) + 1 entries stored in n − k + 1
nodes. If i = 1, we have a non-zero entry at S′[1, 1].
The code matrix C ′ = U ′G has non-zero entries at row
k, and we should then update n − k + 1 entries stored in
n − k + 1 nodes.

• Ū ′
10[i, j ]: In this case, we have four non-zero entries at

T t [i, j ], T [ j, i ], S′[1, i ], and S′[i, 1] in U ′. By this U ′,
the code matrix C ′ = U ′G has non-zero entries in row
k − 1 + i , row k, and row j . Thus, we should update
3(n − k) + 1 entries stored in n − k + 1 nodes.

Table II records the worst case of update complexity. For
d = 2k − 2, Ū includes only Ū00 and Ū01 such that the
update complexity is 2n − 2k + 1 stored in n − k nodes. For
d > 2k−2, the worst case is when the modified source symbol
is at Ū ′

10[i, j ]. In this case, we need to update 3(n − k) + 1
symbols in n − k + 1 nodes.

VII. CONCLUDING REMARKS

Regenerating codes have good performance to repair the
node failures. However, some regenerating codes require quite
expensive computational cost, as compared with common



LIN et al.: UNIFIED FORM OF EXACT-MSR CODES VIA PRODUCT-MATRIX FRAMEWORKS 883

MDS codes, such as Reed-Solomon codes. To facilitate prac-
tical implementations of regenerating codes, we investigated
several important issues pertaining to the construction of
Exact-MSR codes. First, a unified framework of an [n, k, d ≥
2k − 2] Exact-MSR code is proposed. The unified framework
is operated on smaller encoding/message matrices without
having to apply the shortening technique. This gives a clear
representation about the code constructions of Exact-MSR
codes at [n, k, d ≥ 2k − 2]. Second, two practical forms of
the encoding matrix are proposed. By the proposed encoding
matrix, the field size is only n over the extended binary field,
and thus the bit sizes (50) of Exact-MSR codes can be reduced.
Third, an encoding matrix conversion method is proposed.
This reduces the update complexity and the leading constant
(around 1 vs 6) hidden in big-O encoding complexity. In some
practical distribution storage systems, the number of nodes n
is not very large, and thus the leading constant is also quite
important. Finally, we presented a new data reconstruction
algorithm in the case of an encoding matrix in the form of
a Vandermonde matrix, with the aim of reducing the space
cost and encoding cost. These proposed techniques facilitate
practical implementations. Note that Exact-MSR code for
d < 2k−3 is non-achievable for β = 1 [18] such that the code
rate for Exact-MSR is roughly less than 1/2. The proposed
unified framework does not give constructions for any new set
of parameters, and thus the construction for [n, k, d = 2k −3]
Exact-MSR code is still unknown.

APPENDIX A
PROOF OF PROPOSITION 1

It is clear that each element of G F(q) is exactly assigned
to a set of {Ai }(q−1)/g−1

i=−1 . By definition, two properties are
proven as follows:

1) Note that aq−1 = 1. For x ∈ Ai and i ≥ 0, then
x = ai+ j (q−1)/g ∈ Ai , and we have

(ai+ j (q−1)/g)b = aib+ j b(q−1)/g = aib+ j ·lcm(b,q−1) =aib.

2) Because 0 is evidently excluded from {aib}(q−1)/g−1
i=0 , we

only consider two elements ai1b and ai2b taken from the
set {aib}(q−1)/g−1

i=0 , where 0 ≤ i1, i2 ≤ (q − 1)/g − 1
and i1 ̸= 12. We prove it by contradiction. Suppose
ai1b = ai2b and i1 > i2, then we have

ai1b = ai2b

⇒ a(i1−i2)b (mod (q−1)) = 1

⇒ (q − 1)|(i1 − i2)b

⇒ (q − 1)/g|(i1 − i2)(b/g)

⇒ (q − 1)/g|(i1 − i2)

since (q − 1)/g and b/g are co-prime. However,
(i1 − i2) ≤ (q − 1)/g − 1 is defined such that (q − 1)/g
cannot divide (i1 − i2) and it leads to a contradiction.
This completes the proof.

APPENDIX B
SOLVING Z̃1 AND Z̃2 IN (32)

As shown in Section III-B2, if the decoding of (16) is
achieved by multiplying inverse matrices, it needs to store

a total of k inverse matrices with size (k − 1) × (k − 1) for
each or calculate inverses for two Vandermonde matrices. This
section presents another decoding algorithm that needs to store
only a k × k inverse matrix. The proposed algorithm has a
condition that Z̃1 (and Z̃2) can be viewed as the results of
polynomial evaluations. For example, when ḠDC is a Vander-
monde matrix, Z̃1 = Ḡt

DC Z1ḠDC can be treated as polynomial
evaluations. In this case, the information polynomial for Z1 is
defined as

Z1(x, y) =
∑

1≤i, j≤k−1

Z1[i, j ]xi−1y j−1, (51)

where the degree of Z1(x, y) is at most k −2 in both x and y.
Consequently, each entry of Z̃1 can be viewed as the evaluation
result Z1(x̄i , x̄ j ) = Z̃1[i, j ] for 1 ≤ i, j ≤ k, where the set
of evaluation points {x̄i}k

i=1 is given by ḠDC. Notice that the
results of Z1(z, z) at z ∈ {x̄i}k

i=1 are unknown, since we do
not have the diagonal values of Z̃1. Similarly, the information
polynomial for Z2 is given by

Z2(x, y) =
∑

1≤i, j≤k−1

Z2[i, j ]xi−1y j−1, (52)

and we have the evaluation results Z2(x̄i , x̄ j ) = Z̃2[i, j ] for
1 ≤ i, j ≤ k and i ̸= j .

By combining Z1(x, y) and Z2(x, y), an information
polynomial is defined as

ZSS(x, y) = Z1(x, y)y + Z2(x, y). (53)

The degree of ZSS(x, y) is at most k − 2 in x and k − 1 in y.
The coefficients of ZSS(x, y) are denoted as a (k − 1) × k
matrix ZSS, where ZSS[i, j ] is the coefficient of the term
xi−1 y j−1 in ZSS(x, y). We will show that Z1 and Z2 can
be extracted from ZSS, and thus the goal is to solve the
coefficients of ZSS(x, y). By Z̃1 and Z̃2, the evaluations of
ZSS(x, y) at x, y ∈ {x̄i}k

i=1 can be easily calculated as

ZSS(x̄i , x̄ j ) = Z̃1[i, j ]x̄ j + Z̃2[i, j ], ∀i, j = 1, 2, . . . , k. (54)

However, the evaluations ZSS(z, z) at z ∈ {x̄i}k
i=1 are still

unknown. These unknown values will increase the difficulty
of solving ZSS(x, y).

To handle these unknown values, ZSS(x, y) is multiplied
with (x − y) to get

ZS(x, y) = ZSS(x, y)(x − y), (55)

where the degree of ZS(x, y) is at most k −1 in x and k in y.
Let Z̃S denote a k × k matrix consisting of the evaluation
results ZS(x, y) for x, y ∈ {x̄i}k

i=1. By Z̃1 and Z̃2, Z̃S can be
easily calculated as

Z̃S[i, j ] = (Z̃1[i, j ]x̄ j + Z̃2[i, j ])(x̄i − x̄ j ),

∀i, j = 1, 2, . . . , k. (56)

It is noteworthy that Z̃S does not include any unknown
values. Specifically, the diagonal of Z̃S is assigned to zeroes
Z̃S[i, i ] = 0, unlike the unknown values in the diagonals of
Z̃1 and Z̃2.

Next, we solve the coefficients of polynomials
{ZS(x, x̄ j )}k

j=1, where ZS(x, x̄ j ) is a polynomial with



884 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

y = x̄ j on ZS(x, y). By the known values {ZS(x̄i , x̄ j )}k
i=1

in the i th row of Z̃S, we can interpolate ZS(x, x̄ j ) through
Lagrange polynomials, because deg(ZS(x, x̄ j )) ≤ (k − 1).
Then, the obtained ZS(x, x̄ j ) is divided by (x − x̄ j ) to get
the coefficients of the polynomial

ZSS(x, x̄ j ) = ZS(x, x̄ j )/(x − x̄ j )

= Z1(x, x̄ j )x̄ j + Z2(x, x̄ j ). (57)

After {ZSS(x, x̄ j )}k
j=1 has been obtained, the next step is

to calculate the coefficients of ZSS(x, y). This step can
be performed by applying a polynomial interpolation to
{ZSS(x, x̄ j )}k

j=1.
Finally, we split ZSS into two (k − 1) × (k − 1) symmetry

matrices, Z1 and Z2. By (53), the relationship of ZSS with Z1
and Z2 is given by

ZSS[i, j ] = Z1[i, j − 1] + Z2[i, j ].
By symmetry of Z1 and Z2, an iterative algorithm is derived
as presented below:

1) Obtain the first row/column of Z2 as

Z2[1, j ] = Z2[ j, 1] = ZSS[ j, 1], ∀ j = 1, 2, . . . , k − 1.

The first row/column of Z1 is computed by

Z1[1, j ] = Z1[ j, 1]
= ZSS[1, j + 1] − Z2[1, j + 1],

∀ j = 1, 2, . . . , k − 2.

Z1[1, k − 1] = Z1[k − 1, 1] = ZSS[1, k].
Set i = 2.

2) Obtain the i th row/column of Z2 as

Z2[i, j ] = Z2[ j, i ]
= ZSS[ j, i ] − Z1[ j, i − 1],

∀ j = i, i + 1, . . . , k − 1.

3) Obtain the i th row/column of Z1 as

Z1[i, j ] = Z1[ j, i ]
= ZSS[i, j + 1] − Z2[i, j + 1],

∀ j = i, i + 1, . . . , k − 2.

Z1[i, k − 1] = Z1[k − 1, i ] = ZSS[i, k].
4) If i ≤ k − 2, set i = i + 1 and goto step 2. Otherwise,

terminate the algorithm and output Z1 and Z2.
It can be shown that each entry of Z1[i, j ] (Z2[i, j ]) requires
only 1 addition. Thus, this algorithm requires complexity of
the order O(k2).

In summary, the proposed method consists of four major
stages. The first stage is to calculate (56) with the complexity
of the order O(k2). The second stage is to interpolate
k polynomials {ZSS(x, x̄ j )}k

j=1. Polynomial interpolation can
be performed using the matrix product (Ĝ−1

DC)t Z̃S. In this case,
ĜDC is a k×k Vandermonde matrix with a row appended at the
bottom of ḠDC. The computation of ĜDC requires complexity
of the order of O(k2) [27]. After obtaining the result Z̃SĜ−1

DC,
we compute a (k − 1) × k matrix Z tmp

SS by dividing the i th

column, 1 ≤ i ≤ k, of the result matrix by (x − x̄ j). This stage
requires O(k3) operations in the matrix product and O(k2)
operations in polynomial division on each matrix column.

The third stage is to solve the coefficients of ZSS(x, y). The
result is computed by the matrix product ZSS = Z tmp

SSLĜ−1
DC

with complexity of order O(k3) operations. Finally, the last
stage is to split ZSS into two matrices Z1 and Z2 with O(k2)
additions.

This method has several advantages over the decoding
of (16). First, we do not need to independently solve two equa-
tions Z̃1 = Ḡt

DC Z1ḠDC and Z̃2 = Ḡt
DCZ2ḠDC. Instead, the

decoding operations are only operated on a unique matrix, and
so, the computational cost and memory cost can be reduced.
Second, we do not need to consider the unknown entries in
the diagonals of Z̃1 and Z̃2. In the proposed technique, the
decoding procedure needs to only store matrix Ĝ−1

DC.

APPENDIX C
PROOFS OF THE VAILIDITY OF THE ENCODING

MATRIX CONVERSION

The proof utilizes the following trivial proposition.
Proposition 2 [28]: Let X denote a b ×n matrix and XTM

denote a b × b non-singular matrix, where b ≤ n. If any
b columns of X are linearly independent, any b columns of
product XTM · X are also linearly independent. !

Lemma 1: If G(0) is valid, then G(1) is also valid.
Proof: The validity of the each condition of encoding

matrix is discussed separately.
• Condition 2): From Condition 2), {λ(0)

i }n
i=1 are mutually

distinct. Clearly, {λ(1)
i = λ(0)

i −λ(0)
k }n

i=1 are also mutually
distinct such that Condition 2) holds.

• Condition 3): From Condition 3), any k − 1 columns of
Ḡ(0) are linearly independent. Since matrix (Ḡ(k−1)

(0) )−1

is non-singular, by Proposition 2, any k − 1 columns of
Ḡ(1) = (Ḡ(k−1)

(0) )−1Ḡ(0) are linearly independent.
• Condition 1): To verify this condition, the first term of

G(1) is reformulated as

Ḡ(1)#(1)

= (Ḡ(k−1)
(0) )−1Ḡ(0)(#(0) − diag(λk, . . . ,λk))

= (Ḡ(k−1)
(0) )−1Ḡ(0)#(0) − (Ḡ(k−1)

(0) )−1Ḡ(0)

×diag(λk, . . . ,λk)

= (Ḡ(k−1)
(0) )−1Ḡ(0)#(0) − λk(Ḡ(k−1)

(0) )−1Ḡ(0).

The third term of G(1) can be reformulated as

((1) = ((0) − ((k−1)
(0) Ḡ(1)

= ((0) − ((k−1)
(0) (Ḡ(k−1)

(0) )−1Ḡ(0). (58)

Substituting (58) and (58) into G(1), we have

G(1) = GTM
(1) G(0)

=

⎡

⎢⎣
(Ḡ(k−1)

(0) )−1 −λk(Ḡ(k−1)
(0) )−1 0

0 (Ḡ(k−1)
(0) )−1 0

0 −((k−1)
(0) (Ḡ(k−1)

(0) )−1 I

⎤

⎥⎦

⎡

⎣
Ḡ(0)#(0)

Ḡ(0)

((0)

⎤

⎦.

(59)



LIN et al.: UNIFIED FORM OF EXACT-MSR CODES VIA PRODUCT-MATRIX FRAMEWORKS 885

Notice that GTM
(1) is non-singular because of

det(GTM
(1) ) =

∣∣∣∣∣∣∣

(Ḡ(k−1)
(0) )−1 −λk(Ḡ(k−1)

(0) )−1 0
0 (Ḡ(k−1)

(0) )−1 0
0 −((k−1)

(0) (Ḡ(k−1)
(0) )−1 I

∣∣∣∣∣∣∣

=
∣∣∣∣∣
(Ḡ(k−1)

(0) )−1 −λk(Ḡ(k−1)
(0) )−1

0 (Ḡ(k−1)
(0) )−1

∣∣∣∣∣

= det((Ḡ(k−1)
(0) )−1)2 ̸= 0 (60)

As any d columns of G(0) are linearly independent, by
Proposition 2, any d columns of G(1) = GTM

(1) G(0) are
also linearly independent.

• Condition 4): Let δ(0) denote the first row of ((0), and
let row vector δ(k−1)

(0) contain the first k − 1 elements
of δ(0). Ĝ(1) denotes the combination Ḡ(1) with the first
row of ((1). By (59), Ĝ(1) can be obtained from Ḡ(0) as

Ĝ(1) = ĜTM
(1) Ĝ(0) =

[
(Ḡ(k−1)

(0) )−1 0
−δ(k−1)

(0) (Ḡ(k−1)
(0) )−1 1

][
Ḡ(0)

δ(0)

]
.

(61)

Notice that ĜTM
(1) is non-singular because of

det(ĜTM
(1) ) = det((Ḡ(k−1)

(0) )−1) ̸= 0.

As any k columns of Ĝ(0) are linearly independent,
by Proposition 2, any k columns of Ĝ(1) = ĜTM

(1) Ĝ(0)

are also linearly independent. !

Lemma 2: If G(1) is valid, then GSC is also valid.
Proof: Since G(1) is valid, Conditions 2) and 3) are

satisfied inherently. Hence, we only consider the validity for
Conditions 1) and 4).

• Condition 1): GSC can be reformulated as

GSC = GTM
SC G(1)

=
⎡

⎣
I 0 0
0 I 0
0 0 (TM

(2)

⎤

⎦

⎡

⎣
Ḡ(1)#(1)

Ḡ(1)

((1)

⎤

⎦. (62)

As

det(GTM
SC ) = det((TM

(2) ) = 1/δk[1] ̸= 0,

GTM
SC is non-singular. Since any d columns of G(1) are

linearly independent, by Proposition 2, any d columns
of GSC = GTM

SC G(1) are also linearly independent.
• Condition 4): By (39), the first row of ((2) is the first

row of ((1) through scaling of a non-zero factor 1/δk[1].
Thus, the transformation is given by

ĜSC = ĜTM
SC Ĝ(1) =

[
I 0
0 1/δk[1]

]
Ĝ(1).

Clearly, ĜTM
SC is non-singular; then, Condition 4)

holds. !

Theorem 1: The number of non-zero entries of GSN attains
the lower bound, under the conditions of the encoding matrix.

Proof: By its construction, GSN can be viewed as the
encoding matrix of an [n = k] Exact-MSR code, under
the conditions of an encoding matrix. To demonstrate the
optimality, we first prove that the [n = k] Exact-MSR code
includes at least 3k−2 non-zero entries in the encoding matrix,
and then show that GSN attaches this bound.

As shown in (19), the encoding matrix of the [n = k]
code consists of three parts, termed Ḡ[n=k]#[n=k], Ḡ[n=k], and
([n=k]. In the following, we analyze the minimum number of
non-zero entries in each part, separately.

• ([n=k] includes at least one non-zero entry:
This claim can be easily proved by contradiction: if
([n=k] is a zero matrix, Ĝ[n=k] will have a zero row
in the bottom; thus, the encoding matrix cannot satisfy
Condition 4).

• Ḡ[n=k] includes at least 2k − 2 non-zero entries:
By Condition 3), Ḡ[n=k] can be viewed as the encoding
matrix of (k, k − 1) MDS code with minimum Hamming
distance 2, and thus the number of non-zero entries is at
least 2(k − 1).

• Ḡ[n=k]#[n=k] includes at least k − 1 non-zero entries:
This claim can be proved by contradiction. Assume
that Ḡ[n=k]#[n=k] includes less than k − 1 non-zero
entries. Then there exists at least two zero columns in
Ḡ[n=k]#[n=k] that are denoted as ḡiλi and ḡ jλ j . Since
λi ̸= λ j by Condition 2), there exists at least one non-
zero element between λi and λ j . W.L.O.G, assume that
λi is the non-zero entry. Since ḡiλi = 0, ḡi should be a
zero column such that Condition 3) cannot be satisfied.
This completes this claim.

After all three numbers of the non-zero entries have been
added up, the encoding matrix of the [n = k] Exact-MSR
code has at least 1 + 2k − 2 + (k − 1) = 3k − 2 non-zero
entries, which is equivalent to the number of non-zero entries
of GSN. Hence, GSN is with the minimum number of non-zero
entries. !

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in
Proc. 19th ACM SIGOPS Symp. Oper. Syst. Principles, Bolton Landing,
NY, USA, Oct. 2003, pp. 29–43.

[2] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[3] A. Fikes, “Storage architecture and challenges,” in Proc. Google Faculty
Summit, 2010.

[4] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” in Proc. 26th IEEE
Int. Conf. Comput. Commun. (INFOCOM), Anchorage, AK, USA,
May 2007, pp. 2000–2008.

[5] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[6] Y. Wu, A. G. Dimakis, and K. Ramchandran, “Deterministic regener-
ating codes for distributed storage,” in Proc. 45th Annu. Allerton Conf.
Control, Comput., Commun., Urbana, IL, USA, Sep. 2007, pp. 242–249.

[7] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via
a product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8,
pp. 5227–5239, Aug. 2011.

[8] V. R. Cadambe, C. Huang, S. A. Jafar, and J. Li, “Optimal repair of
MDS codes in distributed storage via subspace interference alignment,”
CoRR, vol. abs/1106.1250, 2011.



886 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

[9] D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe, “Repair
optimal erasure codes through Hadamard designs,” IEEE Trans. Inf.
Theory, vol. 59, no. 5, pp. 3021–3037, May 2013.

[10] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Distributed storage codes with repair-by-transfer and nonachievability
of interior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf.
Theory, vol. 58, no. 3, pp. 1837–1852, Mar. 2012.

[11] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit
construction of optimal exact regenerating codes for distributed storage,”
in Proc. 47th Annu. Allerton Conf. Control, Comput., Commun., Urbana,
IL, USA, Sep./Oct. 2009, pp. 1243–1249.

[12] Y. Wu, “Existence and construction of capacity-achieving network codes
for distributed storage,” IEEE J. Sel. Areas Commun., vol. 28, no. 2,
pp. 277–288, Feb. 2010.

[13] S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic dis-
tributed storage systems against eavesdropping and adversarial attacks,”
IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6734–6753, Oct. 2011.

[14] F. Oggier and A. Datta, “Byzantine fault tolerance of regenerating
codes,” in Proc. IEEE Int. Conf. Peer-to-Peer Comput. (P2P), Kyoto,
Japan, 2011, pp.112–121.

[15] Y. S. Han, R. Zheng, and W. H. Mow, “Exact regenerating codes for
Byzantine fault tolerance in distributed storage,” in Proc. IEEE Int.
Conf. Comput. Commun. (INFOCOM), Orlando, FL, USA, Mar. 2012,
pp. 2498–2506.

[16] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Seoul, Korea, Jun./Jul. 2009, pp. 2276–2280.

[17] D. F. Cullina, “Searching for minimum storage regenerating codes,”
M.S. thesis, Dept. Elect. Eng., California Inst. Technol., Pasadena, CA,
USA, 2009.

[18] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Interference alignment in regenerating codes for distributed storage:
Necessity and code constructions,” IEEE Trans. Inf. Theory, vol. 58,
no. 4, pp. 2134–2158, Apr. 2012.

[19] S. Goparaju, I. Tamo, and R. Calderbank, “An improved sub-
packetization bound for minimum storage regenerating codes,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2770–2779, May 2014.

[20] S. Goparaju and R. Calderbank, “A new sub-packetization bound for
minimum storage regenerating codes,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2013, pp. 1616–1620.

[21] C. Tian, V. Aggarwal, and V. A. Vaishampayan, “Exact-repair regener-
ating codes via layered erasure correction and block designs,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2013, pp. 1431–1435.

[22] T. Ernvall, “Exact-regenerating codes between MBR and MSR points,”
in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2013, pp. 1–5.

[23] B. Sasidharan and P. V. Kumar, “High-rate regenerating codes through
layering,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2013,
pp. 1611–1615.

[24] J. Li and B. Li, “Cooperative repair with minimum-storage regenerat-
ing codes for distributed storage,” in Proc. IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr./May 2014, pp. 316–324.

[25] Y. S. Han, H.-T. Pai, R. Zheng, and P. K. Varshney, “Update-
efficient regenerating codes with minimum per-node storage,” CoRR,
vol. abs/1301.2497, 2013.

[26] Y. S. Han, H.-T. Pai, R. Zheng, and P. K. Varshney, “Update-efficient
regenerating codes with minimum per-node storage,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2013, pp. 1436–1440.

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press, 1988.

[28] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, 4th ed.
London, U.K.: Pearson, 2002.

Sian-Jheng Lin received the B.Sc., M.Sc., and Ph.D. degrees in computer
science from National Chiao Tung University, Hsinchu, Taiwan, in 2004, 2006,
and 2010, respectively. From 2010 to 2014, he was a postdoc at the Research
Center for Information Technology Innovation, Academia Sinica. He was a
part-time lecturer at Yuanpei University from 2007 to 2008, and at Hsuan
Chuang University From 2008 to 2010. He is currently a postdoc with the
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE)
Division, King Abdullah University of Science and Technology (KAUST),
Thuwal, Saudi Arabia. His recent research interests include erasure codes and
distributed storage codes.

Wei-Ho Chung (M’10) received the B.Sc. and M.Sc. degrees in Electrical
Engineering from the National Taiwan University, Taipei, Taiwan, in 2000
and 2002, respectively, and the Ph.D. degree in Electrical Engineering from
the University of California, Los Angeles, in 2009. From 2002 to 2005,
he was a system engineer at ChungHwa Telecommunications Company, where
he worked on data networks. In 2008, he worked on CDMA systems at
Qualcomm, Inc., San Diego, CA. His research interests include communica-
tions, signal processing, and networks. Dr. Chung received the Taiwan Merit
Scholarship from 2005 to 2009 and the Best Paper Award in IEEE WCNC
2012, and has published over 40 journal articles and over 50 conference
papers. Since January 2010, Dr. Chung has been an assistant research fellow,
and promoted to the rank of associate research fellow in January 2014 in
Academia Sinica. He leads the Wireless Communications Lab in the Research
Center for Information Technology Innovation, Academia Sinica, Taiwan.

Yunghsiang S. Han (S’90–M’93–SM’08–F’11) was born in Taipei, Taiwan,
1962. He received B.Sc. and M.Sc. degrees in electrical engineering from
the National Tsing Hua University, Hsinchu, Taiwan, in 1984 and 1986,
respectively, and a Ph.D. degree from the School of Computer and Information
Science, Syracuse University, Syracuse, NY, in 1993.

He was from 1986 to 1988 a lecturer at Ming-Hsin Engineering College,
Hsinchu, Taiwan. He was a teaching assistant from 1989 to 1992, and
a research associate in the School of Computer and Information Science,
Syracuse University from 1992 to 1993. He was, from 1993 to 1997,
an Associate Professor in the Department of Electronic Engineering at Hua
Fan College of Humanities and Technology, Taipei Hsien, Taiwan. He was
with the Department of Computer Science and Information Engineering at
National Chi Nan University, Nantou, Taiwan from 1997 to 2004. He was
promoted to Professor in 1998. He was a visiting scholar in the Department
of Electrical Engineering at University of Hawaii at Manoa, HI from June
to October 2001, the SUPRIA visiting research scholar in the Department of
Electrical Engineering and Computer Science and CASE center at Syracuse
University, NY from September 2002 to January 2004 and July 2012 to
June 2013, and the visiting scholar in the Department of Electrical and Com-
puter Engineering at University of Texas at Austin, TX from August 2008 to
June 2009. He was with the Graduate Institute of Communication Engineering
at National Taipei University, Taipei, Taiwan from August 2004 to July 2010.
From August 2010, he is with the Department of Electrical Engineering at
National Taiwan University of Science and Technology as Chair professor.
His research interests are in error-control coding, wireless networks, and
security.

Dr. Han was a winner of the 1994 Syracuse University Doctoral Prize and
a Fellow of IEEE.

Tareq Y. Al-Naffouri (M’10) received the B.S. degrees in mathematics
and electrical engineering (with first honors) from King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia, in 1994, the M.S. degree in
electrical engineering from the Georgia Institute of Technology, Atlanta, in
1998, and the Ph.D. degree in electrical engineering from Stanford University,
Stanford, CA, in 2004.

He was a visiting scholar at California Institute of Technology, Pasadena,
CA, from January to August 2005 and during summer 2006. He was a
Fulbright scholar at the University of Southern California from February to
September 2008. He has held internship positions at NEC Research Labs,
Tokyo, Japan, in 1998, Adaptive Systems Lab, University of California at
Los Angeles in 1999, National Semiconductor, Santa Clara, CA, in 2001 and
2002, and Beceem Communications Santa Clara, CA, in 2004. He is currently
an Associate Professor at the Electrical Engineering Department, King Fahd
University of Petroleum and Minerals, Saudi Arabia, and jointly at the
Electrical Engineering Department, King Abdullah University of Science and
Technology (KAUST). His research interests lie in the areas of adaptive and
statistical signal processing and their applications to wireless communications,
seismic signal processing, and in multiuser information theory. He has
recently been interested in compressive sensing and random matrix theory
and their applications. He has over 80 publications in Journal and conference
proceedings, 9 standard contributions, 4 issued patents, and 4 pending.

Dr. Al-Naffouri is the recipient of a 2001 Best Student Paper Award at the
IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP)
2001 for his work on adaptive filtering analysis, the IEEE Education Society
Chapter Achievement Award in 2008, and Al-Marai Award for innovative
research in communication in 2009. Dr. Al-Naffouri has also been serving
as an Associate Editor of TRANSACTIONS ON SIGNAL PROCESSING since
August 2013.


