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Abstract—An (n, k) recoverable property array code is com-
posed of m× n arrays such that any k out of n columns suffice
to retrieve all the information symbols, where n > k. Note that
maximum distance separable (MDS) array code is a special (n, k)
recoverable property array code of size m× n with the number
of information symbols being km. Expanded-Blaum-Roth (EBR)
codes and Expanded-Independent-Parity (EIP) codes are two
classes of (n, k) recoverable property array codes that can repair
any one symbol in a column by locally accessing some other
symbols within the column, where the number of symbols m in
a column is a prime number. By generalizing the constructions of
EBR and EIP codes, we propose new (n, k) recoverable property
array codes, such that any one symbol can be locally recovered
and the number of symbols in a column can be not only a prime
number but also a power of an odd prime number. Also, we
present an efficient encoding/decoding method for the proposed
generalized EBR (GEBR) and generalized EIP (GEIP) codes
based on the LU factorization of a Vandermonde matrix. We
show that the proposed decoding method has less computational
complexity than existing methods. Furthermore, we show that
the proposed GEBR codes have both a larger minimum symbol
distance and a larger recovery ability of erased lines for some
parameters when compared to EBR codes. We also present a
necessary and sufficient condition of enabling EBR codes to
recover any r erased lines of a slope for any parameter r, which
was an open problem in [2]. Moreover, we show that EBR codes
can recover any r consecutive erased lines of any slope for any
parameter r.

Index Terms—Array codes, Expanded-Blaum-Roth codes,
Expanded-Independent-Parity codes, local repair, efficient encod-
ing/decoding.

I. INTRODUCTION

Modern distributed storage systems require data redundancy
to maintain data availability and durability in the presence of
failures. Two major redundancy mechanisms are replication
and erasure coding. Compared to replication, erasure coding
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can deliver higher data reliability with much lower storage
overhead.

There are many constructions of erasure correcting codes. In
this work, we focus on array codes, which are a class of erasure
correcting codes with only XOR and cyclic-shift operations
being involved in the coding process. Array codes have been
widely used in storage systems, such as the Redundant Array of
Independent Disk (RAID) [3]. Consider an array code of size
m× n elements, in which each element stores one symbol in
the array code. Among the n columns, the first k columns store
m × k information symbols to form k information columns,
and the remaining r = n − k columns store m × r parity
symbols, encoded from the m × k information symbols, to
form r parity columns. The value of m depends on the code
construction, and the m symbols in each column are stored in
the same disk (or node) of a storage system.

Maximum distance separable (MDS) array codes are a special
class of array codes, where any k out of the n columns
can retrieve all m × k information symbols stored in the k
information columns (i.e., providing fault tolerance against any
r disk failures). More generally, we define (n, k) recoverable
property array codes as the m× n array codes such that we
can recover all the information symbols from any k out of the
n columns, where the number of information symbols is no
larger than km. When the number of information symbols is
km, (n, k) recoverable property array codes are reduced to
MDS array codes. There are many existing MDS array codes
in the literature, and most of them are designed to tolerate
two or three failed columns. For example, EVENODD [4], [5]
and RDP [6] are two important codes that can correct double
disk failures. STAR codes [7], [8] and triple-fault-tolerance
codes [9] can correct three disk failures. Examples of array
codes that can tolerate four or more column failures include
Generalized RDP codes [10], Independent-Parity (also called
generalized EVENODD) codes [11], Blaum-Roth (BR) codes
[12], the codes in [13], and Rabin-like codes [14], [15].

To minimize the storage overhead, it is important to design
codes with the larger length for a given overhead. Modern
distributed storage systems often store the data files that are
geographically distributed across nodes, racks, and data centers.
Data should be accessible even if some nodes, racks, or data
centers are offline. This motivates designing storage codes
that can locally recover single-symbol failure and quickly
recover large correlated failures such as multi-node failure,
rack failure and data center failure, and have fast encoding and
decoding algorithms. Recently, Expanded-Blaum-Roth (EBR)
[2], [16] codes and Expanded-Independent-Parity (EIP) codes
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[2] extend BR codes [12] and Independent-Parity codes [11],
respectively, and propose to tolerate any r column failures and
locally repair one failed symbol within any column (called
local repair property) by adding some parity symbols into
each column. This improves the performance of repairing a
failed symbol, as the repair can be locally done within a
column without accessing the symbols in other columns. In
addition, EBR codes can recover some erased lines of a slope.
Therefore, one possible application of EBR codes and EIP
codes is the sectors or pages failures in a device, like locally
recoverable codes (LRC) [17]. Another possible application
is in large-scale distributed storage. We need to explicitly
deal with significant correlated failures, such as rack failures,
data center failures, and some other correlated failures. EBR
codes can quickly recover some erased lines of a slope that
can naturally be employed in large-scale distributed storage
to recover correlated failures, i.e., some correlated nodes are
erased in a way corresponding to the erased lines of a slope.

A. Basics of EBR and EIP Codes

An EBR code is represented by an m × m array, where
m = k + r and m > 2 is a prime number. It stores α × k
information symbols in the k information columns with α
information symbols each, for some α < m, and uses the
α× k sub-array of information symbols as input for encoding.
Specifically, for i = 0, 1, . . . ,m−1 and j = 0, 1, . . . ,m−1, let
ai,j ∈ Fq be the element in row i and column j of the m×m
array, where q is a power of 2. For j = 0, 1, . . . , k− 1, the m
symbols a0,j , a1,j , . . . , am−1,j in column j are represented as
an information polynomial

aj(x) = a0,j + a1,jx+ . . .+ am−1,jx
m−1

over the quotient ring Fq[x]/(1+xm). Given the α information
symbols a0,j , a1,j , . . . , aα−1,j , we compute m − α symbols
aα,j , aα+1,j , . . . , am−1,j for local repair, such that the polyno-
mial aj(x) is a multiple of (1+x)g(x), where g(x) is a factor of
1+x+ · · ·+xm−1. Similarly, the m symbols in column j with
j = k, k+ 1, . . . ,m− 1 are represented as a parity polynomial
aj(x) over Fq[x]/(1 + xm). The relationship between the
information polynomials and the parity polynomials is given
as

Hr×m ·
[
a0(x) a1(x) · · · am−1(x)

]T
= 0T ,

where Hr×m is the r ×m parity-check matrix

Hr×m =


1 1 1 · · · 1
1 x x2 · · · xm−1

...
...

...
. . .

...
1 xr−1 x2(r−1) · · · x(r−1)(m−1)

 , (1)

and 0T is an all-zero column of length r. In solving the above
linear equations, all the r parity polynomials are multiples of
(1 + x)g(x). The resulting codes with the parity-check matrix
in Eq. (1) are denoted by EBR(m, r, q, g(x)).

An EIP code is an m × (m + r) array, where m = k
and m is a prime number. It stores α × m information
symbols in m columns with α information symbols each,

for some α < m, and uses the α × m sub-array of in-
formation symbols for encoding. Let ai,j be the element
in row i and column j, where i = 0, 1, . . . ,m − 1 and
j = 0, 1, . . . ,m + r − 1. For j = 0, 1, . . . ,m − 1, given
the α information symbols a0,j , a1,j , . . . , aα−1,j , we compute
m−α symbols aα,j , aα+1,j , . . . , am−1,j for local repair, such
that the information polynomial

aj(x) = a0,j + a1,jx+ . . .+ am−1,jx
m−1

is in Fq[x]/(1 + xm) and is a multiple of (1 + x)g(x), where
g(x) is a factor of 1 + x + · · · + xm−1. For j = m,m +
1, . . . ,m + r − 1, the parity polynomials aj(x) representing
the m symbols stored in column j are computed by[

am(x) am+1(x) · · · am+r−1(x)
]

=
[
a0(x) a1(x) · · · am−1(x)

]
·

1 1 · · · 1
1 x · · · xr−1

...
...

. . .
...

1 xm−1 · · · x(r−1)(m−1)

 .
The above code is denoted by EIP(m, r, q, g(x)).

B. Contributions

In this paper, we propose a generalization that can be used
to construct (n, k) recoverable property array codes with new
parameters. The following are our main contributions:

1) First, we give constructions of generalized EBR (GEBR)
codes and generalized EIP (GEIP) codes that can support
more parameters when compared to EBR codes and EIP
codes, respectively. We show that the m × (m = n =
k+r) GEBR codes satisfy the (n, k) recoverable property
(i.e., all the information symbols can be reconstructed
from any k out of n = m columns) if m is a power of
an odd prime. The m×m EBR codes [2] are a special
case of our GEBR codes with m a prime number.

2) Second, we present an efficient decoding method for
GEBR and GEIP codes based on the LU factorization
of a Vandermonde matrix. We show that the proposed
LU decoding method has less complexity than existing
methods.

3) Third, we show that GEBR codes have a larger minimum
symbol distance than EBR codes for some parameters.
We also show that GEBR codes can recover more erased
lines than EBR codes for some parameters. In addition,
we present a necessary and sufficient condition of
recovering any r erased lines of slope i for 0 ≤ i ≤ r−1
for any r such that 1 ≤ r ≤ m − 3 for EBR codes.
Note that the lines of slope i are taken toroidally, and
an erased line of slope i means that the m symbols in a
line of slope i are erased.

LRC codes [17]–[19] can also locally repair a single-symbol.
An example is the code used by Facebook in its f4 storage
system [20]. More general construction of LRC is called
grid-like codes (with global parity symbols) or product codes
(without global parity symbols) [21]. Some constructions of
LRC are given in [22]–[24]. The main difference between LRC
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and ours is as follows. LRC contains both local parity symbols
and global parity symbols, while all the parity symbols in our
codes are local parity symbols. Each symbol in our codes can
be repaired by either some symbols in the same column or
the symbols along a line, while not in LRC [17]. Please refer
to Section VII for the detailed comparison of LRC, product
codes, and the proposed codes.

C. Paper Organization

The rest of the paper is organized as follows. Section II
gives the generalized coding method. Section III presents the
construction of GEBR codes based on the coding method and
proposes the LU decoding method. Section IV presents the
construction of GEIP codes. Section V discusses the minimum
symbol distance for the proposed codes. Section VI shows
that GEBR codes can recover some erased lines. Section VII
compares GEBR codes with other related codes. Section VIII
concludes the paper.

II. GENERALIZED CODING METHOD OF ARRAY CODES
WITH LOCAL PROPERTIES

In this section, we present a coding method for array codes
that can encode an α × k sub-array of information symbols
into an m× (k + r) array, where each element in the array is
in the finite field Fq , q is a power of 2, m = pτ , p is a prime
number, and α, k, r, τ are positive integers with α ≤ (p− 1)τ .
The primary objective of the coding method is to extend the
constructions of EBR and EIP codes to support much more
parameters. In particular, EBR codes can be viewed as a special
construction of the proposed coding method with τ = 1 and
k + r = p, while EIP codes are an explicit construction of the
coding method with τ = 1 and k = p.

Let si,j ∈ Fq be the element of the m × (k + r) array
in row i and column j, where i = 0, 1, . . . ,m − 1 and j =
0, 1, . . . , k + r − 1. The αk information symbols are si,j with
i = 0, 1, . . . , α − 1 and j = 0, 1, . . . , k − 1, and the other
m(k + r)− αk elements of the array are parity symbols.

For j = 0, 1, . . . , k + r − 1, we represent the m symbols
stored in column j (i.e., s0,j , s1,j , . . . , sm−1,j) by a polynomial
sj(x) of degree m− 1 over the ring Fq[x], i.e.,

sj(x) = s0,j + s1,jx+ s2,jx
2 + · · ·+ sm−1,jx

m−1,

where sj(x) with j = 0, 1, . . . , k − 1 is an information
polynomial and sj(x) with j = k, k + 1, . . . , k + r − 1 is
a parity polynomial. Let Rm(q) = Fq[x]/(1 +xm) be the ring
of polynomials modulo 1 + xm with coefficients in Fq. We
observe that multiplication by xi in Rm(q) can be interpreted
as a cyclic shift, and hence it does not involve finite field
arithmetic nor XOR operations.

Given α information symbols s0,j , s1,j , · · · , sα−1,j , we need
to determine m− α parity symbols sα,j , sα+1,j , · · · , sm−1,j ,
where j = 0, 1, . . . , k−1. Let g(x) be a polynomial with coef-
ficients in Fq such that g(x) divides 1+xτ + · · ·+x(p−1)τ and
gcd(g(x), 1+xτ ) = 1. Let 1+xτ + · · ·+x(p−1)τ = g(x)h(x).
Note that g(x) may not be an irreducible polynomial so that

we can factorize g(x) as a product of powers of irreducible
polynomials over Fq , i.e.,

g(x) = (f1(x))`1 · (f2(x))`2 · · · (ft(x))`t ,

where `i ≥ 1 for i = 1, 2, . . . , t and deg(fi(x)) ≥ deg(fj(x))
for i > j.

Let Cpτ (g(x), τ, q, d) be the cyclic code of length m = pτ
over Fq with generator polynomial (1+xτ )g(x) and minimum
distance d. For j = 0, 1, . . . , k − 1, we create m − α parity
symbols sα,j , sα+1,j , · · · , sm−1,j by encoding α information
symbols s0,j , s1,j , · · · , sα−1,j , such that the polynomial sj(x)
is in Cpτ (g(x), τ, q, d).

Given k information polynomials s0(x), s1(x), . . . , sk−1(x),
we can compute the r parity polynomials sk(x), sk+1(x),
. . . , sk+r−1(x) by taking the product[

sk(x) sk+1(x) · · · sk+r−1(x)
]

=
[
s0(x) s1(x) · · · sk−1(x)

]
·Pk×r (2)

with operations performed in Rpτ (q), where Pk×r is the k×r
encoding matrix which is the remainder sub-matrix of the
systematic generator matrix by deleting the identity matrix. We
can also compute the r parity polynomials by[

s0(x) s1(x) · · · sk+r−1(x)
]
·HT

r×(k+r) = 0 (3)

over Rpτ (q), where Hr×(k+r) is an r × (k + r) parity-check
matrix.

Note that Cpτ (g(x), τ, q, d) is an ideal in Rpτ (q), be-
cause ∀c(x) ∈ Rpτ (q),∀s(x) ∈ Cpτ (g(x), τ, q, d), we have
c(x)s(x) ∈ Cpτ (g(x), τ, q, d). Recall that g(x)h(x) = 1 +
xτ + · · · + x(p−1)τ . The polynomial h(x) is called parity-
check polynomial of Cpτ (g(x), τ, q, d), since the multiplication
of any polynomial in Cpτ (g(x), τ, q, d) and h(x) is zero.
We show in the next theorem that Rpτ (q) is isomorphic
to Fq[x]/g(x)(1 + xτ ) × Fq[x]/(h(x)) under some specific
conditions.

Theorem 1. When gcd(g(x), h(x)) = 1 and gcd(1 +
xτ , h(x)) = 1, the ring Rpτ (q) is isomorphic to
Fq[x]/g(x)(1 + xτ )× Fq[x]/(h(x)).

Proof: When gcd(g(x), h(x)) = 1 and gcd(1 +
xτ , h(x)) = 1, we have gcd(g(x)(1 + xτ ), h(x)) = 1. By
the Chinese Remainder Theorem, we can find an isomorphism
between Rpτ (q) and Fq[x]/(g(x)(1 + xτ )) × Fq[x]/(h(x)).
The mapping θ is defined by

θ(a(x)) = (a(x) mod (g(x)(1 + xτ )), a(x) mod (h(x))),

where a(x) ∈ Rpτ (q).
Let h(x) mod g(x)(1 + xτ ) be the remainder of dividing

h(x) by g(x)(1 + xτ ) which is in Fq[x]/(g(x)(1 + xτ ))
and g(x)(1 + xτ ) mod h(x) be the remainder of dividing
g(x)(1 + xτ ) by h(x) which is in Fq[x]/(h(x)). Since
gcd(g(x)(1 + xτ ), h(x)) = 1, there exists the inverse of
h(x) mod g(x)(1 + xτ ) in Fq[x]/(g(x)(1 + xτ )) and denote
(h(x) mod g(x)(1 + xτ ))−1 as the inverse. Similarly, denote
(g(x)(1+xτ ) mod h(x))−1 as the inverse of g(x)(1+xτ ) mod
h(x) in Fq[x]/(h(x)). The inverse mapping θ−1 is

θ−1(a1(x), a2(x)) =
(
a1(x)h(x)(h(x) mod (g(x)(1 + xτ )))−1+

a2(x)g(x)(1 + xτ )((g(x)(1 + xτ )) mod (h(x)))−1
)

mod (1 + xpτ ),
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where a1(x) ∈ Fq[x]/(g(x)(1 + xτ )) and a2(x) ∈
Fq[x]/(h(x)).

Then we have

θ(θ−1(a1(x), a2(x)))

=θ
((
a1(x)h(x)(h(x) mod (g(x)(1 + xτ )))−1 + a2(x)g(x)

(1 + xτ )((g(x)(1 + xτ )) mod (h(x)))−1) mod (1 + xpτ )
)

=
(((

a1(x)h(x)(h(x) mod (g(x)(1 + xτ )))−1 mod (g(x)(1 + xτ ))

+ a2(x)g(x)(1 + xτ )((g(x)(1 + xτ )) mod (h(x)))−1)
mod (1 + xpτ ) mod (g(x)(1 + xτ ))

)
,((

a1(x)h(x)(h(x) mod (g(x)(1 + xτ )))−1 mod (h(x))+

a2(x)g(x)(1 + xτ )((g(x)(1 + xτ )) mod (h(x)))−1)
mod (1 + xpτ ) mod (h(x))

))
=(a1(x), a2(x)),

and the theorem is proved.
Note that the result in Lemma 2 in [25] can be viewed as

a special case of our Theorem 1 with g(x) = 1 and q = 2.
By Theorem 1, we can directly obtain that Cpτ (g(x), τ, q, d)
is isomorphic to Fq[x]/(h(x)), and we give the isomorphism
in the next lemma.

Lemma 2. When gcd(g(x), h(x)) = 1 and gcd(1 +
xτ , h(x)) = 1, the ring Cpτ (g(x), τ, q, d) is isomorphic
to Fq[x]/(h(x)), the isomorphism θ : Cpτ (g(x), τ, q, d) →
Fq[x]/(h(x)) is θ(a(x)) = a(x) mod h(x) and the inverse
isomorphism θ−1 : Fq[x]/(h(x)) → Cpτ (g(x), τ, q, d) is
θ−1(a(x)) = a(x) · g(x)(1 + xτ ) · (g(x)(1 + xτ )) mod
(h(x))−1 mod (1 + xpτ ).

In the next lemma, we show a necessary condition of a
polynomial in the ring Cpτ (g(x), τ, q, d).

Lemma 3. If the polynomial sj(x) =
∑m−1
i=0 si,jx

i is in
Cpτ (g(x), τ, q, d), then the coefficients of polynomial sj(x)
satisfy the following equation

p−1∑
`=0

s`τ+µ,j = 0, (4)

where µ = 0, 1, . . . , τ − 1.

Proof: The proof is similar to that in Theorem 1 in [25].

When g(x) = 1, the next lemma shows that the necessary
condition given in Lemma 3 is also the sufficient condition.

Lemma 4. [25, Theorem 1] When g(x) = 1, the polynomial
sj(x) =

∑m−1
i=0 si,jx

i is in Cpτ (1, τ, q, d) if and only if Eq. (4)
holds.

When g(x) = 1, we have that the weight (the number of
non-zero coefficients) of sj(x) ∈ Cpτ (1, τ, q, d) is a positive
even integer by Lemma 4.

When g(x) = 1 and q = 2, the ring Cpτ (1, τ, 2, d) has
been used in the literature to give efficient repair for a family
of binary MDS array codes [9], [25] and to provide new
constructions of regenerating codes with lower computational

complexity [26]. When g(x) = 1, q = 2, and τ = 1, the ring
is discussed in [12], [13], [15], [27]–[29]. When τ = 1, the
ring is used to construct array codes with local properties [2].

When g(x) = 1, if we delete the last τ rows of the m×(k+r)
array of our coding method, then the obtained (p−1)τ×(k+r)
array is reduced to the coding method given in [25].

Note that the ring Cpτ (1, τ, 2, 2) is reduced to a finite field
of size 2(p−1)τ if and only if 2 is a primitive element in
Zp and τ = pi for some non-negative integer i [30]. When
τ is a power of p and p is a prime number such that 2 is
a primitive element in Zp, we have g(x) = 1, d = 2 and
h(x) = 1 + xτ + · · · + x(p−1)τ is an irreducible polynomial
in F2[x].

III. GENERALIZED EXPANDED-BLAUM-ROTH CODES

In this section, we first give the construction of GEBR codes
and then propose the LU decoding method that can be used in
the encoding/decoding procedures of GEBR codes.

A. Construction

The proposed GEBR code is a set of arrays of size m ×
(k + r) by encoding kα information symbols, where m = pτ ,
α < m, k + r ≤ m, τ is a positive integer, and p is an odd
prime number. The constructed GEBR code is denoted by
GEBR(p, τ, k, r, q, g(x)) with parity-check matrix given as

Hr×(k+r) =


1 1 1 · · · 1
1 x x2 · · · xk+r−1

...
...

...
. . .

...
1 xr−1 x2(r−1) · · · x(r−1)(k+r−1)

 .
(5)

Note that we have more than one solution of
sk(x), sk+1(x), . . . , sk+r−1(x) in Eq. (3). We need
to choose one solution such that all r polynomials
sk(x), sk+1(x), . . . , sk+r−1(x) are in Cpτ (g(x), τ, q, d).
Since we will show the (n, k) recoverable condition of
GEBR(p, τ, k, r, q, g(x)) in Theorem 5 and Theorem 8,
we assume that the parameters p, τ, k, r, q, g(x) satisfy
the (n, k) recoverable condition given in Theorem 5 or
Theorem 8, and there exists only one solution such that
all r polynomials sk(x), sk+1(x), . . . , sk+r−1(x) are in
Cpτ (g(x), τ, q, d). For general polynomial g(x), we require
that gcd(g(x), h(x)) = 1, gcd(1 + xτ , h(x)) = 1, 1 + xi and
h(x) are relatively prime over Fq[x] for i = 1, 2, . . . , k+r−1,
GEBR(p, τ, k, r, q, g(x)) are (n, k) recoverable property
codes. Please refer to Theorem 5 for the detailed proof.
When g(x) = 1, let τ = γpν , where ν ≥ 0, 0 < γ and
gcd(γ, p) = 1. The codes GEBR(p, τ, k, r, q, 1) are (n, k)
recoverable property codes if and only if k+ r ≤ pν+1. Please
refer to Theorem 8 for the detailed proof.

The encoding procedure is described as follows. We first
replace each entry a(x) of the parity-check matrix in Eq. (5)
by a(x) · g(x)(1 + xτ ) · (g(x)(1 + xτ )) mod (h(x))−1 mod
(1 + xpτ ) that is in Cpτ (g(x), τ, q, d) by Lemma 2 and then
solve the r polynomials sk(x), sk+1(x), . . . , sk+r−1(x) based
on the modified parity-check matrix over Cpτ (g(x), τ, q, d).
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From row i of the parity-check matrix in Eq. (5), where
i = 0, 1, . . . , r − 1, the summation of the k + r symbols in
each line of slope i of the m× (k + r) array is zero, i.e.,

s`,0 + s`−i,1 + s`−2i,2 + · · ·+ s`−(k+r−1)i,k+r−1 = 0,

for ` = 0, 1, . . . ,m − 1. The indices are taken modulo m
throughout the paper unless otherwise specified. For example,
when i = 1, we have

s0(x) +xs1(x) + · · ·+xk+r−1sk+r−1(x) = 0 mod (1 +xm).

Recall that

xjsj(x) =xj(

m−1∑
`=0

s`,jx
`)

=sm−j,j + sm−j+1,jx+ · · ·+ s0,jx
j+

s1,jx
1+j + · · ·+ sm−j−1,jx

m−1,

for j = 1, 2, . . . , k+r−1. We can obtain that the summation of
the k + r symbols s`,0, s`−1,1, . . . , s`−(k+r−1),k+r−1 in each
line of slope i = 1 is zero. The following array is an example
of m = 5 and k+r = 4, where the symbols s1,0, s0,1, s4,2, s3,3
with bold font are in one line of slope i = 1:

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3
s4,0 s4,1 s4,2 s4,3

 .
Note that the code proposed in [16] is a special case as

GEBR(p, τ = 1, k, r = p−k, q, g(x) = 1), and GEBR(p, τ =
1, k, r = p−k, q, g(x)) is the EBR code in [2]. In the p×p array
of EBR code in [2], the summation of the p symbols along a line
of slopes 0, 1, . . . , r−1 is zero, the polynomial corresponding to
the p symbols in one column is a polynomial in Fq[x]/(1+xp)
which is a multiple of g(x)(1 + x). In the pτ × pτ array of
our GEBR(p, τ, k, r = pτ − k, q, g(x)), the summation of the
symbols in each line of slope 0, 1, . . . , r−1 is zero, as like EBR
codes. The difference is that the polynomial corresponding to
each column of EBR codes is a multiple of g(x)(1+x), where
g(x) is a factor of 1 + x+ · · ·+ xp−1. While the polynomial
corresponding to each column of GEBR(p, τ, k, r = pτ −
k, q, g(x)) is a multiple of g(x)(1+xτ ), where g(x) is a factor
of 1 + xτ + · · ·+ x(p−1)τ such that gcd(g(x), 1 + xτ ) = 1.

B. The (n, k) Recoverable Property

When we say that a code is (n, k) recoverable or satisfies
the (n, k) recoverable property, it means that the code can
recover up to any r erased columns out of the k + r columns.
One necessary and sufficient (n, k) recoverable condition
of GEBR(p, τ, k, r, q, g(x)) with gcd(g(x), h(x)) = 1 and
gcd(1 + xτ , h(x)) = 1 is given in the next theorem.

Theorem 5. When gcd(g(x), h(x)) = 1 and gcd(1 +
xτ , h(x)) = 1, we can compute all the kα informa-
tion symbols from any k out of k + r polynomials
s0(x), s1(x), . . . , sk+r−1(x), if and only if, the two polyno-
mials 1 + xi and h(x) are relatively prime over Fq[x], where
i = 1, 2, . . . , k + r − 1.

Proof: By Lemma 2, it is sufficient to show that the
determinant of any r× r sub-matrix of Hr×(k+r) in Eq. (5) is
invertible over Fq[x]/h(x). Any r× r sub-matrix of Hr×(k+r)
is a Vandermonde matrix, the determinant can be written as
the multiplication of power of x and r different factors 1 + xi,
where i ∈ {1, 2, . . . , k + r − 1}. Note that the coefficient of
constant term of h(x) is non-zero, we have gcd(xj , h(x)) = 1
for any positive integer j. The determinant can be viewed as a
polynomial in Fq[x]/h(x) after modulo h(x), and is invertible
over the ring Fq[x]/h(x). Therefore, we can compute all the
kα information symbols from any k out of k+ r polynomials,
if and only if, 1 + xi is invertible over Fq[x]/h(x) for all
i = 1, 2, . . . , k + r − 1.

If τ is a power of 2 and g(x) = 1, we have

h(x) = 1 + xτ + . . .+ x(p−1)τ = (1 + x+ . . .+ xp−1)τ .

We can check that gcd(g(x) = 1, h(x)) = 1 and gcd(1 +
xτ , h(x) = (1+x+ . . .+xp−1)τ ) = 1. The (n, k) recoverable
condition in Theorem 5 is reduced to that 1 + xi and 1 + x+
. . .+ xp−1 are relatively prime over Fq[x] when τ is a power
of 2. Note that 1 + xi and 1 + x+ . . . + xp−1 are relatively
prime over Fq[x] for i = 1, 2, . . . , p− 1 [12]. Therefore, when
τ is a power of 2 and g(x) = 1, GEBR(p, τ, k, r, q, g(x)) are
(n, k) recoverable if k + r ≤ p and are not (n, k) recoverable
if k + r > p.

According to Theorem 5, GEBR(p, τ, k, r, q, g(x)) are (n, k)
recoverable if and only if gcd(h(x), 1 + xi) = 1 for i =
1, 2, . . . , k + r − 1. In the following, we present an equivalent
necessary and sufficient (n, k) recoverable condition.

Lemma 6. The codes GEBR(p, τ, k, r, q, g(x)) are (n, k)
recoverable if and only if the following equation

(1 + xi)s(x) = c(x) mod (1 + xpτ ) (6)

has a unique solution s(x) ∈ Cpτ (g(x), τ, q, d), given that
c(x) ∈ Cpτ (g(x), τ, q, d) and i ∈ {1, 2, . . . , k + r − 1}.

Proof: First we prove that Eq. (6) has a unique solution
s(x) ∈ Cpτ (g(x), τ, q, d), given that c(x) ∈ Cpτ (g(x), τ, q, d),
if and only if, 1 + xi and h(x) are relatively prime over Fq[x]
for i ∈ {1, 2, . . . , k + r − 1}.
(=⇒) Since both s(x) and c(x) are in ∈ Cpτ (g(x), τ, q, d), we
have

(1 + xi)s(x) = c(x) mod (1 + xpτ )

↔ (1 + xi)a(x)(1 + xτ )g(x) = b(x)(1 + xτ )g(x)

mod(1 + xτ )g(x)h(x)

↔ (1 + xi)a(x) = b(x) mod h(x). (7)

Assume that gcd(1+xi, h(x)) = d(x). Then, d(x)|b(x). Since
c(x) is any element in Cpτ (g(x), τ, q, d), this is possible only
when d(x) = 1.
(⇐=) Note that, in Eq. (7), both deg(a(x)) and deg(b(x))
are less than deg(h(x)). Given any valid b(x), we need to
prove that there exists only one solution a(x) for Eq. (7). Let
1 + xi mod h(x) = e(x). Since gcd(1 + xi, h(x)) = 1, we
have gcd(e(x), h(x)) = 1 such that the inverse of e(x) exists.
Note that deg(a(x)) < deg(h(x)) and the only solution a(x)
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for Eq. (7) is a(x) = e(x)−1b(x) mod h(x). By Theorem 5,
this completes the proof.

Next we prove that to determine the condition given in
Eq. (6), we only need to check for the case c(x) = 0.

Lemma 7. Eq. (6) has a unique solution s(x) ∈
Cpτ (g(x), τ, q, d), given that c(x) ∈ Cpτ (g(x), τ, q, d) if and
only if Eq. (6) has a unique solution s(x) = 0 when c(x) = 0.

Proof: The “if” part is obvious such that we only need
to prove the “only if” part. By Eq. (6), we define the
transformation gi : Cpτ (g(x), τ, q, d) −→ Cpτ (g(x), τ, q, d) as

gi(s(x)) = (1 + xi)s(x) mod (1 + xpτ ),

where s(x) ∈ Cpτ (g(x), τ, q, d). It is easy to see that this
transformation is linear. Since (1 + xi)s(x) = 0 has unique
solution s(x) = 0, the kernel of gi is of dimension 0. According
to the rank theorem, the dimension of the range of gi is the
same as the dimension of Cpτ (g(x), τ, q, d). Hence, gi is a one-
to-one and onto mapping such that, for any gi(s(x)) = c(x),
Eq. (6) has a unique solution s(x) ∈ Cpτ (g(x), τ, q, d), given
that c(x) ∈ Cpτ (g(x), τ, q, d).

When g(x) = 1, we can locally recover any one symbol
with the minimum parity symbol (one local parity symbol
for p − 1 data symbols in each data column), which is
practically interesting in storage systems. For example, the
LRC implemented in Facebook [20] employs one local parity
symbol in each group. In the following, we investigate the
necessary and sufficient (n, k) recoverable condition when
g(x) = 1. When g(x) 6= 1, the (n, k) recoverable condition of
GEBR(p, τ, k, r, q, g(x)) is a subject of future work.

Theorem 8. Let τ = γpν , where ν ≥ 0, 0 < γ and
gcd(γ, p) = 1. Then, the codes GEBR(p, τ, k, r, q, 1) are
(n, k) recoverable if and only if k + r ≤ pν+1.

Proof: We need to show that the codes
GEBR(p, τ, k, r, q, 1) are (n, k) recoverable if k + r ≤ pν+1

and are not (n, k) recoverable if k + r > pν+1.
We first consider that k+r ≤ pν+1. Let 1 ≤ i ≤ k+r−1 ≤

pν+1−1. In order to prove that GEBR(p, τ, k, r, q, 1) are (n, k)
recoverable, we have to show that Eq. (6) has a unique solution
s(x) = 0 when c(x) = 0 for all 1 ≤ i ≤ pν+1−1 by Lemma 7.

Suppose that we can find a non-zero polynomial s(x) ∈
Cpτ (1, τ, q, d) such that (1+xi)s(x) = 0 mod (1+xpτ ) holds,
we can deduce a contradiction as follows. Without loss of
generality, let s(x) =

∑pτ−1
v=0 svx

v and s0 = 1. Then we have

s((`−1)i) mod pτ + s(`i) mod pτ = 0,

for 0 ≤ ` ≤ pτ − 1. By induction, we have

s(`i) mod pτ = 1. (8)

Let c = gcd(i, pτ). Recall that 1 ≤ i ≤ pν+1 − 1, we have
c = gcd(i, pτ) = gcd(i, γpν+1) = gcd(i, γpν) = gcd(i, τ).
Then,

{(`i) mod pτ : 0 ≤ ` ≤ pτ − 1} = {`c : 0 ≤ ` ≤ pτ

c
− 1}.

(9)
Since, in particular, c divides τ , we have

{`τ : 0 ≤ ` ≤ p− 1} ⊂ {`c : 0 ≤ ` ≤ pτ

c
− 1}. (10)

By Eq. (8), Eq. (9) and Eq. (10), we have s`τ = 1 for all
0 ≤ ` ≤ p− 1 and therefore

∑p−1
`=0 s`τ = 1, which contradicts

to
∑p−1
`=0 s`τ = 0 (since s(x) ∈ Cpτ (1, τ, q, d)).

Next, we consider that k + r > pν+1. We will show that
Eq. (6) has a non-zero solution s(x) ∈ Cpτ (1, τ, q, d) when
c(x) = 0 and i ∈ {1, 2, . . . , k + r − 1}.

Note that m = pτ = γpν+1. Let

s0(x) = 1 + xp
ν+1

+ x2p
ν+1

+ · · ·+ x(γ−1)p
ν+1

,(11)

s1(x) = xp
ν

+ xp
ν+pν+1

+ · · ·+ xp
ν+(γ−1)pν+1

,(12)

and s(x) = s0(x) + s1(x) mod (1 + xm). We first show that
the polynomial s(x) = s0(x) + s1(x) is in Cpτ (1, τ, q, d).

Note that s1(x) = xp
ν

s0(x), we have 1 + xm = 1 + xγp
ν+1

and (1 + xp
ν+1

)s0(x) = 1 + xγp
ν+1

. Note that 1 + xτ =
1+xγp

ν

divides 1+xγp
ν+1

. Since gcd(γ, p) = 1, by Euclidean
algorithm, gcd(1 + xp

ν+1

, 1 + xγp
ν

) = 1 + xp
ν

. Since (1 +
xp

ν+1

)(1+xp
ν+1

+x2p
ν+1

+ · · ·+x(γ−1)pν+1

) = 1+xγp
ν+1

=
(1+xγp

ν

)q(x) and gcd(1+xp
ν+1

, 1+xγp
ν

) = 1+xp
ν

, we have
(1 + xγp

ν

)|(1 + xp
ν

)(1 + xp
ν+1

+ x2p
ν+1

+ · · ·+ x(γ−1)p
ν+1

).
Hence, s(x) = s0(x)+s1(x) = (1+xp

ν

)(1+xp
ν+1

+x2p
ν+1

+
· · ·+x(γ−1)p

ν+1

) mod (1+xm) is also divided by 1+xγp
ν

=
1 + xτ , i.e., s(x) ∈ Cpτ (1, τ, q, d). It is clear that s0(x) +
s1(x) 6= 0.

From the definitions of s0(x) and s1(x), we have

xp
ν+1

s0(x) =xp
ν+1

+ x2p
ν+1

+ x3p
ν+1

+ · · ·+ xγp
ν+1

=xp
ν+1

+ x2p
ν+1

+ x3p
ν+1

+ · · ·+ 1

=s0(x) mod (1 + xm),

where the second equation above comes from that xγp
ν+1

=
xm = 1 mod (1 + xm). Similarly, we can obtain that
xp

ν+1

s1(x) = s1(x) mod (1 + xm). Therefore, we have

(1+xp
ν+1

)s(x) = (1+xp
ν+1

)(s0(x)+s1(x)) = 0 mod (1+xm),

and s(x) 6= 0 is a solution to (1 + xp
ν+1

)s(x) = 0 mod
(1 + xm). The theorem is proved.

We can directly obtain the following result from Theorem 8.

Corollary 9. The codes GEBR(p, τ, k, r, q, 1) with k+r = pτ
are (n, k) recoverable if and only if τ = pν , where ν is a
non-negative integer.

By Theorem 5, the codes GEBR(p, τ, k, r, q, g(x)) are
(n, k) recoverable if and only if gcd(1 + xi, h(x)) = 1 for
all i = 1, 2, . . . , k + r − 1. When g(x) = 1, we have
h(x) = 1 + xτ + · · ·+ x(p−1)τ . According to Corollary 9, the
codes GEBR(p, τ, k, r = m − k, q, 1) are (n, k) recoverable
if p is an odd prime and τ is a power of p. Combining the
results in Theorem 5 and Corollary 9, we can directly obtain
the following theorem.

Theorem 10. If p is an odd prime and τ is a power of p,
then we have gcd(1 + xi, 1 + xτ + . . .+ x(p−1)τ ) = 1 for all
i = 1, 2, . . . , pτ − 1.

Since Cpτ (g(x), τ, q, d) is a cyclic code, the proposed
GEBR(p, τ, k, r, q, g(x)) can recover either a burst of up to
τ+deg(g(x)) (consecutive) erased symbols or up to d−1 erased
symbols in a column. Specifically, we can recover a burst of up
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to τ + deg(g(x)) erased symbols as follows. First, cyclic-shift
the polynomial such that the τ + deg(g(x)) erased symbols
are in the last τ + deg(g(x)) locations. Then, encode the first
α symbols of the obtained shifted polynomial systematically.
Finally, apply the inverse cyclic-shift to the encoded polynomial
to obtain the decoded polynomial.

Example 1. Consider the code GEBR(3, 3, 6, 3, 2, 1), i.e., τ =
p = 3, k = 6 and r = 3. The entries of an array in the code
can be represented by the nine polynomials

sj(x) =s0,j + s1,jx+ s2,jx
2 + s3,jx

3 + s4,jx
4 + s5,jx

5+

(s0,j + s3,j)x
6 + (s1,j + s4,j)x

7 + (s2,j + s5,j)x
8,

where 0 ≤ j ≤ 8 and the 36 information symbols are
si,0, si,1, si,2, si,3, si,4, si,5 with 0 ≤ i ≤ 5. The parity-check
matrix of the code is1 1 1 1 1 1 1 1 1

1 x x2 x3 x4 x5 x6 x7 x8

1 x2 x4 x6 x8 x10 x12 x14 x16

 .
According to Corollary 9, the code GEBR(3, 3, 6, 3, 2, 1) is
(n, k) recoverable. Also, each column can recover up to three
consecutive erasures.

C. Efficient Decoding

In the encoding/decoding procedures of
GEBR(p, τ, k, r, q, g(x)), we need to solve a Vandermonde
linear system over Rpτ (q) such that the solved polynomials
are in Cpτ (g(x), τ, q, d). In the following, we present an
efficient decoding method for solving the Vandermonde linear
system over Rpτ (q) based on the LU factorization of the
Vandermonde matrix. The efficient LU decoding algorithm we
propose relies on an efficient algorithm for division by 1 + xb,
and we first present the efficient division.

1) Efficient Division by 1 + xb over Rpτ (q): We need to
first give an efficient decoding algorithm for dividing by 1+xb

over Rpτ (q) before showing the efficient LU decoding method,
where b is a positive integer such that 1 + xb and h(x) are
relatively prime. Given the integer b and the polynomial f(x) ∈
Cpτ (g(x), τ, q, d), we want to solve r(x) ∈ Cpτ (g(x), τ, q, d)
from the equation

(1 + xb)r(x) = f(x) mod (1 + xpτ ). (13)

The next lemma shows a decoding algorithm for solving r(x) ∈
Cpτ (g(x), τ, q, d) from Eq. (13) when gcd(b, p) = 1.

Lemma 11. Consider Eq. (13) with 1 ≤ b < pτ and
gcd(b, τ) = a. If gcd(b, p) = 1, then we can first compute the
coefficients rj of the polynomial r(x) with j = 0, 1, . . . , a− 1
by

rj =

p−1
2∑

u=1

τ∑
`=1

f(2u−1)τb+`b+j (14)

and the other coefficients of r(x) iteratively by

rb`+j = fb`+j + rb(`−1)+j (15)

with the index ` running from 1 to pτ/a − 1 and j =
0, 1, . . . , a− 1.

Proof: See Appendix A.
Lemma 20 in [2] and Lemma 4 in [25] are special case of

Lemma 11 with τ = 1 and g(x) = 1, respectively. By Lemma
11, there are a(p−12 · τ − 1) + (pτ − a) XORs involved in
solving r(x) from Eq. (13). In particular, if a = 1, we have
that the number of involved XORs is 3pτ−τ−4

2 .

Example 2. Consider the example of p = 7 and τ = 2.
Let f(x) = 1 + x + x6 + x7 + x10 + x11 + x12 + x13 ∈
C7·2((1 + x2 + x6), 2, 2, 4), i.e., f0 = f1 = f6 = f7 = f10 =
f11 = f12 = f13 = 1 and f2 = f3 = f4 = f5 = f8 = f9 = 0.
We want to solve r(x) from (1 + x3)r(x) = f(x). According
to Eq. (14), we have

r0 = f9 + f12 + f7 + f10 + f5 + f8 = 1.

The other coefficients can be computed as

r1 =r4 = r6 = r9 = r10 = r11 = 0,

r2 =r3 = r5 = r7 = r8 = r12 = r13 = 1,

according to Eq. (15). Therefore, r(x) = 1 + x2 + x3 + x5 +
x7 +x8 +x12 +x13. We can check that r(x) ∈ C7·2((1 +x2 +
x6), 2, 2, 4).

When τ is a power of an odd prime p and g(x) = 1,
GEBR(p, τ, k, r = m − k, q, 1) are (n, k) recoverable by
Corollary 9. If gcd(b, p) = 1, then we can solve Eq. (13)
by Lemma 11; otherwise, if b is a multiple of p, then the
decoding method is as follows.

Lemma 12. Consider that τ = pν , where ν is a positive
integer. Let b = ups, where gcd(u, p) = 1 and 1 ≤ s ≤ ν.
We can compute the coefficients rpν+1−ps+j of the polynomial
r(x) in Eq. (13) with j = 0, 1, . . . , ps − 1 by

rpν+1−ps+j =

pν−s+1−3
2∑
i=0

f2iups+ups+j , (16)

and the other coefficients of r(x) iteratively by

rpν+1−ps+j+`ups = fpν+1−ps+j+`ups + rpν+1−ps+j+(`−1)ups ,

where ` = 1, 2, . . . , pν−s+1 − 1. Recall that the indices are
taken modulo m = pν+1 throughout the paper.

Proof: See Appendix B.
By Lemma 12, there are ps(p

ν−s+1−3
2 ) + pν+1 − ps =

3pτ−5ps
2 XORs involved in solving r(x) from Eq. (13).

Example 3. Consider the example of p = τ = 3. Let f(x) =
1 + x+ x3 + x7 ∈ C3·3(1, 3, 2, 2), i.e., f0 = f1 = f3 = f7 = 1
and f2 = f4 = f5 = f6 = f8 = 0. We want to solve r(x) from
(1 + x3)r(x) = f(x). According to Eq. (16) in Lemma 12, we
have

r6 =f3 = 1,

r7 =f4 = 0,

r8 =f5 = 0,

and the other coefficients are r0 = r2 = r5 = 0 and r1 =
r3 = r4 = 1. Therefore, r(x) = x+ x3 + x4 + x6, which is in
C3·3(1, 3, 2, 2).
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2) LU Decoding Method: Let Vr×r(a) be an r × r
Vandermonde matrix,

Vr×r(a) =


1 xa1 · · · x(r−1)a1

1 xa2 · · · x(r−1)a2

...
...

. . .
...

1 xar · · · x(r−1)ar

 , (17)

where a = (a1, · · · , ar) and a1, a2, . . . , ar are dis-
tinct integers that range from 0 to k + r − 1. Let
u = (u1(x), . . . , ur(x)) ∈ Cpτ (g(x), τ, q, d)r and v =
(v1(x), . . . , vr(x)) ∈ Cpτ (g(x), τ, q, d)r. Consider the linear
equations

uVr×r(a) = v mod (1 + xpτ ). (18)

We first review the LU factorization of a Vandermonde matrix
given in [31] and then show the LU decoding algorithm for
solving u from the Vandermonde linear system in Eq. (18).

Theorem 13. [31] For a positive integer r, the r × r
Vandermonde matrix Vr×r(a) in Eq. (17) can be factorized
into

Vr×r(a) = L(1)
r L(2)

r . . .L(r−1)
r U(r−1)

r U(r−2)
r . . .U(1)

r

where U
(`)
r is the upper triangular matrix

U(`)
r =



Ir−`−1 0

0

1 xa1 0 · · · 0 0
0 1 xa2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 xal

0 0 0 · · · 0 1



and L
(`)
r is the lower triangular matrix


Ir−`−1 0

0

1 0 · · · 0
1 xar−`+1 + xar−` · · · 0
...

...
. . .

...
0 0 · · · xar + xar−`



for ` = 1, 2, . . . , r − 1.

When r = 3, the 3×3 Vandermonde matrix V3×3(a1, a2, a3)
can be factorized as

L
(1)
3 L

(2)
3 U

(2)
3 U

(1)
3

=

1 0 0
0 1 0
0 1 xa3 + xa2

 ·
1 0 0

1 xa2 + xa1 0
0 1 xa3 + xa1

 ·
1 xa1 0

0 1 xa2

0 0 1

 ·
1 0 0

0 1 xa1

0 0 1

 .

With the LU factorization of the Vandermonde matrix in
Theorem 13, we can solve the Vandermonde linear system in
Eq. (18) by solving the following linear equations

uL(1)
r L(2)

r . . .L(r−1)
r U(r−1)

r U(r−2)
r . . .U(1)

r = v.

Algorithm 1 Solving a Vandermonde Linear System
Input: positive integer r, prime number p, integers

a1, a2, . . . , ar, and v = (v1(x), v2(x), . . . , vr(x)) ∈
Cpτ (g(x), τ, q, d)r.

Output: u = (u1(x), u2(x), . . . , ur(x)) ∈
Cpτ (g(x), τ, q, d)r that satisfies Eq. (18).

Require: xai1 + xai2 is relatively prime to h(x) over Fq[x]
for all 0 ≤ i1 ≤ i2 ≤ k + r − 1.

1: u← v
2: for i from 1 to r − 1 do
3: for j from r − i+ 1 to r do
4: uj(x)← uj(x) + uj−1(x)xai+j−r

5: for i from r − 1 down to 1 do
6: Solve g(x) from (xar +xar−i)g(x) = ur(x) by Lemma

11 or Lemma 12
7: ur(x)← g(x)
8: for j from r − 1 down to r − i+ 1 do
9: Solve g(x) from (xaj + xar−i)g(x) = (uj(x) +

uj+1(x)) by Lemma 11 or Lemma 12
10: uj(x)← g(x)
11: ur−i(x)← ur−i(x) + ur−i+1(x)
12: return u = (u1(x), ..., ur(x))

The decoding algorithm for solving the Vandermonde linear
system based on the LU factorization of a Vandermonde matrix
is given in Algorithm 1. In Algorithm 1, Steps 2-4 require
r(r− 1)/2 additions and r(r− 1)/2 multiplications and Steps
5-11 require r(r − 1)/2 backward additions and r(r − 1)/2
divisions by factors of the form xaj + xar−i .

Example 4. Continue from Example 1, where τ = p = 3,
k = 6 and r = 3. We have six information polynomials

s0(x) = 1 + x+ x3 + x4,

s1(x) = x+ x2 + x4 + x5,

s2(x) = x+ x4,

s3(x) = 1 + x2 + x3 + x5,

s4(x) = x+ x2 + x7 + x8,

s5(x) = x+ x7,

where each polynomial is in C3·3(1, 3, 2, 2). The parity-check
matrix of the code is1 1 1 1 1 1 1 1 1

1 x x2 x3 x4 x5 x6 x7 x8

1 x2 x4 x6 x8 x10 x12 x14 x16

 .
Therefore, we can obtain

[
s6(x) s7(x) s8(x)

] 1 x6 x12

1 x7 x14

1 x8 x16

 =

 x+ x2 + x4 + x8

1 + x+ x4 + x5 + x6 + x8

1 + x5 + x6 + x8

T .
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According to Theorem 13, the above Vandermonde matrix can
be factorized as1 x6 x12

1 x7 x14

1 x8 x16

 =

1 0 0
0 1 0
0 1 x7 + x8

 ·
1 0 0

1 x6 + x7 0
0 1 x6 + x8

 ·
1 x6 0

0 1 x7

0 0 1

 ·
1 0 0

0 1 x6

0 0 1

 .
By Algorithm 1, we can solve the three parity polynomials

as follows. First, we solve the following linear system

[
s′′′6 (x) s′′′7 (x) s′′′8 (x)

] 1 0 0
0 1 x6

0 0 1


=

 x+ x2 + x4 + x8

1 + x+ x4 + x5 + x6 + x8

1 + x5 + x6 + x8

T

to obtain s′′′6 (x)
s′′′7 (x)
s′′′8 (x))

 =

 x+ x2 + x4 + x8

1 + x+ x4 + x5 + x6 + x8

1 + x+ x2 + x3 + x7 + x8

 .
Then, we solve the following linear system

[
s′′6(x) s′′7(x) s′′8(x)

] 1 x6 0
0 1 x7

0 0 1


=

 x+ x2 + x4 + x8

1 + x+ x4 + x5 + x6 + x8

1 + x+ x2 + x3 + x7 + x8

T

to obtain s′′6(x)
s′′7(x)
s′′8(x))

 =

 x+ x2 + x4 + x8

1 + x4 + x6 + x7

1 + x+ x3 + x4 + x5 + x8

 .
Next, we solve the following linear system

[s′6(x) s′7(x) s′8(x)]

1 0 0
1 x6 + x7 0
0 1 x6 + x8


=

 x+ x2 + x4 + x8

1 + x4 + x6 + x7

1 + x+ x3 + x4 + x5 + x8

T

to obtain s′6(x)
s′7(x)
s′8(x)

 =

x4 + x5 + x7 + x8

x+ x2 + x5 + x7

x2 + x3 + x5 + x6

 .
Finally, we solve the following linear system

[s6(x) s7(x) s8(x)]

1 0 0
0 1 0
0 1 x7 + x8

 =

x4 + x5 + x7 + x8

x+ x2 + x5 + x7

x2 + x3 + x5 + x6

T

to obtain s6(x)
s7(x)
s8(x)

 =

x4 + x5 + x7 + x8

x+ x2 + x4 + x5

x4 + x7

 .

Table I
EXAMPLE OF GEBR(3, 3, 6, 3, 2, 1).

1 0 0 1 0 0 0 0 0
1 1 1 0 1 1 0 1 0
0 1 0 1 1 0 0 1 0
1 0 0 1 0 0 0 0 0
1 1 1 0 0 0 1 1 1
0 1 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 1
0 0 0 0 1 0 1 0 0

Table I shows the example of GEBR(3, 3, 6, 3, 2, 1).

In the following, we only evaluate the encoding complexity,
and we can obtain the decoding complexity similarly. We define
the normalized encoding complexity as the ratio of the total
number of XORs involved in the encoding procedure to the
number of information symbols. In the encoding procedure
of GEBR(p, τ, k, r, q, 1), we first compute τ parity symbols
for the first k columns that takes kτ(p− 2) XORs. Then, we
compute the multiplication of k polynomials and the r × k
Vandermonde matrix that requires (k − 1)rpτ XORs, and
solve the Vandermonde linear system. In solving the r × r
Vandermonde linear system, there are r(r − 1) additions that
require r(r − 1)pτ XORs, r(r − 1)/2 divisions that require
(r(r − 1)/2) · ((3pτ − τ − 4)/2) XORs.1 Therefore, the
normalized encoding complexity of GEBR(p, τ, k, r, q, 1) is

1
4r(r − 1)(7pτ − τ − 4) + (k − 1)rpτ + kτ(p− 2)

k(p− 1)τ
.

The encoding/decoding method of EBR is given in [2], [16],
and the normalized encoding complexity is

( 1
2r

2 − 5
2r + 2r + rk − 1)p+ 1

4r(r − 1)(3p− 5) + k(p− 2)

k(p− 1)
,

where k = p− r.
We give the comparison of EBR and our proposed codes

about the encoding complexity in Table II. The results of
Table II show that the proposed LU decoding method has less
encoding complexity compared with the decoding methods in
[2], [16].

Table II
COMPARISON OF ENCODING ALGORITHMS.

p τ r k = p− r EBR GEBR Improvement %
5 1 3 2 8.88 8.25 7.0
7 1 4 3 13.22 11.28 14.7

11 1 5 6 14.42 11.48 20.4
17 1 7 10 25.63 15.11 41.0
19 1 8 11 38.69 17.67 54.3
23 1 10 13 100.72 22.88 77.3

IV. GENERALIZED EXPANDED INDEPENDENT PARITY
CODES

In this section, we present the construction of generalized
expanded independent parity (GEIP) codes. The constructed

1Suppose that gcd(b, τ) = 1.
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GEIP code is denoted by GEIP(p, τ, k, r, q, g(x)) with encod-
ing matrix given in Eq. (19).

Pk×r =


1 1 1 · · · 1
1 x x2 · · · xr−1

...
...

...
. . .

...
1 xk−1 x2(k−1) · · · x(r−1)(k−1)

 . (19)

As the first k polynomials are in Cpτ (g(x), τ, q, d), the
computed r polynomials are also in Cpτ (g(x), τ, q, d). Note
that the EIP code proposed in [2] is a special case as
GEIP(p, τ = 1, k, r, q, g(x)).

Table III
EXAMPLE OF GEIP(p = 3, τ = 3, k = 3, r = 2, q, g(x) = 1), WHERE

si,j = si−6,j + si−3,j FOR i = 6, 7, 8 AND j = 0, 1, 2.

0 1 2 3 4
s0,0 s0,1 s0,2 s0,0 + s0,1 + s0,2 s0,0 + s8,1 + s7,2
s1,0 s1,1 s1,2 s1,0 + s1,1 + s1,2 s1,0 + s0,1 + s8,2
s2,0 s2,1 s2,2 s2,0 + s2,1 + s2,2 s2,0 + s1,1 + s0,2
s3,0 s3,1 s3,2 s3,0 + s3,1 + s3,2 s3,0 + s2,1 + s1,2
s4,0 s4,1 s4,2 s4,0 + s4,1 + s4,2 s4,0 + s3,1 + s2,2
s5,0 s5,1 s5,2 s5,0 + s5,1 + s5,2 s5,0 + s4,1 + s3,2
s6,0 s6,1 s6,2 s6,0 + s6,1 + s6,2 s6,0 + s5,1 + s4,2
s7,0 s7,1 s7,2 s7,0 + s7,1 + s7,2 s7,0 + s6,1 + s5,2
s8,0 s8,1 s8,2 s8,0 + s8,1 + s8,2 s8,0 + s7,1 + s6,2

Example 5. Consider α = 6, p = τ = k = 3, r = 2 and
g(x) = 1. The 18 information symbols are si,j ∈ Fq for i =
0, 1, . . . , 5 and j = 0, 1, 2. The encoding matrix of GEIP(p =
3, τ = 3, k = 3, r = 2, q, g(x) = 1) is

P3×2 =

1 1
1 x
1 x2

 .
Example 5 is illustrated in Table III, where si,j = si−6,j +
si−3,j for i = 6, 7, 8 and j = 0, 1, 2.

A. The (n, k) Recoverable Property

The codes GEIP(p, τ, k, r, q, g(x)) are (n, k) recoverable, if
the determinant of any square sub-matrix of Pk×r in Eq. (19)
is invertible in Cpτ (g(x), τ, q, d). Recall that Cpτ (g(x), τ, q, d)
is isomorphic to Fq[x]/(h(x)) by Lemma 2, the (n, k) recover-
able condition is reduced to that the determinant of any square
sub-matrix of Pk×r in Eq. (19), after reducing modulo h(x),
is invertible in Fq[x]/(h(x)).

Theorem 14. Let p be a prime number such that 2 is a primitive
element in Zp and τ be a power of p. If (p − 1)τ is larger
than
1

4
krmin(k, r)− 1

12
(min(k, r))3− 9

4
max(k, r)+

25

12
min(k, r)−4,

(20)
then the codes GEIP(p, τ, k, r, 2, g(x) = 1) are (n, k) recov-
erable for r ≥ 9.

Proof: When 2 is a primitive element in Zp and τ be a
multiple of p, then h(x) = 1 + xτ + x2τ + . . .+ x(p−1)τ is an
irreducible polynomial [30]. If a polynomial whose degree is
less than (p− 1)τ , then the polynomial is relatively prime to
h(x). It is sufficient to show that the maximum degree of the

determinants or all the factors of the determinants of all square
sub-matrix is less than (p− 1)τ . It is shown by Theorem 4 in
[32] that the maximum degree of the determinants or all the
factors of the determinants is equal to the value on the left side
in Eq. (20) when r ≥ 9. Therefore, GEIP(p, τ, k, r, 2, g(x) =
1) are (n, k) recoverable for r ≥ 9, if Eq. (20) holds.

If τ is a power of 2, then

1 + xτ + x2τ + . . .+ x(p−1)τ = (1 + x+ x2 + . . .+ xp−1)τ .

Recall that, since 2 is a primitive element in Zp, 1 + x+ x2 +
. . .+ xp−1 is irreducible over F2. It is sufficient to show that
the maximum degree of the determinants or all the factors of
the determinants of all square sub-matrix is less than p − 1,
and we can obtain the following theorem with a proof similar
to that of Theorem 14.

Theorem 15. If 2 is a primitive element in Zp, τ is a power
of 2 and p − 1 is large than the value in Eq. (20), then the
codes GEIP(p, τ, k, r, 2, g(x) = 1) are (n, k) recoverable for
r ≥ 9.

When r ≤ 3, the determinant of any square sub-matrix
can be written as a multiplication of factors 1 + xi, where
i ∈ {1, 2, . . . , k − 1}. Therefore, GEIP(p, τ, k, r, q, g(x) = 1)
are (n, k) recoverable for r ≤ 3, if 1+xi and h(x) are relatively
prime. When 4 ≤ r ≤ 8, we can list the prime numbers p
for which GEIP(p, τ, k, r, q, g(x) = 1) are (n, k) recoverable
with similar proof of the MDS condition in [27].

Note that EIP codes share the same (n, k) recoverable condi-
tion as IP codes (also called generalized EVENODD codes [4],
[11] or Blaum-Bruck-Vardy (BBV) codes [32] in the literature).
By letting τ be a power of p, our GEIP(p, τ, k, r, q, g(x) = 1)
codes not only support much more parameters, but the codes
may be (n, k) recoverable for some parameters with p < k,
compared with EIP codes. Example 5 is an (n, k) recoverable
property code, as 1 + xi is relatively prime to 1 + x3 + x6 for
i = 1, 2, 3.

B. Encoding/Decoding Procedure

The encoding procedure of GEIP(p, τ, k, r, q, g(x)) is as fol-
lows. Given kα information symbols si,j with i = 0, 1, . . . , α−
1 and j = 0, 1, . . . , k− 1, we obtain (m−α)k parity symbols
si,j with i = α, α+ 1, . . . ,m− 1 and j = 0, 1, . . . , k − 1 by
systematically encoding such that sj(x) ∈ Cpτ (g(x), τ, q, d)
for j = 0, 1, . . . , k − 1. Note that when g(x) = 1, we can
do the systematic encoding by Eq. (4); when g(x) 6= 1, the
systematic encoding is similar to that of cyclic codes [33, Ch.
7.8]. Then, we compute the last r polynomials by Eq. (2) with
encoding matrix Pk×r in Eq. (19).

Next, we consider the encoding complexity of
GEIP(p, τ, k, r, q, g(x) = 1). First, we compute
s(p−1)τ+µ,j =

∑p−2
`=0 s`τ+µ,j for j = 0, 1, . . . , k − 1

and µ = 0, 1, . . . , τ − 1, which takes kτ(p− 2) XORs. Then,
we compute the r parity polynomials by Eq. (2) with encoding
matrix Pk×r in Eq. (19), which takes r(k − 1)pτ XORs. The
encoding complexity is kτ(p− 2) + r(k− 1)pτ XORs. Recall
that the encoding complexity of EIP code with g(x) = 1
is k(p − 2) + r(k − 1)p XORs. Therefore, the normalized
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encoding complexity of GEIP(p, τ, k, r, q, g(x) = 1) is equal
to that of EIP code with g(x) = 1.

Suppose that r information columns have failed and up to
d − 1 symbols or a burst of up to τ + deg(g(x)) symbols
in each of other k columns have failed. We can first recover
up to d − 1 erased symbols in each of the k columns or a
burst of up to τ + deg(g(x)) erased symbols. Suppose that
GEIP(p, τ, k, r, q, g(x)) is (n, k) recoverable. Then, we can
recover r failed columns by first subtracting the other k −
r non-failed information polynomials from each of r parity
polynomials and then solving the r × r Vandermonde linear
equations by applying the LU decoding method in Algorithm
1. Note that if some of the erased columns are among the r
parity columns, we can not formulate the r × r Vandermonde
linear equations and the LU decoding method is not applicable.

Example 6. Suppose that columns 0 and 1 in Example 5 have
failed. We can obtain three polynomials

sj(x) = s0,j + s1,jx+ · · ·+ s8,jx
8,

for j = 2, 3, 4. By subtracting s2(x) from each of s3(x) and
s4(x), we have[
s3(x)− s2(x) s4(x)− x2s2(x)

]
=
[
s0(x) s1(x)

] [1 1
1 x

]
.

Therefore, we can solve s0(x) as

s0(x) =
s4(x)− x2s2(x)− x(s3(x)− s2(x))

1− x
,

by Lemma 11 and s1(x) = s3(x)− s2(x)− s0(x).

V. MINIMUM SYMBOL DISTANCE

In this section, we consider the symbol distance of the
proposed array codes, which is the number of symbols in
which two codewords differ. Minimum symbol distance is a
measure of the maximum number of failed symbols that the
codes can tolerate.

Theorem 16. Let D be the minimum symbol distance of an
(n, k) recoverable property array codes constructed by the
coding method in Section II. Then, we have D ≥ d(r + 1).

Proof: The proof is similar to the one of Lemma 28 in
[2]. For completeness, we present the proof. Since the code is
(n, k) recoverable, there are at least r + 1 non-zero columns,
and since each non-zero column has weight at least d, we
obtain D ≥ d(r + 1).

We first consider the (n, k) recoverable property array codes
with each entry of the encoding matrix Pk×r being a power
of x.

Theorem 17. If each entry of Pk×r is a power of x, then
D = d(r + 1).

Proof: Let k − 1 out of the k data polynomials be zero
and the remaining data polynomial be a non-zero polynomial
in Cpτ (g(x), τ, q, d) with weight d. Note that the multiplication
of xi and a polynomial can be implemented by cyclic-
shifting i positions of the polynomial. By encoding the k data
polynomials, we have that the obtained r parity polynomials

are all in Cpτ (g(x), τ, q, d) with weight d. Therefore, we obtain
a code with symbol distance being d(r+ 1) and we can obtain
the result by Theorem 16.

By Theorem 17, the minimum symbol distance of
GEIP(p, τ, k, r, q, g(x)) is d(r + 1). Next, we consider the
minimum symbol distance of GEBR(p, τ, k, r, q, 1).

Lemma 18. Let s(x) = xi(1 + xjτ ) ∈ Cpτ (1, τ, q, 2) with
weight 2, where i, j are integers with 0 ≤ i < pτ and 1 ≤
j < p 6= 2. If c(x) ∈ Cpτ (1, τ, q, d) such that (1 + xa)c(x) =
(1 + xb)s(x) mod 1 + xpτ , where 0 < a, b < τ and a 6= b,
then the weight of c(x) is larger than 2.

Proof: Note that d > 1 because (1+xτ )|f(x), where f(x)
is the generator polynomial of Cpτ (1, τ, q, d). We assume that
the weight of c(x) is 2, we can always obtain a contradiction
as follows and therefore the weight of c(x) is larger than
2. Let c(x) = x`(1 + xc) with 0 ≤ ` < pτ . Since c(x) ∈
Cpτ (1, τ, q, d), c 6= 0 is a multiple of τ . From (1 + xa)c(x) =
(1 + xb)s(x), we have

x`−i(1 + xa + xc + xa+c) = 1 + xb + xjτ + xb+jτ .

Let e = ` − i. Then 0 ≤ e < pτ . When e = 0, we have
{0, a, c, a+c} = {0, b, jτ, b+jτ} mod pτ . By the assumption,
a 6= b, a 6= 0 and a 6= jτ . Thus, a = b + jτ mod pτ . Since
b < τ and j < p, we have a = b+ jτ which is impossible due
to a < τ and j ≥ 1.

Next, we consider that e 6= 0 and we have {e, e + a, e +
c, e+a+c} = {0, b, jτ, b+jτ} mod pτ . Note that `+c < pτ .
Since c 6= 0 is a multiple of τ , we have ` < (p− 1)τ . Assume
that e = 0 mod pτ . This is impossible since e < pτ . Assume
that e+ a = 0 mod pτ , i.e., `− i+ a = pτ . That is, a− i =
pτ − ` > τ which contradicts to the fact a < τ . Assume that
e + c = 0 mod pτ , i.e., ` − i + c = pτ . Since ` + c < pτ , it
is impossible. Finally, assume that e+ a+ c = 0 mod pτ . We
have ` − i + a + c = pτ due to ` + c < pτ and a − i < τ .
Since b < jτ < b+ jτ and and e < e+ a < e+ c, e = b < τ ,
e+a = jτ < 2τ , and e+ c = b+ jτ . Hence, j = 1 and c = τ .
Therefore, a + b = pτ − τ = (p − 1)τ and e + a = b + a =
jτ = τ . Since p > 2, we have a contradiction. Therefore, the
weight of c(x) is larger than 2.

Theorem 19. Suppose the codes GEBR(p, τ, k, r, q, 1) are
(n, k) recoverable. When r = 2 and τ ≤ bk+1

2 c, the minimum
symbol distance of GEBR(p, τ, k, r, q, 1) is 2(r + 1) = 6.
When r = 2 and τ > k + 1, the minimum symbol distance
of GEBR(p, τ, k, r, q, 1) is 8. When r = 3, and τ ≤ bk+2

3 c,
the minimum symbol distance of GEBR(p, τ, k, r, q, 1) is 2(r+
1) = 8.

Proof: By Theorem 16, if we can find a codeword
composed of r + 1 non-zero polynomials each with weight 2
and k−1 zero polynomials, then the minimum symbol distance
is 2(r + 1).

When r = 2, by Theorem 16, each non-zero codeword
contains at least three non-zero polynomials. Without loss of
generality, suppose that the three non-zero polynomials are
sα(x), sβ(x), sγ(x) and the other k − 1 polynomials are zero,
where 0 ≤ α < β < γ ≤ k + 1. Suppose that the weight of
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sα(x) is 2. According to Eq. (5), we obtain that[
sα(x)
xαsα(x)

]
=

[
1 1
xβ xγ

]
·
[
sβ(x)
sγ(x)

]
.

Therefore, we can compute that (xβ + xγ)sγ(x) = (xα +
xβ)sα(x) and (xβ +xγ)sβ(x) = (xα+xγ)sα(x). If bk+1

2 c ≥
τ , we have k+1 ≥ 2τ . Let (α, β, γ) = (0, τ, 2τ) and s0(x) =
1 + xτ ∈ Cpτ (1, τ, q, 2) with weight 2, then we can obtain
sτ (x) = xτ +xpτ−τ and s2τ (x) = 1 +xpτ−τ , which are both
with weight 2. Therefore, the minimum symbol distance of
GEBR(p, bk+1

2 c ≥ τ, k, r = 2, q, 1) is 2(r + 1) = 6.
If k + 1 < τ , we have 0 < γ − α ≤ k + 1 < τ and

0 < γ − β ≤ k < τ . Suppose that the weight of sα(x) is
2, by Lemma 18, the weight of sβ is larger than 2. Since
sβ(x) ∈ Cpτ (1, τ, q, 2) (the number of non-zero coefficients
of sβ(x) is an even number by Lemma 4) and the weight of
sβ(x) is larger than 2, the weight of sβ(x) is no less than 4.
Consider the polynomial sγ(x). Since the weight of sγ(x) is
at least 2, the minimum symbol distance of GEBR(p, τ >
k + 1, k, r = 2, q, 1) is at least 8. Let (α, β, γ) = (0, β, 2β)
and s0 = 1 + xτ , where β ≤ (k + 1)/2 < τ . Then we obtain
s2β(x) = xpτ−β + x(pτ−β+τ) mod pτ , which has weight 2.
Since 1 +x2β = (1 +xβ)2, we can obtain sβ(x) = xpτ−β(1 +
xτ )(1+xβ), i.e., sβ(x) = 1+xτ +xpτ−β+x(pτ−β+τ) mod pτ ,
which is with weight 4. We can thus obtain that the minimum
symbol distance of GEBR(p, τ > k + 1, k, r = 2, q, 1) is 8.

When r = 3, by Theorem 16, we have at least four non-zero
polynomials. Without loss of generality, suppose that the four
non-zero polynomials are sα(x), sβ(x), sγ(x), sη(x) and the
other k − 1 polynomials are zero, where 0 ≤ α < β < γ <
η ≤ k+2. We assume that the weight of sα(x) is 2. By Eq. (5),
we have sα(x)

xαsα(x)
x2αsα(x)

 =

 1 1 1
xβ xγ xη

x2β x2γ x2η

 ·
sβ(x)
sγ(x)
sη(x)

 .
Since bk+2

3 c ≥ τ , we have k + 2 ≥ 3τ . Let (α, β, γ, η) =
(0, τ, 2τ, 3τ) and s0(x) = 1 + xτ , then we can compute
sτ (x), s2τ (x), s3τ (x) as follows, sτ (x)

s2τ (x)
s3τ (x)

 =

 xτ + xpτ−2τ

1 + xpτ−3τ

xpτ−3τ + xpτ−2τ

 ,
which have all weight 2. Therefore, the minimum symbol
distance is 2(r + 1) = 8 when bk+2

3 c ≥ τ and r = 3.
By Theorem 19, the minimum symbol distance of

GEBR(p, τ > k + 1, k, r = 2, q, 1) is larger than that of
GEBR(p, τ = 1, k, r = 2, q, 1), i.e., EBR codes with r = 2.

Theorem 20. Suppose the codes GEBR(p, τ, k, r, q, 1) are
(n, k) recoverable. When r = 4, g(x) = 1 and τ ≤ bk+3

4 c,
the minimum symbol distance of GEBR(p, τ, k, 4, q, 1) is no
larger than 12.

Proof: It is sufficient to find a codeword such that
the symbol distance is 12 when r = 4. As the code
GEBR(p, τ, k, r, q, 1) is (n, k) recoverable, each codeword
contains at least r + 1 non-zero polynomials that are in

Cpτ (1, τ, q, d), with the weight d of each non-zero polynomial
being a multiple of 2 by Lemma 4.

Consider r = 4. Without loss of generality, suppose that the
five non-zero polynomials are sα(x), sβ(x), sγ(x), sδ(x), sη(x)
and the other k− 1 polynomials are zero, where 0 ≤ α < β <
γ < δ < η ≤ k + 3. Suppose that the weight of sα(x) is 2.
According to Eq. (5), we have[

sα(x) xαsα(x) x2αsα(x) x3αsα(x)
]

=
[
sβ(x) sγ(x) sδ(x) sη(x)

]
·


1 xβ x2β x3β

1 xγ x2γ x3γ

1 xδ x2δ x3δ

1 xη x2η x3η

 .
Since τ ≤ bk+3

4 c, we have 4τ ≤ k + 3. Let (α, β, γ, δ, η) =
(0, τ, 2τ, 3τ, 4τ) and s0(x) = 1 + xτ , then we can take

sτ (x) =xτ + x(p−3)τ ,

s2τ (x) =x(p−5)τ + x(p−3)τ + x(p−2)τ + 1,

s3τ (x) =x(p−6)τ + x(p−2)τ ,

s4τ (x) =x(p−6)τ + x(p−5)τ .

Therefore, the minimum symbol distance is no larger than
12 when r = 4 and τ ≤ bk+3

4 c.
Lemma 30 in [2] is a special case of Theorem 19 with τ = 1

and 2 ≤ r ≤ 3. To determine the minimum symbol distance
of other parameters is an open problem.

VI. RECOVERY OF ERASED LINES OF SLOPE i IN
GEBR(p, τ, k, r, q, 1) CODES

In this section, we assume GEBR(p, τ, k, r, q, 1) are (n, k)
recoverable and want to show that GEBR(p, τ, k, r, q, 1)
can recover some erased lines of slope i with i =
0, 1, . . . , r−1, under some constraint. We first consider the code
GEBR(p, 1, k, r, q, 1) with τ = 1, that is, an EBR code. Recall
that the k + r symbols in line ` of slope i of the m× (k + r)
codeword array are s`,0, s`−i,1, s`−2i,2, · · · , s`−(k+r−1)i,k+r−1
for ` = 0, 1, . . . ,m− 1 and i = 0, 1, . . . , r − 1.

Theorem 21. The code GEBR(p, 1, k, r, q, 1) can recover any
r erased lines e1, e2, . . . , er of slope i for 0 ≤ i ≤ r − 1, if
and only if the following matrix

1 1 · · · 1
xe1 xe2 · · · xer

xe1·2
−1

xe2·2
−1 · · · xer·2

−1

...
...

. . .
...

xe1·(r−i−1)
−1

xe2·(r−i−1)
−1 · · · xer·(r−i−1)

−1

xe1·(p−1)
−1

xe2·(p−1)
−1 · · · xer·(p−1)

−1

xe1·(p−2)
−1

xe2·(p−2)
−1 · · · xer·(p−2)

−1

...
...

. . .
...

xe1·(p−i)
−1

xe2·(p−i)
−1 · · · xer·(p−i)

−1


is invertible over Fq[x]/(1 +x+ . . .+xp−1), where 0 ≤ e1 <
e2 < · · · < er ≤ p − 1 and k + r ≤ p. Note that for any
integer ` with 1 ≤ ` ≤ p − 1, `−1 is the inverse of ` in Zp,
i.e., `−1` = 1 mod p.
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Proof: When τ = 1, we have p ≥ k + r. Suppose that
r lines e1, e2, . . . , er of slope 0 are erased, where 0 ≤ e1 <
e2 < · · · < er ≤ p− 1. For ` = 0, 1, . . . , p− 1, we represent
k + r symbols s`,0, s`,1, . . . , s`,k+r−1 by the polynomial

s̄`(x) = s`,0 + s`,1x+ . . .+ s`,k+r−1x
k+r−1

over Fq[x]/(1 + xp). As

s`,0 + s`,1 + . . .+ s`,k+r−1 = 0,

by Lemma 4, we have2

s̄`(x) ∈ Cp(1, 1, q, d).

Cp(1, 1, q, d) is an ideal of Fq[x]/(1+xp) and is isomorphic to
Fq[x]/(1+x+ . . .+xp−1) by Lemma 2. For j = 0, 1, . . . , k+
r − 1, the summation of the p symbols in column j is zero,
we can thus compute

se1,j + se2,j + · · ·+ ser,j =

p−1∑
`=1, 6̀=e2−e1,...,er−e1

s`+e1,j ,

i.e.,

s̄e1(x)+s̄e2(x)+· · ·+s̄er (x) =

p−1∑
`=1, 6̀=e2−e1,...,er−e1

s̄`+e1(x).

(21)
According to row ` of Eq. (5), we have

0 = s0(x) + x`s1(x) + · · ·+ x(p−1)`sp−1(x)

= (s0,0 + s1,0x+ · · ·+ sp−1,0x
p−1)+

x`(s0,1 + s1,1x+ · · ·+ sp−1,1x
p−1)+

· · ·+ x(p−1)`(s0,p−1 + s1,p−1x+ · · ·+ sp−1,p−1x
p−1)

= (s0,0 + s0,1x
` + · · ·+ s0,p−1x

(p−1)`)+

x(s1,0 + s1,1x
` + · · ·+ s1,p−1x

(p−1)`)+

· · ·+ xp−1(sp−1,0 + sp−1,1x
` + · · ·+ sp−1,p−1x

(p−1)`)

= (s0,0 + s1,p−`−1 + · · ·+ sp−1,p−(p−1)`−1)+

x`(s0,1 + s1,p−`−1+1 + · · ·+ sp−1,p−(p−1)`−1+1) + · · ·+
x(p−1)`(s0,p−1 + s1,p−`−1+p−1 + · · ·+ sp−1,p−(p−1)`−1+p−1),

where `−1` = 1 mod p. Note that ` · i 6= ` · j mod p for i 6=
j ∈ {0, 1, . . . , p−1} and {0, `, · · · , (p−1)`} = {0, 1, · · · , p−
1} mod p, we have

s0,j + s1,p−`−1+j + · · ·+ sp−1,p−(p−1)`−1+j = 0

for j = 0, 1, . . . , p− 1. Therefore, we can obtain that

s̄0(x)+x`
−1

s̄1(x)+x2`
−1

s̄2(x)+· · ·+x(p−1)`
−1

s̄p−1(x) = 0,

where ` = 1, 2, . . . , r − 1. From the above equation, we then
can compute

xe1`
−1

s̄e1(x) + xe2`
−1

s̄e2(x) + · · ·+ xer`
−1

s̄er (x)

=

p−1∑
u=1,u 6=e2−e1,...,er−e1

x(u+e1)`
−1

s̄u+e1(x). (22)

2We can set s`,k+r, s`,k+r+1, . . . , s`,p−1 all zeros.

By Eq. (21) and Eq. (22), we can obtain
1 1 · · · 1
xe1 xe2 · · · xer

...
...

. . .
...

xe1(r−1)
−1

xe2(r−1)
−1 · · · xer(r−1)

−1



s̄e1(x)
s̄e2(x)

...
s̄er (x)



=


∑p−1
u=1,u 6=e2−e1,...,er−e1 s̄u+e1(x)∑p−1

u=1,u6=e2−e1,...,er−e1 x
u+e1 s̄u+e1(x)

...∑p−1
u=1,u6=e2−e1,...,er−e1 x

(u+e1)(r−1)−1

s̄u+e1(x)

 . (23)

By applying the isomorphism θ : Cp(1, 1, q, d)→ Fq[x]/(1 +
x+ . . . + xp−1) in Lemma 2 for the above linear equations,
we can show that, if the determinant of the above r× r matrix
is invertible over Fq[x]/(1 + x + . . . + xp−1), then we can
compute s̄e1(x), s̄e2(x), . . . , s̄er (x) by first solving the linear
equations over Fq[x]/(1 + x+ . . .+ xp−1) and then applying
the inverse isomorphism θ−1.

Next, we consider that r lines e1, e2, . . . , er of slope i are
erased, where 0 ≤ e1 < e2 < · · · < er ≤ p − 1 and i =
1, 2, . . . , r− 1. For ` = 0, 1, . . . , p− 1, we represent the k+ r
symbols s`,0, s`−i,1, s`−2i,2, . . . , s`−i(k+r−1),k+r−1 in the line
of slope i by the polynomial

s̄`(x) = s`,0 + s`−i,1x+ . . .+ s`−i(k+r−1),k+r−1x
k+r−1,

which is in Cp(1, 1, q, d), as the summation of the k+r symbols
is zero. According to row i+ 1 of Eq. (5), we have that the
summation of the k + r symbols in the line of slope i+ 1 is
zero, i.e.,

sj,0+sj−(i+1),1+sj−2(i+1),2+· · ·+sj−(k+r−1)(i+1),k+r−1 = 0
(24)

for j = 0, 1, . . . , p − 1. Note that all the indices are taken
modulo p in the proof and sj,k+r, sj,k+r+1, · · · , sj,p−1 are all
zero. Then, we can obtain that

s̄0(x) + xs̄1(x) + x2s̄2(x) + · · ·+ xp−1s̄p−1(x)

=

p−1∑
j=0

s−ij,jx
j + x(

p−1∑
j=0

s1−ij,jx
j) + · · ·+ xp−1(

p−1∑
j=0

sp−1−ij,jx
j)

=(s0,0 + sp−1−i,1 + sp−2−2i,2 + · · ·+ s1−(p−1)i,p−1)+

(s−i,1 + s1,0 + s2−(p−1)i,p−1 + · · ·+ sp−1−2i,2)x

+ (s−2i,2 + s1−i,1 + s2,0 + · · ·+ sp−1−3i,3)x2 + · · ·+
(s−i(p−1),p−1 + s1−i(p−2),p−2 + · · ·+ sp−1,0)xp−1

=0,

where the last equation comes from Eq. (24). Similarly,
according to row i+ ` of Eq. (5), we can compute that

s̄0(x) + x`
−1

s̄1(x) + · · ·+ x(p−1)`
−1

s̄p−1(x) = 0,

where ` = 1, 2, . . . , r − i − 1,−1,−2, . . . ,−i, then we can
compute

xe1`
−1

s̄e1(x) + xe2`
−1

s̄e2(x) + · · ·+ xer`
−1

s̄er (x)

=

p−1∑
u=1,u6=e2−e1,...,er−e1

x(u+e1)`
−1

s̄u+e1(x). (25)
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Since the summation of the p symbols in each column is
zero, we have

s̄0(x) + s̄1(x) + . . .+ s̄p−1(x) = 0,

together with Eq. (25), we can obtain

1 1 · · · 1
xe1 xe2 · · · xer

...
...

. . .
...

xe1(r−i−1)−1

xe2(r−i−1)−1

· · · xer(r−i−1)−1

xe1(p−1)−1

xe2(p−1)−1

· · · xer(p−1)−1

...
...

. . .
...

xe1(p−i)
−1

xe2(p−i)
−1

· · · xer(p−i)
−1




s̄e1(x)
s̄e2(x)

...
s̄er (x)



=



∑p−1
u=1,u6=e2−e1,...,er−e1 s̄u+e1(x)∑p−1

u=1,u6=e2−e1,...,er−e1 x
u+e1 s̄u+e1(x)

...∑p−1
u=1,u 6=e2−e1,...,er−e1 x

(u+e1)(r−i−1)−1

s̄u+e1(x)∑p−1
u=1,u6=e2−e1,...,er−e1 x

(u+e1)(p−1)−1

s̄u+e1(x)
...∑p−1

u=1,u 6=e2−e1,...,er−e1 x
(u+e1)(p−i)−1

s̄u+e1(x)


, (26)

for i = 1, 2, . . . , r − 2 and
1 1 · · · 1

xe1(p−1)−1

xe2(p−1)−1

· · · xer(p−1)−1

...
...

. . .
...

xe1(p−r+1)−1

xe2(p−r+1)−1

· · · xer(p−r+1)−1



s̄e1(x)
s̄e2(x)

...
s̄er (x)



=


∑p−1
u=1,u 6=e2−e1,...,er−e1 s̄u+e1(x)∑p−1

u=1,u6=e2−e1,...,er−e1 x
(u+e1)(p−1)−1

s̄u+e1(x)
...∑p−1

u=1,u 6=e2−e1,...,er−e1 x
(u+e1)(p−r+1)−1

s̄u+e1(x)

 , (27)

when i = r − 1. If the left r × r matrices in Eq. (26) and
Eq. (27) are invertible in Fq[x]/(1 + x+ · · ·+ xp−1), then we
can compute the erased r polynomials. Therefore, the necessary
and sufficient condition for recovering any r erased lines of
slope i is proved.

In Theorem 21, we presented a necessary and sufficient
condition for recovering any r erased lines of slope i for
0 ≤ i ≤ r−1. We have p distinct slopes in the p×(k+r) array;
however the method in Theorem 21 is not applicable to the
slope i with r ≤ i ≤ p−1. The reason is as follows. When 0 ≤
i ≤ r−1, we represent the erased k+r symbols in each erased
line by a polynomial which is in Cp(1, 1, q, d). According to
the parity-check matrix in Eq. (5), we can formulate r linear
equations of the r erased polynomials in Cp(1, 1, q, d). If the
corresponding r×r matrix of the r linear equations is invertible
in Fq[x]/(1+x+ · · ·+xp−1), then we can recover the r erased
polynomials, i.e., the r erased lines. When r ≤ i ≤ p − 1,
the erased r polynomials are in Fq[x]/(1 + xp), we are not
sure whether each erased polynomial is in Cp(1, 1, q, d) or
not. Therefore, there are many solutions in solving the r linear
equations of the r erased polynomials, even if the r×r matrix of
the r linear equations is invertible in Fq[x]/(1+x+· · ·+xp−1).
Finding necessary and sufficient conditions for recovering any
r erased lines of slope i for r ≤ i ≤ p− 1 is an open problem.

By Theorem 21, when r = 1, 2, 3, we can check that the
codes GEBR(p, 1, k, r, q, 1) can recover any r erased lines of
slope i for 0 ≤ i ≤ r− 1, which is also shown by Theorem 40
in [2]. When r ≥ 4, we need to check that the matrix given in
Theorem 21 is invertible over Fq[x]/(1+x+ . . .+xp−1). Note
that when the r erased lines e1, e2, . . . , er are consecutive inte-
gers modulo p, i.e., ei+1 = ei+1 mod p for i = 1, 2, . . . , r−1,
then the r×r matrix is a Vandermonde matrix and is invertible
over Fq[x]/(1 + x+ . . .+ xp−1). We can directly obtain the
following corollary from Theorem 21.

Corollary 22. The codes GEBR(p, τ, k, r, q, 1) can recover
any r erased lines e1, e2, . . . , er with ei+1 = ei + 1 mod p of
slope i for 0 ≤ i ≤ r − 1, where k + r ≤ p.

Example 7. Consider the code GEBR(p = 11, τ = 1, k =
7, r = 4, q, 1). We have k + r = 11 polynomials

sj(x) = s0,j + s1,jx+ s2,jx
2 + . . .+ s10,jx

10,

where j = 0, 1, . . . , 10 and

s10,j = s0,j + s1,j + s2,j + . . .+ s9,j .

The parity-check matrix of the code is
1 1 1 1 1 1 1 1 1 1 1
1 x x2 x3 x4 x5 x6 x7 x8 x9 x10

1 x2 x4 x6 x8 x10 x12 x14 x16 x18 x20

1 x3 x6 x9 x12 x15 x18 x21 x24 x27 x30

 .
According to row ` of the parity-check matrix, we have

si,0 + si−`,1 + si−2`,2 + · · ·+ si−10`,10 = 0, (28)

where ` = 0, 1, 2, 3 and i = 0, 1, . . . , 10. Note that the indices
are operated modulo p = 11 in the example. Suppose that the
following 44 symbols in four lines of slope 1

s0,0, s10,1, s9,2, s8,3, s7,4, s6,5, s5,6, s4,7, s3,8, s2,9, s1,10,

s1,0, s0,1, s10,2, s9,3, s8,4, s7,5, s6,6, s5,7, s4,8, s3,9, s2,10,

s2,0, s1,1, s0,2, s10,3, s9,4, s8,5, s7,6, s6,7, s5,8, s4,9, s3,10,

s3,0, s2,1, s1,2, s0,3, s10,4, s9,5, s8,6, s7,7, s6,8, s5,9, s4,10,

are erased. For i = 0, 1, . . . , 10, we represent the following 11
symbols

si,0, si−1,1, si−2,2, si−3,3, si−4,4, si−5,5,

si−6,6, si−7,7, si−8,8, si−9,9, si−10,10,

in the line of slope 1 by the polynomial

s̄i(x) = si,0 + si−1,1x+ si−2,2x
2 + · · ·+ si−10,10x

10. (29)

By row ` = 1 (the second row) of the parity-check matrix,
we have that the summation of all the coefficients of s̄i(x)
is zero. Therefore, s̄i(x) ∈ Cp(1, 1, q, d). We need to recover
four polynomials s̄0(x), s̄1(x), s̄2(x), s̄3(x) from the other 7
polynomials. By Eq. (28) with ` = 0, we have

si,0 + si,1 + si,2 + · · ·+ si,10 = 0,

where i = 0, 1, . . . , 10. Recall that the polynomial s̄i(x) is
given in Eq. (29), we have

s̄0(x) + x10s̄1(x) + x9s̄2(x) + · · ·+ xs̄10(x) = 0.
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When ` = 2, 3, with the same argument, we have

s̄0(x) + xs̄1(x) + x2s̄2(x) + · · ·+ x10s̄10(x) = 0,

s̄0(x) + x6s̄1(x) + x12s̄2(x) + · · ·+ x60s̄10(x) = 0.

Since the summation of the 11 symbols in each column is zero,
we have

s̄0(x) + s̄1(x) + s̄2(x) + · · ·+ s̄10(x) = 0.

Therefore, we obtain
1 x10 x9 x8

1 1 1 1
1 x x2 x3

1 x6 x12 x18

 ·

s̄0(x)
s̄1(x)
s̄2(x)
s̄3(x)

 =


∑10
i=4 x

11−is̄i(x)∑10
i=4 s̄i(x)∑10
i=4 x

is̄i(x)∑10
i=4 x

6is̄i(x)

 .
Since

det


1 x10 x9 x8

1 1 1 1
1 x x2 x3

1 x6 x12 x18

 mod (1 + x11)

=(1 + x)(1 + x6)(1 + x10)(x+ x6)(x+ x10)(x6 + x10),

which is relatively prime to 1+x+ . . .+x10. Therefore, we can
solve s̄0(x), s̄1(x), s̄2(x), s̄3(x). Specifically, we can compute
the four polynomials by Algorithm 1.

We have checked that the codes GEBR(p, τ, k, r = 4, q, 1)
can recover any r = 4 erased lines e1, e2, e3, e4 with 0 ≤
e1 < e2 < e3 < e4 ≤ p − 1 of slope i for 0 ≤ i ≤ 3, when
p = 7, 11, 13, 19.

We can not employ the above method for the case of τ ≥ 2
in general, as the polynomial representing the k + r erased
symbols in the line of a slope is not in Cpτ (1, τ, q, d). We show
in the next theorem that the code GEBR(p, τ, k, r, q, 1) can
recover up to τ erased lines of a slope, when τ ≥ 2. Note that
the erased τ lines are not arbitrary.

Theorem 23. The code GEBR(p, τ, k, r, q, 1) can recover any
τ erased lines e1, e2, . . . , eτ of slope i for i = 0, 1, . . . , r − 1,
where τ - (eα − eβ) for α 6= β ∈ {1, 2, . . . , τ}.

Proof: Suppose that τ lines e1, e2, . . . , eτ of slope i are
erased, where τ - (eα − eβ) for α 6= β ∈ {1, 2, . . . , τ}. For
` = e1, e2, . . . , eτ , the erased k+r symbols in the line of slope
i are s`,0, s`−i,1, s`−2i,2, . . . , s`−(k+r−1)i,k+r−1. By Lemma
4, we have

s`,j =

p−1∑
µ=1

sµτ+`,j ,

where ` = 0, 1, . . . , pτ − 1 and j = 0, 1, . . . , k + r − 1.
For any ` = e1, e2, . . . , eτ and j = 0, 1, . . . , k + r − 1,
the symbol s`−ji,j is erased and the other p − 1 symbols
s`−ji+τ,j , s`−ji+2τ,j , . . . , s`−ji+(p−1)τ,j are not erased, as
τ - (eα − eβ) for α 6= β ∈ {1, 2, . . . , τ}. Therefore, we can
recover the erased symbol s`−ji,j by

s`−ji,j = s`−ji+τ,j + s`−ji+2τ,j + . . .+ s`−ji+(p−1)τ,j .

By Theorem 23, GEBR(p, τ, k, r, q, 1) can recover up to τ
specified erased lines of slope i, for general parameter r. In
the following, we consider the code with r = 2 and τ ≥ 2.

Theorem 24. If τ ≥ 2 and pτ > 2(k + r − 1), then the code
GEBR(p, τ, k, r = 2, q, 1) can recover any two erased lines
of slope i for i = 0, 1.

Proof: Recall that si,j is the entry in row i and column j of
the array in GEBR(p, τ, k, 2, q, 1), where i = 0, 1, . . . , pτ − 1
and j = 0, 1, . . . , k+ r− 1. Suppose that two lines of slope 0
are erased, i.e., rows α and β of the array are erased, where
0 ≤ α < β ≤ pτ − 1. We need to recover sα,j and sβ,j for
j = 0, 1, . . . , k + r − 1 from the other symbols.

As r = 2, according to Eq. (5), we have that
k+r−1∑
j=0

si,j = 0 for i = 0, 1, . . . , pτ − 1, (30)

and
k+r−1∑
j=0

si−j,j = 0 for i = 0, 1, . . . , pτ − 1. (31)

If τ - (β − α), then we can recover sα,j and sβ,j by

sα,j =
∑p−1
`=1 s`τ+α,j ,

sβ,j =
∑p−1
`=1 s`τ+β,j ,

(32)

according to Eq. (4).
Next, we assume that τ | (β − α). By Eq. (31) with i = α

and i = β, we have

sα,0 + sα−1,1 + . . .+ sα−(k+r−1),k+r−1 = 0,

sβ,0 + sβ−1,1 + . . .+ sβ−(k+r−1),k+r−1 = 0.

If 0 ≤ α − (k + r − 1), or 0 ≥ α − (k + r − 1) and β <
pτ + α− (k + r − 1), then we can recover sα,0 by

sα,0 = sα−1,1 + sα−2,2 + . . .+ sα−(k+r−1),k+r−1.

Otherwise, we have β ≥ pτ + α− (k + r − 1), then β − (k +
r − 1) ≥ pτ + α− 2(k + r − 1) > α by assumption and we
can recover sβ,0 by

sβ,0 = sβ−1,1 + sβ−2,2 + . . .+ sβ−(k+r−1),k+r−1.

Once sα,0 or sβ,0 is known, we can recover sβ,0 or sα,0 by
Eq. (32) with j = 0. By repeating the above procedure for
i = α+1, α+2, . . . , α+k+r−1 and i = β+1, β+2, . . . , β+
k + r − 1, we can recover all 2n symbols sα,j and sβ,j for
j = 0, 1, . . . , k + r − 1.

Next, we assume that two lines of slope 1 are
erased, i.e., sα,0, sα−1,1, . . . , sα−(k+r−1),k+r−1 and
sβ,0, sβ−1,1, . . . , sβ−(k+r−1),k+r−1 are erased. If τ - (β − α),
we can recover sα−j,j and sβ−j,j by

sα−j,j =
∑p−1
`=1 s`τ+α−j,j ,

sβ−j,j =
∑p−1
`=1 s`τ+β−j,j ,

(33)

within the column. When τ | (β − α), we can recover the
symbol sα−(k+r−1),k+r−1 by

sα−(k+r−1),k+r−1 =

k+r−2∑
j=0

sα−(k+r−1),j
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if α− (k + r − 1) ≥ 0 or α− (k + r − 1) < 0 and pτ + α−
(k + r − 1) > β, or recover the symbol sβ,0 by

sβ,0 = sβ,1 + sβ,2 + . . .+ sβ,k+r−1

if β > pτ+α−(k+r−1). Once sα−(k+r−1),k+r−1 or sβ,0 is
known, we can recover sβ−(k+r−1),k+r−1 or sα,0 by Eq. (32)
with j = k + r − 1 or j = 0. Similarly, we can recover all 2n
symbols in the erased two lines of slope 1.

The next theorem shows that GEBR(p, τ, k, r = 2, q, 1) can
recover more than two erased lines of slope i, if τ is large.

Theorem 25. If τ > k+r−1, then the code GEBR(p, τ, k, r =
2, q, 1) can recover any three erased lines of slope i for i = 0, 1.

Proof: Suppose that rows α, β and γ of the array are
erased, where 0 ≤ α < β < γ ≤ pτ − 1. We want to recover
sα,j , sβ,j and sγ,j for j = 0, 1, . . . , k + r − 1 from the other
symbols.

According to Eq. (5), we have that∑k+r−1
j=0 si,j = 0 for i = 0, 1, . . . , pτ − 1,∑k+r−1
j=0 si−j,j = 0 for i = 0, 1, . . . , pτ − 1.

(34)

If τ - (β − α) and τ - (γ − β), then we can recover sα,j , sβ,j
and sγ,j by

sα,j =
∑p−1
`=1 s`τ+α,j ,

sβ,j =
∑p−1
`=1 s`τ+β,j ,

sγ,j =
∑p−1
`=1 s`τ+γ,j ,

(35)

according to Eq. (4). If τ | (β − α) and τ - (γ − β), then
we can first recover sγ,j by Eq. (35) and then recover sα,j
and sβ,j by Theorem 24. Similarly, we can recover the erased
symbols if τ - (β − α) and τ | (γ − β).

In the following, we assume that τ | (β−α) and τ | (γ−β).
By Eq. (34), we have

sα+j,0 + sα+j−1,1 + . . .+ sα−(k+r−1)+j,k+r−1 = 0,

sβ+j,0 + sβ+j−1,1 + . . .+ sβ−(k+r−1)+j,k+r−1 = 0,

sγ+j,0 + sγ+j−1,1 + . . .+ sγ−(k+r−1)+j,k+r−1 = 0,

where j = 0, 1, . . . , k + r − 1. As τ > k + r − 1, we have

α+ j < β, 0 < α− (k + r − 1) + j or
0 > α− (k + r − 1) + j and pτ + α− (k + r − 1) + j > γ,

α < β − (k + r − 1) + j and γ > β + j,

β < γ − (k + r − 1) + j and pτ + α > γ + j,

for j = 0, 1, . . . , k + r − 1 and we can recover sα,j , sβ,j , sγ,j
by

sα,j =

k+r−1∑
i=0,i6=j

sα+j−i,i,

sβ,j =

k+r−1∑
i=0,i6=j

sβ+j−i,i,

sγ,j =

k+r−1∑
i=0,i6=j

sγ+j−i,i.

Similarly, we can recover all 2n symbols in any erased three
lines of slope 1.

The recovery of erased lines of slope i in
GEBR(p, τ, k, r, q, 1) for general parameters τ and r is
an open problem and is a subject of future work.

VII. COMPARISON WITH LRC AND PRODUCT CODES

LRCs [17] and product codes [21] are two families of
existing codes that can locally repair any single-symbol failure.
The differences between our GEBR codes and the existing two
codes are as follows.

Given kα information symbols, an (m(k + r), αk, k + r)
LRC [17] creates rα global parity symbols by encoding all the
information symbols, divides all (k + r)α symbols (including
kα information symbols and rα global parity symbols) into
k+ r groups which are placed into k+ r columns and obtains
m− α local parity symbols for each group. Compared with
LRC, our GEBR codes have two advantages. First, each symbol
in our GEBR codes can be repaired by either some symbols
in the same column or the symbols along each of r lines of
slope, while a symbol in LRC can only be locally repaired
within the group. Second, our codes have much lower decoding
complexity. When there are r column failures, we can formulate
r linear equations for the erased r columns with encoding
matrix being Vandermonde matrix for GEBR codes and solve
the erased r columns by the proposed fast LU decoding
algorithm. While the r linear equations corresponding to the
r erased columns (groups) for the LRC are not Vandermonde
linear equations, there is no fast decoding algorithm designed
for the LRC when r columns have failed. Moreover, although
we can obtain some well-designed LRC that can recover some
r erased lines of a slope, the underlying field size should be
large enough.

Note that LRCs with availability [34], [35] are special
LRCs such that each symbol can be repaired with multiple
disjoint repair groups. However, the construction of LRCs with
availability [34], [35] to achieve the known bound on symbol
distance require a sufficiently large field, and therefore incur
much more decoding complexity than the proposed codes when
some lines are erased.

A product code with parameters k, r, α,m organizes the
kα information symbols into an α× k information array, first
creates r local parity symbols for each row and then obtains
m − α local parity symbols for each of the k + r columns.
Therefore, any symbol can be recovered by accessing some
symbols in the same row or in the same column, but not in a
line of a non-zero slope. Second, product code can only recover
at most any m−α row failures but our GEBR codes can recover
at most any max{m−α, r} row failures. Finally, the minimum
symbol distance of product code is at most (m−α+1)(r+1),
while the minimum symbol distance of GEBR codes is strictly
larger than (m− α+ 1)(r + 1) for some parameters.

Table IV shows the comparison of our GEBR codes, LRCs
and product codes, when m = p and α = p − 1. It is easy
to check that the three codes have the same storage overhead.
When any single-symbol fails, GEBR codes have r+1 disjoint
repair groups, while LRCs and product codes have one and two
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Table IV
COMPARISON WITH (p2, (p− 1)(p− r), p) LRCS AND PRODUCT CODES WITH m = p, α = p− 1.

Codes single-symbol r-column failures r consecutive-row r consecutive-row minimum symbol
failures decoding failures failures decoding distance

GEBR each of r + 1 lines fast decoding yes fast decoding ≥ 2r + 2
LRC one line (the same group) no fast decoding maybe over large field no (p− 1)r + 2

Product each of two lines fast decoding no N/A 2r + 2

repair groups, respectively. In decoding r-column failures, both
GEBR codes and product codes have fast decoding algorithm,
there is no fast decoding algorithm for LRCs. We can decode
any r consecutive-row failures for GEBR codes by the fast
LU decoding algorithm. Although it is possible to design
LRCs over a large finite field to recover any r consecutive-
row failures, there is no fast decoding algorithm for general
parameters. LRCs have the largest minimum symbol distance
among the three codes. Compared with LRCs, GEBR codes can
be viewed as codes with larger recoverability for single-symbol
failures, multi-column failures and multi-row failures, at a cost
of minimum symbol distance reduction. When compared with
product codes, GEBR codes not only have larger recoverability,
but also possible have larger minimum symbol distance for
some parameters.

Consider the code GEBR(p = 11, τ = 1, k = 7, r = 4, q, 1)
in Example 1, we have k(p − 1) = 70 data symbols and
p2 − k(p − 1) = 51 local parity symbols. Each symbol has
r + 1 = 5 disjoint repair groups. We can recover any r = 4
erased lines e1, e2, e3, e4 with 0 ≤ e1 < e2 < e3 < e4 ≤ 10
of slope i for 0 ≤ i ≤ 3. We can also recover any four column
failures by the fast LU decoding algorithm. While for the
product code with the same parameters, we can only recover
any symbol by two disjoint repair groups, and we can not
recover any four erased lines.

VIII. CONCLUSION

In this paper, we propose a coding method of array codes
that has local repair property. We present the constructions of
GEBR codes and GEIP codes based on the proposed coding
method that can support much more parameters, compared
with EBR codes and EIP codes, respectively. We propose an
efficient LU decoding method for GEBR codes and GEIP codes
based on the LU factorization of Vandermonde matrix. When τ
is large, we show that GEBR codes have both larger minimum
symbol distance and larger recovery ability of erased lines
for some parameters, compared with EBR codes. The (n, k)
recoverable condition of GEBR codes for general g(x) is one
of our future work. How to propose a coding framework to
unify GEBR codes, LRCs, and product codes is another future
work. It is also interesting to explore some good properties by
replacing each column of the proposed codes with regenerating
codes.

APPENDIX A
PROOF OF LEMMA 11

We first show that r0 =
∑ p−1

2
u=1

∑τ
`=1 f(2u−1)τb+`b. Accord-

ing to Eq. (13), we have

rτb+`b = rτb+(`−1)b + fτb+`b, (36)

where ` = 0, 1, . . . , pτ − 1. Summing both sides of Eq. (36)
from ` = 0 to ` = (i− 1)τ , we have

ribτ = rτb−b +

(i−1)τ∑
`=0

fτb+`b, (37)

where i = 1, 2, . . . , p − 1. Summing both sides of Eq. (37)
from i = 1 to i = p− 1, we have

p−1∑
i=1

ribτ =

p−1∑
i=1

riτ = (p− 1)rτb−b +

p−1∑
i=1

(i−1)τ∑
`=0

fτb+`b, (38)

where the first equation above comes from that gcd(b, p) = 1.
By Eq. (3) in Lemma 3, we have

∑p−1
i=1 riτ = r0. Since p

is an odd prime number, we have (p− 1)rτb−b = 0. We can
compute

∑p−1
i=1

∑(i−1)τ
`=0 fτb+`b as

p−1∑
i=1

(i−1)τ∑
`=0

fτb+`b = (p− 1)fτb + (p− 2)

τ∑
`=1

fτb+`b+

(p− 3)

τ∑
`=1

f2τb+`b + · · ·+ 2

τ∑
`=1

f(p−3)τb+`b +

τ∑
`=1

f(p−2)τb+`b

=

p−1
2∑

u=1

τ∑
`=1

f(2u−1)τb+`b.

Therefore, we obtain that r0 =
∑ p−1

2
u=1

∑τ
`=1 f(2u−1)τb+`b. Sim-

ilarly, we can show that Eq. (14) holds for j = 0, 1, . . . , a− 1.
Once r0 is known, we can compute other pτ

a − 1 coefficients
recursively by Eq. (15) with j = 0 and ` = 1, 2, . . . , pτa − 1.
Similarly, we can compute pτ

a − 1 coefficients recursively by
Eq. (15) with ` = 1, 2, . . . , pτa −1 for j = 0, 1, . . . , a−1, after
solving rj .

Next, we need to show that the solved r(x) is in
Cpτ (g(x), τ, q, d), i.e., g(x)(1+xτ ) divides r(x). First, (1+xτ )
divides r(x), as we can show that

∑p−1
`=0 r`τ+µ = 0 for

µ = 0, 1, . . . , τ−1. Second, since g(x) divides f(x), if gcd(1+
xb, g(x)) = 1, then g(x) divides r(x). As gcd(g(x), 1+x) = 1
and gcd(p, b) = 1, we have that gcd(1 + xb, g(x)) = 1 by
Lemma 19 in [2]. Therefore, g(x)(1 + xτ ) divides r(x) and
the lemma is proved.

APPENDIX B
PROOF OF LEMMA 12

Since gcd(b,m) = gcd(ups, pν+1) = ps and gcd(u, p) = 1,
we have that gcd(u, pν+1) = 1. In the following, we show that

{0, ups, 2ups, · · · , u(pν+1 − 2ps)} mod pν+1

= {0, ps, 2ps, · · · , pν+1 − 2ps}. (39)
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First, we prove that if i 6= j ∈ {0, ps, 2ps, · · · , pν+1 − 2ps},
then u·i 6= u·j mod pν+1. Suppose that u·i = u·j mod pν+1,
then there exists an integer ` such that

u · i = u · j + `pν+1,

and we can further obtain that

u · (i− j) = `pν+1.

Since gcd(u, pν+1) = 1, we have pν+1 | (i − j), which
contradicts to that i 6= j ∈ {0, ps, 2ps, · · · , pν+1 − 2ps}.
Similarly, we can show that

u · i 6= pν+1 − ps.

Therefore, Eq. (39) holds. According to Eq. (13), we have

f2iups+ups = r2iups+ups + r2iups , (40)

where i = 0, 1, . . . , pν−s+1−1. Summing both sides of Eq. (40)
from i = 0 to i = pν−s+1−3

2 , we have

pν−s+1−3
2∑
i=0

f2iups+ups =

pν−s+1−3
2∑
i=0

(r2iups+ups + r2iups)

=

pν−s+1−2∑
i=0

riups

=

pν−s+1−2∑
i=0

rips (41)

= r(pν−s+1−1)ps = rpν+1−ps , (42)

where Eq. (41) comes from Eq. (39), Eq. (42) comes from that

{0, ps, 2ps, · · · , pν+1 − 2ps} = {0, p
ν , · · · , (p− 1)pν} ∪ {ps, pν + ps, · · · , (p− 1)pν + ps}

∪ · · · ∪ {2pν − ps, 3pν − ps, · · · , (p− 1)pν − ps}, if ν > s,
{0, pν , 2pν , · · · , (p− 2)pν}, if ν = s.

Similarly, we can show that Eq. (16) holds for j =
0, 1, . . . ,m − 1. Once rpν+1−ps+j for j = 0, 1, . . . , ps − 1
are known, we can compute the other coefficients recursively.

Recall that
∑ pν−s+1−3

2
i=0 f2iups+ups+j = rpν+1−ps+j for j =

0, 1, . . . ,m− 1 by Eq. (42), we have

ri = fups+ps+i + f3ups+ps+i + · · ·+ f(pν−s+1−2)ups+ps+i

for i = 0, 1, . . . ,m. Recall that the indices are taken modulo
m = pν+1. We have

r(x) = (xp
ν+1−ups−ps+xp

ν+1−3ups−ps+· · ·+x2up
s−ps)f(x).

Since f(x) ∈ Cpτ (g(x), τ, q, d), we have that r(x) ∈
Cpτ (g(x), τ, q, d) and the lemma is proved.
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