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Decoder Ties Do Not Affect the Error Exponent of

the Memoryless Binary Symmetric Channel
Ling-Hua Chang∗, Po-Ning Chen†, Fady Alajaji‡ and Yunghsiang S. Han§

Abstract—The generalized Poor-Verdú error lower bound
established in [1] for multihypothesis testing is studied in the clas-
sical channel coding context. It is proved that for any sequence of
block codes sent over the memoryless binary symmetric channel
(BSC), the minimum probability of error (under maximum
likelihood decoding) has a relative deviation from the generalized
bound that grows at most linearly in blocklength. This result
directly implies that for arbitrary codes used over the BSC,
decoder ties can only affect the subexponential behavior of the
minimum probability of error.

Index Terms—Binary symmetric channel, block codes, error
probability bounds, maximum likelihood decoder ties, error
exponent, channel reliability function, hypothesis testing.

I. INTRODUCTION

A well-known lower bound on the minimum probability

of error Pe of multihypothesis testing is the so-called Poor-

Verdú bound [2]. The bound was generalized in [3] by tilting,

via a parameter θ ≥ 1, the posterior hypothesis distribution,

with the resulting bound noted to progressively improve with θ
except for examples involving the memoryless binary erasure

channel (BEC). The closed-form formula of this generalized

Poor-Verdú bound, as θ tends to infinity, was recently derived

in [1]. An alternative lower bound for Pe was established by

Verdú and Han in [4]; this bound was subsequently extended

and strengthened in [5].

In this paper, we investigate the generalized Poor-Verdú

lower bound of [1] in the classical context of the maximum-

likelihood (ML) decoding error probability of block codes

Cn with blocklength n and size |Cn| = M sent over the

memoryless binary symmetric channel (BSC) with crossover

probability 0 < p < 1/2. For convenience, we denote this

lower bound by bn (see its expression in (3)). Specifically, for

channel inputs uniformly distributed over code Cn, we bound
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the codes minimum probability of decoding error an in terms1

of bn as follows:

bn ≤ an ≤ (1 + c n) bn, (1)

where c , (1− p)/p is the channel (likelihood ratio) constant

and is independent of code Cn. Noting that bn can be recovered

from an by disregarding all decoder ties, which occur with

probability no larger than c n bn, we conclude that decoder ties

only affect the subexponential behavior of the minimum error

probability an with respect to an arbitrary sequence of codes

{Cn}n≥1. Indeed, setting Ca∗
n , argminCn:|Cn|=M an(Cn) and

Cb∗
n , argminCn:|Cn|=M bn(Cn) for codes of blocklength n

and size M used over the BSC, (1) implies that:

bn(C
b∗
n ) ≤ bn(C

a∗
n ) ≤ an(C

a∗
n )

≤ an(C
b∗
n ) ≤

(

1 +
(1− p)

p
n

)

bn(C
b∗
n ), (2)

which immediately gives that with M = ⌊enR⌋, the BSC

reliability function E(R) , lim supn→∞ − 1
n
log an(Ca∗

n ) sat-

isfies E(R) = lim supn→∞ − 1
n
log bn(Cb∗

n ) and can hence be

determined via a sequence of codes that minimizes bn(Cn)
(without considering ties) instead of an(Cn).

The related problem of exactly characterizing the channel

reliability function at low rates remains a long-standing open

problem; in-depth studies on this focal information-theoretic

function and related problems include the classical papers [6]–

[9] and texts [10]–[13] and the more recent works [14]–

[25] (see also the references therein). In [2], Poor and Verdú

conjectured that their original error lower bound for multihy-

pothesis testing, which yields an upper bound on the channel

coding reliability function, is tight for all rates and arbitrary

channels. The conjecture was disproved in [26], where the

bound was shown to be loose for the BEC at low rates. Further-

more, Polyanskiy showed in [17] that the original Poor-Verdú

bound [2] coincides with the sphere-packing error exponent

bound for discrete memoryless channels (and is hence loose

at low rates for this entire class of channels). Our result in (1)

which holds for arbitrary sequence of codes {Cn}n≥1, while

not explicitly determining the reliability function for the BSC,

provides an alternative approach for studying it.

The rest of the paper is organized as follows. The error

bound bn is analyzed for the channel coding problem over the

memoryless BSC in Section II. The proof of the main theorem

is provided in detail in Section III. Finally, conclusions are

drawn in Section IV.

1Note that an and bn, as well as the notations introduced in Table I, are
all functions of the adopted code Cn. For ease of notation, we drop their
dependence on Cn throughout the paper (except in (2) and the discussion
related to it).



Throughout the paper, we denote [M ] , {1, 2, . . . ,M} for

any positive integer M .

II. ANALYSIS OF LOWER BOUND bn FOR AN ARBITRARY

SEQUENCE OF BINARY CODES {Cn}n≥1

Consider an arbitrary binary code Cn∈ {0, 1}n with block-

length n and size |Cn| = M to be used over the BSC with

crossover probability 0 < p < 1
2 . It is shown in [1, Eq. (5)]

that the generalized Poor-Verdú error lower bound bn to the

minimum probability of decoding error an (obtained under

maximum-likelihood decoding) is given by

bn = PXn,Y n {(xn, yn) ∈ Xn × Yn :

PXn|Y n(xn|yn) < max
un∈Cn\{xn}

PXn|Y n(un|yn)

}

,(3)

where PXn,Y n is the joint input-output distribution that Xn

is sent over the BSC (via n uses) and Y n is received, and

PXn|Y n is the corresponding posterior conditional distribution

of Xn given Y n. Indeed, by recalling that the (optimal)

maximum a posteriori (MAP) estimate of xn ∈ Cn from

observing yn ∈ Yn at the channel output is given by

e(yn) = arg max
xn∈Cn

PXn|Y n(xn|yn), (4)

the right-hand-side (RHS) of (3) is nothing but the error prob-

ability under a “genie” MAP decoder that correctly resolves

ties. We demonstrate that the lower bound bn in (3), upon scal-

ing it by the affine linear term (1+ c n), where c = (1−p)/p,

becomes an upper bound for an, and hence is asymptotically

exponentially tight with an
(

i.e., lim supn→∞
1
n
log an

bn
= 0

)

for arbitrary sequences of block codes sent over the BSC. The

exponential tightness result follows directly from the following

theorem, which is the main contribution of the paper.

Theorem 1: For any sequence of codes {Cn}n≥1 of block-

length n and size |Cn| = M with Cn ⊆ Xn , {0, 1}n,

let an denote the minimum probability of decoding error

for transmitting Cn over the BSC with crossover probability

0 < p < 1/2, under a uniform distribution PXn over Cn,

where Xn is the n-tuple (X1, . . . , Xn). Then,

bn ≤ an ≤

(

1 +
(1− p)

p
n

)

bn, (5)

where bn is given in (3).

In Theorem 1, it is implicitly assumed that all M codewords

are distinct as the codebook is defined as Cn ∈ Xn, with Xn

containing all (distinct) binary sequences of length n. Note

that if identical codewords are allowed in Cn, decoder ties

may become dominant in the minimum error probability an
and the right inequality (5) in Theorem 1 no longer holds.

Theorem 1 reveals that for any arbitrary sequence of block

codes {Cn}n≥1 used over the BSC, the relative deviation,

(an − bn)/bn, of the minimum probability of decoding error

an from bn is at most linear in the blocklength n. It is worth

mentioning that this conclusion cannot be applied for the BEC

for any code Cn because decoder ties are the only source of

decoding errors on the BEC, which gives bn = 0 since (3)

ignores ties.

Overview of the Proof of Theorem 1: Before providing the full

proof of Theorem 1 in Section III, we introduce the necessary

notation and highlight how we prove (5).

Because the channel input distribution PXn is uniform over

Cn, the code’s minimal probability of error an is achieved

under ML decoding. For the BSC, the ML estimate based

on any received n-tuple yn at the channel output is obtained

via the Hamming distances {d(xn, yn)}xn∈Cn,yn∈Yn . Define

the set of output n-tuples yn which definitely lead to an ML

decoder error when xn
(i) ∈ Cn is transmitted as

Ni ,

{

yn ∈ Yn : d(xn
(i), y

n) > min
un∈Cn\{xn

(i)
}
d(un, yn)

}

, (6)

and the set of output n-tuples yn that induce a decoder tie

when transmitting xn
(i) ∈ Cn as

Ti ,

{

yn ∈ Yn : d(xn
(i), y

n) = min
un∈Cn\{xn

(i)
}
d(un, yn)

}

. (7)

For the BSC with crossover probability 0 < p < 1
2 ,

we have PY n|Xn(yn|xn
(i)) =

(

p

1−p

)d(xn
(i),y

n)
(1 − p)n. Thus,

d(xn
(i), y

n) > minun∈Cn\{xn
(i)

} d(un, yn) if and only if

PY n|Xn(yn|xn
(i)) < maxun∈Cn\{xn

(i)
} PY n|Xn(yn|un), and

therefore

bn =
M
∑

i=1

PXn(xn
(i))PY n|Xn(Ni|x

n
(i))

=
1

M

∑

i∈[M ]

PY n|Xn(Ni|x
n
(i)). (8)

Similarly, PY n|Xn(yn|xn
(i)) =

(

p
1−p

)d(xn
(i),y

n)
(1−p)n implies

that the probability of decoder ties, denoted by δn, satisfies

δn =
M
∑

i=1

PXn(xn
(i))PY n|Xn

(

Ti|x
n
(i)

)

=
1

M

∑

i∈[M ]

PY n|Xn

(

Ti|x
n
(i)

)

. (9)

We thus obtain the following relationship:

bn ≤ an ≤ bn + δn =

(

1 +
δn
bn

)

bn. (10)

Note if δn = 0,2 then (10) is tight and (5) holds trivially; so

without loss of generality, we will assume in the proof that

δn > 0. We then have that

δn
bn

=

∑

i∈[M ] PY n|Xn(Ti|xn
(i))

∑

i∈[M ] PY n|Xn(Ni|xn
(i))

(11)

≤

∑

i∈[M ]:Ti 6=∅ PY n|Xn(Ti|xn
(i))

∑

i∈[M ]:Ti 6=∅ PY n|Xn(Ni|xn
(i))

(12)

≤
1

∑

i∈[M ]:Ti 6=∅ PY n|Xn(Ni|xn
(i))

∑

i∈[M ]:Ti 6=∅

(

PY n|Xn(Ni|x
n
(i))

× max
i′∈[M ]:Ti′ 6=∅

PY n|Xn(Ti′ |xn
(i′))

PY n|Xn(Ni′ |xn
(i′))

)

(13)

= max
i′∈[M ]:Ti′ 6=∅

PY n|Xn(Ti′ |xn
(i′))

PY n|Xn(Ni′ |xn
(i′))

, (14)

where (12) holds because the assumption of δn > 0 guarantees

2A straightforward example for which δn = 0 is Cn consisting of only
two codewords whose Hamming distance is an odd number.
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the existence of at least one non-empty set Ti for i ∈ [M ].
With (10) and (14), the upper bound in (5) follows by proving

that

PY n|Xn(Ti|xn
(i))

PY n|Xn(Ni|xn
(i))

≤
(1− p)

p
n for non-empty Ti. (15)

To achieve this objective, we will construct a number of

disjoint covers of Ti and also construct the same number

of disjoint subsets of Ni such that a one-to-one correspon-

dence between the Ti-covers and the Ni-subsets exists. Since

PY n|Xn(Ti|xn
(i)) > 0 guarantees the existence of at least one

non-empty Ti-cover, a similar derivation to (14) yields that
PY n|Xn (Ti|x

n
(i))

PY n|Xn (Ni|xn
(i)

) is upper-bounded by the maximum ratio of the

probabilities of the Ti-cover-versus-Ni-subset pairs. The final

step (i.e., Proposition 4 in Section III-D) is to enumerate the

probabilities of the Ti-cover-versus-Ni-subset pairs and show

that it is bounded from above by
(1−p)

p
n . The full details are

given in the next section.

III. THE PROOF OF THEOREM 1

We divide the proof into four parts. In Section III-A, we

obtain a coarse disjoint covering of (non-empty) Ti and the

corresponding disjoint subsets of Ni. In Sections III-B and

III-C, we refine the covers of Ti just obtained by further

partitioning each of them in a systematic manner, and the

same number of disjoint subsets of Ni are also constructed.

In Section III-D, we enumerate the refined covering sets of

Ti and the corresponding subsets of Ni, which enable us to

obtain the desired upper bound for δn/bn. Since we consider

the memoryless BSC in this paper, we assume without loss of

generality that xn
(1) is the all-zero codeword. We also assume

for notational convenience that i = 1 and T1 6= ∅.

For ease of reference, we first summarize in Table I all main

symbols used in the proof. We also illustrate in Fig. 1 all sets

defined in Table I, based on the code of Example 1 below.

A. A Coarse Disjoint Covering of Non-empty T1 and the

Corresponding Disjoint Subsets of N1

Before providing a coarse disjoint covering of non-empty

T1 and corresponding disjoint subsets of N1, we elucidate the

idea behind them.

Note from its definition in (7) that T1 consists of all

minimum distance ties when xn
(1) is sent. To obtain disjoint

covers of T1, we first collect all channel outputs yn that are

equidistant from xn
(1) and xn

(2) and we place them in T2|1.

We next place into T3|1 those outputs yn that have not been

included in T2|1, and that are at equal distance from xn
(1) and

xn
(3). We iterate this process sequentially to obtain Tj|1 for

j = 4, 5, . . ., M by picking yn tuples that have not yet been

included in all previous collections, and that are equidistant

from xn
(1) and xn

(j). This completes the construction of the

disjoint covers {Tj|1}
M
j=2 of T1. Note that for non-empty T1,

we have at least one Tj|1 that is non-empty.

The (M − 1) disjoint subsets of Ni are constructed as fol-

lows. Suppose T2|1 is non-empty. Given a channel output un in

T2|1 (that is at equal distance from xn
(1) and xn

(2)), we can flip

a zero component of un to obtain a vn to fulfill d(xn
(1), v

n)−

1 = d(xn
(1), u

n) = d(xn
(2), u

n) = d(xn
(2), v

n) + 1, imply-

ing d(xn
(1), v

n) > d(xn
(2), v

n) ≥ minzn∈Cn\{xn
(1)

} d(z
n, vn).

Therefore, it follows from the definition in (6) that vn ∈ N1.

Collecting all such vn from every un ∈ T2|1, we form N2|1.

This construction provides an operational connection between

T2|1 and N2|1. Iterating this process for j = 3, 4, . . ., M in

this order and deliberately avoiding repeated collections give

the desired disjoint subsets of N1. Here, we force Nj|1 = ∅
whenever Tj|1 is an empty set.

The above constructions are formalized in the following

definition.

Definition 1: Define for j ∈ [M ] \ {1},


















































Tj|1 ,

{

yn ∈ Yn : d(xn
(1), y

n) = d(xn
(j), y

n)

< min
r∈[j−1]\{1}

d(xn
(r), y

n)
}

;

Nj|1 ,

{

yn ∈ Yn :

d(xn
(1), y

n)− 1 = d(xn
(j), y

n) + 1

6= d(xn
(r), y

n) + 1 for r ∈ [j − 1] \ {1}
}

.

(16a)

(16b)

To better understand the terms just introduced, we provide

the following example.

Example 1: Suppose M = 3 and C4 = {x4
(1), x4

(2),

x4
(3)} = {0000, 1100, 0110}. Then, T1 = {0100, 1000, 0101,

1001, 1010, 1011, 0010, 0011} and N1 = {1100, 0110, 0111,
1101, 1110, 1111}. Furthermore, we have T2|1 = {0100,
1000, 0101, 1001, 1010, 1011, 0110, 0111} and T3|1 = {0010,
0011}. Note that the last two elements in T2|1 satisfy both

d(xn
(1), y

n) = d(xn
(2), y

n) and d(xn
(1), y

n) > d(xn
(3), y

n), and

hence they result in ties but not in minimum distance ties as

required for T1 in (7), indicating that T2|1 ∪ T3|1 is a proper

covering of T1 as shown in Fig. 1. On the other hand, we have

N2|1 = {1100, 1101, 1110, 1111} and N3|1 = {0110, 0111},

showing that they are disjoint subsets of N1. ✷

The observations we made from Example 1 are proved in

the next proposition.

Proposition 1: For nonempty T1, the following two proper-

ties hold.

i) The collection {Tj|1}j∈[M ]\{1} forms a disjoint covering of

T1.

ii) {Nj|1}j∈[M ]\{1} is a collection of disjoint subsets of Ni.

Proof: The strict inequality in (16a) and the non-equality

condition in (16b) guarantee no multiple inclusions of an ele-

ment from the previous collections; therefore, {Tj|1}j∈[M ]\{1}

are disjoint and so are {Nj|1}j∈[M ]\{1}. Now for any yn ∈ T1,

we have d(xn
(1), y

n) = d(xn
(m), y

n) for some m 6= 1;

therefore, this yn must be collected in Tj|1 for some j ≤ m,

confirming that {Tj|1}j∈[M ]\{1} forms a covering of T1.

Next, for any yn ∈ Nj|1, we have d(xn
(1), y

n) − 1 =
d(xn

(j), y
n) + 1 ≥ minun∈Cn\{xn

(1)
} d(u

n, yn) + 1, leading

to d(xn
(1), y

n) > d(xn
(j), y

n) ≥ minun∈Cn\{xn
(1)

} d(u
n, yn);

hence, this yn must be contained in N1, confirming that

{Nj|1}j∈[M ]\{1} are subsets of Ni.

From Proposition 1, we have that

PY n|Xn(T1|x
n
(1))

PY n|Xn(N1

∣

∣

∣
xn
(1))

≤
PY n|Xn

(
⋃

j∈[M ]\{1} Tj|1
∣

∣xn
(1)

)

PY n|Xn

(
⋃

j∈[M ]\{1} Nj|1

∣

∣xn
(1)

)
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TABLE I
SUMMARY OF ALL MAIN SYMBOLS USED IN THE PROOF.

Symbol Description Definition

[M ] A shorthand for {1, 2, . . . ,M}

Cn The code
{

x
(n)
1 , x

(n)
2 , . . . , x

(n)
M

}

with x
(n)
1 being the all-zero codeword

d(un, vn|S) The Hamming distance between the portions of un and vn with indices in S

All terms below are functions of Cn (this dependence is not explicitly shown to simplify notation)

Nj The set of channel outputs yn that lead to an ML decoder error when xn
(i) is sent (6)

Tj The set of channel outputs yn that induce a decoder tie when xn
(i) is sent (7)

Tj|1 The set of channel outputs yn that are at equal distance from xn
(1) and xn

(j) (16a)

and that are not included in Ti|1 for 2 ≤ i ≤ j − 1
Nj|1 The set of channel outputs yn that satisfy d(xn

(1), y
n)− 1 = d(xn

(j), y
n) + 1 (16b)

and that are not included in Ni|1 for 2 ≤ i ≤ j − 1
Sj The set of indices for which the components of xn

(j) equal one

ℓj The size of Sj , i.e., |Sj |

Sr;λr
It is equal to Sr if λr = 1, and Sc

r if λr = 0
(

only used in (19) to define S
(m)
j

)

S
(m)
j The subset of Sj defined according to whether each index in Sj is in each (19)

of S2, . . ., Sj−2

S
(m)
j The union of S

(1)
j , S

(2)
j , . . ., S

(m)
j (20)

ℓ
(m)
j The size of S

(m)
j , i.e., |S

(m)
j |

σ(·) The mapping from {0, 1, . . . , ℓj − 1} to [2j−2] for partitioning Tj|1 into ℓj (24)

subsets {Tj|1(k)}0≤k<ℓj

Tj|1(k) The kth partition of Tj|1 for k = 0, 1, . . ., ℓj − 1 (25a)

Nj|1(k) The kth subset of Nj|1 for k = 0, 1, . . ., ℓj − 1 (25b)

Uj|1(k) The group of representative elements in Tj|1(k) for defining the partitions of Tj|1(k)
Tj|1(u

n; k) The partition of Tj|1(k) associated with un ∈ Uj|1(k) (30a)

Nj|1(u
n; k) The subset of Nj|1(k) associated with un ∈ Uj|1(k) (30b)

=

∑

j∈[M ]\{1} PY n|Xn

(

Tj|1

∣

∣

∣
xn
(1)

)

∑

j∈[M ]\{1} PY n|Xn

(

Nj|1

∣

∣

∣
xn
(1)

)

, (17)

which implies, using the same method to derive (14), that

PY n|Xn(T1|xn
(1))

PY n|Xn(N1|xn
(1))

≤ max
j∈[M ]\{1}:Tj|1 6=∅

PY n|Xn(Tj|1|x
n
(1))

PY n|Xn(Nj|1|x
n
(1))

(18)

for non-empty T1.

In the next section, we continue decomposing non-empty

Tj|1 and its corresponding Nj|1.

B. A Partition of Non-empty Tj|1 and the Corresponding

Disjoint Subsets of Nj|1

For the enumeration analysis in Section III-D, further de-

compositions of Tj|1 and Nj|1 are needed in order to facilitate

the identification of which portions of xn
(r) are ones and which

portions of xn
(r) are zeros for every r ∈ [j]. Let Sj denote the

set of indices for which the (bit) components of xn
(j) equal

one.

Now as an example, if we decompose S3 into Sc
2

⋂

S3 and

S2

⋂

S3, then we are certain that the portions of xn
(2) with

indices in Sc
2

⋂

S3 are zeros, and those with indices in S2

⋂

S3

are ones. Furthermore, when considering the portions of xn
(4)

that are ones, S4 can be decomposed into Sc
2

⋂

Sc
3

⋂

S4,

Sc
2

⋂

S3

⋂

S4, S2

⋂

Sc
3

⋂

S4 and S2

⋂

S3

⋂

S4, and the values

of xn
(2) and xn

(3) are known exactly when considering their

portions with indices in any of these four sets. In general, we

shall partition Sj into 2j−2 subsets based on S2, S3, . . ., Sj−1

and their respective complements. As such, S4 is partitioned

into 2j−2 = 4 subsets (here j = 4). For convenience, we

use the positive integer m , 1 +
∑j−1

r=2 λr · 2r−2, where

1 ≤ m ≤ 2j−2, to enumerate the 2j−2 joint intersections,

where λr = 0 implies Sc
r is involved in the joint intersections,

while λr = 1 implies Sr is taken instead. Thus, with j = 4,

the four sets Sc
2

⋂

Sc
3

⋂

S4, S2

⋂

Sc
3

⋂

S4, Sc
2

⋂

S3

⋂

S4 and

S2

⋂

S3

⋂

S4 are respectively indexed by m = 1, 2, 3 and 4,

which correspond to (λ2, λ3) = (0, 0), (1, 0), (0, 1) and (1, 1),
respectively.

For j ∈ [M ] \ {1}, partition Sj into 2j−2 subsets according

to whether each index in Sj is in S2, . . ., Sj−2 or not as

follows:

S
(m)
j ,

(

j−2
⋂

r=2

Sr;λr

)

⋂

Sj

for 1 ≤ m = 1 +

j−1
∑

r=2

λr · 2
r−2 ≤ 2j−2, (19)

where Sr;1 , Sr and Sr;0 , Sc
r, and each λr ∈ {0, 1}. Define

4



Fig. 1. An illustration of the sets defined in Table I, based on the setting in Example 1, where T2|1(0) = T3|1(0) = N2|1(0) = N3|1(0) = ∅,

U2|1(1) = {0100, 0101, 0110, 1011} and U3|1(1) = {0010, 0011}.

incrementally S
(0)
j , ∅ and

S
(m)
j ,

m
⋃

q=1

S
(q)
j , m ∈ [2j−2]. (20)

Let ℓj , |Sj | and ℓ
(m)
j , |S

(m)
j | denote the sizes of Sj and

S
(m)
j , respectively. Then, as mentioned at the beginning of

this section, for all r ∈ [j], the components of xn
(r) with indices

in S
(m)
j can now be unambiguously identified and are all equal

to λr. As a result, with xn
(1) being the all-zero codewords,

d(xn
(1), x

n
(r)|S

(m)
j ) =

{

|S
(m)
j |, λr = 1;

0, λr = 0,
(21)

where d(un, vn|S) denotes the Hamming distance between the

portions of un and vn with indices in S, and by convention,

we set d(un, vn|S) = 0 when S = ∅. We will see later in the

proof of Proposition 4 that (21) facilitates our evaluation of

d(xn
(r), y

n) for channel output yn.

We illustrate the sets and quantities just introduced in the

following example.

Example 2: Suppose C6 = {x6
(1), x

6
(2), x

6
(3)} = {000000,

111100, 001111}. Then, from (16a) and (16b), we obtain

T3|1 = {001010, 001001, 000110, 000101, 000011, 010011,
100011} and N3|1 = {000111, 001011, 001101, 001110,

101011, 011011, 100111, 010111, 111101, 111110}. Next,

it can be seen that S2 = {1, 2, 3, 4}, S3 = {3, 4, 5, 6} and

ℓ2 = ℓ3 = 4. In addition, by varying m = 1 + λ2 for

λ2 ∈ {0, 1}, S3 can be partitioned into 23−1 = 2 sets, which

are:

S
(m)
3 =

{

S2;0

⋂

S3 = {5, 6}, m = 1;

S2;1

⋂

S3 = {3, 4}, m = 2.
(22)

Hence,

S
(m)
3 =

{

S
(1)
3 = {5, 6}, m = 1;

S
(1)
3

⋃

S
(2)
3 = {3, 4, 5, 6}, m = 2,

(23)

and ℓ
(1)
3 = |S

(1)
3 | = 2 and ℓ

(2)
3 = |S

(2)
3 | = 4. ✷

We are now ready to describe how we partition Tj|1 and

construct the corresponding disjoint subsets of Nj|1. Recall

from Section III-A that we can flip a zero component of un in

Tj|1 to recover a vn in Nj|1. This observation indicates that the

number of zero components (equivalently, the number of one

components) of un ∈ Tj|1 with indices in S
(m)
j can be used

as a factor to relate each partition of Tj|1 to its corresponding

subset of Nj|1. As xn
(1) is assumed all-zero, this factor can be

parameterized via d(xn
(1), u

n|S
(m)
j ) = k for 0 ≤ k < ℓ

(m)
j .

Irrespective of the construction of disjoint subsets of N3|1,

one may improperly infer from Example 2 that T3|1 can be

subdivided into ℓ3 partitions according to d(x6
(1), u

6|S
(1)
3 ) =

k for each 0 ≤ k < ℓ
(1)
3 , and then according to

d(x6
(1), u

6|S
(1)
3 ) = ℓ

(1)
3 and d(x6

(1), u
6|S

(2)
3 ) = k for ℓ

(1)
3 ≤

k < ℓ
(2)
3 = ℓ3. However, the above setup could have two u6

tuples, in respectively two different partitions of T3|1, recover

the same v6, leading to two non-disjoint subsets of N3|1.

For example, flipping the last bit of 000110 that belongs

to the partition constrained by d(x6
(1), 000110|S

(1)
3 ) = 1,

and flipping the 4th bit of 000011 that is included in the

partition constrained by d(x6
(1), 000011|S

(1)
3 ) = ℓ

(1)
3 and

d(x6
(1), 000011|S

(2)
3 ) = 2 yield identical tuples given by

v6 = 000111; hence, the two partitions, indexed respectively

by k = 1 and k = 2, recover two non-disjoint subsets of

N3|1. To avoid repetitive constructions of the same v6 from

distinct partitions of T3|1, we note that multiple constructions

of the same v6 could happen only when the flipped zero

component of u6 is the only zero component in S
(1)
3 , i.e.

d(x6
(1), u

n|S
(1)
3 ) = ℓ

(1)
3 − 1. A solution is to place all u6

tuples that result in multiple constructions of the same v6

in one partition, based on which for k ≥ 2, we refine the

constraint of the kth partition as ℓ
(1)
3 −1 ≤ d(x6

(1), u
6|S

(1)
3 ) ≤

5



d(x6
(1), u

6|S
(2)
3 ) = k. In this manner, 000110 and 000011 are

both included in the partition indexed by k = 2.

As a generalization, we constrain the kth partition of Tj|1
by ℓ

(m−1)
j − 1 ≤ d(xn

(1), u
n|S

(m−1)
j ) ≤ d(xn

(1), u
n|S

(m)
j )

= k for ℓ
(m−1)
j − 1 ≤ k < ℓ

(m)
j − 1. After flipping a zero

component of un in the kth partition of Tj|1, the resulting

vn that belongs to the kth subset of Nj|1 satisfies ℓ
(m−1)
j =

d(xn
(1), v

n|S
(m−1)
j ) ≤ d(xn

(1), v
n|S

(m)
j ) = k+1. To simplify

our set constructions in the following definition, we define the

mapping from the partition index k to the number m satisfying

ℓ
(m−1)
j − 1 ≤ k < ℓ

(m)
j − 1, which designates the set S

(m)
j

the flipped zero component of un is located in, as follows:

σ(k) ,

{

m, for ℓ
(m−1)
j − 1 ≤ k < ℓ

(m)
j − 1;

min
{

m : ℓ
(m)
j = ℓj

}

, for k = ℓj − 1.
(24)

Definition 2: Define for k = 0, 1, . . ., ℓj − 1,






















































Tj|1(k) ,
{

yn ∈ Tj|1 :

ℓ
(m−1)
j − 1 ≤ d

(

xn
(1), y

n
∣

∣S
(m−1)
j

)

≤ d
(

xn
(1), y

n
∣

∣S
(m)
j

)

= k
}

;

Nj|1(k) ,
{

yn ∈ Nj|1 :

ℓ
(m−1)
j = d

(

xn
(1), y

n
∣

∣S
(m−1)
j

)

≤ d
(

xn
(1), y

n
∣

∣S
(m)
j

)

= k + 1
}

,

(25a)

(25b)

where m = σ(k) is given in (24).

An example to illustrate the Tj|1-partitions and Nj|1-subsets

is given below.

Example 3: Using the setting of Example 2, we show how

we partition T3|1 according to S
(1)
3 and S

(2)
3 and construct

the corresponding disjoint subsets of N3|1. From (25a) and

(25b), we can obtain the partition {T3|1(k)}0≤k<ℓ3 and disjoint

subsets {N3|1(k)}0≤k<ℓ3 as follows:

T3|1(k) =

{

∅, k = 0, 1, 3;

T3|1, k = 2,
(26)

and

N3|1(k) =

{

∅, k = 0, 1, 3;

N3|1, k = 2,
(27)

as a result of the mapping

σ(k)=











1, ℓ
(0)
3 − 1 ≤ k < ℓ

(1)
3 − 1 (equiv. k = 0);

2, ℓ
(1)
3 − 1 ≤ k < ℓ

(2)
3 − 1 (equiv. k = 1, 2);

2, k = ℓ3 − 1 = 3.

(28)

✷

With the above definition, we next verify the partitions of

non-empty Tj|1 and the corresponding disjoint subsets of Nj|1.

Proposition 2: For non-empty Tj|1, the following two prop-

erties hold.

i) {Tj|1(k)}0≤k<ℓj forms a partition of Tj|1;

ii) {Nj|1(k)}0≤k<ℓj is a collection of disjoint subsets of Nj|1.

Proof: It can be seen from the definitions of

{Tj|1(k)}0≤k<ℓj and {Nj|1(k)}0≤k<ℓj that they are collec-

tions of mutually disjoint subsets of Tj|1 and Nj|1, respec-

tively. It remains to show that Tj|1 =
⋃

0≤k<ℓj
Tj|1(k).

Recall that S
(m)
j is a subset of Sj and every element yn

in Tj|1 must satisfy ℓj > d(xn
(1), y

n|Sj) = d(xn
(j), y

n|Sj) =
ℓj
2 ≥ d(xn

(1), y
n|S

(m)
j ); hence, no element in Tj|1 can fulfill

d(xn
(1), y

n|S
(m)
j ) = ℓj . This confirms that in defining Tj|1(k)

in (25a), we can exclude the case of k = ℓj . Since every

element in Tj|1 must satisfy the two constraints in Tj|1(k) for

exactly one 0 ≤ k < ℓj , {Tj|1(k)}0≤k<ℓj forms a partition of

Tj|1.

By applying a similar technique that leads to (14) and (18),

Proposition 2 results in the following inequality:

PY n|Xn(Tj|1|x
n
(1))

PY n|Xn(Nj|1|x
n
(1))

≤ max
0≤k<ℓj :Tj|1(k) 6=∅

PY n|Xn(Tj|1(k)|x
n
(1))

PY n|Xn(Nj|1(k)|x
n
(1))

(29)

for non-empty Tj|1. We further decompose non-empty Tj|1(k)
and its corresponding Nj|1(k) in the next section.

C. A Fine Partition of Tj|1(k) and the Corresponding Disjoint

Subsets of Nj|1(k)

The final decomposition of Tj|1(k) and Nj|1(k) is a little

involved. We elucidate its underlying concept via an example

before formally presenting it. The idea is to further partition

Tj|1(k) using a group of representative elements in Tj|1(k)
and construct the corresponding subsets of Nj|1(k) based on

the same group of representative elements.

Pick an arbitrary element from T3|1(2) in Example 3 as the

first representative element, say u6 = 001010. We collect all

outputs y6 in T3|1(2) such that its components with indices

outside S
(σ(2))
3 are exact duplications of the components

of u6 at the same positions, and place them in T3|1(u
6; 2).

In other words, we require d
(

u6, y6
∣

∣

(

S
(2)
3

)c)

= 0. With
(

S
(2)
3

)c
= {1, 2}, we have T3|1(u

6; 2) = T3|1(001010; 2) =
{000011, 001010, 001001, 000110, 000101}, where the first

two bits of each tuple in T3|1(u
6; 2) must be equal

to the first two bits of u6 = 001010. Analogously,

N3|1(u
6; 2) collects all elements in N3|1(2) satisfying

d
(

u6, y6
∣

∣

(

S
(2)
3

)c)

= 0, and is given by N3|1(001010; 2) =
{000111, 001011, 001101, 001110}.

We can further pick another element 100011 in T3|1 \
T3|1(001010; 2) as the second representative to construct

T3|1(100011; 2) = {100011} and the corresponding

N3|1(100011; 2) = {101011, 100111}, where the first two

bits of elements in the two sets must equal 10. Continuing

this process to construct T3|1(010011; 2) = {010011} and

N3|1(010011; 2) = {011011, 010111}, we can see that all

elements in T3|1(2) have been exhausted. Thus, U3|1(2) =
{001010, 100011, 010011} is exactly the required group of

representatives.

We formalize the above set constructions in the following

definition and proposition, whose proof is omitted, being a

direct consequence of the construction process.
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Definition 3: Define for un ∈ Tj|1(k) with m = σ(k),






























Tj|1(u
n; k) ,

{

yn ∈ Tj|1(k) :

d
(

un, yn
∣

∣

∣

(

S
(m)
j

)c)

= 0
}

;

Nj|1(u
n; k) ,

{

yn ∈ Nj|1(k) :

d
(

un, yn
∣

∣

∣
(S

(m)
j )c

)

= 0
}

.

(30a)

(30b)

Proposition 3: For non-empty Tj|1(k), there exists a group

of representative Uj|1(k) ⊆ Tj|1(k) such that the following

two properties hold.

i)
{

Tj|1(u
n; k)

}

un∈Uj|1(k)
forms a (non-empty) partition of

Tj|1(k);

ii)
{

Nj|1(u
n; k)

}

un∈Uj|1(k)
is a collection of (non-empty)

disjoint subsets of Nj|1(k).

Again, by applying a similar technique to derive (14),

Proposition 3 yields that for non-empty Tj|1(k),

PY n|Xn(Tj|1(k)|x
n
(1))

PY n|Xn(Nj|1(k)|x
n
(1))

≤ max
un∈Uj|1(k)

PY n|Xn(Tj|1(u
n; k)|xn

(1))

PY n|Xn(Nj|1(un; k)|xn
(1))

. (31)

What remains to confirm is that
(1−p)

p
n is an upper bound on

PY n|Xn (Tj|1(u
n;k)|xn

(1))

PY n|Xn (Nj|1(un;k)|xn
(1)

) ; this will be shown in the next section.

D. Characterization of a Linear Upper Bound for δn/bn

The constraints of Tj|1(u
n; k) in (30a) and Nj|1(u

n; k) in

(30b) indicate that when dealing with
PY n|Xn (Tj|1(u

n;k)|xn
(1))

PY n|Xn (Nj|1(un;k)|xn
(1)

) ,

we only need to consider those bits with indices in S
(m)
j

with m = σ(k) because the remaining bits of all tuples in

Tj|1(u
n; k) and Nj|1(u

n; k) have identical values as un. Since

elements in Tj|1(u
n; k) with indices in S

(σ(k))
j have exactly

k ones, and those in Nj|1(u
n; k) with indices in S

(σ(k))
j have

exactly k + 1 ones, we can immediately infer that

PY n|Xn(Tj|1(u
n; k)|xn

(1))

PY n|Xn(Nj|1(un; k)|xn
(1))

=
pk(1− p)n−k

pk+1(1 − p)n−(k+1)
·
|Tj|1(u

n; k)|

|Nj|1(un; k)|
(32)

=
(1− p)

p
·
|Tj|1(u

n; k)|

|Nj|1(un; k)|
. (33)

The desired upper bound can thus be established by proving

that
|Tj|1(u

n;k)|

|Nj|1(un;k)| ≤ n, as shown in the next proposition.

Proposition 4: For non-empty Tj|1(u
n; k), we have

PY n|Xn(Tj|1(u
n; k)|xn

(1))

PY n|Xn(Nj|1(un; k)|xn
(1))

≤
(1− p)

p
n. (34)

Proof: Recall from (16a), (25a) and (30a) that yn ∈

Tj|1(u
n; k) with m = σ(k) if and only if











































d(xn
(1), y

n) = d(xn
(j), y

n);

d(xn
(1), y

n) < min
r∈[j−1]\{1}

d(xn
(r), y

n);

ℓ
(m−1)
j − 1 ≤ d

(

xn
(1), y

n
∣

∣S
(m−1)
j

)

≤ d
(

xn
(1), y

n
∣

∣S
(m)
j

)

= k;

d
(

un, yn
∣

∣(S
(m)
j )c

)

= 0.

(35a)

(35b)

(35c)

(35d)

Thus, we can enumerate the number of elements in Tj|1(u
n; k)

by counting the number of channel outputs yn fulfilling the

above four conditions.

We then examine the number of yn satisfying (35c) and

(35d). Nothing that these yn have either ℓ
(m−1)
j − 1 ones or

ℓ
(m−1)
j ones with indices in S

(m−1)
j , we know there are

(

ℓ
(m−1)
j

ℓ
(m−1)
j − 1

)(

ℓ
(m)
j − ℓ

(m−1)
j

k − (ℓ
(m−1)
j − 1)

)

+

(

ℓ
(m−1)
j

ℓ
(m−1)
j

)(

ℓ
(m)
j − ℓ

(m−1)
j

k − ℓ
(m−1)
j

)

(36)

of yn tuples satisfying (35c) and (35d).3 Considering the

additional two conditions in (35a) and (35b), we get that the

number of elements in Tj|1(u
n; k) is upper-bounded by (36).

On the other hand, from (16b), (25b), (30b) and

Nj|1(u
n; k) ⊆ Nj|1(k) ⊆ Nj|1, we obtain that wn ∈

Nj|1(u
n; k) if and only if















































d(xn
(1), w

n)− 1 = d(xn
(j), w

n) + 1;

d(xn
(1), w

n)− 1 6= d(xn
(r), w

n) + 1

for r ∈ [j − 1] \ {1};

ℓ
(m−1)
j = d

(

xn
(1), w

n
∣

∣S
(m−1)
j

)

≤ d
(

xn
(1), w

n
∣

∣S
(m)
j

)

= k + 1;

d
(

un, wn
∣

∣(S
(m)
j )c

)

= 0.

(37a)

(37b)

(37c)

(37d)

We then claim that any wn satisfying (37c) and (37d) should

automatically validate (37a) and (37b). Note that the validity

of the claim, which we prove in Appendix A, immediately

implies that the number of elements in Nj|1(u
n; k) can be

determined by (37c) and (37d), and hence

|Nj|1(u
n; k)| =

(

ℓ
(m)
j − ℓ

(m−1)
j

k + 1− ℓ
(m−1)
j

)

. (38)

Under this claim, we complete the proof of the proposition

using (33), (36) and (38) as follows:

PY n|Xn

(

Tj|1(u
n; k)|xn

(1)

)

PY n|Xn

(

Nj|1(un; k)|xn
(1)

)

≤
(1− p)

p

3To unify the expression, when m = 1, in which case ℓ
(0)
j = 0, we assign

( 0
−1

)

= 0 and
(0
0

)

= 1 in (36). Similarly, when k = ℓ
(m−1)
j − 1, we set

(ℓ
(m)
j

−ℓ
(m−1)
j

k−ℓ
(m−1)
j

)

=
(ℓ

(m)
j

−ℓ
(m−1)
j

−1

)

= 0.

7



·

( ℓ
(m−1)
j

ℓ
(m−1)
j

−1

)( ℓ
(m)
j

−ℓ
(m−1)
j

k−(ℓ
(m−1)
j

−1)

)

+
(ℓ

(m−1)
j

ℓ
(m−1)
j

)(ℓ
(m)
j

−ℓ
(m−1)
j

k−ℓ
(m−1)
j

)

(ℓ
(m)
j

−ℓ
(m−1)
j

k+1−ℓ
(m−1)
j

)

(39)

=
(1− p)

p

(

ℓ
(m−1)
j +

k + 1− ℓ
(m−1)
j

ℓ
(m)
j − k

)

(40)

≤
(1− p)

p

(

ℓ
(m−1)
j +

ℓ
(m)
j − ℓ

(m−1)
j

1

)

(41)

≤
(1− p)

p
n, (42)

where (41) holds because ℓ
(m−1)
j − 1 ≤ k ≤ ℓ

(m)
j − 1 by (24),

and (42) follows from ℓ
(m)
j ≤ ℓj ≤ n.

Using (18), (29), (31) and Proposition 4, we obtain

PY n|Xn(T1|xn
(1))

PY n|Xn(N1|xn
(1))

≤
(1− p)

p
n. (43)

We close this section by remarking that the same inequality

as (43), i.e.,

PY n|Xn(Ti|xn
(i))

PY n|Xn(Ni|xn
(i))

≤
(1− p)

p
n, (44)

can be analogously established for all i ∈ [M ] with Ti 6= ∅.

Consequently, (14) implies

δn
bn

≤ max
i∈[M ]:Ti 6=∅

PY n|Xn(Ti|xn
(i))

PY n|Xn(Ni|xn
(i))

≤
(1− p)

p
n. (45)

IV. CONCLUSION

In this paper, the generalized Poor-Verdú error lower bound

of [1] was considered in the classical channel coding context

over the BSC. We proved that the bound is exponentially tight

in blocklength as a direct consequence of a key inequality,

showing that for any block code with distinct codewords used

over the BSC, the relative deviation of the code’s minimum

probability of error from the lower bound grows at most

linearly in blocklength.

Even though the exact determination of the reliability func-

tion of the BSC at low rates remains a daunting open problem,

our results offer potentially a new perspective or tool for

subsequent studies. Other future work includes investigating

sharp bounds for codes with small-to-moderate blocklengths

(e.g., see [5], [27], [28]) used over symmetric channels.

As our counting analysis for the binary symmetric channel

relies heavily on the equivalence between ML decoding and

minimum Hamming distance decoding, which does not hold

for non-symmetric channels, extending our results to general

channels may require more sophisticated enumerating tech-

niques.
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APPENDIX A

THE PROOF OF (37c) AND (37d) IMPLYING (37a) AND (37b)

We validate the claim via the construction of an auxil-

iary vn ∈ Nj|1(u
n; k) from un ∈ Tj|1(u

n; k). This aux-

iliary vn will be defined differently according to whether

d
(

xn
(1), u

n
∣

∣S
(m−1)
j

)

equals ℓ
(m−1)
j or ℓ

(m−1)
j − 1 as follows.

i) d(xn
(1), u

n|S
(m−1)
j ) = ℓ

(m−1)
j : Since in this case, un has

no zero components with indices in S
(m−1)
j , we flip a

zero component of un with its index in S
(m)
j \S

(m−1)
j =

S
(m)
j to construct a vn such that

d(xn
(1), v

n) = d(xn
(1), u

n) + 1 (46)

and

d(xn
(j), v

n) = d(xn
(j), u

n)− 1, (47)

where the existence of such vn is guaranteed by k ≤
ℓ
(m)
j −1. Then, vn must fulfill (37a), (37c) and (37d) (with

wn replaced by vn) as un satisfies (35a), (35c) and (35d).

We next prove vn also fulfills (37b) by contradiction.

Suppose there exists a r ∈ [j − 1] \ {1} satisfying

d(xn
(1), v

n)− 1 = d(xn
(r), v

n) + 1. (48)

We then recall from (21) that d(xn
(1), x

n
(r)|S

(m)
j ) is either

0 or |S
(m)
j |. Thus, (48) can be disproved by differen-

tiating two cases: 1) d(xn
(1), x

n
(r)|S

(m)
j ) = 0, and 2)

d(xn
(1), x

n
(r)|S

(m)
j ) = |S

(m)
j |.

In case 1), vn that is obtained by flipping a

zero component of un with index in S
(m)
j must sat-

isfy d(xn
(1), v

n) = d(xn
(1), u

n) + 1 and d(xn
(r), v

n) =
d(xn

(r), u
n) + 1. Then, (48) implies d(xn

(1), u
n) − 1 =

d(xn
(r), u

n)+1. A contradiction to the fact that un satisfies

(35b) is obtained. In case 2), the flipping manipulation

on un results in d(xn
(1), v

n) = d(xn
(1), u

n) + 1 and

d(xn
(r), v

n) = d(xn
(r), u

n) − 1. Therefore, (48) implies

d(xn
(1), u

n) = d(xn
(r), u

n), which again contradicts (35b).

Accordingly, vn must also fulfill (37b); hence, vn ∈
Nj|1(u

n; k).
With this auxiliary vn, we are ready to prove that

every wn satisfying (37c) and (37d) also validates (37a)

and (37b). This can be done by showing d(xn
(r), w

n) =

d(xn
(r), v

n) for every r ∈ [j], which can be verified as

follows:

d(xn
(r), w

n)

= d
(

xn
(r), w

n
∣

∣S
(m−1)
j

)

+ d
(

xn
(r), w

n
∣

∣S
(m)
j

)

+d
(

xn
(r), w

n
∣

∣(S
(m)
j )c

)

(49)

= d
(

xn
(r), v

n
∣

∣S
(m−1)
j

)

+ d
(

xn
(r), v

n
∣

∣S
(m)
j

)

+d
(

xn
(r), v

n
∣

∣(S
(m)
j )c

)

(50)

= d(xn
(r), v

n), (51)

where the substitution in the first term of (50) holds

because both vn and wn satisfy (37c), implying all

components of vn and wn with indices in S
(m−1)
j are

equal to one; the substitution in the 2nd term of (50)

holds because when considering only those portions with

indices in S
(m)
j , xn

(r) are either all ones or all zeros

8



according to (21), and both wn and vn have exactly

k + 1 − ℓ
(m−1)
j ones according to (37c); and the sub-

stitution in the 3rd term of (50) is valid since both vn

and wn satisfy (37d).

ii) d(xn
(1), u

n|S
(m−1)
j ) = ℓ

(m−1)
j − 1: Now we let vn be

equal to un in all positions but one in S
(m−1)
j such

that d(xn
(1), v

n|S
(m−1)
j ) = ℓ

(m−1)
j . Then, vn must fulfill

(37a), (37c) and (37d) as un satisfies (35a), (35c) and

(35d). With the components of xn
(r) with respect to S

(m)
j

being either all zeros or all ones, the same contradiction

argument after (48) can disprove the validity of (48)

for this vn and for any r ∈ [j − 1] \ {1}. Therefore,

vn also fulfills (37b), implying vn ∈ Nj|1(u
n; k). With

this auxiliary vn, we can again verify (51) via the same

derivation in (51). The claim that wn satisfying (37c) and

(37d) validates (37a) and (37b) is thus confirmed.
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[21] Y. Altŭg and A. B. Wagner, “Refinement of the random coding bound,”
IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 6005–6023, October 2014.

[22] M. V. Burnashev, “On the BSC reliability function: Expanding the region
where it is known exactly,” Probl. Inf. Trans., vol. 51, no. 4, pp. 307–
325, January 2015.

[23] A. Tandon, V. Y. F. Tan, and L. R. Varshney, “The bee-identification
problem: Bounds on the error exponent,” IEEE Trans. Commun., vol. 67,
no. 11, pp. 7405–7416, November 2019.

[24] ——, “On the bee-identification error exponent with absentee bees,”
arXiv preprint arXiv:1910.10333, October 2019.

[25] N. Merhav, “A Lagrange-dual lower bound to the error exponent of
the typical random code,” IEEE Trans. Inf. Theory, vol. 66, no. 6, pp.
3456–3464, June 2020.

[26] F. Alajaji, P.-N. Chen, and Z. Rached, “A note on the Poor-Verdú
conjecture for the channel reliability function,” IEEE Trans. Inf. Theory,
vol. 48, no. 1, pp. 309–313, January 2002.

[27] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
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