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Therefore, from Lemma 1 and from (32)–(34), we have

EPe;Ed(C; Co) � Pe(C) + exp f�NEr(Ro)g:

Then, the second and third assertion follow since there must exist a
Co which satisfies

yyy xxx2C

�[yyy 62 S(xxx;N�o)]

� 2
n+1

exp f�(1�M=Mo)e
N(�=2�� )

g

and

Pe;Ed(C;Co)� Pe(C) � 2 exp f�NEr(Ro)g

simultaneously.

V. Proof of Corollary 3.1

Let �1 be a given positive number and letC be an approximately
optimal code which satisfies

Pers;Th(C) � exp f�NEsp(Ro)g

and

Puer;Th(C) � exp f�N [ETh(R;Ro)� �1]g:

From the assumption on the exponent functions, we may assume that
Puer;Th(C) � Pers;Th(C): Thus from Lemma 1, we have

Pe(C) � 2Pers;Th(C): (35)

Combining (35) and Theorem 3, we have, for a given�2

Puer;Ed(C;Co) � exp f�N [ETh(R;Ro)� �1]g

and

Pers;Ed(C;Co) � exp f�N [Esp(Ro)� �2]g

for a sufficiently largeN , where we usedEsp(Ro) = Er(Ro) for
Ro � Rcr: This completes the proof of the corollary.
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The Zero-Guards Algorithm for General
Minimum-Distance Decoding Problems

Yunghsiang S. Han,Member, IEEE, and
Carlos R. P. Hartmann,Fellow, IEEE

Abstract—In this correspondence we present some properties of an
improved version of the Zero-Neighbors algorithm—the Zero-Guards
algorithm. These properties can be used to find a Zero-Guards. A new
decoding procedure using a Zero-Guards is also given.

Index Terms—Decoding, linear block codes, minimum-distance decod-
ing.

I. INTRODUCTION

Minimum-distance decoding for a linear block code has been
proved to be an NP-hard computational problem [1]. The com-
plexity of the best known decoding algorithms is determined by
min (2

k; 2n�k), wheren is the code length andk is the number
of information bits [3]. The Zero-Neighbors algorithm [3] provides a
better method for solving the problem. The algorithm uses the concept
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of Zero-Neighbors—a special set of codewords. Only these code-
words need to be stored and used in the decoding procedure. The size
of a Zero-Neighbors is very small compared withmin (2k; 2n�k)
for n � 1 and a wide range of code ratesR = k=n. Recently,
an improvement of the Zero-Neighbors algorithm, the Zero-Guards
algorithm (ZGA), was presented in [2] and [4]. The ZGA further
reduces the number of codewords to be stored. The special set of these
codewords is called a Zero-Guards. Thus the size of a Zero-Guards
is the main factor that determines the complexity of the algorithm.

In this correspondence, we investigate the properties of a Zero-
Guards. These properties can be used to find a Zero-Guards ef-
ficiently. Moreover, we also presented a new decoding procedure
using a Zero-Guards that is much simpler than the one given in [3].
In Section II, we briefly review the Zero-Neighbors algorithm. In
Section III, we give a description of the Zero-Guards algorithm and
a new decoding procedure using a Zero-Guards. In the next section,
properties of a Zero-Guards are presented. Simulation results and
conclusions are given in Section V.

II. THE ZERO-NEIGHBORS ALGORITHM

In this section, we briefly describe the Zero-Neighbors algorithm.
First we give some definitions.

Let ZZZ be the set of all the binary vectors of lengthn, and let
CCC � ZZZ be a binary linear block code. Ifxxx 2 ZZZ, we callxxx a vector
in the spaceZZZ. Let d(xxx1; xxx2) denote the Hamming distance between
xxx1; xxx2 2 ZZZ. Let w(xxx) = d(xxx; 0) denote the Hamming weight ofxxx
and let� denote the modulo-2 addition. Furthermore, letdmin be the
minimum nonzero weight of codewords inCCC.

Definition 1: The domainD(ccc) of a codewordccc 2 CCC is the set of
all xxx 2 ZZZ such thatd(xxx; ccc) � d(xxx; ccc0) for all ccc0 2 CCC.

Definition 2: The vicinity B(xxx) of xxx 2 ZZZ is the set of allyyy 2 ZZZ

such thatd(xxx; yyy) = 1. The domain frameG(ccc) of a codewordccc 2 CCC
is the set

G(ccc) =

xxx2D(ccc)

B(xxx)�D(ccc):

Definition 3: A Zero-Neighbors is a setN0 of codewords such that

G(0) �
ccc2N

D(ccc)

where

jN0j = min jN j jN � CCC; G(0) �
ccc2N

D(ccc) :

It can be shown that ifxxx 62 D(0), then there exists accc 2 N0 such that
w(xxx� ccc) < w(xxx). Thus the Zero-Neighbors algorithm is as follows:

Algorithm: Let yyy = yyy
0
2 ZZZ be the received vector to be decoded.

At the ith step of the algorithm we calculatew(yyy
i�1

� ccc) for all
ccc 2 N0. If there exists accci 2 N0 such thatw(yyy

i�1
�ccci) < w(yyy

i�1
),

we setyyy
i
= yyy

i�1
�ccci and go to the next step; otherwise, the algorithm

terminates. If the algorithm terminates at the(m+ 1)th step, then

yyy
m
= yyy �

m

i=1

ccci 2 D(0)

and can be taken as a coset leader of minimum weight, while

ccc =

m

i=1

ccci 2 CCC

is a codeword that is one of the closest toyyy.
We need only to store the codewords in a Zero-Neighbors to

accomplish this algorithm. It can be shown that the number of steps
m � n. A more complex decoding procedure based on the syndrome

of the received vector is given in [3]. The number of decoding steps
is m � n � k � bdmin=2c for this decoding procedure, wherebac
denotes the integral part ofa. We do not describe the procedure here
since we will give a new decoding procedure in the next section,
which also has the number of decoding stepsm � n�k�bdmin=2c.

III. T HE ZERO-GUARDS ALGORITHM

In this section, we will describe a minimum-distance decoding
algorithm that is similar to the Zero-Neighbors algorithm except that
we use the concept of Zero-Guards instead of Zero-Neighbors.

Definition 4: A vector vvv is an immediate descendant ofxxx if and
only if vvv can be obtained fromxxx by changing one nonzero component
to zero. A vectorvvv is a descendant ofxxx if and only if there is a
chainxxx0 = xxx; xxx1; xxx2; � � � ; xxxn = vvv such that, for eachi; xxxi is an
immediate descendant ofxxxi�1. Furthermore, ifvvv 6= xxx, thenvvv is a
proper descendant ofxxx [5].

Definition 5: The frontierF (0) of 0 is the set of allxxx 2 ZZZ such
that all its proper descendants belong toD(0) andxxx 62 D(0).

Definition 6: A Zero-Guards (ZG) is a setRN0 � CCC of code-
words such that

F (0) �
ccc2RN

D(ccc)

where

jRN0j = min jN j jN � CCC; F (0) �
ccc2N

D(ccc) :

In other words, the set of domains of codewords inRN0 forms a
minimum covering ofF (0). It is easy to see thatRN0 always exists,
since the number of all such subsetsN � CCC is finite.

It is not difficult to see thatF (0) � G(0). Consequently, the
number of codewords in Zero-Guards is less than or equal to that in
Zero-Neighbors.

Next we give the main theorem that the ZGA is based on.
Lemma 1: Let xxx 2 ZZZ and xxx 62 D(0). Then there exists a

descendantvvv of xxx such thatvvv 2 F (0).
Proof: Let M(xxx) = fvvvjvvv 2 ZZZ; vvv be a descendant ofxxx and

vvv 62 D(0)g. ThusM(xxx) 6= ;, since at leastxxx 2 M(xxx). Then any
vector of minimum weight inM(xxx) belongs toF (0).

Theorem 1: xxx 62 D(0) if and only if there exists accc 2 RN0 such
that w(xxx � ccc) < w(xxx).

Proof: First, assume thatxxx 62 D(0). From Lemma 1, there
exists a descendant ofxxx, namedvvv; vvv 2 F (0). Consider accc 2 RN0

such thatvvv 2 D(ccc). Hence

w(xxx�ccc) = d(xxx; ccc) � d(xxx; vvv)+d(vvv; ccc) < d(xxx; vvv)+d(vvv;0) = w(xxx):

Next, assumexxx 2 D(0). Then d(xxx; 0) � d(xxx; ccc) for all ccc 2 CCC.
Thusw(xxx) � w(xxx � ccc). Therefore, there is noccc 2 RN0 such that
w(xxx� ccc) < w(xxx).

Obviously, if w(ccc) is even, thenw(xxx) � w(xxx � ccc) is even, too.
Thus we have the following corollary.

Corollary 1: If all codewords in a Zero-Guards are of even weight
andxxx 62 D(0), then there exists accc 2 RN0 such thatw(xxx � ccc) �
w(xxx) � 2.

The following algorithm and arguments are similar to those in
[3] except that we use the concept of Zero-Guards instead of Zero-
Neighbors.

Algorithm 1: Let yyy = yyy
0
2 ZZZ be the received vector to be

decoded. At theith step of the algorithm we calculatew(yyy
i�1

� ccc)

for all ccc 2 RN0. If there exists accci 2 RN0 such thatw(yyy
i�1

�ccci) <
w(yyy

i�1
), we setyyy

i
= yyy

i�1
� ccci and go to the next step; otherwise,
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the algorithm terminates. If the algorithm terminates at the(m+1)th
step, then

yyy
m

= yyy �

m

i=1

ccci 2 D(0)

and can be taken as a coset leader of minimum weight, while

ccc =

m

i=1

ccci 2 CCC

is a codeword that is one of the closest toyyy.
We call the algorithm the Zero-Guards algorithm. Only the code-

words in a Zero-Guards must be stored in order to accomplish this
algorithm. The algorithm will stop whenyyy

m
2 D(0). Thus if

w(yyy
m
) � bdmin=2c, the algorithm stops immediately. Since at each

step of the algorithm the weight ofyyy decreases at least by one, the
number of steps is

m � w(yyy)� bdmin=2c � n� bdmin=2c:

Moreover, it follows from Corollary 1 that for codes with only even-
weight codewords, each step of the algorithm decreases the weight
of yyy at least by2; therefore, in this case

m � b(w(yyy)� bdmin=2c)=2c � b(n� bdmin=2c)=2c:

Next, we give another algorithm that is simpler than that presented
in [3], which is based on the syndrome of the received vector.

Algorithm 2: Let GGG be a generating matrix of a systematic code
CCC. Let yyy = (y0; y1; � � � ; yn�1) and

ccc = (c0; c1; � � � ; cn�1) = (y0; y1; � � � ; yk�1)GGG:

Then ci = yi for 0 � i � k � 1. Take

xxx = ccc� yyy = (x0; x1; � � � ; xn�1):

Thusxi = 0 for 0 � i � k�1. It is clear thatxxx andyyy are in the same
coset. Instead of decodingyyy directly, we decodexxx as the process in
Algorithm 1. Assume the process in Algorithm 1 terminates at the
(m + 1)th step; we then have

yyy
m

= xxx�

m

i=1

ccci 2 D(0):

Then

ccc�

m

i=1

ccci

is a codeword that is one of the closest toyyy.
Sincew(xxx) � n � k, the number of decoding steps

m � n� k � bdmin=2c:

IV. SOME PROPERTIES OF AZERO-GUARDS

In this section, we present some properties of the frontierF (0)
and the Zero-Guards that can help to findRN0.

Lemma 2: Let

S(xxx; a) = fvvvjvvv 2 ZZZ; w(vvv) = a andvvv be a descendant ofxxxg:

Thenxxx 2 F (0) if and only ifxxx 62 D(0) andS(xxx; w(xxx)�1) � D(0).
Proof: If xxx 2 F (0), then by definitionxxx 62 D(0) and

S(xxx; w(xxx) � 1) � D(0). Assume now thatxxx 62 D(0) and
S(xxx; w(xxx) � 1) � D(0). By [5, Theorem 3.9], ifvvv 2 D(0), then
all its descendants also belong toD(0). Thusxxx 62 D(0) and all its
descendants belong toD(0).

Lemma 3: If xxx 2 F (0), then there exists at least oneccc 2 CCC such
that xxx 2 D(ccc) andxxx is a descendant ofccc.

Proof: Becausexxx 62 D(0) there exists at least oneccc 2 CCC

such thatxxx 2 D(ccc). Supposexxx is not a descendant ofccc. Thenxxx
should at least differ fromccc in a position whereccc has0. Let vvv be

the immediate descendant ofxxx that differs fromxxx in the position
just mentioned. Thend(xxx; ccc) > d(vvv; ccc) and w(vvv) = w(xxx) � 1.
Sinced(xxx; ccc) < w(xxx), w(vvv) � d(xxx; ccc). Thusw(vvv) > d(vvv; ccc) which
contradictsvvv 2 D(0). Therefore,xxx is a descendant ofccc.

Lemma 4: Let xxx 2 F (0). If d(xxx; ccc) < w(xxx), then xxx is a
descendant ofccc.

Proof: The proof is similar to that in Lemma 3.
Lemma 5: For everyccc 2 CCC andccc 6= 0 there exists a descendant

vvv of ccc such thatvvv 2 F (0).
Proof: For anyccc 2 CCC, ccc 62 D(0), andccc 2 D(ccc). From Lemma

1 there exists a descendantvvv of ccc such thatvvv 2 F (0).
Lemma 6: If ccc 2 RN0, then there exists anxxx 2 F (0) such that

xxx 2 D(ccc) andxxx 62 D(ccc0), ccc0 6= ccc, ccc0 2 RN0.
Proof: Assume that there is noxxx 2 F (0) such thatxxx 2 D(ccc)

andxxx 62 D(ccc0); ccc0 6= ccc. Then for everyxxx 2 D(ccc) andxxx 2 F (0)
there exists at least oneccc0 2 RN0, ccc0 6= ccc such thatxxx 2 D(ccc0).
Therefore, if we removeccc from RN0 we also have

F (0) �
ccc2RN

D(ccc):

This contradicts the fact thatRN0 is the minimum set with this
property. Therefore, the lemma holds.

Lemma 7: Let r be the covering radius of the codeCCC. If ccc 2 CCC

andw(ccc) > 2r + 1, thenccc 62 RN0.
Proof: Assumeccc 2 RN0. From Lemma 6, there exists anxxx 2

D(ccc) andxxx 62 D(ccc0); ccc0 6= ccc. Sincexxx 2 D(ccc); d(xxx; ccc) � r and since
xxx 2 F (0); w(xxx) � r+1. Hence,w(ccc) = w(xxx)+d(xxx; ccc) � 2r+1.
Thus ifw(ccc) > 2r + 1, thenccc 62 RN0.

Lemma 8: If xxx 2 F (0) and there exists accc 2 CCC such that
d(xxx; ccc) < d(xxx; ccc0), ccc 6= ccc0 for all ccc0 2 CCC, thenccc 2 RN0.

Proof: Assumeccc 62 RN0. Then

xxx 62
ccc 2RN

D(ccc0):

Hence

F (0) 6�
ccc 2RN

D(ccc0)

which is a contradiction.
Theorem 2: Let ccc1,ccc2 2 CCC whereccc1 is a descendant ofccc2. Then

ccc2 62 RN0.
Proof: Assumeccc2 2 RN0 andccc3 = ccc1 � ccc2. Then, by Lemma

6, there exists anxxx 2 F (0) such thatxxx 2 D(ccc2) andxxx 62 D(ccc0),
ccc0 6= ccc2, ccc0 2 RN0. Furthermore, by Lemma 4,xxx is a descendant of
ccc2. By Lemma 4, ifd(xxx; ccc1) < w(xxx), thenxxx is a descendant ofccc1.
In this case,xxx 62 D(ccc2), which contradicts the fact thatxxx 2 D(ccc2).
Therefore,d(xxx; ccc1) � w(xxx). Similarly, we haved(xxx; ccc3) � w(xxx).
Therefore,

d(xxx; ccc2) = d(xxx; ccc1) + d(xxx; ccc3)� w(xxx) � w(xxx):

This contradicts the fact thatxxx 2 D(ccc2).
By [3, Theorem 3], ifccc1 andccc3 are inN0 thenccc2 62 N0; however,

by the above theorem, any codeword will not be inRN0 if any of
its nonzero descendant is a codeword.

Theorem 3: All codewords of minimum weight belong toRN0.
Proof: Let ccc be a codeword of minimum weight. From Lemma

5, there exists avvv 2 F (0) that is a descendant ofccc. Thus

d(ccc; ccc0) � d(ccc; vvv) + d(vvv; ccc0) = w(ccc)� w(vvv) + d(vvv; ccc0)

whereccc0 6= ccc and ccc0 2 CCC. Hence

d(vvv; ccc0) � w(vvv) + [d(ccc; ccc0)� w(ccc)]:

Sinceccc is of minimum weight,d(ccc; ccc0)�w(ccc) � 0. Thusd(vvv; ccc0) �
w(vvv). But vvv 62 D(0), thenvvv 2 D(ccc), andvvv 62 D(ccc0). Therefore,
d(vvv; ccc0) > d(vvv; ccc). From Lemma 8,ccc 2 RN0.
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TABLE I
THE COMPARISON OF ZERO-NEIGHBORS AND ZERO-GUARDS

Corollary 2: If vvv 2 F (0) andvvv is a descendant ofccc, which is a
minimum-weight codeword, thenvvv is not a descendant of any other
minimum-weight codeword.

Proof: Supposevvv is also a descendant of another minimum-
weight codewordccc0. Then from the proof in Theorem 3,d(vvv; ccc0) >
d(vvv; ccc) andd(vvv; ccc) > d(vvv; ccc0) which is a contradiction.

Theorem 4: All descendants of weightbdmin=2c+1 of minimum-
weight codewords belong toF (0).

Proof: Assumedmin is even anddmin = 2t. Thenbdmin=2c+
1 = t + 1. For any vectorvvv that is a descendant of a minimum
codewordccc, if the weight ofvvv is t+1, thenvvv 2 D(ccc). Moreover, any
vectors of weightt belong toD(0). Thusvvv 2 F (0). The argument
that dmin is odd is similar to that above.

Theorem 5: If there arem codewords of minimum weight, then
there are at least

dmin

bdmin=2c+ 1
�m

vectors of weightbdmin=2c + 1 belonging toF (0).
Proof: The theorem follows directly from Corollary 2 and

Theorem 4.
Theorem 6: For an odd minimum-weight linear code, any vector

vvv of weight bdmin=2c + 1 that belongs toF (0) is a descendant of
a minimum-weight codeword.

Proof: From Lemma 3 we can conclude that the vectorvvv is a
descendant of a codewordccc andvvv 2 D(ccc). Then

w(ccc) � bdmin=2c+ 1 + bdmin=2c:

Thusw(ccc) � dmin�1+1 = dmin. Therefore,ccc is a minimum-weight
codeword.

From Theorems 5 and 6 we have the following corollary.
Corollary 3: For an (n; k) Hamming code, the number of

minimum-weight codewords isn
2
= 3

2
.

V. SIMULATION RESULTS AND CONCLUSIONS

Even though up to now we were not able to find a good method
with which to estimate the size ofRN0, from the simulation results,
jRN0j is dramatically less thanjN0j. Some results are shown in
Table I. Just as with the Zero-Neighbors algorithm presented in [3],
the ZGA can also be easily generalized for linear codes over GF(p),
p > 2. To implement the ZGA, we must find a Zero-Guards. As
expected, to find a Zero-Guards is an NP-hard problem. However, it
needs to be found only once for a given code.
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A Probability-Ratio Approach to
Approximate Binary Arithmetic Coding

Linh Huynh and Alistair Moffat

Abstract—We describe an alternative mechanism for approximate
binary arithmetic coding. The quantity that is approximated is the ratio
between the probabilities of the two symbols. Analysis is given to show
that the inefficiency so introduced is less than 0.7% on average; and in
practice the compression loss is negligible.

Index Terms—Approximate arithmetic coding, bilevel coding, binary
arithmetic coding, data compression.

I. BINARY ARITHMETIC CODING

The need for binary arithmetic coding arises in many applications,
including bilevel image compression [1] and general bit-based data
compression [2]. In this correspondence, a novel mechanism for
approximating the various calculations involved in binary arithmetic
coding is described, and error bounds limiting the inaccuracy of the
resulting representation are given. We also report experimental results
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