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18-26, no. 2, 1984. (Also see B. D. Kudryashov, “Error probability for
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From the assumption on the exponent functions, we may assume l[p,g} H. Yamamoto and K. Itoh, “Viterbi decoding algorithm for convolutional
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. . [20] G. W. Zeoli, “Coupled decoding of block-convolutional concatenated
Pe(C) < 2Pers 10 (C). (35) codes,”"IEEE Trans. Communyol. COM-21, pp. 219-226, Mar. 1973.

Combining (35) and Theorem 3, we have, for a given

Puer,a(C,Co) < exp {=N[Ern(R, R,) — ml}
and

Prers,12a(C,Co) < exp {—N[Esp(Ro) — 2]} The Zero-Guards Algorithm for General

for a sufficiently largeN, where we used.,(R,) = E.(R,) for Minimum-Distance Decoding Problems

R, > R... This completes the proof of the corollary. Yunghsiang S. HanMember, IEEE and
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of Zero-Neighbors—a special set of codewords. Only these codd-the received vector is given in [3]. The number of decoding steps
words need to be stored and used in the decoding procedure. The §ze < n — k — |dmin/2] for this decoding procedure, whete |
of a Zero-Neighbors is very small compared wiitin (2%, 2"~*)  denotes the integral part of We do not describe the procedure here
for n > 1 and a wide range of code ratdd = k/n. Recently, since we will give a new decoding procedure in the next section,
an improvement of the Zero-Neighbors algorithm, the Zero-Guarasich also has the number of decoding steps n— &k — [dmin /2] .
algorithm (ZGA), was presented in [2] and [4]. The ZGA further
reduces the number of codewords to be stored. The special set of these m
codewords is called a Zero-Guards. Thus the size of a Zero-Guards ) ] ) o ) )
is the main factor that determines the complexity of the algorithm. N this section, we will describe a minimum-distance decoding
In this correspondence, we investigate the properties of a zefdgorithm that is similar to the Zero-Nelghbors algonthmn except that
Guards. These properties can be used to find a Zero-Guards "¥-USe the concept of Zero-Guards instead of Zero-Neighbors.
ficiently. Moreover, we also presented a new decoding procedureP€finition 4: A vectorv is an immediate descendant ofif and
using a Zero-Guards that is much simpler than the one given in [§[¥ if v can be obtained from by changing one nonzero component
In Section II, we briefly review the Zero-Neighbors algorithm. 0 Zero. A vectorv is a descendant af if and only if there is a
Section 11, we give a description of the Zero-Guards algorithm arfd!@n®o = &, Z1, 2. -+, ¥, = v such that, for each. z; is an
a new decoding procedure using a Zero-Guards. In the next sectifynediate descendant af_,. Furthermore, ifv # x, thenv is a

properties of a Zero-Guards are presented. Simulation results &gPer descendant af [5]. )
conclusions are given in Section V. Definition 5: The frontier F(0) of 0 is the set of alke € Z such

that all its proper descendants belongl2¢0) andz ¢ D(0).
Definition 6: A Zero-Guards (ZG) is a seRNy C C of code-

words such that

In this section, we briefly describe the Zero-Neighbors algorithm.

First we give some definitions. F(0) C U D(e)
Let Z be the set of all the binary vectors of length and let cERNg
C C Z be a binary linear block code. ¥ € Z, we callz a vector h
in the spaceZ. Letd(z;, x2) denote the Hamming distance between' © ¢
Z1, &2 € Z. Letw(2) = d(x, 0) denote the Hamming weight af
and let® denote the modul@-addition. Furthermore, let..;, be the | RNo| = min {|N| [N CC, F(0)C U D(C)}-
minimum nonzero weight of codewords @. ceN
Definition 1: The domainD(e) of a codeword: € C'is the set of |y gther words, the set of domains of codewordsAiV, forms a
all & € Z such thatd(z, ¢) < d(, ¢) for all ¢’ € C. minimum covering ofF (0). It is easy to see tha® N, always exists,
Definition 2: ‘The vicinity B(z) of = € Z isthe setof aly € Z  gjnce the number of all such subséfsc C is finite.
such thatl(2, y) = 1. The domain framé&(¢) of a codeword: € C It is not difficult to see thatF'(0) C G(0). Consequently, the

. THE ZERO-GUARDS ALGORITHM

Il. THE ZERO-NEIGHBORS ALGORITHM

Is the set number of codewords in Zero-Guards is less than or equal to that in
Gle) = U B(z) — D(c). Zero-Nelghbprs. _ .
zeD(e) Next we give the main theorem that the ZGA is based on.

o . ) Lemmal:let # € Z andx ¢ D(0). Then there exists a
Definition 3: A Zero-Neighbors is a s€¥, of codewords such that joscendant of 2 such thatw € F(0).

G(0) C U D(e) Proof: Let M(z) = {v|v € Z, v be a descendant af and

cENg v ¢ D(0)}. Thus M (x) # 0, since at least € M (). Then any

vector of minimum weight iV () belongs toF'(0). O

where Theorem 1: z ¢ D(0) if and only if there exists @ € RN, such

Proof: First, assume that ¢ D(0). From Lemma 1, there
exists a descendant @f namedv, v € F(0). Consider & € RN
It can be shown that i ¢ D(0), then there existsa& Ny such that such thatv € D(e¢). Hence
w(x @ e) < w(x). Thus the Zero-Neighbors algorithm is as follows:

Algorithm: Lety = y, € Z be the received vector to be decodedw (@ ¢) = d(z.¢) < d(z.v)+d(v, ¢) < d(x,v)+d(v,0) = w(x).
At the ith step of the algorithm we calculate(y, ; & ¢) for all
¢ € No. If there exists & € No such thato(y, , be;) < w(y, ), Next, assumer € D(0). Thend(z, 0) < d(a, ¢) for all ¢ € C.
we sety; = y,_, 4¢; and go to the next step; otherwise, the algorithmf hus () < w(z @ ¢). Therefore, there is no € RN, such that

terminates. If the algorithm terminates at the + 1)th step, then w(eve) <w(®). , _ U
Obviously, if w(e) is even, thenw(z) — w(x % ¢) is even, too.

Thus we have the following corollary.
Corollary 1: If all codewords in a Zero-Guards are of even weight
andz ¢ D(0), then there exists a € RN, such thatw(z ¢ ¢) <

|No| = min {|N| INc €, Go)c | J Dle)

} that w(z & ¢) < w(x).
ceEN

¥, =yD Y e € D(0)
=1

and can be taken as a coset leader of minimum weight, while ;) _ o
The following algorithm and arguments are similar to those in
¢= Zci eC [3] except that we use the concept of Zero-Guards instead of Zero-
=1 Neighbors.
is a codeword that is one of the closestyto Algorithm 1: Let y = y, € Z be the received vector to be

We need only to store the codewords in a Zero-Neighbors tiecoded. At theéth step of the algorithm we calculate(y,_, & ¢)
accomplish this algorithm. It can be shown that the number of stefos all ¢ € RNo. If there exists &; € RNg such thatu(y,_; De;) <
m < n. A more complex decoding procedure based on the syndroméy,_, ), we sety, = y,_, & ¢; and go to the next step; otherwise,
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the algorithm terminates. If the algorithm terminates at(thet 1)th
step, then

Y. =y Y ci€D(0)
=1
and can be taken as a coset leader of minimum weight, while
c= Zci eC
=1

is a codeword that is one of the closestito
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the immediate descendant of that differs fromz in the position
just mentioned. Thenrl(z, ¢) > d(v, ¢) and w(v) = w(z) — 1.
Sinced(zx, ¢) < w(x), w(v) > d(z, ¢). Thusw(v) > d(v, ¢) which
contradictsy € D(0). Thereforex is a descendant af. O
Lemma 4:Let & € F(0). If d(z,¢) < w(z), thenz is a
descendant ot.
Proof: The proof is similar to that in Lemma 3. O
Lemma 5: For everye € C ande # O there exists a descendant
v of ¢ such thatv € F(0).
Proof: For anye € C, ¢ ¢ D(0), ande € D(¢). From Lemma

We call the algorithm the Zero-Guards algorithm. Only the cod@- there exists a descendanbf ¢ such that € F(0). O
words in a Zero-Guards must be stored in order to accomplish this_ emma 6: If ¢ € RNy, then there exists an € F(0) such that

algorithm. The algorithm will stop whery,, € D(0). Thus if

m

w(¥,,) < ldmin/2], the algorithm stops immediately. Since at each

z € D(c) andx ¢ D(c), ¢ # ¢, ¢ € RNy.
Proof: Assume that there is ne € F(0) such thate € D(c)

step of the algorithm the weight ¢f decreases at least by one, theyndz ¢ D(c'), ¢ # . Then for everyz € D(c) andz € F(0)

number of steps is

m S U—'(y) - Ldulin/QJ S n— |_d1nin/2J~

Moreover, it follows from Corollary 1 that for codes with only even-
weight codewords, each step of the algorithm decreases the weight

of y at least by2; therefore, in this case

m < [(w(y) = [dmin/2])/2] < [(n = [dmin/2])/2].

there exists at least ong € RNy, ¢’ # ¢ such thate € D(¢).
Therefore, if we remove from RNy we also have
Foyc |J Dle).
cERNg
This contradicts the fact thaR N, is the minimum set with this
property. Therefore, the lemma holds. (I
Lemma 7: Let r be the covering radius of the codg If ¢ € C

Next, we give another algorithm that is simpler than that presentqu w(e) > 2r + 1, thene & RNo.

in [3], which is based on the syndrome of the received vector.

Algorithm 2: Let G be a generating matrix of a systematic cod%(c) andz ¢ D(¢

C.lety = (yo, y1, "+, yn—1) and
c=(co. c1, "y Cn1) = (Yo, Y1~ Y-1)G.
Thenc¢; = y; for 0 < i < k — 1. Take
z=cdY = (2o, T1, "+, Tre1).

Thusz; = 0for0 < i < k—1. Itis clear thate andy are in the same
coset. Instead of decodingdirectly, we decode: as the process in

Proof: Assumee € RNy. From Lemma 6, there exists ane
), € # e.Sincex € D(e), d(z, ¢) < r and since
z € F(0), w(z) <r+1. Hencew(c) = w(z)+d(z, ¢) < 2r+1.
Thus ifw(e) > 2r + 1, thene € RNy. O
Lemma 8:If # € F(0) and there exists & € C such that
d(z, ¢) < d(z, '), e # ¢ forall ¢ € C, thene € RNy.
Proof: Assumee ¢ RNy. Then

Algorithm 1. Assume the process in Algorithm 1 terminates at ﬂ]f‘lence

(m + 1)th step; we then have

Y, =2 Zci € D(0).
=1

Then
cE ici
i=1

is a codeword that is one of the closestyto
Sincew(z) < n — k, the number of decoding steps

m<n—k—|dmin/2].

IV. SoME PROPERTIES OF AZERO-GUARDS

In this section, we present some properties of the fronftied)
and the Zero-Guards that can help to fiRdV,.
Lemma 2: Let

S(e, a) = {v|v € Z, w(v) = a andv be a descendant af}.

Thenz € F(0)ifand onlyifz ¢ D(0) andS(z, w(z)—1) C D(0).
Proof: If # € F(0), then by definitonz ¢ D(0) and
S(x, w(z) — 1) C D(0). Assume now thate ¢ D(0) and
S(z, w(z) — 1) C D(0). By [5, Theorem 3.9], ifv € D(0), then
all its descendants also belong B10). Thusz ¢ D(0) and all its
descendants belong ©(0). |
Lemma 3: If = € F'(0), then there exists at least onec C such
thatz € D(¢) andz is a descendant af.
Proof: Becausex ¢ D(0) there exists at least one € C
such thatz € D(e). Supposer is not a descendant @f Thenz
should at least differ frone in a position where: has0. Let v be

zd U D(c).
¢/€RNy
Foo)y¢ |J D)
¢/ ERNg
which is a contradiction. O
Theorem 2: Let ¢;,e2 € C wheree,; is a descendant af;. Then

Co Q R.ZVU.

Proof: Assumec; € RN, andes = ¢ & e2. Then, by Lemma
6, there exists am € F(0) such thatz € D(e:) andz ¢ D(¢'),
¢ # ¢, ¢ € RNy. Furthermore, by Lemma 4; is a descendant of
¢>. By Lemma 4, ifd(z, ¢1) < w(z), thenz is a descendant af; .
In this caseg ¢ D(e¢z), which contradicts the fact that € D(e-).
Therefore,d(z, ¢1) > w(z). Similarly, we haved(z, ¢;) > w(z).
Therefore,

d(z, ) =d(z, 1) + d(z,e5) —w(x) > w(a).

This contradicts the fact that € D(¢z). |
By [3, Theorem 3], ife; andes are inNy thene, ¢ Ny; however,
by the above theorem, any codeword will not beRiV, if any of
its nonzero descendant is a codeword.
Theorem 3: All codewords of minimum weight belong t&No.
Proof: Let e be a codeword of minimum weight. From Lemma
5, there exists @ € F(0) that is a descendant of Thus

d(e, ) < d(e,v) +dv, ¢) = w(c) —wv) +dv,c)
wherec¢’ # ¢ and¢’ € C. Hence

d(v, ¢) > w(v)+[d(e, ¢) — w(e)].
Sincee is of minimum weightd(e, ¢') —w(e) > 0. Thusd(v, ¢') >
w(v). Butw € D(0), thenv € D(e), andv € D(c'). Therefore,
d(v, ¢') > d(v, ¢). From Lemma 8¢ € RNg. |



1658 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 5, SEPTEMBER 1997

TABLE | ACKNOWLEDGMENT
THE COMPARISON OF ZERO-NEIGHBORS AND ZERO-GUARDS
G T T T2 T TNol | TRN] The author_s _wnsh to thank the reviewer _and the As_socnate Editor T.
1o 76 |5 64 45 30 Klqve for their |nvaluable_suggest|ons, which we believe hav&_a_helped
(15.6) 6 141 64 | 55 95 to improve the presentation of our correspondence. In addition, the
(15,7) 5 131 128 63 33 authors wish to thank E. Weinman for her invaluable help on the
(15,8) 4 [41] 256 115 15 language check.

n: the code length

. . . REFERENCES

k: the number of information bits

din? the minimum distance [1] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the

7 the covering radius inherent intractability of certain coding problems$ZEE Trans. Inform.

| Nol: the number of codewords in a Zero-Neighbors Theory vol. IT-24, pp. 384-386, May 1978.

| RNp|: the number of codewords in a Zero-Guards [2] C. R. P. Hartmann and L. B. Levitin, “An improvement of the zero-

neighbors minimum distance decoding algorithm: The zero-guards al-

Corollary 2: If v € F(0) andv is a descendant af, which is a gorithm,” in IEEE Int. Symp. on Information TheorfKobe, Japan),

. . . 1988.
minimum-weight codeword, then is not a descendant of any other [3] L. B. Levitin and C. R. P. Hartmann, “A new approach to the general
minimum-weight codeword.

minimum distance decoding problem: The zero-neighbors algorithm,”

Proof: Supposev is also a descendant of another minimum- IEEE Trans. Inform. Theoryol. IT-31, pp. 378-384, May 1985.
weight codeword’. Then from the proof in Theorem 3w, c’) > [4] L B.‘ Levitin, M. Naidjate, anq C R. P Hartmann, ‘iGeneraIized
d(v, ¢) andd(v, ¢) > d(v, ¢') which is a contradiction. O |dent|ty_-guard_s algontrlm for minimum distance de_codlng of group

. . codes in metric space,” ItEEE Int. Symp. on Information Theo($an
Theorem 4: All descendants of weightZy,in /2] 4+ 1 of minimum- Diego, CA), 1990.
weight codewords belong t6(0). [5] W. W. PetersonError-Correcting Codes 2nd ed. Cambridge, MA:
Proof: Assumedmin is even andimin = 2¢. Then |dmin/2| + MIT Press, 1972.

1 = ¢t 4 1. For any vectore that is a descendant of a minimum
codeworde, if the weight ofv is¢+1, thenv € D(e¢). Moreover, any
vectors of weight belong toD(0). Thusv € F(0). The argument
thatd min is 0dd is similar to that above. (I
Theorem 5: If there arem codewords of minimum weight, then

there are at least A Probability-Ratio Approach to

Approximate Binary Arithmetic Coding

i . _—
mn x Linh Huynh and Alistair Moffat
<|f]m1n/2J + 1) " y
vectors of weight|dmin/2] + 1 belonging toF'(0). Abstract—We describe an alternative mechanism for approximate
Proof: The theorem follows directly from Corollary 2 andbinary arithmetic coding. The quantity that is approximated is the ratio
Theorem 4. O between the probabilities of the two symbols. Analysis is given to show

that the inefficiency so introduced is less than 0.7% on average; and in

Theorem 6: For an odd minimum-weight linear code, any VeCtobractice the compression loss is negligible.

v of weight |dwmin /2| + 1 that belongs taF'(0) is a descendant of ) ] ) ) ] ] )
a minimum-weight codeword. Index Terms—Approximate arithmetic coding, bilevel coding, binary

Proof: From Lemma 3 we can conclude that the veatds a arithmetic coding, data compression.
descendant of a codewordandv € D(¢). Then

'lU(C) S Ldnwin /QJ + 1 + Ldnwin /QJ -
‘ I. BINARY ARITHMETIC CODING

Thusw(e) < dmin — 141 = dmin. Thereforeg is a minimum-weight ~ The need for binary arithmetic coding arises in many applications,

codeword. O including bilevel image compression [1] and general bit-based data
From Theorems 5 and 6 we have the following corollary. compression [2]. In this correspondence, a novel mechanism for
Corollary 3: For an (n, k) Hamming code, the number of approximating the various calculations involved in binary arithmetic

minimum-weight codewords |$’;)/(i) coding is described, and error bounds limiting the inaccuracy of the

resulting representation are given. We also report experimental results

V. SIMULATION RESULTS AND CONCLUSIONS Manuscript received March 2, 1995; revised February 1, 1997. This work

Even though up to now we were not able to find a good meth s supported by the Australian Research Council and the Collaborative
nformation Technology Research Institute. The material in this correspon-

with Wh_iCh to esﬁmate the size dtNo, from the simulation resu"s_' dence was presented in part at the 1994 |IEEE Data Compression Conference,
|RNy| is dramatically less thamVo|. Some results are shown inSnowbird, UT, March 1994.

Table I. Just as with the Zero-Neighbors algorithm presented in [3],L. Huynh is with the Department of Computer Science, RMIT, GPO Box
the ZGA can also be easily generalized for linear codes ovepGF 2‘;_7e6r?(/:~e MSLPO::S”_? i??\jl-éle:S::lae“alé’ ;’lld_II"g'”\‘/_(t:ft‘gr_gg%%gmzntst?;gompmer

’ . . } i s iversity urne, ville, Vi i , Au ia.
p>2.To Implement the ZGA, ,We must find a Zero-Guards. Ag,A. Moffat is with the Department of Computer Science, University of
expected, to find a Zero-Guards is an NP-hard problem. Howeveryjéihourne, Parkville, Victoria 3052, Australia.

needs to be found only once for a given code. Publisher Item Identifier S 0018-9448(97)05409-6.

0018-9448/97$10.00 1997 IEEE



