
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998 3091

A New Treatment of Priority-First Search Maximum-
Likelihood Soft-Decision Decoding of Linear Block Codes

Yunghsiang S. Han,Member, IEEE

Abstract—In this correspondence we present a new method to convert
the maximum-likelihood soft-decision decoding problem for linear block
codes into a graph search problem where generalized Dijkstra’s algorithm
can still be applied to the decoding procedure. The cost assigned to every
branch in the graph is based on a generalization of Wagner rule which
is an equivalent form of the maximum-likelihood decoding rule used in
[1]. The new decoding algorithm uses the properties of error patterns to
reduce the search space.

Index Terms—Decoding, Dijkstra’s algorithm, linear block codes,
maximum-likelihood, priority-first search, soft-decision.

I. INTRODUCTION

The authors in [1] proposed a novel and efficient maximum-
likelihood soft-decision decoding algorithm for linear block codes.
The approach used there converts the decoding problem into a search
problem through a graph that is a code tree for an equivalent code of
the transmitted code. In a code tree, a path from the start node to a
goal node corresponds to a codeword. Furthermore, every branch in
the graph is assigned a cost based on a maximum-likelihood decoding
rule. A generalized Dijkstra’s algorithm (GDA) [2], [1] that uses a
priority-first search strategy is employed to search through this graph.
The purpose of the search is to find a desired path (codeword) which
satisfies the maximum-likelihood decoding rule. This search is guided
by an evaluation functionf defined for every node in the graph to
take advantage of the information provided by the received vector
and codewords of the transmitted code. The algorithm maintains a
list OPEN of nodes of the graph that are candidates to be expanded.
The node on list OPEN with minimum values of functionf is selected
to expand. If the algorithm selects a goal node for expansion, it has
found a desired path from the start node to the goal node. Such a
path is denoted as an optimal path. Furthermore, this algorithm also
keeps an upper bound on the value off for every node in an optimal
path. If the value off for a node is larger than this upper bound, the
node can be discarded. Consequently, no further search through this
node is necessary. The functionf defined above contains two parts:
a functiong and a functionh: The functiong for a node is obtained
by summing all the branch costs encountered while constructing the
path from the start node to this node; the functionh for a node is an
estimate of the minimum costs among all the paths from this node to
goal nodes. The worst case for this decoding algorithm is to search
all the nodes in the graph whose total number is2k+1� 1: Although
the probability of occurrence of the worst case is rare, it is worthy
to find a way to reduce the total number of nodes searched for the
worst case.

In Section II we review MLD of linear block codes, and briefly
describe the decoding algorithm proposed in [1]. In Section III we

Manuscript received June 8, 1986; revised February 12, 1998. This work
was supported by National Science Council ROC under Grant NSC 85-2213-
E-211-002. The material in this correspondence was presented at the IEEE
International Symposium on Information Theory, Ulm, Germany, June 1997.

The author is with the Department of Computer Science and Information
Engineering, National Chi Nan University, Taiwan, R.O.C.

Publisher Item Identifier S 0018-9448(98)06752-2.

present a new method to convert the decoding problem into a graph
search problem where GDA can still apply on the decoding procedure.
The new decoding algorithm searches through error patterns instead
of codewords, and in the worst case the total number of�n�k

i=0
k+1

i+1

of nodes is searched. Concluding remarks are addressed in
Section IV.

II. PRELIMINARIES

Let CCC be a binary(n; k) linear code with generator matrixGGG,
and let ccc = (c0; c1; � � � ; cn�1) be a codeword ofCCC transmitted
over a time-discrete memoryless channel with output alphabetBBB:

Furthermore, letrrr = (r0; r1; � � � ; rn�1); rj 2 BBB denote the received
vector, and assume thatPr (rj jci)> 0 for all rj 2 BBB and ci 2
GF(2): Let ĉcc be an estimate of the transmitted codewordccc:

The maximum-likelihood decoding rule(MLD rule) for a time-
discrete memoryless channel can be formulated as [3]–[5]

set ĉcc = ccc`; where ccc` 2 CCC and
n�1

j=0

(�j � (�1)c)2 �

n�1

j=0

(�j � (�1)c)2; for all ccci 2 CCC

where

�j = ln
Pr (rj j0)

Pr (rj j1)
:

We, therefore, may consider that the “received vector” is��� =
(�0; �1; � � � ; �n�1):

A code tree is a way to represent every codeword of an(n; k)
codeCCC as a path through a tree containingn + 1 levels. In the
code tree every path is totally distinct from every other path. The
leftmost node is called thestart node, which is at level�1. We denote
the start nodemstart: There are two branches, labeled by0 and 1,
respectively, that leave each node at the firstk levels. After thek
levels, there is only one branch leaving each node. The2k rightmost
nodes are calledgoal nodes, which are at leveln� 1: The labels of
any path frommstart to a goal node represent a codeword. LetGGG

be a generating matrix ofCCC whose firstk columns form thek � k

identity matrix. Furthermore, letc0; c1; � � � ; ck�1 be the sequence of
labels encountered when traversing a path frommstart to a node
m at level k � 1: Then ck; ck+1; � � � ; cn�1; the sequence of labels
encountered when traversing the only path from nodem to a goal
node, can be obtained as follows:

(c0; c1; � � � ; ck; ck+1; � � � ; cn�1) = (c0; c1; � � � ; ck�1)GGG:

We now give a short description of the decoding algorithm pre-
sented in [1]. This algorithm uses the priority-first search strategy,
thus avoiding traversing the entire code tree. Guided by an evaluation
function f , it searches through a code tree for a codeCCC

�, which
is equivalent to codeCCC: CCC� is obtained fromCCC by permuting
the positions of codewords ofCCC in such a way that the firstk
positions of codewords inCCC� correspond to the “most reliable linearly
independent” positions in the received vector���: LetGGG� be a generator
matrix ofCCC� whose firstk columns form ak� k identity matrix. In
the decoding algorithm the vector���� = (��0; �

�

1; � � � ; �
�

n�1) is used
as the “received vector.” It is obtained by permuting the positions
of ��� in the same manner in which the columns ofGGG are permuted
to obtainGGG�:

Now the branch costs in the code tree ofCCC
� are specified. The

cost of the branch from a node at levelt � 1 to a node at levelt

0018–9448/98$10.00 1998 IEEE

3092 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

is assigned the value(��t � (�1)c)2, wherec�t is the label of the
branch. Thus the solution of the decoding problem is converted into
finding a lowest cost path frommstart to a goal node. Such a path
will be called an optimal path.

The evaluation functionf for every nodem in the code tree is
defined asf(m) = g(m)+h(m), whereg(m) is the cost of the path
from mstart to nodem and h(m) is an estimate of the minimum
cost among all the paths from nodem to goal nodes. The cost of a
path is obtained by summing all the branch costs encountered while
constructing this path. GDA requires that for all nodesmi andmj

such that nodemj is an immediate successor of nodemi

h(mi) � h(mj) + c(mi;mj) (1)

where c(mi;mj) is the branch cost between nodemi and node
mj : This requirement guarantees that GDA will always find an
optimal path. In GDA, the next node to be expanded is one with
the smallest value off on the list of all leaf nodes (list OPEN) of
the subtree constructed so far by the algorithm. Thus list OPEN must
be kept ordered according to the valuesf of its nodes. When the
algorithm chooses to expand a goal node, it is time to stop, because
the algorithm has constructed an optimal path.

We now define the estimate functionh given in [1]. LetHW =
fwij0 � i � Ig be the set of all distinct Hamming weights that code-
words ofCCC may have. Furthermore, assumew0<w1< � � � <wI :

Let ccc� be a given codeword ofCCC�
: Functionh is defined with respect

to ccc�, which is called the seed of the decoding algorithm.

1) For nodes at level̀, with �1 � `<k � 1:
Let m be a node at level̀ and let v0; v1; � � � ; v` be the labels

of the pathPPP 0

m from mstart to nodem: We now construct the set
T (m) of all binaryn-tuplesvvv such that their first̀+1 entries are the
labels ofPPP 0

m anddH(vvv; ccc�) 2 HW; wheredH(xxx; yyy) is the Hamming
distance betweenxxx and yyy: That is,

T (m) = fvvvjvvv = (v0; v1; � � � ; v`; v`+1; � � � ; vn�1) and

dH(vvv; ccc
�) 2 HWg:

Functionh is defined as

h(m) = min
vvv2T (m)

n�1

i=`+1

(��i � (�1)v)2 :

2) For nodes at level̀; k � 1 � `<n:
Let m be a node at level̀: Functionh is defined as

h(m) =

n�1

i=`+1

(��i � (�1)v)2

wherev�`+1; v
�

`+2; � � � ; v
�
n�1 are the labels of the only pathPPPm from

nodem to a goal node. The estimateh(m) computed here is always
exact.

An algorithm to calculateh(m) for node m at level `;�1 �
`<k � 1, whose time complexity isO(n), is presented in [1].
There, the decoding algorithm is shown to be a depth-first search-
type algorithm. Thus upper bounds (UB’s) on the cost of an optimal
path are obtained whenever a codeword is generated. These UB’s
can be used to reduce the size of list OPEN. More details about this
decoding algorithm can be found in [1] where authors also described
other speedup techniques, such as stopping criterion and changing
the seed during decoding procedure. Furthermore, the algorithm will

still find an optimal path even if in the computation of functionh
the algorithm considers all the Hamming weights of any superset of
HW: We remark here that since it is rare to have more than one
optimal paths in the ML decoding problem, in the remaining part of
the correspondence, we assume, for simplification, that there exists
a unique optimal path in the decoding problem. Furthermore, we
present a result given in [1] which will be used later.

Theorem 1: Let two functions

f1(m) = g(m) + h1(m)

and

f2(m) = g(m) + h2(m)

satisfy

h1(m) � h2(m)

for every nongoal nodem: Furthermore, there exists a unique optimal
path. Then the GDA, using evaluation functionf2, will never expend
more nodes than the algorithm using evaluation functionf1:

III. A N EW EVALUATION FUNCTION fnew

In the preceding section, the decoding problem has been converted
into a search problem through a graph based on the MLD rule
described there. In this section, we will describe how the decoding
problem can be converted into a search problem through a graph
based on another equivalent form of MLD rule, which is a gener-
alization of the Wagner rule. Furthermore, GDA can be applied to
the new decoding procedure. Some speedup techniques which can
further reduce the search space during the decoding procedure are
also presented. The techniques use the properties of the error patterns
and some of them are analogous to those presented in [1]. The worst
case for new decoding algorithm will be shown to be bounded by
�n�k
i=0

k+1
i+1

instead of2k+1�1 in [1]. Hence the decoding algorithm
is suitable for both high-rate codes and low-rate codes.

Let yyy = (y0; y1; � � � ; yn�1) be the hard decision of����: That is,

yi =
1; if ��i < 0
0; otherwise.

Furthermore, letsss = yyyHHH
�T be the syndrome ofyyy, whereHHH� is

a parity-check matrix for codeCCC�
: Let E(sss) be the collection of

all error patterns whose syndrome issss: The MLD rule that is a
generalization of the Wagner rule is as follows [6]:

set ĉcc = yyy � eee`; where eee` 2 E(sss) and
n�1

j=0

e`j j�
�

j j �

n�1

j=0

ej j�
�

j j; for all eee 2 E(sss): (2)

We now specify the branch cost from a node at levelt � 1 to a
node at levelt in the code tree ofCCC� as the valuej��t j(yt � c�t),
where c�t is the label of the branch. Thus according to inequality
(2), the solution of the decoding problem is converted into finding
a lowest cost path frommstart to a goal node. In this case, the
decoding algorithm searches through the error patterns inE(sss): Now
we define an evaluation functionfnew for every nodem in the code
tree asfnew(m) = gnew(m) + hnew(m): Let v0; v1; � � � ; v` be the
labels of the pathPPP 0

m from mstart to nodem: Then

fnew(m) =

`

i=0

j��i j(yi � vi) + hnew(m):

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998 3093

We now define our estimate functionhnew, which satisfies in-
equality (1). Since the decoding algorithm searches through the error
patterns inE(sss) andCCC� is obtained by ordering the positions of
the codewords inCCC according to the reliability of positions of the
received vector, we must use properties of the error patterns inE(sss)
that are invariant under any permutation of the positions of the
codewords to define functionhnew: Let HW = fwij0 � i � Ig
be the set of all distinct Hamming weights that codewords ofCCC may
have. Furthermore, assumew0<w1< � � � <wI : Thus the Hamming
distance between any two codewords ofCCC

� must belong toHW:

Consequently, the Hamming distance between any two error patterns
in E(sss) also belongs toHW:

Let eee be a given error pattern ofE(sss): Our functionhnew is defined
with respect toeee, which is called the seed of the decoding algorithm.

1) For nodes at level̀, with �1 � `<k � 1:
Let m be a node at level̀, and letv0; v1; � � � ; v` be the labels

of the pathPPP 0

m from mstart to nodem: We now construct the set
V (m) of all binary n-tuplesvvv such that their first̀ + 1 entries are
the labelsvi � yi; 0 � i � `; anddH(vvv; eee) 2 HW; wheredH(xxx; yyy)
is the Hamming distance betweenxxx andyyy: That is,

V (m) = fvvvjvvv = (v0 � y0; v1 � y1; � � � ; v` � y`;

v`+1; � � � ; vn�1) anddH(vvv; eee) 2 HWg:

Note thatV (m) 6= ;: This can be seen by considering the binary
k-tuple uuu = (v0; v1; � � � ; v`; 0; � � � ; 0) and

eee = (v0 � y0; v1 � y1; � � � ; vn�1 � yn�1) 2 V (m)

where

uuu �GGG� = (v0; v1; � � � ; v`; v`+1; � � � ; vn�1):

We now define functionhnew as

h(m) = min
vvv2V (m)

n�1

i=`+1

j��i jvi :

2) For nodes at level̀; k � 1 � `<n:
Let m be a node at level̀: We define functionhnew as

hnew(m) =

n�1

i=`+1

j��i j(yi � v
�

i)

wherev�`+1; v
�

`+2; � � � ; v
�
n�1 are the labels of the only pathPPPmmm from

nodem to a goal node. The estimatehnew(m) computed here is
always exact. Note that if nodem is a goal node, thenhnew(m) = 0:

It is very important that the calculation ofhnew cannot be heavily
time-consuming. In order for GDA using functionfnew to be feasible,
there must be a linear time complexity (with respect ton) algorithm
to calculatehnew: Next we show that the algorithm presented in [1]
to calculateh(m) with time complexity ofO(n) can be used to
calculatehnew(m):

Theorem 2: Let ccc� be a given seed for GDA using functionf and
ccc� � yyy be the given seed for GDA using functionfnew: Then

h(m) =

n�1

i=`+1

(��i � (�1)v)2 iff

hnew(m) =

n�1

i=`+1

j��i j(yi � vi):

The proof of Theorem 2 is given in Appendix A.

By Theorem 2, the algorithm to calculateh(m) can be used
to find hnew(m), and vice versa. Thus the algorithm to calculate
h(m) presented in [1] with time complexity ofO(n) can be used to
calculatehnew(m): This results in the following theorem.

Theorem 3: There exists a time complexity ofO(n) algorithm to
calculatehnew(m):

It can be shown that not only can an algorithm be used to
calculate both estimate functions, but also GDA using these two
functions results in the same performance. That is, even though the
functionfnew is defined according inequality (2), GDA using function
fnew will expand the same set of nodes in the code tree as that
using functionf defined in Section II. Therefore, the proposed new
decoding algorithm is at least as good as that given in [1].

Theorem 4: Let f(m) = g(m) + h(m) andfnew = gnew(m) +
hnew(m): Then GDA using evaluation functionfnew will expand the
same set of nodes as that using evaluation functionf:

The proof of Theorem 4 is given in Appendix B.

We have shown that the GDA using the new evaluation function
fnew has the same performance as that using evaluation function
f: As mentioned in [1], the estimate functionhnew(m)(h(m)) can
help GDA to reduce the search space even though GDA spends some
computation power on calculating it. In order to simplify the decoding
algorithm one may not want to usehnew(h) to reduce the search
space and only usegnew(g) to search through the code tree. Under
this circumstance, we show that GDA usinggnew will expand no
more nodes than that usingg:

Lemma 1: Let S = f0; 1; 2; � � � ; ng: It is clear thatS is a super
set ofHW: For any given seed of GDA

h(m) =

n�1

i=`+1

(j��j � 1)2 = hs(m)

and

hnew(m) = 0

if h(m) andhnew(m) are defined with respect toS:
We omit the proof of Lemma 1 for simplification.

Let fs(m) = g(m) + hs(m) and fnew (m) = gnew(m): By
Lemma 1 and Theorem 4 we can conclude the following result.

Theorem 5: GDA using evaluation functionfnew expands the
same set of nodes as that using evaluationfs:

Sinceg(m) � fs(m) for every nongoal nodem, by Theorem 1,
GDA using evaluation functionfnew will expand no more nodes
than that using evaluation functiong:

Simulation results for GDA usingfnew and usingf = g are
given in Table I. These results were obtained by simulating 10 000
samples for each SNR (signal-to-noise ratio) for the(104; 52) binary
extended quadratic residue code when the code is transmitted over
the additive white Gaussian noise channel. For those samples tried,
the new decoding algorithm is much better than that presented in [1]
when no estimate functions are used. Furthermore, for GDA using
f = g, when SNR was under 6 dB, the computer crashed due to lack
of memory. Therefore, if GDA is usingf = g, then it will become
impractical with SNR under 6 dB for the code(104; 52). We remark
here that an equivalent form of GDA usingfnew was independently
proposed very recently in [7] where computer simulation results were
also given for several codes.

3094 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

TABLE I
THE AVERAGE AND MAXIMUM NUMBER OF NODES OPENED DURING THE DECODING OF (104; 52)CODE

TABLE II
WORST CASE DECODING COMPLEXITY

The decoding algorithm searches the code tree only up to level
k�1 sinceGGG� can be used to construct the only path from any node
m at level k � 1 to a goal node. Thus the cost of the path can be
calculated and used as an upper bound on the cost of the optimal
path. Any nodem on list OPEN with or equal to this bound can be
eliminated from list OPEN.

A criterion can be used to check if the search may be stopped or
not. The criterion is as follows.

Criterion 1: If

hnew(mstart) =

n�1

i=0

j��jei

where the seed of the decoding algorithm iseee, then eee is the error
pattern which satisfies inequality (2).

This criterion follows directly from the definition ofhnew: Thus
during the decoding procedure, if any seedeee satisfies Criterion 1,
then eee � yyy is the desired codeword.

The seedeee does not need to be fixed during the decoding
procedure. It may be changed according to any rule which will
help to reduce the search space. Under these circumstances, the
decoding algorithm has an adaptive decoding procedure. The values
of functionhnew of the nodes on list OPEN will not be recalculated
with respect to the new seed in order to save computation power.
Only new open nodes are calculated with respect to the new seed. As
proved in [1], the adaptive decoding procedure still finds the optimal
path.

Since GDA usingfnew searches through all possible error patterns,
we may use the properties of error patterns to reduce the search space.
If an error pattern has Hamming weight which is greater thann� k,
then this error pattern can be eliminated from the search space [6],
[8]. That is, when GDA usingfnew searches for the optimal path,
the path which corresponds to an error pattern with Hamming weight
greater thann� k can be eliminated from list OPEN. Consequently,

the worst case of the search space for GDA will be bounded by

k

j=0

n�k

i=0

j

i

which equals to

n�k

i=0

k + 1

i+ 1
:

Whenn � k>k, the terms k+1

k+2
; � � � ; and k+1

n�k+1
are all zeros.

Therefore, in this case,

n�k

i=0

k + 1

i+ 1
=

k

i=0

k + 1

i+ 1
= 2k+1 � 1:

The worst case decoding complexity of the GDA usingfnew and
the GDA given in [1] for some codes are given in Table II. By the
results given, the new decoding algorithm is quite suitable for both
high-rate and low-rate codes.

Several trellis-based decoding algorithms were proposed [9], [8].
The method proposed in [9] is to apply the Viterbi algorithm on a
trellis of the code and that in [8] on a minimal trellis representation
of the code. Table III presents for each code studied the number
of nodes opened for these trellis-based decoding algorithms. All of
these are much greater than the average number of nodes opened
by the proposed decoding algorithm shown in the table. In [8], a
punctured minimal trellis technique was proposed to further reduce
the number of nodes opened in a minimal trellis presentation of
the code; however, this technique is suitable only for high-rate
codes.

Another maximum-likelihood soft-decision decoding algorithm us-
ing an algebraic decoder was recently reported [10]. This approach
is a generalization of Chase algorithm and it performs MLD rule.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998 3095

TABLE III
COMPARISON OF THEAVERAGE DECODING COMPLEXITY FOR TRELLIS-BASED DECODING ALGORITHMS

TABLE IV
THE DECODING COMPLEXITY OF DECODING OF (128, 64) CODE

Table IV shows the number of algebraic decoder used by this method
for the(128; 64) extended BCH code. One may see that the decoding
complexity of the proposed decoding algorithm is much smaller than
that of the algorithm given in [10] at 5.0 and 5.5 dB. Furthermore, the
decoding algorithm given in [10] can only work on codes for which
algebraic decoders exist; however, the proposed decoding algorithm
can work on all linear block codes.

IV. CONCLUSIONS

In this correspondence we present a new method to convert
the decoding problem into a graph-search problem based on the
generalization of Wagner rule. GDA can be applied on the graph to
reduce the search space. We show that the new decoding algorithm
opens less nodes than that presented in [1] for the worst cases.
From simulation results, the new decoding algorithm has about 1000
computation gain over the old one when no estimate functions are
used. Although we concentrate only on the case that the graph is a
code tree, the graph can also be a trellis. The decoding algorithm
must be modified to check for the repeated nodes if we apply GDA
to a trellis. The branch costs assigned to the code tree which are
presented in Section II may be replaced with the value�(�1)c ��t
to save computation power. The designed heuristic function can not
violate the requirement of inequality (1) in order to guarantee that
GDA will find an optimal path. For example, whenf = g, the branch
cost cannot be changed to the value�(�1)c ��t since it violates the
requirement of inequality (1).

APPENDIX A
PROOF OF THEOREM 2

Let ccc� be a given seed of GDA usingf andeee = ccc� � yyy for that
using fnew: Furthermore, letvvv = (v0; v1; � � � ; v`; v`+1; � � � ; vn�1)
be the vector such that

h(m) =

n�1

i=`+1

(��i � (�1)v)2:

We prove that

hnew(m) =

n�1

i=`+1

j��i j(vi � yi):

SincedH(vvv; ccc�) 2 HW; thendH(vvv� yyy; ccc� � yyy) 2 HW: Assume
that there exists another error patternxxx 2 E(sss) andxxx 2 VVV (m) such
that

n�1

i=`+1

j��i jxi<

n�1

i=`+1

j��i j(vi � yi): (3)

Sincexxx 2 V (m), xxx must be the form of

(v0 � y0; v1 � y1; � � � ; v` � y`; x`+1; � � � ; xn�1)

and (xxx; eee) 2 HW: Since(xxx; eee) 2 HW; then

(xxx� yyy; e� yyy) = (xxx� yyy; ccc
�) 2 HW

where

xxx� yyy = (v0; v1; � � � ; v`; x`+1 � y`+1; � � � ; xn�1 � yn�1):

Thusxxx�yyy 2 T (m): If we multiply inequality (3) by2 and evaluate
all possible values amongyi; vi; andxi; the inequality equals to

n�1

i=`+1

�
�

i ((�1)
y � (�1)x �y) <

n�1

i=`+1

�
�

i ((�1)
y � (�1)v):

(4)

Inequality (4) can be further simplified to

�2

n�1

i=`+1

�
�

i (�1)
x �y

<�2

n�1

i=`+1

�
�

i (�1)
v

which equals

n�1

i=`+1

(��i � (�1)x �y)2<

n�1

i=`+1

(��i � (�1)v)2: (5)

By the definition of functionh, inequality (5) contradicts the as-
sumption that

h(m) =

n�1

i=`+1

(��i � (�1)v)2:

The proof of the rest of theorem is similar to that above.

3096 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

APPENDIX B
PROOF OF THEOREM 4

Let nodem be a node at level̀ in the code tree and the labels
of path PPP 0

m, the path frommstart to nodem, are v0; v1; � � � ; v`:
Furthermore, letv0; v1; � � � ; vn�1 be the labels of an optimal path
from mstart to a goal node. Now we considerf(m) = g(m)+h(m)
andfnew(m) = gnew(m)+hnew(m): By Theorem 2, we may assume
that

h(m) =

n�1

i=`+1

(��i � (�1)v)2

and

hnew(m) =

n�1

i=`+1

j��i j(vs � yi):

According to the search rule in GDA, nodem will be expanded
during the search procedure if and only if

f(m) �

n�1

i=0

(��i � (�1)v)2 (6)

if GDA is using evaluation functionf ;

fnew(m) �

n�1

i=0

j��i j(yi � vi) (7)

if GDA is using evaluation functionfnew:
Since

f(m) =

`

i=0

(��i � (�1)v)2 +

n�1

i=`+1

(��i � (�1)v)2

then

f(m) �

n�1

i=0

(��i � (�1)v)2

is equal to

`

i=0

(��i � (�1)v)2 +

n�1

i=`+1

(��i � (�1)v)2

�

n�1

i=0

(��i � (�1)v)2: (8)

Inequality (8) can be further simplified to

`

i=0

��i ((�1)v � (�1)v)�

n�1

i=`+1

��i ((�1)v � (�1)v) � 0:

(9)

If we multiple inequality (9) by1=2 and evaluate all possible values
amongyi; vi; vs ; and vi; the inequality equals

`

i=0

j��i j[(yi � vi)� (yi � vi)]

�

n�1

i=`+1

j��i j[(yi � vi)� (yi � vs)] � 0: (10)

Since

fnew(m) =

`

i=0

j��i j(yi � vi) +

n�1

i=`+1

j��i j(vs � yi)

then inequality (10) equals inequality (7). Since inequality (6) equals
inequality (7), we can claim that GDA using evaluation functionfnew
will expand the same set of nodes as that using evaluation functionf:

ACKNOWLEDGMENT

The author would like to thank the reviewer for his valuable
suggestions, which he believes have helped him to improve the
presentation of this correspondence.

REFERENCES

[1] Y. S. Han, C. R. P. Hartmann, and C.-C. Chebn, “Efficient priority-
first search maximum-likelihood soft-decision decoding of linear block
codes,”IEEE Trans. Inform. Theory, vol. 39, pp. 1514–1523, Sept. 1993.

[2] N. J. Nilsson,Principle of Artificial Intelligence. Palo Alto, CA: Tioga,
1980.

[3] Y. Be’ery and J. Snyders, “Optimal soft decsion block decoders based
on fast hadamrad transform,”IEEE Trans. Inform. Theory, vol. 42, pp.
355–364, 1986.

[4] A. Vardy and Y. Be’ery, “More efficient soft-decision decoding of the
golay codes,”IEEE Trans. Inform. Theory, vol. 37, pp. 667–672, 1991.

[5] , “Bit-level soft decision decoding of Reed-Solomon codes,”IEEE
Trans. Commun., vol. 39, pp. 440–445, 1991.

[6] J. Snyders and Y. Be’ery, “Maximum likelihood soft decoding of binary
block codes and decoders for the golay codes,”IEEE Trans. Inform.
Theory, vol. 35, pp. 963–975, Sept. 1989.

[7] L. Ekroot and S. Dolinar, “A* decoding of block codes,”IEEE Trans.
Commun., vol. 44, pp. 1052–1056, Sept. 1996.

[8] Y. Berger and Y. Be’ery, “Soft trellis-based decoder for linear block
codes,”IEEE Trans. Inform. Theory, vol. 40, pp. 764–773, May 1994.

[9] J. K. Wolf, “Efficient maximum likelihood decoding of linear block
codes using a trellis,”IEEE Trans. Inform. Theory, vol. IT-24, pp. 76–80,
Jan. 1978.

[10] T. Kancko, T. Nishijima, H. Inazumi, and S. Hirasawa, “An efficient
maximum-likelihood decoding algorithm for linear block codes with
algebraic decoder,”IEEE Trans. Inform. Theory, vol. 40, pp. 320–327,
Mar. 1994.

