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A New Treatment of Priority-First Search Maximum- present a new method to convert the decoding problem into a graph

Likelihood Soft-Decision Decoding of Linear Block Codes search problem where GDA can still apply on the decoding procedure.
The new decoding algorithm searches through error patterns instead

Yunghsiang S. HanMember, IEEE of codewords, and in the worst case the total numbézjat (5))
of nodes is searched. Concluding remarks are addressed in
Section V.

Abstract—in this correspondence we present a new method to convert
the maximum-likelihood soft-decision decoding problem for linear block Il. PRELIMINARIES

codes_mtoagra_ph search problgm where generalized Dljkstr_asalgonthm Let C be a binary(n. k) linear code with generator matri,
can still be applied to the decoding procedure. The cost assigned to every .
branch in the graph is based on a generalization of Wagner rule which and Ietc. = (.C"Ov 1,70, cn1) bE @ COdeWOfd olC' transmitted
is an equivalent form of the maximum-likelihood decoding rule used in over a time-discrete memoryless channel with output alph#bet

[1]. The new decoding algorithm uses the properties of error patterns to  Furthermore, let = (ro,r1,---,7m—1), 7; € B denote the received
reduce the search space. vector, and assume tha@r (r;]c;) >0 for all »; € B ande; €
Index Terms—Decoding, Dijkstra’s algorithm, linear block codes, GF(2). Let ¢ be an estimate of the transmitted codewerd
maximum-likelihood, priority-first search, soft-decision. The maximum-likelihood decoding rul@MLD rule) for a time-
discrete memoryless channel can be formulated as [3]-[5]

I. INTRODUCTION set ¢ = ¢, wheree, € C and

The authors in [1] proposed a novel and efficient maximum-=—1 ool )
likelihood soft-decision decoding algorithm for linear block codes.z (65 — (-1)79)* < Z (6; — (=1)%9)%, foralle; € C
The approach used there converts the decoding problem into a searct? J=0
problem through a graph that is a code tree for an equivalent code of
the transmitted code. In a code tree, a path from the start node tlﬁ’%ere

goal node corresponds to a codeword. Furthermore, every branch in 6; = Pr (7'j|0).

the graph is assigned a cost based on a maximum-likelihood decoding ' Pr(r;|1)

rule. A generalized Dijkstra’s algorithm (GDA) [2], [1] that uses awe, therefore, may consider that the “received vector'gis=
priority-first search strategy is employed to search through this gragh,, ¢,,- -, ¢, _1).

The purpose of the search is to find a desired path (codeword) whicty code tree is a way to represent every codeword of(rank)
satisfies the maximum-likelihood decoding rule. This search is guidggde C' as a path through a tree containing+ 1 levels. In the

by an evaluation functiorf defined for every node in the graph tocode tree every path is totally distinct from every other path. The
take advantage of the information provided by the received vecteftmost node is called thetart node which is at level1. We denote
and codewords of the transmitted code. The algorithm maintaingh@ start nodens.... There are two branches, labeled byand 1,

list OPEN of nodes of the graph that are candidates to be expande@pectively, that leave each node at the firdevels. After thek

The node on list OPEN with minimum values of functiéiis selected |evels, there is only one branch leaving each node. Fheghtmost

to expand. If the algorithm selects a goal node for expansion, it hgsdes are calledoal nodeswhich are at levek — 1. The labels of
found a desired path from the start node to the goal node. Sucl@y path fromm.i..« to a goal node represent a codeword. et
path is denoted as an optimal path. Furthermore, this algorithm alg® a generating matrix & whose firstk columns form thek x &

keeps an upper bound on the valuefdir every node in an optimal identity matrix. Furthermore, lety, c1,-- -, cx—1 be the sequence of
path. If the value off for a node is larger than this upper bound, thgabels encountered when traversing a path frem... to a node
node can be discarded. Consequently, no further search through fhigt level k — 1. Then i, cit1.---,cn—1. the sequence of labels

node is necessary. The functigndefined above contains two partsiencountered when traversing the only path from nedéo a goal
a functiong and a function. The functiony for a node is obtained node, can be obtained as follows:
by summing all the branch costs encountered while constructing the
path from the start node to this node; the functiofor a node is an (o, ey s g
estimate of the minimum costs among all the paths from this node towe now give a short description of the decoding algorithm pre-
goal nodes. The worst case for this decoding algorithm is to seargnted in [1]. This algorithm uses the priority-first search strategy,
all the nodes in the graph whose total numbe’is! — 1. Although  thus avoiding traversing the entire code tree. Guided by an evaluation
the probability of occurrence of the worst case is rare, it is worthyinction f, it searches through a code tree for a cd@fg which
to find a way to reduce the total number of nodes searched for teeequivalent to codeC. C* is obtained fromC by permuting
worst case. the positions of codewords of' in such a way that the firsk
In Section Il we review MLD of linear block codes, and brieflypositions of codewords i@ correspond to the “most reliable linearly
describe the decoding algorithm proposed in [1]. In Section Il wiadependent” positions in the received veafot.et G* be a generator
matrix of C* whose firstk columns form ak x & identity matrix. In
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is assigned the valugp; — (—1)"?)2, wherecy is the label of the still find an optimal path even if in the computation of functién
branch. Thus the solution of the decoding problem is converted irttee algorithm considers all the Hamming weights of any superset of
finding a lowest cost path from...« t0 @ goal node. Such a pathHW. We remark here that since it is rare to have more than one
will be called an optimal path. optimal paths in the ML decoding problem, in the remaining part of

The evaluation functiory for every nodem in the code tree is the correspondence, we assume, for simplification, that there exists
defined asf(m) = g(m)+ h(m), whereg(m) is the cost of the path a unique optimal path in the decoding problem. Furthermore, we
from mgsiars t0 Nodern and h(m) is an estimate of the minimum present a result given in [1] which will be used later.
cost among all the paths from node to goal nodes. The cost of a . .

. . . . Theorem 1: Let two functions
path is obtained by summing all the branch costs encountered while
constructing this path. GDA requires that for all nodes andm
such that noden; is an immediate successor of node . firlm) = g(m) + b1 (m)
an

h(m;) < h(m;) + c(mq, mj) 1) fa(m) = g(m) + ha(m)

where ¢(m;,m;) is the branch cost between node; and node satisfy

mj. This requirement guarantees that GDA will always find an ha(m) < ha(m)

optimal path. In GDA, the next node to be expanded is one with -

the smallest value of on the list of all leaf nodes (list OPEN) of for every nongoal node:. Furthermore, there exists a unique optimal
the subtree constructed so far by the algorithm. Thus list OPEN miggtth. Then the GDA, using evaluation functign will never expend
be kept ordered according to the valugof its nodes. When the more nodes than the algorithm using evaluation funcfion
algorithm chooses to expand a goal node, it is time to stop, because

the algorithm has constructed an optimal path. . A NEw EVALUATION FUNCTION fhew

We now define the estimate functidngiven in [1]. Let HW = In the preceding section, the decoding problem has been converted
{wil0 <@ < T} be the set of all distinct Hamming weights that codejno a search problem through a graph based on the MLD rule
words of C may have. Furthermore, assume <w: < --- <wr. described there. In this section, we will describe how the decoding
Letc” be a given codeword . Functionh is defined with respect proplem can be converted into a search problem through a graph

to ¢*, which is called the seed of the decoding algorithm. based on another equivalent form of MLD rule, which is a gener-
1) For nodes at level, with —1 < (< k — 1: alization of the Wagner rule. Furthermore, GDA can be applied to
Let m be a node at levet and I_etﬁo,m,---.,m be the labels the new decoding procedure. Some speedup techniques which can

to nodem. We now construct the set further reduce the search. space during the d(_acoding procedure are
also presented. The techniques use the properties of the error patterns
and some of them are analogous to those presented in [1]. The worst
case for new decoding algorithm will be shown to be bounded by
S (4F)) instead o2**! —1 in [1]. Hence the decoding algorithm

is suitable for both high-rate codes and low-rate codes.

of the pathP,, from mgtart
T (m) of all binaryn-tuplesv such that their firsé+ 1 entries are the
labels of P, anddg (v, e*) € HW, whered (z,y) is the Hamming
distance betweer andy. That is,

T(; — = (V. U1, , Uy, L, Up— and o . .
(m) ={vjv = (vg, 71, s UL, Vot Un—1) Lety = (yo,y1,*+,yn—1) be the hard decision a#”. That is,
du(v,¢) € HWY.
1, if¢r<o
Function’ is defined as Y9=Y0, otherwise.

n—1

h(m)= min Z (6 — (—=1)"1)%\. Furthermore, lets = yH*" be the syndrome of, where H* is

vel(m) | 57, a parity-check matrix for cod€™. Let E(s) be the collection of

all error patterns whose syndrome 4s The MLD rule that is a

‘ generalization of the Wagner rule is as follows [6]:
2) For nodes at level,k — 1 < £ <n:

Let m be a node at level. Functionh is defined as seté—yde, wheree, € E(s) and

n—1 n—I1

n—1
him) =3 (6] = (=1)%)? > elof] > ejlojl,  foralle € E(s). @)
i=0+1 J=0 7=0
wherev; ,, 07, -, vs_ are the labels of the only pa®,, from We now spe_cify the branch cost from a node at level 1 tq a
nodem to a goal node. The estimatém) computed here is always Node at levelt in the code tree o™ as the valugo; [(y: © c7),
exact. where¢; is the label of the branch. Thus according to inequality

) (2), the solution of the decoding problem is converted into finding
An algorithm to calculateh(m) for nodem at level /,—1 < 3 jowest cost path fromn.... to a goal node. In this case, the
{ <k — 1, whose time complexity is)(n), is presented in [1]. gecoding algorithm searches through the error patterd i. Now
There, the decoding algorithm is shown to be a depth-first searte define an evaluation functiofie. for every nodem in the code

type algorithm. Thus upper bounds (UB's) on the cost of an optim@be asf, .., (m) = gnew (M) + hAnew(m). Let T, Ty, -, 7, be the
path are obtained whenever a codeword is generated. These UBisels of the pathP., from m...« to nodem. Then

can be used to reduce the size of list OPEN. More details about this "

decoding algorithm can be found in [1] where authors also described ¢
other speedup techniques, such as stopping criterion and changing Saew(m) = Z |67 [(y: & T5) + hoew (Mm).
the seed during decoding procedure. Furthermore, the algorithm will i=0
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We now define our estimate functioh...., which satisfies in- By Theorem 2, the algorithm to calculate{m) can be used
equality (1). Since the decoding algorithm searches through the ert@rfind inew (m), and vice versa Thus the algorithm to calculate
patterns inE(s) and C* is obtained by ordering the positions of’(m) presented in [1] with time complexity @P(») can be used to
the codewords inC' according to the reliability of positions of the calculateh,...,(m). This results in the following theorem.
trﬁcelved \_/ecto_r, we must use propertles_ of the error pa;t_erﬁé{sm Theorem 3: There exists a time complexity ¢?(») algorithm to

at are invariant under any permutation of the positions of the
codewords to define functioh,c.. Let HW = {w,|0 < i < I} calculate hnew (m).
be the set of all distinct Hamming weights that codeword€'ahay It can be shown that not only can an algorithm be used to
have. Furthermore, assumg < w; < --- <wj. Thus the Hamming calculate both estimate functions, but also GDA using these two
distance between any two codewords@f must belong toFW. functions results in the same performance. That is, even though the
Consequently, the Hamming distance between any two error pattefinsction f.... is defined according inequality (2), GDA using function
in E(s) also belongs toH 7. fnew Will expand the same set of nodes in the code tree as that

Lete be a given error pattern d(s). Our functionh...., is defined using functionf defined in Section Il. Therefore, the proposed new
with respect tee, which is called the seed of the decoding algorithmdecoding algorithm is at least as good as that given in [1].

1) For nodes at level, with —1 < ( <k — 1 Theorem 4: Let f(m) = g(m) 4+ h(m) and foew = gnew(m) +
Let m be a node at level, and letw,,7,,---, 7, be the labels h,..(m). Then GDA using evaluation functiofi.... will expand the
of the pathP;, from ... t0 Nodem. We now construct the set same set of nodes as that using evaluation funcfion
V(m) of all binary n-tuplesv such that their first 4+ 1 entries are  The proof of Theorem 4 is given in Appendix B.
the labelsv; & y;,0 < i < {, anddu(v,e) € HW, wheredn(z,y)

is the Hamming distance betweenandy. That is We have shown that the GDA using the new evaluation function

faew has the same performance as that using evaluation function
Vim)={v|lv = (To ® yo, 71 ©y1,+,00 Dy, f- As mentioned in [1], the estimate functidn.e. (m)(h(m)) can
help GDA to reduce the search space even though GDA spends some
computation power on calculating it. In order to simplify the decoding

Note thatV (m) # (. This can be seen by considering the binarglgorithm one may not want to use...(%) to reduce the search

Vg1, U7771) anddH (‘U, 6) € H‘V}

E-tuple w = (%o, T1,-++,0¢,0,-+-,0) and space and only usg....(g) to search through the code tree. Under
, ‘ this circumstance, we show that GDA usipg.,, will expand no
€= (To®yo,T1 Y1,y Tn-1DYn-1) € V(m) more nodes than that using
where Lemma 1: Let S = {0,1,2,---,n}. It is clear thatS is a super
set of HW. For any given seed of GDA
’MG* = (l_ﬂo,ih'",l_ﬂg,l_’g+1,"',l_’7171).
n—1
We now define functior,e, as h(m) = Z (|67 — 1)* = hy(m)
; 1={+1
h(m)= min or v p.
( ) veV (m) {i;—i% | | } and

hnew(m) =0
2) For nodes at level,k — 1 < £ <n:

Let m be a node at level. We define function.., as if (m) and huew (m) are defined with respect .

n—1 We omit the proof of Lemma 1 for simplification.
hnew(m) = > [67](yi @ ;) , : |
Pyl Let fo(m) = g(m) + hs(m) and frew,(m) = gnew(m). By

Lemma 1 and Theorem 4 we can conclude the following result.
wherevy,viy0, -+, v, are the labels of the only paf,, from ) ) )
nodem to a goal node. The estimafg,...(m) computed here is ~ Theorem 5: GDA using evaluation functiorynew, expands the
always exact. Note that if node is a goal node, theh,..,(m) = 0. Same set of nodes as that using evaluagion

It is very important that the calculation éf.... cannot be heavily  gjnce 4(m) < f.(m) for every nongoal noder, by Theorem 1,

time-consuming. In order for GDA using functigiy.. to be feasible, gpa using evaluation functionfue,. will expand no more nodes
there must be a linear time complexity (with respectjaalgorithm a0 that using evaluation function

to calculatefr,..,. Next we show that the algorithm presented in [1] gjmylation results for GDA using.... and usingf = ¢ are

to calculateii(m) with time complexity of O(r) can be used t0 giyen in Table I. These results were obtained by simulating 10 000
calculatehnew (m). samples for each SNR (signal-to-noise ratio) for th@4, 52) binary
Theorem 2: Let¢* be a given seed for GDA using functighand ~€xtended quadratic residue code when the code is transmitted over
¢” &y be the given seed for GDA using functigig... Then the additive white Gaussian noise channel. For those samples tried,
the new decoding algorithm is much better than that presented in [1]
., via when no estimate functions are used. Furthermore, for GDA using
h(m) = Z (07 = (=1)")" iff f = g, when SNR was under 6 dB, the computer crashed due to lack

if”ﬁ of memory. Therefore, if GDA is using = g, then it will become
B () = "i 167w © v2) impractical with SNR under 6 dB for the cod&04, 52). We remark
pewA T i iy ). here that an equivalent form of GDA usirfg..,, was independently

proposed very recently in [7] where computer simulation results were
The proof of Theorem 2 is given in Appendix A. also given for several codes.
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TABLE |
THE AVERAGE AND MAxiMuM NumBER OF NoDES OPENED DURING THE DECODING OF (104, 52)CoDE

GDA using f=g

[ w 6 dB 1 7 dB I 8 dB 9 dB
max ave max ave max ave max ave
N(¢) || 11,396,950 | 92,680 || 1,153,378 | 17,392 || 251,226 | 4,666 || 93,105 | 1,669
GDA using frew,
| Y 5dB “ 6 dB 7dB H 8 dB 9dB |
max ave max | ave | max | ave | max | ave || max | ave
N(p) || 218,226 | 915 || 11,477 | 194 || 1,376 | 115 95 62 57 54

N{¢)= the number of nodes opened during the decoding of ¢

TABLE 1
WOoRST CASe DeEcobpING COMPLEXITY
[ COde(n7k) “ Ngld l Ng,ew I
Golay(24,12) 8,191 8,191
BCH(15,11) 4,095 1,585
BCH(31,26) ~1.34 x 108 397,593
BCH(63,57) || ~2.88 x 1017 | ~ 3.5 x 10®

2GDA given in [1].
YGDA using frew-

The decoding algorithm searches the code tree only up to lewleé worst case of the search space for GDA will be bounded by

k —1 sinceG* can be used to construct the only path from any node

m at levelk — 1 to a goal node. Thus the cost of the path can be

calculated and used as an upper bound on the cost of the optimal

path. Any noden on list OPEN with or equal to this bound can be

eliminated from list OPEN. which equals to
A criterion can be used to check if the search may be stopped or

not. The criterion is as follows. n

n—k

Criterion 1: If

n—1
hnew (nl'start) = Z |(,’1)*|€l
=0

k41

Whenn — k> k, the terms(;1}),---, and (,“7% |

) are all zeros.

n—k

>

=0

k42

Therefore, in this case,
where the seed of the decoding algorithmejsthene is the error k41 k k41 k1
pattern which satisfies inequality (2). it1 Z i+1] -

This criterion follows directly from the definition ofnew. Thus =0
during the decoding procedure, if any seedatisfies Criterion 1, The worst case decoding complexity of the GDA usifig. and
thene & y is the desired codeword. the GDA given in [1] for some codes are given in Table II. By the

The seede does not need to be fixed during the decodingesults given, the new decoding algorithm is quite suitable for both
procedure. It may be changed according to any rule which wiligh-rate and low-rate codes.
help to reduce the search space. Under these circumstances, tf&everal trellis-based decoding algorithms were proposed [9], [8].
decoding algorithm has an adaptive decoding procedure. The valgeg method proposed in [9] is to apply the Viterbi algorithm on a
of function ey of the nodes on list OPEN will not be recalculatedrellis of the code and that in [8] on a minimal trellis representation
with respect to the new seed in order to save computation powef.the code. Table Il presents for each code studied the number
Only new open nodes are calculated with respect to the new seed.ohsiodes opened for these trellis-based decoding algorithms. All of
proved in [1], the adaptive decoding procedure still finds the optimgdese are much greater than the average number of nodes opened
path. by the proposed decoding algorithm shown in the table. In [8], a

Since GDA usingf,..w searches through all possible error patterngunctured minimal trellis technique was proposed to further reduce
we may use the properties of error patterns to reduce the search spgee.number of nodes opened in a minimal trellis presentation of
If an error pattern has Hamming weight which is greater thank, the code; however, this technique is suitable only for high-rate
then this error pattern can be eliminated from the search space [fjdes.
[8]. That is, when GDA usingfn.w Searches for the optimal path, Another maximum-likelihood soft-decision decoding algorithm us-
the path which corresponds to an error pattern with Hamming weighty an algebraic decoder was recently reported [10]. This approach
greater tham — k can be eliminated from list OPEN. Consequentlyis a generalization of Chase algorithm and it performs MLD rule.
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TABLE I
COMPARISON OF THEAVERAGE DECODING COMPLEXITY FOR TRELLIS-BASED DECODING ALGORITHMS

Code (n,k) || Wolf’s algorithm [9] | algorithm given in [8] | the proposed algorithm
1dB |4dB| 74dB

Golay (24,12) = 16, 380° = 3, 580% 16 1 1
QR (48,24) ~ 67,108, 860+ ~ 860, 156% 826 9 1
ofrom (7).
TABLE IV
THE DECODING COMPLEXITY OF DECODING OF (128, 64) @WDE
| 5dB T755dB [ 6dB | 65d8 | 7dB |
maXx ave max ave max ave max ave max ave

N()® || 102,364 | 18 || 3069 | 3 | 2,638 | 1 | 416 | 1 || 204
Nap(@)® || 2,007,152 | 283 || 32,768 | 4 | 1,004 | 1 5 | 1 T ] 1

2N(¢)= the number of nodes opened during the decoding of ¢ by the proposed decoding algorithm.

®Nap(¢)= the number of algebraic decoder used during the decoding of ¢ (given in [10]) by the decoding algorithm

given in [10}.

Table IV shows the number of algebraic decoder used by this metho®Sincedy (v,¢*) € HW, thendm(v @y, ¢ O y) € HW. Assume
for the (128, 64) extended BCH code. One may see that the decoditigat there exists another error pattare E(s) andz € V(m) such
complexity of the proposed decoding algorithm is much smaller thamat

that of the algorithm given in [10] at 5.0 and 5.5 dB. Furthermore, the n—1 n—1
decoding algorithm given in [10] can only work on codes for which Z |67 | < Z |67 |(vi B yi). 3)
algebraic decoders exist; however, the proposed decoding algorithm =41 i=t+1

can work on all linear block codes. Sincez € V(m), z must be the form of

IV. CONCLUSIONS (To © 4o, 01 D y1-= . Ve Yo, Cegrs o5 ¥n—1)

In this correspondence we present a new method to convert
the decoding problem into a graph-search problem based on ﬁ]e
generalization of Wagner rule. GDA can be applied on the graph to . .
reduce the search space. We show that the new decoding algorithm (zDy. ey =Dy, c)edW
opens less nodes than that presented in [1] for the worst casgRere
From simulation results, the new decoding algorithm has about 1000
computation gain over the old one when no estimate functions are *<¥ = (To, 015+, Te, ot B Yoty Tt D Yn—1)-
used. Although we concentrate only on the case that the graph is a
code tree, the graph can also be a trellis. The decoding algoritdfusz ¢y € T(m). If we multiply inequality (3) by2 and evaluate
must be modified to check for the repeated nodes if we apply GO possible values among, v;, andz;, the inequality equals to
to a trellis. The branch costs assigned to the code tree which are
presented in Section Il may be replaced with the valuel)“‘*r,b?

x.e) € HW. Since(z,e) € HW, then

n—1 n—1

*O(_1\Yi T %yz v
to save computation power. The designed heuristic function can not Z Z (-1 Z o = (=D
violate the requirement of inequality (1) in order to guarantee that ="' = @
GDA will find an optimal path. For example, wheh= g, the branch

cost cannot be changed to the vak:le—l)cf o7 since it violates the

requirement of inequality (1). Inequality (4) can be further simplified to

APPENDIX A -2 Z )T < =2 Z o7 (=17
PROOF OF THEOREM 2 =t =t
Let ¢* be a given seed of GDA using ande = ¢* @ y for that Which equals
using faew. Furthermore, lew = (vo, @1, -, Te, Veg1, - Un1) n—1 .
be the vector such that > (67 — (=17 Z (67 = RO RN )
=041 =041
n—1
him)= > (67 = (=1)")% By the definition of function, inequality (5) contradicts the as-
=041 sumption that
We prove that n—1
him)= 3" (67 = (=1)")*.
n—1 i=f+1

huew (m) = > 1971(vi @ ).

=041 The proof of the rest of theorem is similar to that above.
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APPENDIX B Since
PROOF OF THEOREM 4
4 n—1
Let nodem be a node at level in the code tree and the labels : * = * Ps
fnew m) = Q5 (UI @ 'Ui) + [oH (7"“'7' ® Y
of path P,,, the path frommsi..s to nodem, arevo, vy, - -, . o) ; . 721 ! !
Furthermore, letg, v, --,v,—1 be the labels of an optimal path

from m... to & goal node. Now we considgtm) = g(m)+h(m)  then inequality (10) equals inequality (7). Since inequality (6) equals
and foew (1) = gnew (1) +hnew (m). By Theorem 2, we may assumeinequality (7), we can claim that GDA using evaluation functjan,

that will expand the same set of nodes as that using evaluation fungtion
n—1
* vg.\2
h(m)= 3 (¢7 = (=1)") ACKNOWLEDGMENT
i=0+1
and The author would like to thank the reviewer for his valuable
o, N suggestions, which he believes have helped him to improve the
hinew (M) = Z |971(vs; © 92)- presentation of this correspondence.
=041

According to the search rule in GDA, node will be expanded
during the search procedure if and only if
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is equal to

¢ n—1
P e S D OO G Vbl
=0 i=0+1
n—1

<Y el @)

Inequality (8) can be further simplified to

¢ n—1
D= = (D)7 = D i((—1)" = (=D))< 0.
=0 1=0+1

9)

If we multiple inequality (9) byl /2 and evaluate all possible values
amongy;, v, vs,, and7;, the inequality equals
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Z |07 |[(yi @ Ti) — (yi D vi)]

1=0

n—1
= > iy B vs) = (g D ve)] 0. (10)
i=0+1



