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A fault-tolerant classification system in wireless sensor networks combining dis-

tributed detection with error-correcting codes has recently been proposed. Associated 
with a decision pattern, each sensor makes a local decision based on its detection result 
and a set of decision thresholds. The detection result must then be transmitted to a fusion 
center to make a final decision. The probability of misclassification when adopting this 
approach is high when the transmission channel is highly noisy. This work first describes 
an adaptive retransmission algorithm to reduce the misclassification probability. The fu-
sion center calculates the reliability of each local decision received while making the fi-
nal decision. If the final decision is not reliable, then the fusion center asks the sensor 
that has sent the received local decision with the lowest reliability to retransmit its deci-
sion. However, when some sensors have unrecognized faults, the fusion center tends to 
query the sensor with the same decision pattern as the faulty sensor to retransmit its de-
cision. This tendency causes unbalanced network load. This work further presents a 
novel adaptive retransmission algorithm with balanced load to combat this problem. 
Each sensor carries all sets of decision thresholds. A sensor is randomly selected when 
the decision based on a set of thresholds must be retransmitted. The selected sensor then 
makes its new decision according to the threshold set and its detection result. The ran-
dom selection means the load is balanced. Simulation results show that the misclassifica-
tion probability can be effectively decreased through the retransmission with a balanced 
load.  
 
Keywords: wireless sensor networks, retransmission, fault-tolerant, balanced load, dis-
tributed detection 
 
 

1. INTRODUCTION 
 

Wireless sensor networks (WSNs) comprise many tiny, low-cost, battery-powered 
sensors in a small area [1, 3]. The sensors detect environmental variations. The detection 
results are then transmitted to other sensors or a base station [2, 4]. The base station or a 
sensor, serving as a fusion center, collects all detection results, and determines what phe-
nomenon has occurred. The collection is realized using wireless communication tech-
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nology, and a wireless network is built for multiple accesses. To lower the transmission 
burden, the detection result is typically denoted by a local decision which is made by the 
sensor, and which requires fewer bits than the detection result. The local decision is 
transmitted rather than the detection result. Hence, each sensor must be able to collect, to 
process and communicate data. 

The WSN sometimes must be able to function under severe conditions, such as in a 
battlefield, fireplace or polluted area. The transmission channel, as well as the environ-
mental phenomenon observed by the sensor, is noisy. Furthermore, the observation signal 
to noise ratio (OSNR) and the channel signal to noise ratio (CSNR) may change quickly. 
The OSNRs and the CSNRs are thus impossible to estimate accurately. Some sensors 
may even have unrecognized faults. The traditional distributed classification method thus 
fails due to inaccurate estimates or faulty sensors. Therefore, a fault-tolerant system must 
be developed to make the received local decisions error-resistant [6, 10]. 

Wang et al. [15] proposed Distributed Classification Fusion using Error-Correcting 
Codes (DCFECC) to solve this problem by combining the distributed detection theory 
[13] with the concept of error-correcting codes in communication systems [5]. One sam-
ple is detected in each of N sensors for a given phenomenon. A codeword consisting of N 
symbols is designed for each phenomenon. In other words, a one-dimensional code (1 × 
N) corresponds to a phenomenon. Thus, M phenomena form an M × N code matrix. Each 
symbol with one bit is assigned to each sensor and a set of threshold can be computed to 
make a local decision. The local decision is made from the detection result, and is repre-
sented with the assigned symbol. DCFECC has a much lower probability of misclassifi-
cation than the traditional distributed classification method when some sensors are faulty. 
DCFECC outperforms the method even when CSNR is not correctly estimated. 

DCSD (distributed classification fusion using soft-decision decoding) [14] was later 
developed by improving DCFECC. DCSD adopts a symbol with L bits, instead of one bit, 
to represent the detection result at each sensor. The soft-decision decoding, instead of 
hard-decision decoding, is utilized to increase decoding accuracy. First, the reliability of 
each received local decision is calculated at the fusion center. The fusion center then 
computes the distance between each codeword and the reliability of all received local 
decisions. Thus, M distances are obtained. The codeword with the minimum distance 
from the reliability of all received local decisions is identified. However, the misclassifi-
cation probability remains high in the extreme case, i.e., a very low SNR (including 
OSNRs and CSNRs) because of the large detection deviation and unreliable transmission 
channels. A two-dimensional coded classification scheme is presented to solve the low 
OSNR problem [8]. 

This work develops an adaptive retransmission algorithm to resolve the low CSNR 
problem [9]. If the difference between the minimum distance and the other M − 1 dis-
tances is not higher than a pre-set number, then the local decision must be retransmitted. 
The codeword with the minimum distance is compared with the codeword with the sec-
ond closest distance to the received vector. The number of different symbols between 
these two codewords is represented as Nd. The fusion center requests the sensor, which is 
associated with one of Nd symbols and has the lowest reliability, to retransmit its decision. 
The procedure is repeated until the difference between the minimum distance and the 
other M − 1 distances is over the pre-set number. The misclassification probability can be 
effectively reduced through the retransmission mechanism. However, if some sensors are 
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faulty when running the adaptive retransmission algorithm, then the sensor with the same 
decision pattern as the faulty sensor transmits its decision more often than the other. 
Since a sensor with a higher transmission load consumes more power, it stops working 
more quickly, shortening the life of the network. Therefore, a load-balanced algorithm 
was presented to resolve the unbalanced-load problem. Each sensor has all sets of thresh-
olds (up to N threshold sets) instead of one set of thresholds. The fusion center randomly 
selects a sensor when retransmission is necessary. The selected sensor makes a new local 
decision based on its detection result and the same threshold set as the sensor with the 
lowest reliability. The new decision is then transmitted to the fusion center. Notably, the 
selected sensor may make a new detection if possible. The procedure is repeated until 
retransmission is not necessary. Since each sensor is chosen with the same probability, all 
sensors have the same transmission load. 

The remainder of this paper is organized as follows. Section 2 briefly addresses the 
distributed detection problem in WSNs and the previous works on the problem. Section 3 
then introduces the adaptive retransmission mechanism. The load-balanced retransmis-
sion mechanism is explained in section 4. Section 5 gives a performance evaluation of 
the proposed algorithms. Conclusions are finally drawn in section 6, along with recom-
mendations for future research. 

2. FAULT-TOLERANT DISTRIBUTED DETECTION AND THE  
PREVIOUS WORKS 

Fig. 1 depicts a wireless sensor network for distributed detection with N sensors de-
ployed for collecting environment variation data, and a fusion center for making a final 
decision of detections. This network architecture is similar to the so-called SEnsor with 
Mobile Access (SENMA) [12, 16], Message Ferry [17] and Data Mule [11]. At the jth 
sensor, one observation yj is undertaken for one of phenomena Hi, where i = 1, 2, …, M. 
The observation is normally a real number represented by many bits. Transmitting the 
real number to the fusion center would consume too much power, so a local decision, uj, 
is made instead. If only L bits are allowed to send the local decision from the sensor to 
the fusion center for a particular phenomenon, then the L bits are applied to represent the 
decision. 

 
Fig. 1. Structure of a wireless sensor network for distributed detection using N sensors. 

The DCFECC approach [15] set L = 1, and design an M × N code matrix T not only 
to correct transmission errors, but also to resist faulty sensors. The application of the  
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Table 1. The 4 × 10 optimal code matrix [7]. 

H1 1 1 1 1 1 0 0 0 0 0
H2 1 1 1 1 1 1 1 1 1 1
H3 0 0 0 0 0 1 1 1 1 1
H4 0 0 0 0 0 0 0 0 0 0

 
code matrix is derived from error-correcting codes. Table 1 shows an example of T, 
which is the optimal code matrix found in [7]. Row i of the matrix indicates a codeword 
ci = (ci,1, ci,2, …, ci,N) corresponding to hypothesis Hi, and ci,j denotes a 1-bit symbol cor-
responding to the decision of sensor j. The local decision at sensor j depends not only on 
the detection result, yj, but also on the symbols, (c1,j, c2,j, …, cM,j), which represent the 
decision pattern of sensor j. 

DCSD approach employs multiple bits and soft decoding to improve the reliability 
of the local and final decisions, respectively [14]. Let u = (u1, u2, …, uN). The local deci-
sion u is transmitted for the final decision to the fusion center. The received data at the 
fusion center are given by 1 2( , ,  , ),Nv v v=v� � � �… where  

 = (  1) .ju s
j j j

E
v n

L
α − +�                                             (1) 

In the above equation, αj denotes the attenuation factor. Es is the total transmission en-
ergy per sensor, and nj indicates the additive white Gaussian noise (AWGN) with the 
two-sided power spectral density N0/2. The maximum a posteriori (MAP) criterion on 
code matrix is employed for data fusion. If all hypotheses are equally likely to occur, as 
implied by 

p(Hi) = p(Hk); i, k ∈ {1, 2, …, M}, 

then the MAP decoding rule is equivalent to the maximum-likelihood (ML) decoding 
rule. Thus, the received data are decoded as hypothesis i if 

( | ) ( | ) for all ,  where 1,  , .i k kp p k M≥ =v c v c c� � …                        (2) 

For simplicity, let L = 1. The soft decoding rule can be derived as follows. If the jth 
local decision, uj, is only dependent on the jth observation, yj, and the jth received local 
decision, vj, is only dependent on the jth local decision, uj, Eq. (2) can be rewritten as 
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Because ci,j and ck,j are binary, the bit logarithm-likelihood ratio of the received data at 
the fusion center can be defined as 
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Eq. (3) is then equivalent to 
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As demonstrated by Wang et al. of [14], DCSD outperforms DCFECC. However, 
the transmission channel between the sensor and the fusion center is highly noisy or 
deeply fading in a harsh environment. The oft-decision decoding does not improve the 
reliability of the received local decision at the fusion center. Consequently, the detection 
error probability is still high under a low CSNR. 

3. ADAPTIVE RETRANSMISSION MECHANISM 

According to the soft-decision decoding rule, the fusion center must first compute 
the logarithm-likelihood ratio of each received local decision, λj. The distance, Δi, be-
tween each codeword, ci, and the logarithm-likelihood ratios of all received local deci-
sions, Λ = (λ1, λ2, …, λN), is then be calculated as follows: 

, 2
,

1 1
( , ) [ (  1) ] ,i j

N N
c

i i i j j
j j

dist δ λ
= =

Δ = Λ = = − −∑ ∑c  

where δi,j is defined as [λj − (− 1)ci,j]2. The fusion center decodes the received data as hy-
pothesis imin if 

min arg min .ii
i = Δ  

Restated, Δimin is the smallest value in D = {Δ1, Δ2, …, ΔM}. 
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Define 
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sec ,
arg min .ii i i

i
≠

= Δ  

That is, Δisec is the second smallest value in D. A larger difference Δ, between Δimin and Δisec, 
indicates a more reliable decoding result. Thus, transmission error probability is high 
when the difference is small, making retransmission of the local decision necessary. 

If the fusion center has no information about the channel, then it may randomly se-
lect any sensor node to retransmit its local decision. However, since the fusion center has 
the codewords and the reliability of all received local decisions, |Λ| = (|λ1|, |λ2|, …, |λN|), 
it can use the information to perform the selection. Because the retransmission should 
help the fusion center to differentiate cimin from cisec, only the sensor, j′, with different sym-
bols corresponding to these two codewords should be chosen, i.e., cimin,j′ ≠ cisec,j′. For ex-
ample, if imin = 2 and isec = 3, the fusion center should choose a sensor for retransmission 
from sensor 1 to sensor 5 when applying the code matrix in Table 1. Moreover, since Δ 
should be as large as possible, the fusion center has to pick the sensor with the least reli-
ability, that is, select sensor jmin such that 

,, secmin 2 2
min arg min | [ (  1) ] [ (  1) ] | arg min | | .i ji j cc

j j jj j
j λ λ λ′′

′ ′ ′
′ ′

= − − − − − =  

From the above observation, an adaptive retransmission mechanism is developed as 
follows: 

 
Step 1: Calculate Λ.  
Step 2: Compute Δi, i = 1, 2, …, M.  
Step 3: Derive imin, isec and Δ = Δisec − Δimin.  
Step 4: If Δ is lower than a threshold T, then the fusion center asks sensor jmin to retrans-

mit its local decision. Go to step 1. Otherwise, the fusion center decodes the re-
ceived local decisions as Himin. 

 
The threshold T can be determined according to the required misclassification prob-

ability. A lower required misclassification probability indicates a larger threshold. 

4. ADAPTIVE RETRANSMISSION WITH BALANCED LOAD 

The adaptive algorithm significantly reduces the misclassification probability ac-
cording to the simulation results presented in section 5. However, when some sensors are 
faulty, the sensor with the same decision pattern as the faulty sensor must retransmit its 
local decision more often than the other, causing unbalanced load of the network. Con-
sequently, the network has a short life span. For example, four hypotheses H1, H2, H3, 
and H4, are detected and classified with N = 10 sensors and a fusion center. These hy-
potheses are assumed to have Gaussian-distributed probability density functions (pdfs) 
with the same standard deviation σ 

2 and means 0, 1, 2, and 3, respectively. Table 1 is 
used as the code matrix. The OSNR is defined as − 10 × log10 σ 

2 at every sensor. The 
attenuation factors αj in Eq. (1) had identical and independent Rayleigh distributions 
with E[αj

2] = 1, and making CSNR equal to 10 × log10 (Es/N0). Table 2 lists all threshold 
sets found at OSNR = 20 dB. Sensors 1 to 5 have the same threshold set as do sensors 6  
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Table 2. Thresholds for sensors when OSNR = 20 dB. 

Sensors Thresholds 
1, 2, 3, 4, 5 2.5 
6, 7, 8, 9, 10 1.5, 3.5 

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05
OSNR = 20, CSNR = 0, T = 10, one stuck−at fault

Sensor
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m
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si
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at

e

 
Fig. 2. Retransmission rate for each sensor at OSNR = 20 dB, CSNR = 0 dB, and T = 10 when 

sensor 2 has a stuck-at fault. 

 
to 10. For instance, if the detection result of sensor 1 is less than 2.5, then sensor 1 makes 
a local decision of 1. Otherwise, it makes a local decision of 0. If the detection result of 
sensor 6 is between 1.5 and 3.5, then sensor 6 makes a local decision of 1. Otherwise, it 
makes a local decision of 0. 

When sensor 2 with stuck-at faults always sends out 1, the Hamming distance of 
two codeword pairs, (H3, H2) and (H4, H1), becomes 4. The received data at the fusion 
center tend to be located around the decision boundary between H3 (H4) and H2 (H1) 
when H3 (H4) occurs and λ2 is around or lower than − 1. One of the sensors with different 
symbols in H3 (H4) and H2 (H1), i.e., sensors 1 to 5, must retransmit its local decision by 
using the adaptive algorithm. Since |λ2| is large, one of sensors 1, 3, 4, and 5 may be cho-
sen with a higher probability than sensor 2. Therefore, the sensor with the same decision 
pattern as the faulty sensor is asked to retransmit its decision with a higher probability 
than the other sensors. Fig. 2 presents the average number of retransmissions per detec-
tion (i.e., retransmission rate) for each sensor at OSNR = 20 dB, CSNR = 0 dB, and T = 
10. Sensors 1, 3, 4, and 5 have much larger retransmission rate than sensors 6 to 10. Be-
cause of this unbalanced transmission load, sensors 1, 3, 4 and 5 consume much more 
power and have a shorter life time than sensors 6 to 10. The network cannot work prop-
erly if half of the sensors in the network do not function. 

An algorithm was further proposed to resolve the unbalanced problem. Each sensor 
carries all sets of thresholds. The fusion center can choose any sensor in the network 
when retransmission is necessary. If a sensor is selected, then it employs the same thresh-
old set as sensor j′ to make a new local decision on its detection result. The new local 
decision is then transmitted to the fusion center. The fusion center compares the reliabil-
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ity of the new local decision, |λ′j′|, with the reliability of the old one, |λj′|. If |λ′j′| > |λj′|, 
then the fusion center replaces λj′ with λ′j′ to decide whether the retransmission is need. 
Otherwise, the fusion center repeats the retransmission process. The load-balanced algo-
rithm can be summarized as follows: 
 
Step 1: Calculate Λ.  
Step 2: Compute Δk, k = 1, 2, …, M.  
Step 3: Determine i, i′, and Δ = Δi − Δi′.  
Step 4: If Δ is greater than a threshold T, then decode the received local decisions as Hi. 

The algorithm stops; otherwise, go to step 5.  
Step 5: Randomly chooses a sensor to make a new local decision on its detection result 

using the same threshold set as sensor j′. The chosen sensor then sends its new 
decision to the fusion center.  

Step 6: If |λ′j′| > |λj′|, then the fusion center replaces λj′ with λ′j′. Go to step 2. Otherwise, 
go to step 5. 

5. PERFORMANCE EVALUATION 

The proposed scheme was evaluated using several simulations, each comprising 106 
Monte Carlo tests. Similar to the distributed classification example in section 4, a fusion 
center and N = 10 sensors were deployed to detect and classify four hypotheses H1, H2, 
H3, and H4. These hypotheses were also assumed to have Gaussian-distributed probabil-
ity density functions with the same standard deviation σ 

2 and means 0, 1, 2, and 3, re-
spectively. The attenuation factors αj had identical and independent Rayleigh distribu-
tions with E[αj

2] = 1. The code matrix in Table 1 was utilized. 
The first set of simulations demonstrates that Δ is inversely proportional to the mis-

classification probability, Pf. That is, a larger Δ leads to a lower Pf. The CSNR was set to 
be 0 dB. Fig. 3 displays simulation results at OSNR = 10 dB. The misclassification prob-
ability, Pf, was around 0.35 when the difference, Δ, ranges from 0 to 5. Simulation  
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Fig. 3. Δ vs. Pf when CSNR = 0 dB and OSNR 

= 10 dB. 
Fig. 4. Δ vs. Pf when CSNR = 0 dB and OSNR  

= 20 dB. 
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Fig. 5. Performance comparison of the adaptive

and random mechanisms in Pf when OSNR
= 10 dB. 

Fig. 6. Performance comparison of the adaptive 
and random mechanisms in Pf when OSNR 
= 20 dB. 

 
results reveal that Pf falls as Δ increases. Finally, Pf was around 0.001 when Δ ranged 
from 25 to 30. Fig. 4 shows similar results at OSNR = 20 dB. 

The second set of simulations was performed to verify the superiority of the pro-
posed mechanism. The adaptive retransmission mechanism was compared with a random 
retransmission mechanism. In the random retransmission mechanism, the fusion node 
randomly chooses a sensor to retransmit its local decision when Δ < T. The OSNRs were 
set to be 10 dB and 20 dB, and the CSNRs were varied from − 3 dB to 5 dB. The results 
for the mechanism without retransmission are also presented. Figs. 5 and 6 indicate that 
the adaptive mechanism had a lower misclassification probability than the random 
mechanism and the mechanism without retransmission while T = 5, 10 and T = 10, 20, 
respectively. The transmission power was normalized with respect to the retransmission 
times. For example, by Fig. 5, the coding gains on CSNR of the proposed mechanism 
over the mechanism without retransmission were about 2 dB and 4 dB, for OSNR = 10 
dB and Pf = 10-2, when T = 5 and T = 10, respectively. The coding gains on CSNR of the 
proposed mechanism over the random mechanism were around 1 dB and 2 dB, for 
OSNR = 10 dB and Pf = 10-2, when T = 5 and T = 10, respectively. Fig. 6 shows the 
simulation results for OSNR = 20 dB and also demonstrates the superiority of the pro-
posed mechanism. Because a few local decision errors arose when OSNR =10 dB and the 
retransmission mechanism cannot correct the local decision errors, the misclassification 
probability converges toward a non-zero constant even at a high CNSR. By contrast, the 
misclassification probability can be reduced close to zero when OSNR = 20 dB be-
cause the local decisions were almost correct. Meanwhile, the adaptive mechanism had 
a fewer retransmissions on average per detection than the random mechanism as pre-
sented in Figs. 7 and 8. For instance, the retransmission rate of the proposed mechanism 
was half of that of the random mechanism for T = 5 and 10 when OSNR = 10 dB, ac-
cording to Fig. 7. 

Finally, this work demonstrates that each sensor had the same transmission load us-
ing the load-balanced algorithm when the faulty sensor appeared in the WSN. Fig. 9 
shows the simulation results for OSNR = 20 dB, CSNR = 0 dB and T = 10 when sensor 2 
has a stuck-at fault. Each sensor has the same retransmission rate. When a sensor in the  
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Fig. 7. Performance comparison of the adaptive 

and random mechanisms in the retrans-
mission rate when OSNR = 10 dB. 

Fig. 8. Performance comparison of the adaptive 
and random mechanisms in the average 
number of retransmissions per detection 
when OSNR = 20 dB. 
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Fig. 9. Retransmission rate for each sensor at 

OSNR = 20 dB, CSNR = 0 dB and T = 10 
when sensor 2 has a stuck-at fault using 
the load-balanced algorithm. 

Fig. 10. Retransmission rate for each sensor at 
OSNR = 20 dB, CSNR = 0 dB, and T = 10 
when sensor 2 has a random fault using 
the load-balanced algorithm. 

 
network has a random fault, i.e., it sends out 0 or 1 to the fusion center with the same 
probability, all sensor still have the same transmission load as in Fig. 10. Notably, the 
adaptive retransmission scheme using the load-balanced algorithm had almost the same 
misclassification probability and retransmission times as that using the load-unbalanced 
algorithm. Figs. 11 to 14 reveal that the performance and retransmission rate of the load- 
balanced algorithm were close to those of the load-unbalanced algorithm. 

6. CONCLUSIONS AND FUTURE WORKS 

This work presents an adaptive retransmission mechanism to combat the poor 
transmission channel in wireless sensor networks. In this mechanism, the fusion center  
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Fig. 11. Comparison of the load-balanced and load- 

unbalanced algorithms in Pf at OSNR = 20 
dB when sensor 2 has a stuck-at fault. 

Fig. 12. Comparison of the load-balanced and load- 
unbalanced algorithms in Pf at OSNR = 20 
dB when sensor 2 has a random fault. 
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Fig. 13. Comparison of the load-balanced and load- 

unbalanced algorithms in the retransmis-
sion rate at OSNR = 20 dB when sensor 2 
has a stuck-at fault. 

Fig. 14. Comparison of the load-balanced and load- 
unbalanced algorithms in the retransmission 
rate at OSNR = 20 dB when sensor 2 has a 
random fault. 

 
selects the sensor to retransmit its local decision according to the reliability of the re-
ceived local decision, instead of randomly. This adaptive selection mechanism can re-
duce the misclassification probability with even fewer retransmissions than the random 
selection mechanism. 

An adaptive retransmission algorithm with balanced load is also proposed to combat 
the load-unbalanced problem of the adaptive retransmission approach in wireless sensor 
networks with faulty sensors. In this load-balanced algorithm, the fusion center selects 
the sensor randomly. The selected sensor then makes a new local decision on its detec-
tion result using the same threshold set as the sensor which had sent out the local deci-
sion with the lowest reliability. This load-balanced algorithm can give all sensors the 
same transmission load with little performance loss compared to the previous adaptive 
mechanism. 
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Future work will be to theoretically prove the asymptotical performance of the pro-
posed mechanism. That is, the tendency of the misclassification probability, Pf, when the 
difference Δ goes to infinity, will be investigated. Moreover, the relationship among Δ, T, 
and Pf should be studied in details. Finally, one sensor per selection/retransmission may 
not be efficient when Δ  T. Additional future work will be to determine the optimal 
number of sensors per selection/retransmission. 
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