
Novel Polynomial Basis and Its Application to Reed-Solomon Erasure Codes

Sian-Jheng Lin, Wei-Ho Chung
Research Center for Information Technology Innovation

Academia Sinica
Taipei City, Taiwan

Email: sjhenglin@gmail.com; whc@citi.sinica.edu.tw

Yunghsiang S. Han
Department of Electrical Engineering

National Taiwan University of Science and Technology
Taipei City, Taiwan

Email: yshan@mail.ntust.edu.tw

Abstract—In this paper, we present a new basis of polynomial
over finite fields of characteristic two and then apply it to
the encoding/decoding of Reed-Solomon erasure codes. The
proposed polynomial basis allows that h-point polynomial eval-
uation can be computed in O(h log2(h)) finite field operations
with small leading constant. As compared with the canonical
polynomial basis, the proposed basis improves the arithmetic
complexity of addition, multiplication, and the determina-
tion of polynomial degree from O(h log2(h) log2 log2(h)) to
O(h log2(h)). Based on this basis, we then develop the encoding
and erasure decoding algorithms for the (n = 2r, k) Reed-
Solomon codes. Thanks to the efficiency of transform based
on the polynomial basis, the encoding can be completed in
O(n log2(k)) finite field operations, and the erasure decoding
in O(n log2(n)) finite field operations. To the best of our
knowledge, this is the first approach supporting Reed-Solomon
erasure codes over characteristic-2 finite fields while achieving
a complexity of O(n log2(n)), in both additive and multiplica-
tive complexities. As the complexity leading factor is small, the
algorithms are advantageous in practical applications.

I. INTRODUCTION

For a positive integer r ≥ 1, let F2r denote a
characteristic-2 finite field containing 2r elements. A poly-
nomial over F2r is defined as

a(x) = a0 + a1x+ a2x
2 + · · ·+ ah−1x

h−1,

where each ai ∈ F2r . A fundamental issue is to reduce
the computational complexities of arithmetic operations over
polynomials. Many fast polynomial-related algorithms, such
as Reed-Solomon codes, are based on fast Fourier transforms
(FFT). However, it is algorithmically harder as the traditional
fast Fourier transform (FFT) cannot be applied directly
over a characteristic-2 finite fields. To the best of our
knowledge, no existing algorithm for characteristic-2 finite
field FFT/polynomial multiplication has provably achieved
O(h lg(h)) operations1 (see Section VII for more details).

In algorithmic viewpoint, FFT is a polynomial evaluations
at a period of consecutive points, where the polynomial
is in monomial basis. This viewpoint gives us the ability
to design fast polynomial-related algorithms. In this paper,
we present a new polynomial basis in the polynomial ring

1Throughout this paper, the notation lg(x) represents the logarithm to
the base 2.

F2r [x]/(x
2r − x). Then a transform in the new basis is

defined to compute the polynomial evaluations. The new
basis possesses a recursive structure which can be exploited
to compute the polynomial evaluations at a period of h
consecutive points in time O(h lg(h)) with small leading
constant. Furthermore, the recursive structure also works in
formal derivative with time complexity O(h lg(h)).

An application of the proposed polynomial basis is in
erasure codes, that is an error-correcting code by converting
a message of k symbols into a codeword with n symbols
such that the original message can be recovered from a
subset of the n symbols. An (n, k) erasure code is called
Maximum Distance Separable (MDS) if any k out of the n
codeword symbols are sufficient to reconstruct the original
message. A typical class of MDS codes is Reed-Solomon
(RS) codes [1]. Nowadays, RS codes have been applied to
many applications, such as RAID systems [2, 3], distributed
storage codes [4, 5], and data carousel [6]. Hence, the
computational complexity of RS erasure code is considered
crucial and has attracted substantial research attention. Based
on the new polynomial basis, this paper presents the encod-
ing/decoding algorithms for RS erasure codes. The proposed
algorithms use the structure [7] that requires evaluating a
polynomial and it’s derivatives, while the polynomial used
in the structure is in the new polynomial basis, rather than
the monomial basis.

The rest of this paper is organized as follows. The
proposed polynomial basis is defined in Section II. Section
III gives the definition and algorithm of the transform to
compute the polynomial evaluations based on the proposed
polynomial basis. Section IV shows the formal derivative
of polynomial. Section V presents the encoding and erasure
decoding algorithm for Reed-Solomon codes. The discus-
sions and comparisons are placed in Section VI. SectionVII
reviews some related literature. Concluding remarks are
provided in Section VIII.

II. A NEW POLYNOMIAL BASIS OVER F2r

A. Finite field arithmetic

Let F2r be an extension finite field with dimension r over
F2. The elements of F2r are represented as a set {ωi}2

r−1
i=0 .
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We order those elements as follows. Assume that V be the r-
dimensional vector space spanned by v0, v1, . . . , vr−1 ∈ F2r

over F2. For any 0 ≤ i < 2r, its binary representation is
given as

i = i0+ i1 · 2+ i2 · 22+ · · ·+ ir−1 · 2r−1, ∀ij ∈ {0, 1}. (1)

Then ωi is defined as

ωi = i0 · v0 + i1 · v1 + i2 · v2 + · · ·+ ir−1 · vr−1.

A polynomial f(x) defined over F2r is a polynomial whose
coefficients are from F2r .

B. Subspace vanishing polynomial

The subspace vanishing polynomial defined in [8–10] is
expressed as

Wj(x) =

2j−1∏
i=0

(x+ ωi), (2)

where 0 ≤ j ≤ r− 1. It can be seen that deg(Wj(x)) = 2j .
Next we present properties of Wj(x) without proof.

Lemma 1 ([9]). Wj(x) is an F2-linearlized polynomial for
which

Wj(x) =

j∑
i=0

aj,ix
2i , (3)

where each aj,i ∈ F2r is a constant. Furthermore,

Wj(x+ y) = Wj(x) +Wj(y),∀x, y ∈ F2r . (4)

C. Polynomial basis

In this work, we consider the polynomial ring
F2r [x]/(x

2r − x). A form of polynomial basis we work
with is denoted as X(x) = (X0(x), X1(x), . . . , X2r−1(x))
over F2r . Each polynomial Xi(x) is defined as the product
of subspace vanishing polynomials. For each polynomial
Xi(x), i is written in binary representation as

i = i0 + i1 · 2 + · · ·+ ir−1 · 2r−1, ∀ij ∈ {0, 1}. (5)

The polynomial Xi(x) is then defined as

Xi(x) =
r−1∏
j=0

(
Wj(x)

Wj(ω2j )

)ij

, (6)

for 0 ≤ i < 2r. Notice that
(

Wj(x)
Wj(ω2j )

)ij
= 1, if ij = 0. It

can be seen that deg(Xi(x)) = i.
Then a form of polynomial expression [•](x) is given as

follows.

Definition 1. A form of polynomial expression over F2r is
defined as

[Dh](x) =

h−1∑
i=0

diXi(x), (7)

where
Dh = (d0, d1, . . . , dh−1) (8)

is an h-element vector denoting the polynomial coefficients
and h ≤ 2r. Consequently, deg([Dh](x)) ≤ h− 1.

III. FAST TRANSFORM Ψl
h[•]

In this section, we define a h-point transformation Ψl
h[•]

that computes the evaluations of [•](x) at h successive
points, for h a power of two. Given a h-element input vector
Dh, the polynomial [Dh](x) can be constructed accordingly.
The transform outputs a h-element vector

D̂l
h = Ψl

h[Dh],

where

D̂l
h = ([Dh](ω0+ωl), [Dh](ω1+ωl), . . . , [Dh](ωh−1+ωl)),

and l denotes the amount of shift in the transform.
Oppositely, the inversion, denoted as (Ψl

h)
−1[•], can

convert D̂l
h into Dh, and we have (Ψl

h)
−1[D̂l

h] = Dh. Here,
we omit to provide the close form for inversion. Instead, an
algorithm for transform Ψl

h[•] and the inverse algorithm will
be presented later.

A. Recursive structure in polynomial basis

This subsection shows that the polynomial [Dh](x) can be
formulated as a recursive function [Dh](x) = ∆0

0(x), where
the function ∆m

i (x) is defined as

∆m
i (x) = ∆m

i+1(x) +
Wi(x)

Wi(ω2i)
∆m+2i

i+1 (x)

, for 0 ≤ i ≤ lg(h)− 1;

(9)

∆m
lg(h)(x) = dm, for 0 ≤ m ≤ h− 1. (10)

Note that m in ∆m
i (x) represents a lg(h)-bits binary integer

m = m0 +m1 · 2 + · · ·+mi−1 · 2i, ∀mj ∈ {0, 1}. (11)

By induction, it can be seen that deg(∆m
i (x)) ≤ h/2i − 1.

For example, if h = 8, we have

[D8](x) =
7∑

i=0

diXi(x)

=d0 + d1
W0(x)

W0(ω1)
+ d2

W1(x)

W1(ω2)
+ d3

W0(x)

W0(ω1)

W1(x)

W1(ω2)

+ d4
W2(x)

W2(ω4)
+ d5

W0(x)

W0(ω1)

W2(x)

W2(ω4)
+ d6

W1(x)

W1(ω2)

W2(x)

W2(ω4)

+ d7
W0(x)

W0(ω1)

W1(x)

W1(ω2)

W2(x)

W2(ω4)

=

(
d0 + d4

W2(x)

W2(ω4)
+

W1(x)

W1(ω2)

(
d2 + d6

W2(x)

W2(ω4)

))
+

W0(x)

W0(ω1)

(
d1 + d5

W2(x)

W2(ω4)
+

W1(x)

W1(ω2)

(
d3 + d7

W2(x)

W2(ω4)

))
=

(
∆0

2(x) +
W1(x)

W1(ω2)
∆2

2(x)

)
+

W0(x)

W0(ω1)

(
∆1

2(x) +
W1(x)

W1(ω2)
∆3

2(x)

)
=∆0

1(x) +
W0(x)

W0(ω1)
∆1

1(x) = ∆0
0(x).

(12)
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The ∆m
i (x) possesses the following equality that will be

utilized in the algorithm:

Lemma 2.

∆m
i (x+ y) = ∆m

i (x), ∀y ∈ {ωb}2
i−1

b=0 . (13)

Proof: By Lemma 1, we have

Wi(x+ y) = Wi(x) +Wi(y) = Wi(x), ∀y ∈ {ωb}2
i−1

b=0 . (14)

The proof follows mathematical induction on i. In the base
case, we consider (9) at i = lg(h)− 1:

∆m
lg(h)−1(x)

=∆m
lg(h)(x) +

Wlg(h)−1(x)

Wlg(h)−1(ω2lg(h)−1)
∆m+2lg(h)−1

lg(h) (x)

=dm +
Wlg(h)−1(x)

Wlg(h)−1(ω2lg(h)−1)
dm+2lg(h)−1 .

From (14), we have

∆m
lg(h)−1(x+ y)

=dm +
Wlg(h)−1(x+ y)

Wlg(h)−1(ω2lg(h)−1)
dm+2lg(h)−1

=dm +
Wlg(h)−1(x)

Wlg(h)−1(ω2lg(h)−1)
dm+2lg(h)−1

=∆m
lg(h)−1(x), ∀y ∈ {ωb}h/2−1

b=0 .

Thus (13) holds for i = lg(h)− 1.
Assume (13) holds for i = c+ 1. When i = c, we have

∆m
c (x+ y)

=∆m
c+1(x+ y) +

Wc(x+ y)

Wc(ω2c)
∆m+2c

c+1 (x+ y)

=∆m
c+1(x+ y) +

Wc(x)

Wc(ω2c)
∆m+2c

c+1 (x+ y)

=∆m
c+1(x) +

Wc(x)

Wc(ω2c)
∆m+2c

c+1 (x)

=∆m
c (x), ∀y ∈ {ωb}2

c−1
b=0 .

This completes the proof.

B. Proposed algorithm

Let

Ψ(i,m, l) = {∆m
i (ωc + ωl)|c ∈ {b · 2i}h/2

i−1
b=0 }

, for 0 ≤ i ≤ lg(h)− 1;
(15)

Ψ(lg(h),m, l) = {dm}. (16)

The objective of algorithm is to compute the values in set
Ψ(0, 0, l). In the following, we rearrange the set Ψ(i,m, l)
into two parts: Ψ(i + 1,m, l) and Ψ(i + 1,m + 2i, l), by
taking around h/2i additions and h/2i+1 multiplications.

In (15), Ψ(i,m, l) can be divided into two individual
subsets:

{∆m
i (ωc + ωl)|c ∈ {b · 2i+1}h/2

i+1−1
b=0 } (17)

and

{∆m
i (ωc + ωl + ω2i)|c ∈ {b · 2i+1}h/2

i+1−1
b=0 }. (18)

In (17), we have

∆m
i (ωc + ωl)

=∆m
i+1(ωc + ωl) +

Wi(ωc + ωl)

Wi(ω2i)
∆m+2i

i+1 (ωc + ωl).
(19)

It can be seen that ∆m
i+1(ωc + ωl) ∈ Ψ(i + 1,m, l), and

∆m+2i

i+1 (ωc+ωl) ∈ Ψ(i+1,m+2i, l). The factor Wi(ωc+ωl)
Wi(ω2i )

can be precomputed and stored. Hence, for each element of
the set given in (17), the calculation requires a multiplication
and an addition. Note that when ωc + ωl = 0, we have

∆m
i (0) = ∆m

i+1(0), (20)

which does not involve any arithmetic operations.
Next we consider the computation in (18), and we have

∆m
i (ωc + ωl + ω2i) = ∆m

i+1(ωc + ωl + ω2i)

+
Wi(ωc + ωl + ω2i)

Wi(ω2i)
∆m+2i

i+1 (ωc + ωl + ω2i).
(21)

By Lemma 2, we have

∆m
i+1(ωc + ωl + ω2i) = ∆m

i+1(ωc + ωl);

∆m+2i

i+1 (ωc + ωl + ω2i) = ∆m+2i

i+1 (ωc + ωl).

Furthermore, the factor can be rewritten as

Wi(ωc + ωl + ω2i)

Wi(ω2i)

=
Wi(ωc + ωl) +Wi(ω2i)

Wi(ω2i)

=
Wi(ωc + ωl)

Wi(ω2i)
+ 1.

With above results, (21) can be rewritten as

∆m
i (ωc + ωl + ω2i)

=∆m
i+1(ωc + ωl) +

(
Wi(ωc + ωl)

Wi(ω2i)
+ 1

)
∆m+2i

i+1 (ωc + ωl)

=∆m
i+1(ωc + ωl) +

Wi(ωc + ωl)

Wi(ω2i)
∆m+2i

i+1 (ωc + ωl)

+ ∆m+2i

i+1 (ωc + ωl)

=∆m
i (ωc + ωl) + ∆m+2i

i+1 (ωc + ωl).
(22)

Hence, the element requires an addition.

3



C. Inverse transform

The inversion is a transform converts Ψ(i,m, l) into
polynomial coefficients {dm}h−1

m=0. The inversion can be
done through backtracking the transform algorithm. As
mentioned previously, Ψ(i,m, l) can be rearranged into two
parts: Ψ(i + 1,m, l) and Ψ(i + 1,m + 2i, l). Assume the
set Ψ(i,m, l) is given, we present the method to compute
Ψ(i+ 1,m, l) and Ψ(i+ 1,m+ 2i, l), respectively.

To construct Ψ(i+ 1,m+ 2i, l), (22) is reformulated as

∆m+2i

i+1 (ωc+ωl) = ∆m
i (ωc+ωl)+∆m

i (ωc+ωl+ω2i). (23)

Since ∆m
i (ωc + ωl),∆

m
i (ωc + ωl + ω2i) ∈ Ψ(i,m, l), each

∆m+2i

i+1 (ωc+ωl) ∈ Ψ(i+1,m+2i, l) can be calculated with
taking an addition.

To construct Ψ(i+ 1,m, l), (19) is reformulated as

∆m
i+1(ωc + ωl)

=∆m
i (ωc + ωl) +

Wi(ωc + ωl)

Wi(ω2i)
∆m+2i

i+1 (ωc + ωl).
(24)

Since ∆m
i (ωc + ωl) ∈ Ψ(i,m, l) and ∆m+2i

i+1 (ωc + ωl) ∈
Ψ(i + 1,m + 2i, l) are known, each ∆m

i+1(ωc + ωl) ∈
Ψ(i+1,m, l) can be calculated with taking an addition and
a multiplication.

Figure 1 depicts an example of the proposed transform
Ψl

h[•] of length h = 8. Figure 1(a) shows the flow graph
of the transform. The dotted line arrow denotes that the
element should be multiplied with a scalar factor Ŵ j

i upon
adding together with other element, where the scalar factor
is denoted as

Ŵ j
i =

Wi(ωj)

Wi(ω2i)
.

Figure 1(b) shows the flow graph of inversion. Also, it would
be of interest to compare Figure 1 with the butterfly diagram
of radix-2 FFT.

D. Computational complexity

Clearly, the proposed transform and its inversion have the
same computational complexity. Thus, we only consider the
computational complexity on transform. By the recursive
structure, the number of arithmetic operations can be formu-
lated as recursive functions. Let A(h) and M(h) respectively
denote the number of additions and multiplications used in
the algorithm. By (19) and (22), the recursive formula is
given by

A(h) = 2A(h/2) + h;A(1) = 0;

M(h) = 2M(h/2) + h/2;M(1) = 0.

The solution is

A(h) = h lg (h); M(h) =
h

2
lg (h).

D8[0] 

D8[1] 

D8[2] 

D8[3] 

D8[4] 

D8[5] 

D8[6] 

D8[7] 

𝐷 8
𝑙 [0] 

𝐷 8
𝑙 [1] 

𝐷 8
𝑙 [2] 

𝐷 8
𝑙 [3] 

𝐷 8
𝑙 [4] 

𝐷 8
𝑙 [5] 

𝐷 8
𝑙 [6] 

𝐷 8
𝑙 [7] 

𝑊 0
𝑙 

𝑊 0
2⊕𝑙 

𝑊 0
4⊕𝑙 

𝑊 0
6⊕𝑙 

𝑊 2
𝑙 

𝑊 2
𝑙 

𝑊 2
𝑙 

𝑊 2
𝑙 

𝑊 1
𝑙 

𝑊 1
𝑙 

𝑊 1
4⊕𝑙 

𝑊 1
4⊕𝑙 

(a) The transform.

D8[0] 

D8[1] 

D8[2] 

D8[3] 

D8[4] 

D8[5] 

D8[6] 

D8[7] 

𝐷 8
𝑙 [0] 

𝐷 8
𝑙 [1] 

𝐷 8
𝑙 [2] 

𝐷 8
𝑙 [3] 

𝐷 8
𝑙 [4] 

𝐷 8
𝑙 [5] 

𝐷 8
𝑙 [6] 

𝐷 8
𝑙 [7] 

𝑊 0
𝑙 

𝑊 0
2⊕𝑙 

𝑊 0
4⊕𝑙 

𝑊 0
6⊕𝑙 

𝑊 1
𝑙 

𝑊 1
𝑙 

𝑊 1
4⊕𝑙 

𝑊 1
4⊕𝑙 

𝑊 2
𝑙 

𝑊 2
𝑙 

𝑊 2
𝑙 

𝑊 2
𝑙 

(b) The inverse transform.

Figure 1. Data flow diagram of proposed transform of length h = 8.

Notice that when the amount of shift ωl = 0, the number of
operations can be reduced slightly (see (20)). In this case,
we have

A0(h) = h lg (h)− h+ 1; M0(h) =
h

2
lg (h)− h+ 1.

E. Space complexity

In a h-point transform, we need h units of space for
the input data and an array to store the factors used in the
computation of (17). From (19), the factors are

Wi(ωc + ωl)

Wi(ω2i)
=

Wi(ωc)

Wi(ω2i)
+

Wi(ωl)

Wi(ω2i)
, ∀c ∈ {b·2i+1}h/2

i+1−1
b=0 .

As 0 ≤ i ≤ lg(h), a h-point transform requires a total of

h

2
+

h

4
+ · · ·+ h

h
= h− 1

units of space to store the factors. Hence, the space com-
plexity is O(h).
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IV. FORMAL DERIVATIVE

In this section, we consider the formal derivative over
the proposed basis. Section IV-A gives the closed form of
the formal derivative. SectionIV-B presents a computation
method that has lower multiplicative complexity than the
original approach.

A. Closed-form expression of formal derivative of [Dh](x)

Lemma 3. The formal derivative of Wi(x) is a constant
given by

W ′
i (x) =

2i−1∏
j=1

ωj . (25)

Proof: Let
C(x) = c · xj ,

where c ∈ F2r . Its formal derivative is defined as

C ′(x) =

{
0 if j is even;

cxj−1 otherwise.

From Lemma 1, Wi(x) has terms in the degrees of
1, 2, 4, . . . , 2i, so the formal derivative of Wi(x) is a con-
stant that is the coefficient of Wi(x) at degree 1. The value
is

2i−1∑
l=0

∏
j ̸=l

ωj =
2i−1∏
j=1

ωj .

This completes the proof.

By Lemma 3, the formal derivative of Xi(x) is shown to
be

Xi(x) =
r−1∑
l=0

il
W ′

l (x)

Wl(ω2l)

∏
j ̸=l

(
Wj(x)

Wj(ω2j )

)ij

=
∑
l∈Ii

W ′
l ·Xi−2l(x),

(26)

where

W ′
l =

W ′
l (x)

Wl(ω2l)
=

∏2l−1
j=1 ωj

Wl(ω2l)
, (27)

and Ii is a set including all the non-zero indices in the binary
representation of i, given by

Ii = {j|ij = 1, j = 0, 1, . . . , r − 1}.

For example, if i = 13 = 20 + 22 + 23, we have

X ′
13(x)

=W ′
0W2(x)W3(x) +W ′

2W0(x)W3(x) +W ′
3W0(x)W2(x)

=W ′
0X12(x) +W ′

2X9(x) +W ′
3X5(x).

(28)
From (26), the formal derivative of [Dh](x) is given by

[Dh]
′(x) =

h−1∑
i=0

di
∑
l∈Ii

W ′
l ·Xi−2l(x), (29)

We move the term Xj(x) out of the summation operator to
get

[Dh]
′(x) =

h−1∑
j=0

Xj(x)
∑
l∈Ic

j

W ′
l · dj+2l , (30)

where Icj is the complement of Ij defined as

Icj = {i}lg(h)−1
i=0 \ Ij .

From (30), when W ′
l given in (27) are pre-computed

and stored, each coefficient of Xj(x) requires at most
lg(h)− 1 additions and lg(h) multiplications. Thus a native
way to compute the formal derivation of [Dh](x) requires
O(h lg(h)) operations, in both additive complexity and mul-
tiplicative complexity.

B. Computation method with lower multiplicative complex-
ity

We present an alternative approach whose multiplicative
complexity is lower than the above approach. Define

ddi = di
∏
j∈Ii

W ′
j , (31)

for 0 ≤ i ≤ h− 1. By substituting (31) into (30), we have

[Dh]
′(x) =

h−1∑
j=0

Xj(x)
∑
l∈Ic

j

W ′
l · ddj+2l∏

m∈I
j+2l

W ′
m

. (32)

As ∏
m∈I

j+2l

W ′
m = W ′

l

∏
m∈Ij

W ′
m,

(32) can be rewritten as

[Dh]
′
(x) =

h−1∑
j=0

Xj(x)
∑
l∈Ic

j

ddj+2l∏
m∈Ij

W ′
m

=
h−1∑
j=0

Xj(x)

∑
l∈Ic

j
ddj+2l∏

m∈Ij
W ′

m

.

(33)

By the above formulas, the method of computing [Dh]
′(x)

consists of two steps. In the first step, we compute (31).
Here, the set of factors

B = {
∏
j∈Ii

W ′
j |i = 0, 1, . . . , h− 1} (34)

can be pre-computed and stored, and this step only requires
h multiplications. In the second step, we compute the
coefficients through (33). Notice that the denominator is
an element of B. Thus, this step needs around 1

2h lg(h)
additions and h multiplications.

Next we use an example to demonstrate how to obtain
[Dh]

′(x). If h = 8 and the set B includes 8 elements defined
as

B0 = 1;B1 = W ′
0;B2 = W ′

1;B3 = W ′
0W

′
1;

B4 = W ′
2;B5 = W ′

0W
′
2;B6 = W ′

1W
′
2;B7 = W ′

0W
′
1W

′
2.
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From (31), each di, 0 ≤ i ≤ 7 is computed via

ddi = diBi.

From (33), the formal derivative of [D8](x) is shown to be

[D8]
′(x)

=X0(x)
dd1 + dd2 + dd4

B0
+X1(x)

dd3 + dd5
B1

+X2(x)
dd3 + dd6

B2

+X3(x)
dd7
B3

+X4(x)
dd5 + dd6

B4
+X5(x)

dd7
B5

+X6(x)
dd7
B6

.

V. ALGORITHMS OF REED-SOLOMON ERASURE CODES

Based on the new polynomial basis, this section presents
the encoding and decoding algorithms for (n, k) Reed-
Solomon (RS) erasure codes over characteristic-2 fields.
There are two major approaches on the encoding of Reed-
Solomon codes, termed as polynomial evaluation approach
and generator polynomial approach. In this paper, we follow
the polynomial evaluation approach, which treats the code-
word symbols as the evaluation values of a polynomial F (x)
of degree less than k. Let

Mk = (m0,m1, . . . ,mk−1)

denote the vector of message, for each mi ∈ F2r . In the
systematic construction, F (x) is a polynomial of degree less
than k such that

F (ωi) = mi, for 0 ≤ i ≤ k − 1. (35)

By the set of equations (35), F (x) can be uniquely con-
structed via polynomial interpolation. Then we use this F (x)
to calculate the codeword

Fn = (F (ω0), F (ω1), . . . , F (ωn−1)).

In decoding, assume the received codeword has n − k era-
sures {F (y) : y ∈ E}, where E denotes the set of evaluation
points of erasures. With the k un-erased symbols, F (x) can
be uniquely reconstructed via polynomial interpolation, and
thus the erasures can be computed accordingly.

In the following, we illustrate the algorithms of encoding
and erasure decoding for Reed-Solomon codes. The pro-
posed algorithm is for k a power of two, and n = 2r. The
codes for other k can be derived through code shortening
strategy; i.e., appending zeros to message vector so that the
length of the vector is power of two.

A. Encoding algorithm

Algorithm 1 illustrates the pseudocode of the (n, k) RS
encoding algorithm. In Line 1, we compute the vector

M̄k = (m̄0, m̄1, . . . , m̄k−1),

which can be formed as a polynomial

[M̄k](x) =
k−1∑
i=0

m̄iXi(x).

Algorithm 1 Reed-Solomon encoding algorithm.
Input: A k-element message vector Mk over F2r .
Output: An n-element systematic codeword Fn.

1: M̄k = (Ψ0
k)

−1[Mk]
2: for i = 1 to (n/k − 1) do
3: F̄i = Ψi·k

k [M̄k]
4: end for
5: return Fn = (Mk, F̄1, F̄2, . . . , F̄⌈n/k⌉−1).

Since deg([M̄k](x)) ≤ k − 1 and

[M̄k](ωi) = mi, for 0 ≤ i ≤ k − 1 (36)

we conclude that [M̄k](x) = F (x). Thus, the parity-
check symbols can be computed by applying the proposed
transform on M̄k (see Lines 2-4). The parity-check symbols
are obtained in blocks with size k and there are n/k − 1
blocks.2 For each block, the vector F̄i includes k elements
and each element is

F̄i[j] = [M̄k](ωj+(i·k)) = [M̄k](ωj+ωi·k), for 0 ≤ j ≤ k−1.

In Line 5, we assemble those vectors to get the codeword
vector Fn.

In summary, the encoding algorithm requires a k-element
inversion (Ψ0

k)
−1[•] and (n/k − 1) times of k-element

transform Ψi
k[•]. Thus, the encoding algorithm has the

complexity

O((n/k)k lg (k)) = O(n lg (k)).

B. Erasure decoding algorithm

The decoding algorithm follows our previous work [7] that
requires evaluating a polynomial and it’s derivatives. The
code proposed in [7] is based on Fermat number transforms
(FNT). In this paper, we replace the role of FNT over F2r+1

with the proposed transform over F2r . However, since the
proposed transform is not Fourier transform, some arithmetic
operations involved in the transform should be modified
accordingly.

Assume the received codeword F̄n has n − k erasures.
The set of evaluation points of erasures are denoted as

E = {ωei}n−k−1
i=0 .

Let
Π(x) =

∏
y∈E

(x+ y)

denote the error locator polynomial having zeros at all erased
symbols. It can be seen that Π(j) = 0, ∀j ∈ E. Define

F̂ (x) = F (x)Π(x),

2Since k and n are both powers of 2, n is divisible by k.
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Algorithm 2 Framework of Reed-Solomon erasure decoding
algorithm.
Input: Received codeword F̄n, and the positions of erasures

E = {ei}n−k−1
i=0 .

Output: The erasures {F (j)|j ∈ E}.
1: Compute two sets of values Π̄ and Π′, defined in (40)

and (42).
2: From (39), compute

Φ = (F̂ (ω0), F̂ (ω1), . . . , F̂ (ωn−1)).

3: Apply n-point fast inverse transform on Φ to get

Φ̄n = (Ψ0
n)

−1[Φ].

4: Compute the formal derivative of Φ̄n. The result is
denoted as Φ̄d

n.
5: Apply n-point fast transform on Φ̄d

n to get

Φd
n = Ψ0

n[Φ̄
d
n].

6: Compute the erasures via

F (j) =
Φd

n[j]

Π′(j)
, ∀j ∈ E.

and the polynomial degree is deg(F̂ (x)) = deg(F (x)) +
deg(Π(x)) ≤ n− 1. The formal derivative of F̂ (x) is

F̂ ′(x) = F ′(x)Π(x) + F (x)Π′(x). (37)

By substituting x = j ∈ E into (37), we have

F̂ ′(j) = F (j)Π′(j), ∀j ∈ E.

Hence the erasures can be computed by

F (j) =
F̂ ′(j)

Π′(j)
, ∀j ∈ E. (38)

Based on above formulas, the decoding procedure consists of
three major stages: First, compute the coefficients of F̂ (x);
second, compute the formal derivative of F̂ (x); and third,
compute the erasures by (38). The details are elaborated as
follows.

In the first stage, we need to compute the coefficients of
F̂ (x). It can be shown that

F̂ (j) = F (j)Π(j) =

{
0 ∀j ∈ E;

F (j)Π(j) otherwise.
(39)

Here, we define

Π̄ = {Π(j)|j ∈ F2r\E}. (40)

Appendix shows the algorithm of computing Π̄ proposed
by [11]. Since F (j), j ∈ F2r\E are elements of the
received vector, the result of (39) can computed with n
multiplications after Π̄ is obtained and is denoted as a vector

Φ = (F̂ (ω0), F̂ (ω1), . . . , F̂ (ωn−1)).

Then we compute

Φ̄n = (Ψ0
n)

−1[Φ]. (41)

Here, the resulting vector Φ̄n = (ϕ̄0, ϕ̄1, . . . , ϕ̄n−1) can be
formed as a polynomial

[Φ̄n](x) =

n−1∑
i=0

ϕ̄iXi(x),

where [Φ̄n](ωj) = F̂ (ωj), for 0 ≤ j ≤ n − 1. That is,
[Φ̄n](ωj) − F̂ (ωj) = 0, for 0 ≤ j ≤ n − 1. Since the
degree of [Φ̄n](x) − F̂ (x) is at most n − 1, it must be the
zero polynomial when it has n roots. Hence, we conclude
[Φ̄n](x) = F̂ (x).

The second stage is to compute the formal derivative of
F̂ (x). Since [Φ̄n](x) is under the polynomial basis given by
Definition 1, we compute the formal derivative of [Φ̄n](x) by
the method presented in Section IV. Then we can obtain the
result vector Φ̄d

n = (ϕ̄d
0 , ϕ̄

d
1 , . . . , ϕ̄

d
n−1), and the polynomial

[Φ̄d
n](x) =

n−1∑
i=0

ϕ̄d
iXi(x)

is the formal derivative of [Φ̄n](x).
In the final stage, we need to compute the erasures via

(38). Here, the denominators in (38) are defined as a set

Π′ = {Π′(j)|j ∈ E}, (42)

which can be constructed by the algorithm introduced in
Appendix. We then compute

Φd
n = Ψ0

n[Φ̄
d
n], (43)

where the resulting vector includes the evaluations of F̂ ′(j)
for j ∈ F2r ; i.e., the Φd

n is denoted as

Φd
n = (F̂ ′(ω0), F̂

′(ω1), . . . , F̂
′(ωn−1)).

Then the erasures can be computed through (38).
The decoding procedure is summarized in Algorithm 2.

The complexity of this algorithm is dominated by Steps 1, 3,
4 and 5, whereas Steps 2 and 6 only require O(n) multiplica-
tions. By the proposed fast transform algorithm, Steps 3 and
5 can be done with O(n lg (n)) additions and O(n lg (n))
multiplications. By the method in Section IV, Step 4 requires
O(n lg(n)) additions and O(n) multiplications. In Step 1,
we use the algorithm shown in Appendix, and it can be
done with O(n lg(n)) modulus operations. In summary, the
proposed decoding algorithm has the complexity of order
O(n lg (n)).

VI. DISCUSSIONS AND COMPARISONS

A. Complexities of operations in polynomial basis

We consider some polynomial operations in this section.
Table I tabulates the complexities of some polynomial
operations in the monomial basis and the proposed basis
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Table I
COMPLEXITIES OF OPERATIONS IN POLYNOMIAL BASIS OVER

CHARACTERISTIC-2 FINITE FIELDS

Operations Monomial basis Proposed basis
Addition O(h) O(h)

Multiplication O(h lg(h) lg lg(h)) O(h lg(h))
Polynomial degree O(h) O(h)
Formal derivative O(h) O(h lg(h))

over characteristic-2 finite fields. In particular, the poly-
nomial addition is simple by adding the coefficients of
two polynomials. Hence, the complexity is O(h) in both
basis. For the polynomial multiplication, an algorithm with
order O(h lg(h) lg lg(h)) is proposed by [12], in 1977. To
compute [Ah](x)× [Bh](x) in the proposed basis, the result
polynomial is computed via

(Ψl
2h)

−1[Ψl
2h[A2h] ⋆Ψ

l
2h[B2h]],

where A2h( and B2h) is 2h-point vector by appending zeros
to Ah( and Bh), and ⋆ denotes the operation of pairwise
multiplication. Hence, the complexity is O(h lg(h)).

To determine the degree polynomial in proposed basis,
we scan the coefficients of [Dh](x) to determine the highest
degree term djXj(x), dj ̸= 0, and thus the complexity is
O(h lg(h)); and so does the polynomial in monomial basis.

The formal derivative in proposed basis requires
O(h lg(h)) field operations shown in Section IV. In contrast,
the formal derivative in monomial basis only requires O(h)
operations.

B. Comparisons with Didier’s approach

In 2009, Didier [11] present an erasure decoding al-
gorithm for Reed-Solomon codes based on fast Walsh-
Hadamard transforms. The algorithm [11] consists of two
major parts: the first part is to compute the polynomial
evaluations of error locator polynomial, and the second
part is to decompose the Lagrange polynomial into several
logical convolutions, which are then respectively computed
with fast Walsh-Hadamard transforms. The first part requires
O(n lg(n)) time, and the second part requires O(n lg2(n))
time, so the complexity [11] is O(n lg2(n)). In contrast,
the proposed approach employs the first part in [11]; in the
second part, we design another decoding structure based on
the proposed basis. The proposed transform only requires
O(n lg(n)) time, so that the proposed approach can reduce
the complexity from O(n lg2(n)) to O(n lg(n)).

We also implement the proposed algorithm in C and run
the program on Intel core i7-950 CPU. While n = 216,
k/n = 1/2, the program took about 1.12 seconds to generate
a codeword, and 3.06 seconds to decode an erased codeword
on average. On the other hand, we also ran the program
[11] written by the author on the same platform. In our
simulation, the program [11] took about 52.91 seconds in

both encoding and erasure decoding under the same param-
eter configuration. Thus, the proposed erasure decoding is
around 17 times faster than [11], while n = 216.

VII. LITERATURE REVIEW

In the original view of [1], the codeword of the RS
code is a sequence of evaluation values of a polynomial
interpreted by message. By this viewpoint, the encoding
process can be treated as an oversampling process through
discrete Fourier transform (DFT) over finite fields. Some
studies [13–15] indicate that, if a O(n lg(n)) finite field FFT
is available, the error-correction decoding can be reduced
to O(n lg2(n)). An n-point radix-2 FFT butterfly diagram
requires n lg(n) additions and n

2 lg(n) multiplications. This
FFT butterfly diagram can be directly applied on Fermat
prime fields F2r+1, r ∈ {1, 2, 4, 8, 16}. In this case, the
transform, referred to as Fermat number transform (FNT),
requires n lg(n) finite field additions and n

2 lg(n) finite
field multiplications. By employing FNT, a number of fast
approaches [13, 16, 17] had been presented to reduce the
complexity of encoding and decoding of RS codes. Some
FNT-based RS erasure decoding algorithms had been pro-
posed [7, 18, 19] in O(n lg(n)) finite field operations. Thus
far, no existing algorithm for (n, k) RS codes has decoding
complexity achieving lower than Ω(n lg(n)) operations, in
a context of a fixed coding rate k/n. However, the major
drawback of FNT is that it needs more space to store one
extra symbol in practical implementation such that the FNT-
based codes are impractical in general applications.

On the other hand, FFTs over characteristic-2 finite fields
require higher complexities than O(n lg(n)). Table II tab-
ulates the arithmetic complexities of FFT algorithms over
characteristic-2 finite fields. As shown in Table II, Gao and
Mateer [10] gave two versions of additive FFTs over F2r that
are most likely the most efficient FFTs by far. The first is for
arbitrary r, and the second is for r a power of two. Notably,
Wu’s approach [20] has very low multiplicative complexity
O(n lglg(3/2)(n)), but the additive complexity is higher with
complexity O(n2/ lglg(8/3)(n)). This implies that when the
polynomial representation in RS codes are in monomial
basis, the complexity will fail to reach O(n lg(n)).

There exist faster encoding and erasure decoding ap-
proaches in some non-MDS codes. Such codes, termed
as fountain codes [6], require a little more than k code-
word symbols to recover the original message. Two famous
classes of fountain codes are LT code [21] and Raptor
code [22]. Due to the low complexity, fountain codes have
significant merits in many applications. However, because
of the randomly generated generator matrices, the hardware
parallelization of fountain code is not trivial.

VIII. CONCLUDING REMARKS

Based on the proposed polynomial basis, we can com-
pute the polynomial evaluations in the complexity of order
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Table II
COMPLEXITIES OF n-POINT FFT ALGORITHMS OVER F2r , WHERE n = 2r − 1

Algorithm Restriction Additive complexity Multiplicative complexity
Gao [10] r is a power of two O(n lg(n) lg lg(n)) O(n lg(n))

Cantor [8] r is a power of two O(n lglg(3)(n)) O(n lg(n))

Gao [10] O(n lg2(n)) O(n lg(n))

Wang [23], Gathen [9] O(n lg2(n)) O(n lg2(n))

Pollard [24] r is even O(n3/2) O(n3/2)

Wu [20] O(n2/ lglg(8/3)(n)) O(n lglg(3/2)(n))
Sarwate [25] O(n2) O(n lg(n))

Naive approach O(n2) O(n2)

O(h lg(h)) with a small leading constant. This enables our
capability to encode/erasure decode (n, k) Reed-Solomon
codes over characteristic-2 finite field in O(n lg(n)) time.
As the complexity leading factor is small, the algorithms
are advantageous in practical applications. To the best
of our knowledge, this is the first approach supporting
Reed-Solomon erasure codes on characteristic-2 finite fields
to achieve complexity of O(n lg(n)). In addition, all the
transforms employed in the Reed-Solomon algorithms can
be easily implemented in parallel processing. Hence, the
proposed algorithms substantially facilitate practical appli-
cations. While this paper has demonstrated the polynomial
basis and operations over characteristic-2 finite fields, it is
of interest to consider the case over fields with arbitrary
characteristics.
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APPENDIX

In [11], Didier present an efficient algorithm to compute
the elements in two sets (40) and (42). The method is
presented here for the purpose of completeness. Consider
the construction of Π′. The formal derivative of Π(x) is
given by

Π′(x) =
∑
j∈E

∏
y∈E,y ̸=j

(x+ y).

By substituting x = j ∈ E into Π′(x), we have

Π′(j) =
∏

y∈E,y ̸=j

(j + y) =
∏

y∈F2r ,y ̸=j

(j + y)R(y), (44)

where R(x) is a function defined as

R(y) =

{
1 if y ∈ E;
0 otherwise. (45)

Define Log(x) as the discrete logarithm function. For each
i ∈ F∗

2r , we denote Log(i) = j iff i = αj , where α is the
primitive element of F∗

2r . Then (44) can be reformulated as

Log(Π′(j)) =
⊎

y∈F2r ,y ̸=j

R(y)Log(j + y), ∀j ∈ E.

Note that the symbol
⊎

means the summation with normal
additions. By setting Log(0) = 0, the above equation can
be rewritten as

Log(Π′(j)) =
⊎

y∈F2r

R(y)Log(j + y),∀j ∈ E. (46)

Upon describing the algorithm to compute (46), we consider
the construction of another set Π. In the same way, the
elements of Π can be formulated as

Log(Π(j)) =
⊎

y∈F2r

R(y)Log(j + y),∀j ∈ F2r \ E. (47)

With combining (46) and (47), the objective of algorithm is
to compute

Log(Π(j)) =
⊎

y∈F2r

R(y)Log(j + y),∀j ∈ F2r . (48)

In (48), the operation + is the F2r addition, that can be
treated as exclusive-or operation. Hence, (48) is namely
the logical convolution [26][27], that can be efficiently
computed with fast Walsh-Hadamard transform [28]. The
algorithm is elaborated as follows.

Let FWTh[•] denote the h-point fast Walsh-Hadamard
transform (FWHT). A h-point FWHT requires h lg(h) ad-
ditions. Define

R2r = (R(0), R(1), . . . , R(2r − 1)),

L2r = (0, Log(ω1), Log(ω2), . . . , Log(ω2r−1)).

The result of (48) is computed by

Rw
2r = FWHT2r [FWHT2r [R2r ] ⋆ FWHT2r [L2r ]], (49)

where the operation ⋆ denotes pairwise multiplication. To
further reduce the complexity, the FWHT2r [L2r ] can be
pre-computed and stored, and thus (49) can be done with
performing two fast Walsh transforms of length 2r. We
remark that all the above computation can be performed
over modulo 2r − 1. After obtaining Rw

2r , we compute the
exponent for each element of Rw

2r , and this step can be
done via table lookup. In summary, the algorithm requires
O(2r lg(2r)) modulus additions, O(2r) modulus multiplica-
tions, and O(2r) exponentiations.
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