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Abstract Binary maximum distance separable (MDS) array codes contain k information columns and r

parity columns in which each entry is a bit that can tolerate r arbitrary erasures. When a column in an

MDS code fails, it has been proven that we must download at least half of the content from each helper

column if k+1 columns are selected as the helper columns. If the lower bound is achieved such that the k+1

helper columns can be selected from any k + r − 1 surviving columns, then the repair is an optimal repair.

Otherwise, if the lower bound is achieved with k + 1 specific helper columns, the repair is a weak-optimal

repair. This paper proposes a class of binary MDS array codes with k > 3 and r > 2 that asymptotically

achieve weak-optimal repair of an information column with k + 1 helper columns. We show that there exist

many encoding matrices such that the corresponding binary MDS array codes can asymptotically achieve

weak-optimal repair for repairing any information column.

Keywords MDS codes, binary MDS array codes, optimal repair, encoding matrix, asymptotically weak-

optimal repair
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1 Introduction

Many storage systems employ array codes to enhance data reliability against failures of storage nodes with

a low degree of redundancy. Binary maximum distance separable (MDS) array codes are an important

family of array codes with a trade-off between storage redundancy and fault tolerance, where each entry

is a bit. In a binary MDS array code, there are k information columns and r parity columns such that

all the information columns can be recovered from any k columns. Herein, we use the terms column and

node interchangeably.

The literature contains many binary MDS array codes. EVENODD [1] and RDP [2] are two important

binary MDS array codes with two parity columns (i.e., r = 2). Other binary MDS array codes include

STAR codes [3], generalized RDP codes [4], generalized EVENODD codes [5,6], and Rabin-like codes [7,8],

all of which have more parity columns (i.e., r > 3).

When a column fails, it should be recovered to maintain the same level of reliability. The amount of

bits downloaded in repairing a failed column is termed the repair bandwidth. It is important to reduce

the repair bandwidth in data centers or distributed storage systems. Dimakis et al. [9] studied the repair

problem by using network coding theory. The optimal repair bandwidth of MDS codes [9] is dL
d−k+1 ,
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where L is the number of bits stored in each column and k 6 d 6 k+ r− 1. When d = k+1, the optimal

repair bandwidth becomes

(k + 1)L

2
. (1)

We use the lower bound in (1) to distinguish between optimal repair and weak-optimal repair accord-

ing to [10]. A repair is an optimal repair if the lower bound in (1) is achieved such that the k + 1

helper nodes can be chosen from any other k + r − 1 surviving nodes. If the lower bound is achieved by

downloading bits from k+1 specific nodes, the repair is a weak-optimal repair. There are many construc-

tions [9, 11–15] of MDS codes with the minimum repair bandwidth over a sufficiently large finite field.

However, there have been relatively few studies of binary MDS array codes with optimal repair bandwidths

[10, 16–20].

Some repair methods have been proposed for reducing the repair bandwidths of RDP codes [21], X-

code [22], and EVENODD [23]. However, the repair bandwidth is still 50% larger than the optimal

repair bandwidth given in (1). There are some constructions of binary MDS array codes [10,16–20] with

small repair bandwidths. The authors in [16] proposed binary MDS array codes with two parity columns,

which achieve an optimal repair bandwidth for information-column failure. The codes given in [16] are

optimized and known as ButterFly codes [17]. MDR codes [19,20] are also binary MDS array codes with

r = 2 but with optimal repair only for k information columns and one parity column. Binary MDS array

codes with three parity columns proposed in [18] have asymptotically weak-optimal repair bandwidths

for information-column failure. Note that the failed column in all the above studies is repaired using k+1

helper columns. Constructions of binary MDS array codes with more parity columns and asymptotically

weak-optimal repair were given in [10], where the parameters satisfy k + 1 6 d 6 k + ⌊(r − 1)/2⌋.

In the present study, we focus on constructing binary MDS array codes with any number of parity

columns and asymptotically weak-optimal repair. By exploiting the essential property of an encoding

matrix over the quotient ring proposed in [10], we observe that there exist many encoding matrices in the

quotient ring such that the constructed codes have asymptotically weak-optimal repair bandwidths for

any information-column failure. We characterize the property of the encoding matrix and show that our

binary MDS array codes can achieve the weak-optimal repair bandwidth in (1) asymptotically for any

failed information column when k is sufficiently large. In a repair procedure, we must download many

bits to repair all the bits in the failed column. If some downloaded bits used to repair different bits in

the failed column are the same, we need only download these bits once and the repair bandwidth can be

reduced. In the proposed codes, the optimal repair bandwidth is achieved by choosing some encoding

matrices in which the bits downloaded for repairing a failed column intersect with each other as much as

possible.

The differences between the codes proposed herein and the existing binary MDS array codes with weak-

optimal repair are as follows. In contrast to existing constructions with two parity columns such as those

given in [16, 17, 19, 20], a quotient ring with cyclic structure is employed in the proposed construction.

Although both the proposed binary MDS array codes and other binary MDS array codes [10, 18] with

asymptotically weak-optimal repair employ the quotient ring F2[x]/(1 + xpτ ), their main results are

different. In [18], an encoding matrix is chosen to form a binary MDS array code with three parity

columns over F2[x]/(1+xp2k−2

). In [10], a general approach of designing binary array codes over F2[x]/(1+

xpτ ) is presented and two explicit constructions based on the design approach are proposed. The first

construction of [10] has an odd number of parity columns and asymptotically weak-optimal repair for k

information columns, while the second construction of [10] has an even number of parity columns and

asymptotically weak-optimal repair for all k + r columns. In the present study, based on the design

approach in [10], we focus on d = k + 1 and explore the property of the encoding matrix such that the

corresponding codes have asymptotically weak-optimal repair. We show the required property of the

encoding matrix and propose that many encoding matrices satisfy this property. The binary MDS array

codes proposed in [18] can be viewed as a special case of the binary MDS array codes proposed herein.
Downloaded to IP: 192.168.0.24 On: 2018-12-08 12:09:29 http://engine.scichina.com/doi/10.1007/s11432-018-9485-7



Hou H X, et al. Sci China Inf Sci October 2018 Vol. 61 100302:3

2 Sufficient condition of encoding matrices for asymptotically weak-optimal

repair

In this section, we first review the design approach of binary MDS array codes proposed in [10]. We

thereafter provide a sufficient condition for encoding matrices that can enable asymptotically weak-

optimal repair of information columns.

2.1 Review of binary array codes given in [10]

The design approach in [10] constructs an array code of size (p− 1)τ × (k + r), where k > 3, r > 2, p is

a prime such that 2 is a primitive element in the field Fp, and τ is an integer that will be specified later

for choosing the encoding matrix. In the (p − 1)τ × (k + r) array, the first k columns are information

columns and the last r columns are parity columns. The i-th entry of column j is denoted by ai,j for

i = 0, 1, . . . , (p−1)τ and j = 1, 2, . . . , k+r. Note that we consider modulo pτ of the subscripts throughout

unless stated otherwise.

We must append τ extra bits to each column to represent the proposed array over the quotient ring

F2[x]/(1 + xpτ ), with the extra bit a(p−1)τ+µ,j defined as

a(p−1)τ+µ,j =

p−2
∑

i=0

aiτ+µ,j , (2)

for information column j, where j = 1, 2, . . . , k and µ = 0, 1, . . . , τ − 1. We also append τ extra bits

a(p−1)τ,j, a(p−1)τ+1,j, . . . , apτ−1,j to parity column j − k during the encoding procedure, where j = k +

1, k + 2, . . . , k + r. We will show in the encoding process that the appended extra bit a(p−1)τ+µ,j also

satisfies (2) for j = k + 1, k + 2, . . . , k + r and µ = 0, 1, . . . , τ − 1.

The pτ bits a0,j , a1,j , . . . , apτ−1,j are represented by a polynomial aj(x) over F2[x]:

aj(x) = a0,j + a1,jx+ a2,jx
2 + · · ·+ apτ−1,jx

pτ−1,

where j=1, 2, . . . , k + r. For j = 1, 2, . . . , k, aj(x), which corresponds to information column j, is called

a data polynomial. Similarly, aj(x) for j = k + 1, k + 2, . . . , k + r, which corresponds to parity column

j − k, is called a coded polynomial. The encoding of the array codes can be described as the product

[a1(x), a2(x), . . . , ak+r(x)] = [a1(x), a2(x), . . . , ak(x)] ·G,

over the quotient ring Rpτ = F2[x]/(1 + xpτ ). The generator matrix G is of size k × (k + r) and is

composed of the k× k identity matrix Ik×k and a k× r encoding matrix Pk×r. Thus, the parity columns

can be determined by choosing a proper encoding matrix Pk×r.

In Rpτ , the variable x represents the cyclic-right-shift operator on a polynomial. The cyclic structure

and a well-designed encoding matrix are crucial for reducing the repair bandwidth for the failure of a

single information column. Note that the extra bits need not be stored in a storage node; we can calculate

them when necessary.

Consider a sub-ring Cpτ of Rpτ , which consists of polynomials in Rpτ with 1+xτ being a factor, namely

Cpτ = {a(x)(1 + xτ ) mod (1 + xpτ )| a(x) ∈ Rpτ}. (3)

Lemma 1 ([10, Theorem. 1]). The coefficients of polynomial ai(x) satisfy (2) if and only if ai(x) ∈ Cpτ .

According to Lemma 1, there are k data polynomials in Cpτ . In the encoding procedure, after append-

ing τ extra bits to each information column, we obtain k data polynomials in Cpτ . Subsequently, the

r coded polynomials are determined by Pk×r . Therefore, the key issue is to design a proper encoding

matrix. We subsequently exploit the property of the encoding matrices such that the corresponding codes

are MDS codes and the repair bandwidth of a single information column is asymptotically weak-optimal.
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2.2 Design of encoding matrix

Furthermore, we present a sufficient condition for designing encoding matrices that can achieve asymp-

totically weak-optimal repair bandwidths. We begin by considering the case of array codes with two

parity columns. A sufficient condition for designing an encoding matrix that can achieve asymptotically

weak-optimal repair of all the information columns is given in the following theorem.

Theorem 1. Consider the encoding matrix

Pk×2 =

[

1 1 · · · 1

xe1 xe2 · · · xek

]T

. (4)

Let ef 6= 0 for f = 1, 2, . . . , k. If τ is a multiple of 2ef for f = 1, 2, . . . , k and ei is a multiple of 2ei−1

for i = 2, 3, . . . , k, then there exists a repair algorithm with d = k + 1 such that the repair bandwidth of

column f for f = 1, 2, . . . , k is

k(p− 1)τ/2 + (p− 1)τ/2 +
(p− 1)τ

2ef
·

(
f−1
∑

i=1

ei

)

, (5)

which is asymptotically weak-optimal when k is sufficiently large.

Proof. According to Lemma 1, we obtain ai(x) ∈ Cpτ for i = 1, 2, . . . , k. Because xℓai(x) ∈ Cpτ for

i = 1, 2, . . . , k and any integer ℓ, we obtain ak+1(x) =
∑k

i=1 ai(x) ∈ Cpτ and ak+2(x) =
∑k

i=1 x
eiai(x) ∈

Cpτ , i.e., both coded polynomials are in Cpτ . Thus, the coefficients of ak+1(x) and ak+2(x) satisfy (2).

Furthermore, we assume that column f fails, where 1 6 f 6 k, and we will provide a repair algorithm

such that the repair bandwidth is asymptotically weak-optimal. Because the coefficients of ai(x) satisfy

(2), where i = 1, 2, . . . , k + 2, we denote the bits of column i as all pτ bits, as we can calculate the extra

bits using (2) when necessary.

According to the encoding matrix Pk×2, the bits in columns k + 1 and k + 2 are computed as follows:

aℓ,1 + aℓ,2 + · · ·+ aℓ,k = aℓ,k+1,

aℓ−e1,1 + aℓ−e2,2 + · · ·+ aℓ−ek,k = aℓ,k+2,

where ℓ = 0, 1, . . . , pτ−1. Recall that herein we consider modulo pτ of all the subscripts. From the above

equations, we can repair the bit aℓ,f using either

aℓ,f = aℓ,1 + aℓ,2 + · · ·+ aℓ,f−1 + aℓ,f+1 + · · ·+ aℓ,k + aℓ,k+1, (6)

or

aℓ,f = aℓ+ef−e1,1+ aℓ+ef−e2,2+ · · ·+ aℓ+ef−ef−1,f−1+ aℓ+ef−ef+1,f+1+ · · ·+ aℓ+ef−ek,k + aℓ+ef ,k+2. (7)

If

ℓ mod 2ef ∈ {0, 1, . . . , ef − 1}, (8)

and ℓ ∈ {0, 1, . . . , (p − 1)τ − 1}, we recover the bits aℓ,f using (6), i.e., by downloading aℓ,i for i =

1, . . . , f − 1, f + 1, . . . , k + 1 with ℓ satisfying (8). If

ℓ mod 2ef ∈ {ef , ef + 1, . . . , 2ef − 1}, (9)

and ℓ ∈ {0, 1, . . . , (p − 1)τ − 1}, we recover the bits aℓ,f using (7), i.e., by downloading aℓ+ef−ei,i for

i = 1, . . . , f − 1, f + 1, . . . , k and aℓ+ef ,k+2 with ℓ satisfying (9).

Because τ is a multiple of 2ef , (p− 1)τ is also a multiple of 2ef and ℓ mod 2ef is uniformly distributed

over {0, 1, . . . , 2ef − 1}. Thus, (p − 1)τ/2 bits are recovered using (6) and another (p − 1)τ/2 bits are

recovered using (7). Because

{0, 1, . . . , ef − 1} ∩ {ef , ef + 1, . . . , 2ef − 1} = ∅,
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all (p− 1)τ information bits aℓ,f can be recovered using the above method. In the repair procedure, we

can first download k(p− 1)τ/2 bits aℓ,i for i = 1, . . . , f − 1, f +1, . . . , k+1 and ℓ satisfying (8) to recover

the corresponding (p− 1)τ/2 bits aℓ,f . To recover another (p− 1)τ/2 bits aℓ,f with ℓ satisfying (9), the

corresponding bits aℓ+ef−ei,i for i = 1, . . . , f − 1, f +1, . . . , k and aℓ+ef ,k+2 are required. Thus, we show

that we do not need to download all k(p− 1)τ/2 bits aℓ+ef−ei,i and aℓ+ef ,k+2, with ℓ satisfying (9) and

i = 1, . . . , f − 1, f + 1, . . . , k, because many of them have been downloaded in repairing (p − 1)τ/2 bits

aℓ,f with ℓ satisfying (8).

We first consider the bits aℓ+ef−ei,i for i = 1, . . . , f − 1 and ℓ satisfying (9). If ℓ mod 2ef = ef , then

there exists an integer m such that ℓ = m ·2ef +ef . Recall that the indices of the required bits aℓ+ef−ei,i

are ℓ′ = (ℓ + ef − ei) mod pτ . We have

ℓ′ mod 2ef = ((ℓ + ef − ei) mod pτ) mod 2ef

= (m · 2ef + ef + ef − ei) mod 2ef (as τ is a multiple of 2ef)

= 2ef − ei (as ef is a multiple of 2ei for i = 1, 2, . . . , f − 1 and ef 6= 0).

If ℓ mod 2ef = 2ef − 1, then there exists an integer m such that ℓ = m · 2ef + 2ef − 1. Because the

indices of the required bits aℓ+ef−ei,i are ℓ′ = (ℓ+ ef − ei) mod pτ , we have

ℓ′ mod 2ef = ((ℓ+ ef − ei) mod pτ) mod 2ef

= (m · 2ef + 2ef − 1 + ef − ei) mod 2ef (as τ is a multiple of 2ef)

= ef − ei − 1 (as ef is a multiple of 2ei for i = 1, 2, . . . , f − 1 and ef 6= 0).

By repeating the above procedure for ℓ mod 2ef = ef + 1, . . . , 2ef − 2, we can obtain

ℓ′ mod 2ef = 2ef − ei, 2ef − ei + 1, . . . , 2ef − 1, 0, 1, . . . , ef − ei − 1, (10)

when ℓ mod 2ef runs from ef to 2ef − 1. Thus, we require the bits aℓ′,i with i = 1, 2, . . . , f − 1 and ℓ′ in

(10). Because ef − ei − 1 < 2ef − ei, the elements in (10) can be rearranged as

ℓ′ mod 2ef = 0, 1, . . . , ef − ei − 1, 2ef − ei, 2ef − ei + 1, . . . , 2ef − 1. (11)

Recall that k(p − 1)τ/2 bits aℓ,i for i = 1, . . . , f − 1, f + 1, . . . , k + 1 and ℓ satisfying (8) have already

been downloaded. Because ef − ei − 1 6 ef − 1 < 2ef − ei,

{0, 1, . . . , ef−ei−1, 2ef−ei, 2ef−ei+1, . . . , 2ef−1}\{0, 1, . . . , ef−1} = {2ef−ei, 2ef−ei+1, . . . , 2ef−1}.

We thus need only download ei
(p−1)τ
2ef

information bits aℓ′,i from columns i for i = 1, 2, . . . , f − 1 with

ℓ′ mod 2ef ∈ {2ef − ei, 2ef − ei + 1, . . . , 2ef − 1}.

We thereafter consider the bits aℓ+ef−ei,i for i = f+1, f+2, . . . , k and ℓ satisfying (9). We can express

ℓ satisfying (9) as ℓ = m · 2ef + ef + t, where m is an integer and t = 0, 1, . . . , ef − 1. Recall that the

indices of the required bits aℓ+ef−ei,i are ℓ′ = (ℓ+ ef − ei) mod pτ . We have

ℓ′ mod 2ef = ((ℓ + ef − ei) mod pτ) mod 2ef

= (m · 2ef + ef + t+ ef − ei) mod 2ef (as τ is a multiple of 2ef)

= t (as ei is a multiple of ef for i = f + 1, f + 2, . . . , k).

Recall that (k−1)(p−1)τ/2 bits aℓ,i for i = f+1, f+2, . . . , k and ℓ satisfying (8) have been downloaded.

Therefore, there is no need to download the bits aℓ′,i for i = f + 1, f + 2, . . . , k and ℓ′ mod 2ef ∈

{0, 1, . . . , ef − 1}. For column k+2, we must download (p− 1)τ/2 parity bits aℓ,k+2 with ℓ satisfying (9).

Therefore, we must download k(p− 1)τ/2+ (p− 1)τ/2+ (p−1)τ
2ef

· (
∑f−1

i=1 ei) bits from k+1 columns to

recover column f . Note that the value in (5) is strictly less than (k+2)(p−1)τ/2 because ei is a multiple

of 2ei−1 and ei 6= 0 for i = 2, 3, . . . , f . In other words, the repair bandwidth of column f is strictly less

than k+2
k+1 times the value in (1). Therefore, the repair bandwidth of column f can achieve weak-optimal

repair in (1) asymptotically when k is sufficiently large, where 1 6 f 6 k. This completes the proof.
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There are many selections of ei for i = 1, 2, . . . , k such that the condition given in Theorem 1 is satisfied:

for example, ei = 2i−1 for i = 1, 2, . . . , k and τ = 2k. Because e1 6= 0, the minimum positive integer e1
is 1. For i = 2, 3, . . . , k, ei is a multiple of 2ei−1 and ei 6= 0; thus, we have the minimum value of ei as

ei = 2i−1. Recall that τ should be a multiple of 2ei for i = 1, 2, . . . , k and the minimum positive value of

ei is 2
i−1. Therefore, the minimum value of τ is 2k.

From Theorem 1, we can use two columns of the encoding matrix to recover each of the first k columns

with asymptotically weak-optimal repair. Furthermore, we consider the repair with r parity columns. We

divide the k information columns into several groups, each of which contains some columns. We intend to

recover each column in one group by using two column vectors of the k × r encoding matrix that satisfy

the condition given in Theorem 1. By carefully choosing the k × r encoding matrix, we can recover each

of the k information columns that can achieve the weak-optimal repair asymptotically.

Let e denote the vector

e =
[

xe1 xe2 · · · xek

]

.

We define the right cyclic shift of the vector e by i positions as

e(i) =
[

xek−i+1 xek−i+2 · · · xek xe1 xe2 · · · xek−i

]

,

where i = 1, 2, . . . , k. For example, when i = 1,

e(1) =
[

xek xe1 · · · xek−1

]

.

If i = k, then e(k) is e itself. Based on the above notation, we choose the k × r encoding matrix Pk×r

to be

Pk×r =
[

I
T
k e

T
e(⌊ k

r−1⌋)
T

e(2⌊ k
r−1⌋)

T · · · e((r − 2)⌊ k
r−1⌋)

T
]

, (12)

where Ik is an all-one row vector of length k. We show in the following theorem that the binary MDS array

codes with the encoding matrix in (12) have weak-optimal repair of information columns asymptotically.

Throughout the paper, we will use the notation t = k − (r − 1)⌊ k
r−1⌋.

Theorem 2. The k× r encoding matrix Pk×r in (12) is considered, where 0 < e1 and τ is a multiple of

2ei for i = 1, 2, . . . , ⌊ k
r−1⌋+ t. For i = 1, 2, . . . , ⌊ k

r−1⌋+ t, if ej is a multiple of 2ei for j = i+1, i+2, . . . , k,

then there exists a repair algorithm such that the repair bandwidth of the k information columns is

asymptotically weak-optimal when d = k + 1 and k is sufficiently large.

Proof. Assume that column f fails, where 1 6 f 6 k. When we state that a bit aℓ,f is repaired using

the encoding column i, where i = 1, 2, . . . , r, it indicates that we download all the bits determined using

the encoding column i except the erased bit aℓ,f . For example, the bit aℓ,f can be repaired using the first

encoding column, i.e., by downloading bits aℓ,i for i = 1, 2, . . . , , f − 1, f + 1, . . . , k + 1.

Algorithm 1 Algorithm for repairing the failure of a single information column

1: The information column f fails.

2: if f ∈ {1, 2, . . . , (r − 2)⌊ k
r−1

⌋} then

3: Repair the bit aℓ,f using the first encoding column, for ℓ mod 2e
1+(f−1 mod ⌊ k

r−1
⌋)

∈ {0, 1, . . . , e
1+(f−1 mod ⌊ k

r−1
⌋)
−

1}. Otherwise, repair the bit aℓ,f using the encoding column 1 + ⌈ f

⌊ k
r−1

⌋
⌉, for ℓ mod 2e

1+(f−1 mod ⌊ k
r−1

⌋)
∈

{e
1+(f−1 mod ⌊ k

r−1
⌋)
, . . . , 2e

1+(f−1 mod ⌊ k
r−1

⌋)
− 1}.

4: end if

5: return

6: if f ∈ {(r − 2)⌊ k
r−1

⌋+ 1, . . . , k} then

7: Repair the bit aℓ,f using the first parity, for ℓ mod 2e
f−(r−2)⌊ k

r−1
⌋
∈ {0, 1, . . . , e

f−(r−2)⌊ k
r−1

⌋−1
}. Otherwise, repair

the bit aℓ,f using the encoding column r, for ℓ mod 2e
f−(r−2)⌊ k

r−1
⌋
∈ {e

f−(r−2)⌊ k
r−1

⌋
, . . . , 2e

f−(r−2)⌊ k
r−1

⌋
− 1}.

8: end if

9: return

The repair procedure is shown in Algorithm 1. In the algorithm, we consider two cases of column f

with 1 6 f 6 (r − 2)⌊ k
r−1⌋ and (r − 2)⌊ k

r−1⌋+ 1 6 f 6 k.
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Consider the case of 1 6 f 6 (r − 2)⌊ k
r−1⌋. It is evident that 1 6 1 + (f − 1 mod ⌊ k

r−1⌋) 6 ⌊ k
r−1⌋. For

a fixed f , there exists an i, i ∈ {0, 1, . . . , r − 3}, such that 1 + i⌊ k
r−1⌋ 6 f 6 (i+ 1)⌊ k

r−1⌋. We thus have

⌈ f

⌊ k
r−1 ⌋

⌉ = 1 + i. In steps 2 and 3, column f is repaired using the first encoding column and encoding

column i+ 2. Thus, we divide the first (r − 2)⌊ k
r−1⌋ information columns into r − 2 parts, each of which

has ⌊ k
r−1⌋ columns. If a column belongs to the i+ 1-th part, we repair the failure column using the first

encoding column and encoding column i+ 2, where i = 0, 1, . . . , r − 3.

Furthermore, we consider the repair bandwidth of column f . When i = 0, we have 1 6 f 6 ⌊ k
r−1⌋ and

column f is repaired using the first two encoding columns. In other words, the bits aℓ,f are recovered

using (6), when ℓ = 0, 1, . . . , (p − 1)τ − 1 and ℓ mod 2ef in (8). According to Theorem 1, the repair

bandwidth of column f is (5), which is asymptotically weak-optimal when k is sufficiently large.

When i ∈ {1, 2, . . . , r−3}, we have i⌊ k
r−1⌋+1 6 f 6 (i+1)⌊ k

r−1⌋, 1+(f −1 mod ⌊ k
r−1⌋) = f − i⌊ k

r−1⌋,

and 1 + ⌈ f

⌊ k
r−1 ⌋

⌉ = i + 2. In steps 2 and 3, column f is repaired using the first encoding column and

encoding column i+ 2. Recall that the transpose of encoding column i+ 2 is the right cyclic shifting of

the transpose of encoding column 2 by i⌊ k
r−1⌋ positions, i.e.,

e

(

i

⌊
k

r − 1

⌋)T

=

[

x
e
k−i⌊ k

r−1
⌋+1 · · · xek

︸ ︷︷ ︸

i⌊ k
r−1 ⌋

xe1 xe2 · · ·x
e
k−i⌊ k

r−1
⌋
]T

.

From Theorem 1, the repair bandwidth of column i⌊ k
r−1⌋+ f ′ is

k(p− 1)τ/2 + (p− 1)τ/2 +
(p− 1)τ

2ef ′

·





f ′−1
∑

i=1

ei



 , (13)

where f ′ = 1, 2, . . . , ⌊ k
r−1⌋. Therefore, the repair bandwidth of column f is (5), which is asymptotically

weak-optimal when k is sufficiently large.

Now, we consider the case of (r−2)⌊ k
r−1⌋+1 6 f 6 k. Note that 1 6 f−(r−2)⌊ k

r−1⌋ 6 k−(r−2)⌊ k
r−1⌋.

In steps 6 and 7, column f is repaired using the first encoding column and encoding column r. The

transpose of encoding column r is the right cyclic shifting of the transpose of encoding column 2 by

(r − 2)⌊ k
r−1⌋ positions, i.e.,

e

(

(r − 2)

⌊
k

r − 1

⌋)T

=

[

x
e
k−(r−2)⌊ k

r−1
⌋+1 · · · xek

︸ ︷︷ ︸

(r−2)⌊ k
r−1 ⌋

xe1 xe2 · · ·x
e
k−(r−2)⌊ k

r−1
⌋
]

.

From Theorem 1, the repair bandwidth of column (r−2)⌊ k
r−1⌋+f ′ is (13), where f ′ = 1, 2, . . . , ⌊ k

r−1⌋+ t.

We thus obtain the repair bandwidth of column f as (5), which is asymptotically weak-optimal when k

is sufficiently large. Therefore, the repair bandwidth of k information column is asymptotically weak-

optimal according to Algorithm 1 when k is sufficiently large. This completes the proof.

Considering the condition given in Theorem 2, the minimum positive value of ei is 2i−1 for i =

1, 2, . . . , k − 1 and the minimum positive value of ek is zero. Because τ should be a multiple of 2ei for

i = 1, 2, . . . , ⌊ k
r−1⌋ + t, the minimum value of τ is 2⌊

k
r−1 ⌋+t, which is strictly less than 2

k
r−1+r−1. The

code in [18] can be viewed as a special case of the proposed codes with ei = 2i−1 for i = 1, 2, . . . , k − 1,

ek = 0, τ = 2k−2, and r = 3.

2.3 Example

Consider the example of k = 3, p = 3, and r = 3. Let e1 = 1, e2 = 2, e3 = 4, and τ = 4. The encoding

matrix in this case is






1 x x4

1 x2 x

1 x4 x2






.
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Table 1 An example of the code with k = 3, r = 3, p = 3, and τ = 4, where a8,j = a0,j + a4,j , a9,j = a1,j + a5,j ,

a10,j = a2,j + a6,j , and a11,j = a3,j + a7,j for j = 1, 2, . . . , 6

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

a0,1 a0,2 a0,3 a0,4 = a0,1 + a0,2 + a0,3 a0,5 = a11,1 + a10,2 + a8,3 a0,6 = a8,1 + a11,2 + a10,3

a1,1 a1,2 a1,3 a1,4 = a1,1 + a1,2 + a1,3 a1,5 = a0,1 + a11,2 + a9,3 a1,6 = a9,1 + a0,2 + a11,3

a2,1 a2,2 a2,3 a2,4 = a2,1 + a2,2 + a2,3 a2,5 = a1,1 + a0,2 + a10,3 a2,6 = a10,1 + a1,2 + a0,3

a3,1 a3,2 a3,3 a3,4 = a3,1 + a3,2 + a3,3 a3,5 = a2,1 + a1,2 + a11,3 a3,6 = a11,1 + a2,2 + a1,3

a4,1 a4,2 a4,3 a4,4 = a4,1 + a4,2 + a4,3 a4,5 = a3,1 + a2,2 + a0,3 a4,6 = a0,1 + a3,2 + a2,3

a5,1 a5,2 a5,3 a5,4 = a5,1 + a5,2 + a5,3 a5,5 = a4,1 + a3,2 + a1,3 a5,6 = a1,1 + a4,2 + a3,3

a6,1 a6,2 a6,3 a6,4 = a6,1 + a6,2 + a6,3 a6,5 = a5,1 + a4,2 + a2,3 a6,6 = a2,1 + a5,2 + a4,3

a7,1 a7,2 a7,3 a7,4 = a7,1 + a7,2 + a7,3 a7,5 = a6,1 + a5,2 + a3,3 a7,6 = a3,1 + a6,2 + a5,3

The 24 information bits are represented by a0,i, a1,i, . . . , a7,i for i = 1, 2, 3. The example is illustrated in

Table 1, wherein the bits in bold are extra bits.

Suppose that the first information column fails, i.e., f = 1. Recall that k = 3, p = 3, r = 3, and τ = 4

and that e1 = 1, e2 = 2, and e3 = 4. We have e1+(f−1 mod ⌊ k
r−1 ⌋)

= e1 = 1 and 1 + ⌈ f

⌊ k
r−1 ⌋

⌉ = 2. Based

on steps 2–4 in Algorithm 1, we can repair the bits aℓ,1 using the first encoding column for ℓ ≡ 0 mod 2

and using the second encoding column for ℓ ≡ 1 mod 2, where 0 6 ℓ 6 7. More specifically, the bits

a0,1, a2,1, a4,1, and a6,1 are rebuilt using

a0,1 = a0,2 + a0,3 + (a0,4 = a0,1 + a0,2 + a0,3),

a2,1 = a2,2 + a2,3 + (a2,4 = a2,1 + a2,2 + a2,3),

a4,1 = a4,2 + a4,3 + (a4,4 = a4,1 + a4,2 + a4,3),

a6,1 = a6,2 + a6,3 + (a6,4 = a6,1 + a6,2 + a6,3),

and the bits a1,1, a3,1, a5,1, a7,1 are rebuilt using

a1,1 = a0,2 + a10,3 + (a2,5 = a1,1 + a0,2 + a10,3),

a3,1 = a2,2 + a0,3 + (a4,5 = a3,1 + a2,2 + a0,3),

a5,1 = a4,2 + a2,3 + (a6,5 = a5,1 + a4,2 + a2,3),

a7,1 = a10,2 + a8,3 + a2,2 + a0,3 + (a0,5 + a4,5) = a11,1 + a3,1.

Therefore, we can repair a0,1, a2,1, a4,1, and a6,1 by downloading 12 bits a0,j , a2,j, a4,j , and a6,j for j =

2, 3, 4. Because we can compute a10,2 by a2,2+a6,2, a10,3 by a2,3+a6,3, and a8,3 by a0,3+a4,3, we require

the bits

a0,2, a2,2, a4,2, a6,2, a0,3, a2,3, a4,3, a6,3, a0,5, a2,5, a4,5, a6,5,

to repair a1,1, a3,1, a5,1, and a7,1. Recall that the bits a0,j , a2,j, a4,j , and a6,j for j = 2, 3, 4 have already

been downloaded to repair a0,1, a2,1, a4,1, and a6,1. Therefore, it is sufficient to download a0,5, a2,5, a4,5,

and a6,5 to repair a1,1, a3,1, a5,1, and a7,1. Sixteen bits are downloaded from four columns to repair the

bits of the first information column.

For the code given in Table 1, we can verify that the information bits stored in the second and third

information columns can be rebuilt by accessing 16 and 18 bits, respectively.

3 The MDS property

When we state that an L × (k + 2) array code is MDS, it indicates that any k columns are sufficient to

recover all the information bits. In this section, we present the MDS property condition.

From the encoding procedure, we have aℓ(x) ∈ Cpτ for all ℓ = 1, 2, . . . , k according to (2) and Lemma 1.

Because aℓ(x) ∈ Cpτ and xiaℓ(x) ∈ Cpτ for integer i and ℓ = 1, 2, . . . , k, we determine that the r coded
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polynomials are in Cpτ . Thus, we are effectively considering the ring Cpτ . Because the ring Cpτ is

isomorphic to F2[x]/M
τ
p (x) [10, Lemma 3], where

M τ
p (x) =x(p−1)τ + x(p−2)τ + · · ·+ xτ + 1,

it is sufficient to show that the determinant of any square sub-matrix of the encoding matrix Pk×r in

(12) is invertible over F2[x]/M
τ
p (x).

Theorem 3. Let M τ
p (x) be factorized as a product of powers of irreducible polynomials over F2:

M τ
p (x) = (f1(x))

ℓ1 · (f2(x))
ℓ2 · · · (ft(x))

ℓt , (14)

where deg(f1(x)) 6 deg(f2(x)) 6 · · · 6 deg(ft(x)). If ei 6= ej for 1 6 i 6= j 6 k satisfies the condition

in Theorem 1 and deg(f1(x)) is larger than (r − 1)maxℓ∈{1,2,...,k}(eℓ), then the proposed code with the

encoding matrix given in (12) is an MDS code for k > r.

Proof. From Theorem 6 in [10], the ring F2[x]/M
τ
p (x) is isomorphic to the direct sum of t rings

F2[x]/(f1(x))
ℓ1 , F2[x]/(f2(x))

ℓ2 , . . . ,F2[x]/(ft(x))
ℓt . It is sufficient to show that the determinants of all

sub-matrices are invertible in F2[x]/(fi(x)) for i = 1, 2, . . . , t. Note that we can view e1, e2, . . . , ek as k

distinct variables that satisfy the condition in Theorem 1. It can be observed that the determinant of

any ℓ × ℓ sub-matrix is non-zero, where 1 6 ℓ 6 r. If the maximum degree of the non-zero determinant

is less than deg(f1(x)), then the determinant is invertible in F2[x]/(fi(x)).

As any ℓ× ℓ, 1 6 ℓ 6 r, the sub-matrix of (12) is contained in an r× r sub-matrix, and the maximum

degree among all the determinants of the ℓ× ℓ sub-matrices is no larger than that among all the determi-

nants of the r× r sub-matrices. It is sufficient to calculate the maximum degree among the determinants

of all the r × r sub-matrices of (12).

Note that the size of the matrix in (12) is k × r, where k > r. We must first choose r rows from the

k rows to form an r × r sub-matrix and thereafter calculate the maximum exponent of the determinant

of the r × r sub-matrix. The determinant is computed as the summation (with plus or minus signs) of

all possible multiplications of r entries present in different rows and different columns. Because the first

column of (12) is an all-one vector, we can choose any one entry in the first column that does not affect

the determinant. The second column of (12) is eT and the maximum exponent in all the entries of the

second column is maxℓ∈{1,2,...,k}(eℓ). We denote the row whose entry has the maximum exponent as ℓmax,

i.e., eℓmax = maxℓ∈{1,2,...,k}(eℓ), where 1 6 ℓmax 6 k. The ith column of (12) is the cyclic shift of the

second column of (12) by (i − 2)⌊ k
r−1⌋ positions, where i = 3, 4, . . . , r, and therefore the entry with the

maximum exponent in the i-th column is in row ((i− 2)⌊ k
r−1⌋+ ℓmax) mod k. For 2 6 i 6= j 6 k, we have

(

(i − 2)

⌊
k

r − 1

⌋

+ ℓmax

)

mod k 6=

(

(j − 2)

⌊
k

r − 1

⌋

+ ℓmax

)

mod k.

Otherwise, we can obtain the contradiction that i = j. Therefore, the entries with the maximum ex-

ponent in columns 2, 3, . . . , r are in different rows and the maximum degree of the determinant can be

computed by summing all the maximum degrees of the entries in r columns. The maximum degree is

(r − 1)maxℓ∈{1,2,...,k}(eℓ). This completes the proof.

From Theorem 2, the minimum value of τ is 2⌊
k

r−1 ⌋+t. If τ is a power of 2, then we have

M τ
p (x) = 1 + xτ + x2τ + · · ·+ x(p−1)τ = (1 + x+ · · ·+ xp−1)τ .

According to Theorem 3, the sufficient condition is that p is larger than (r − 1)maxℓ∈{1,2,...,k}(eℓ) when

τ is a power of 2.

4 Comparison and conclusion

In Table 2, we summarize the comparison of binary MDS array codes in terms of repair bandwidth,

the number of helper columns, and the number of parity columns. We can observe from Table 2 that
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Table 2 Comparison of binary MDS array codes

Code Repair bandwidth Number of helper columns d Number of parity columns r

ButterFly code [16, 17] Optimal k + 1 2

MDR code [19, 20] Optimal k + 1 2

Code in [18] Asymptotically weak-optimal k + 1 3

Code-I in [10] Asymptotically weak-optimal k + r−1
2

r > 3 is odd

Code-II in [10] Asymptotically weak-optimal k + r
2

r > 4 is even

Proposed code Asymptotically weak-optimal k + 1 r > 2

our constructed code is the first binary MDS array code with any positive r > 2 and an asymptotically

weak-optimal repair bandwidth.

When r = 3, the encoding complexity of the proposed code is the same as that of the code in [18] and

is comparable to that of the existing binary MDS array codes such as STAR codes [3]. Please refer to [18]

for a detailed discussion about the encoding complexity of the proposed code with r = 3.

Herein, we present new binary MDS array codes over a specific binary quotient ring with more than

two parity columns. The property of the encoding matrix that can asymptotically achieve weak-optimal

repair of an information column with d = k + 1 helper nodes is exploited. We have shown that many

encoding matrices satisfy the property.

We summarize possible future work as follows. First, in the present paper we focused only on the

property of the encoding matrix for d = k + 1 helper nodes. It would be interesting to investigate the

property of the encoding matrix that can asymptotically achieve weak-optimal repair of an information

column with n− 1 > d > k + 1 helper nodes. Second, the proposed codes achieve asymptotically weak-

optimal repair only for any information column. Modifying the construction to achieve asymptotically

weak-optimal repair for any parity column would be interesting future work. A generic transformation

proposed in [12] can achieve weak-optimal repair bandwidths for non-binary MDS codes. Future work

will be to apply that generic transformation to achieve weak-optimal repair bandwidths for binary MDS

array codes.
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