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Abstract. In this paper we present and describe an improved version of the Zero-Neighbors
algorithm, which we call the Zero-Coverings algorithm. We also present a method for finding a
smallest subset of codewords ( Zero-Coverings) which need to be stored to perform the Zero-Coverings
algorithm. For some short codes, the sizes of Zero-Coverings are obtained by computer searches; for
long codes, an asymptotic bound on the sizes of such subsets is also given.
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1. Introduction. In general, complete decoding [11] for a linear block code
has proved to be an NP-hard computational problem [1]. That is, it is unlikely
that a polynomial time (space) complete decoding algorithm for a linear block code
can be found. A new decoding algorithm, the Zero-Neighbors algorithm (ZNA) [9],
using the concept of a Zero-Neighbors, was proposed. Only the codewords in a Zero-
Neighbors need to be stored and used in the decoding procedure. The size of a
Zero-Neighbors is very small compared to min(2k, 2n−k) for n >> 1 and a wide range
of code rates R = k/n. An improvement of the Zero-Neighbors algorithm, the Zero-
Guards algorithm (ZGA), was recently presented [7, 10]. The ZGA further reduces
the number of codewords to be stored. The special set of these codewords is called
Zero-Guards. The time and space complexity of the ZNA and ZGA are determined by
the sizes of the Zero-Neighbors and the Zero-Guards used, respectively. The problem
here is how to find the smallest subset of codewords that can be used to perform the
ZNA-like decoding procedure. We call all the decoding algorithms that perform a
ZNA-like decoding procedure “ZNA-like” algorithms. Similarly, we call any subset
of codewords that can be used to perform a ZNA-like algorithm procedure a “ZN-
like” subset of codewords. The ZN-like subset of codewords with the smallest size is
called an “optimal ZN-like set.” Furthermore, a ZNA-like algorithm using an optimal
ZN-like set is denoted as an “optimal ZNA-like” algorithm.

In this paper we present an optimal ZNA-like algorithm, the Zero-Coverings al-
gorithm, and give a systematic way in which to find an optimal ZN-like set, a Zero-
Coverings. Furthermore, an asymptotic bound on the size of an optimal ZN-like set
is derived for long codes. In section 2 we briefly review the Zero-Neighbors and the
Zero-Guards algorithms. In section 3 we give a description of the Zero-Coverings al-
gorithm and, in the next section, properties of Zero-Coverings are presented. We also
give a systematic way to find Zero-Coverings. Simulation results and an asymptotic
bound on the size of a Zero-Coverings are given in section 5. Remarks and conclusions
are given in section 6.
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2. The Zero-Neighbors and the Zero-Guards algorithms. In this section
we briefly describe the ZNA and an improved version of it, the ZGA. First, we give
some definitions.

Let Z be the set of all binary vectors of length n, and let C⊂ Z be a binary
linear block code. Let d(x1,x2) denote the Hamming distance between x1,x2 ∈ Z.
Let w(x) = d(x,0) denote the Hamming weight of x and let ⊕ denote the modulo-2
addition. Furthermore, let dmin be the nonzero minimum weight of codewords in C.
In this paper we will assume that dmin ≥ 2.

Definition 2.1. The domain D(c) of a codeword c ∈ C is the set of all x∈ Z
such that d(x, c) ≤ d(x, c′), for all c′ ∈ C.

Definition 2.2. The vicinity B(x) of x ∈ Z is the set of all y ∈ Z such
that d(x,y) = 1. The domain frame G(c) of a codeword c ∈ C is the set G(c) =⋃
x∈D(c)B(x)−D(c).

Definition 2.3. A set of Zero-Neighbors (ZN) is a set N0 of codewords such
that

G(0) ⊂
⋃
c∈N0

D(c), where

|N0| = min

{
|N | | N ⊂ C, G(0) ⊂

⋃
c∈N

D(c)

}
.

It can be shown that if x 6∈ D(0), there exists a c ∈ N0 such that w(x⊕ c) < w(x).
Thus, the Zero-Neighbors algorithm is as follows.

Algorithm. Let y = y0 ∈ Z be the received vector to be decoded. At the ith step
of the algorithm we calculate w(yi−1 ⊕ c) for all c ∈ N0. If there exists a ci ∈ N0

such that w(yi−1 ⊕ ci) < w(yi−1), we set yi = yi−1 ⊕ ci and go to the next step;
otherwise, the algorithm terminates. If the algorithm terminates at the (m + 1)th
step, then ym = y ⊕∑m

i=1 ci ∈ D(0) and can be taken as a coset leader, while
c =

∑m
i=1 ci ∈ C is a codeword that is one of the closest to y.

We need only to store a ZN to accomplish this algorithm. It can be shown
that the number of steps m mentioned above is less than or equal to n − bdmin

2 c.
Furthermore, if 1 is in C, then m ≤ bn+1

2 c. Another improved version of the ZNA,
the ZGA, is described next.

Definition 2.4. The frontier F (0) of 0 is the set of all x ∈ Z such that all its
proper descendants [12] belong to D(0) and x 6∈ D(0).

Definition 2.5. A Zero-Guards (ZG) is a set RN0 of codewords such that

F (0) ⊂
⋃

c∈RN0

D(c), where

|RN0| = min

{
|N | | N ⊂ C, F (0) ⊂

⋃
c∈N

D(c)

}
.

In other words, the set of domains of codewords in RN0 forms a minimum covering
of F (0). It is not difficult to see that F (0) ⊂ G(0). Consequently, the number of
codewords in a ZG is less than or equal to that in a ZN . The decoding procedure
of the Zero-Neighbors algorithm described above can be applied to the Zero-Guards
algorithm while we use a ZG instead of a ZN in the procedure.
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3. An optimal ZN-like set. In this section we will give a systematic way to
find an optimal ZN-like set, a Zero-Coverings (ZC), which is related to a Zero-Guards.
First, we give a formal definition of a ZN-like subset of codewords.

Definition 3.1. A ZN-like subset of codewords, CZN , is a subset of C with
the following property: for every received vector y, if y 6∈ D(0), then there exists a
c ∈ CZN such that w(y ⊕ c) < w(y).

It has been shown that a ZN and a ZG are ZN-like subsets of codewords in [9] and
[6], respectively. It is not difficult to see that if N0 in the algorithm given in section 2
is replaced with CZN , the algorithm will still perform complete decoding. That is,
the algorithm is a ZNA-like algorithm. Since the time and space complexity of any
ZNA-like algorithm grow with the size of CZN , in order to reduce the complexity we
need to find the smallest CZN .

Definition 3.2. The covering domain Dc(c) of a codeword c ∈ C is the set of
all x ∈ F (0) such that d(x, c) < d(x,0).

That is, Dc(c) contains all vectors in the frontier F (0) such that they are closer
to c than to 0. Furthermore, if x ∈ D(c), then x ∈ Dc(c) for any x ∈ F (0).

Definition 3.3. A set of Zero-Coverings (ZC) is a subset of C such that

F (0) =
⋃
c∈ZC

Dc(c), where(1)

|ZC| = min

{
|N | | N ⊂ C, F (0) =

⋃
c∈N

Dc(c)

}
.(2)

In other words, the set of covering domains of a Zero-Coverings forms a minimum
covering of the frontier F (0). The algorithm for solving general minimum covering
problems can be found in [5].

There are many properties of the frontier F (0), derived in [6], that can help us
to find F (0). We state these properties here without proofs. The details of these
properties can be found in [6].

Lemma 3.4. Let S(x, a) = {v | v ∈ Z, w(v) = a and v be a descendant of x}.
Then x ∈ F (0) iff x 6∈ D(0) and S(x, w(x)− 1) ⊂ D(0).

Lemma 3.5. If x ∈ F (0), then there exists at least one c ∈ C such that x ∈ D(c)
and x is a descendant of c.

Lemma 3.6. Let x ∈ F (0). If d(x, c) < w(x), then x is a descendant of c.
Lemma 3.7. Let y ∈ Z and y 6∈ D(0). Then there exists a descendant x of y

such that x ∈ F (0).
Lemma 3.8. For every c ∈ C and c 6= 0 there exists a descendant x of c such

that x ∈ F (0).
The following are some new results that are related to covering domains.
Lemma 3.9. If x ∈ F (0), then there exists at least one c ∈ C such that x ∈ Dc(c)

and x is a descendant of c.
Proof. Since x ∈ F (0) and x ∈ D(c) imply that x ∈ Dc(c), by Lemma 3.5, the

result holds.
Lemma 3.10. If x ∈ Dc(c), then x is a descendant of c.
Proof. The result follows directly from Lemma 3.6.
Lemma 3.11. If c ∈ ZC, then there exists one x ∈ F (0) such that x ∈ Dc(c)

and x 6∈ Dc(c
′), c′ 6= c, c′ ∈ ZC.
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Proof. Assume that there is no x ∈ F (0) such that x ∈ Dc(c) and x 6∈ Dc(c
′), c′ 6=

c, c′ ∈ ZC. Then for every x ∈ Dc(c) and x ∈ F (0), there exists at least one
c′ ∈ ZC, c′ 6= c such that x ∈ Dc(c

′). Therefore, if we remove c from ZC we also
have F (0) =

⋃
c∈ZC Dc(c). The above result contradicts the statement that ZC is a

minimum set such that F (0) =
⋃
c∈ZC Dc(c).

Next we need to prove that a ZC is a ZN-like subset of codewords. In order to
show this, it is sufficient to prove the following theorem.

Theorem 3.12. y 6∈ D(0) iff there exists one c ∈ ZC such that w(y⊕c) < w(y).
Proof. Assume that y 6∈ D(0). From Lemma 3.7, there exists a descendant

x of y such that x ∈ F (0). Consider a c ∈ ZC such that x ∈ Dc(c). Hence,
w(y ⊕ c) = d(y, c) ≤ d(y,x) + d(x, c) < d(y,x) + d(x,0) = w(y). Assume that
y ∈ D(0). Then d(y,0) ≤ d(y, c) for all c ∈ C. Thus, w(y) ≤ w(y ⊕ c) and no
c ∈ ZC, such that d(y ⊕ c) < w(y).

Now we prove that ZC is an optimal ZN-like set.
Theorem 3.13. A Zero-Coverings is an optimal ZN-like set.
Proof. Assume that we have a ZN-like subset of codewords, CZN . Let x ∈ F (0).

Since x 6∈ D(0), by the properties of CZN , there exists one c ∈ CZN such that
d(x, c) < d(x,0). Therefore, x ∈ Dc(c). If we run through all of the elements in
F (0), we have a subset of CZN , denoted as C ′ZN , such that

F (0) =
⋃

c∈C′
ZN

Dc(c).

Consequently, any ZN-like subset of codewords will contain a subset that satisfies the
above equality. Therefore, by Definition 3.3, a ZC is a ZN-like subset of codewords
with the smallest size that satisfies the above equality.

In general, the ZGA is not an optimal ZNA-like algorithm. One example to
illustrate this fact is given in the appendix.

4. Properties of the frontier of 0 and a Zero-Coverings. In this section
we give some theorems describing the properties of the frontier of 0 and a ZC that
can be used to find the ZC.

Definition 4.1. Let xC be the coset containing x. Furthermore, let w(xC) be
the Hamming weight of a coset leader in xC.

Theorem 4.2. x ∈ F (0) iff w(x)− 2 ≤ w(xC) ≤ w(x)− 1 and for every vector
v in xC with w(v) < w(x), w(x⊕ v) = w(x) + w(v).

Proof. Assume that x ∈ F (0). Since w(xC) < w(x), then w(xC) ≤ w(x) − 1.
Furthermore, assume that w(xC) < w(x) − 2. Let u be a coset leader in xC and
Let v1 be an immediate descendant of x which differs from x in the ith position.
Furthermore, let v2 be a vector that differs from u only in the ith position. Then
w(v2) ≤ w(x) − 2 and w(v1) = w(x) − 1. Since u and x are in the same coset, v1

and v2 are also in the same coset. Thus, v1 6∈ D(0). This contradicts the statement
that v1 ∈ D(0).

Assume that w(x⊕ v) 6= w(x) +w(v) for a vector v in xC, where w(v) < w(x).
Then there are two cases to consider:

1. w(v) = w(xC). Since w(x⊕ v) 6= w(x) + w(v), there exists a position such
that x and v are one in that position. Let v3 and v4 be descendants of x and v, which
differ from them in the position just mentioned, respectively. Since x and v are in the
same coset, then v3 and v4 are in the same coset, also. Obviously, w(v3) > w(v4).
This contradicts the statement that v3 ∈ D(0).
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2. w(v) 6= w(xC). Then w(v) = w(x)−1 and w(xC) = w(x)−2. In this case,
the argument is similar to that above.

Now assume that, for every vector v in xC with w(v) < w(x), w(x ⊕ v) =
w(x) + w(v) and w(x) − 2 ≤ w(xC) ≤ w(x) − 1. We want to prove that x ∈ F (0).
That is, we need to prove that every immediate descendant of x belongs to D(0). Let
v be any vector in xC such that w(v) < w(x). Let v5 be an immediate descendant
of x that differs from x in the ith position. Let v6 be a vector that is one in the ith
position and that differs from v only in that position. Therefore, v5 and v6 are in
the same coset. v6 has a weight of at least w(x)− 1 since w(x⊕ v) = w(x) + w(v).
Therefore, v5 ∈ D(0).

Base on the above theorem, we can design an efficient algorithm to find F (0)
from a standard array. Furthermore, we can find the Dc(c) from a standard array by
the following theorems. Since the proofs of the theorems are simple, we omit them
here.

Theorem 4.3. Let x ∈ F (0); x ∈ Dc(c) iff there exists a vector v in xC such
that w(v) < w(x) and c = v ⊕ x. Furthermore, if x ∈ Dc(c), then w(c) = 2w(x)− 2
or w(c) = 2w(x)− 1 .

Theorem 4.4. Let x ∈ F (0) and x ∈ Dc(c); then w(xC) ≤ d(x, c) ≤ w(xC)+1.
The following result can be used to derive an upper bound on the size of a ZC.
Theorem 4.5. Let r be the covering radius of the code C. If c ∈ C and

w(c) > 2r + 1, then c 6∈ ZC.
Proof. Assume that c ∈ ZC. From Lemma 3.11 there exists an x ∈ F (0),

x ∈ Dc(c), and x 6∈ Dc(c
′), c′ 6= c. Since x ∈ F (0), w(x) ≤ r + 1 and d(x, c) ≤

r. Hence, w(c) = w(x) + d(x, c) ≤ 2r + 1. Therefore, if w(c) > 2r + 1, then
c 6∈ ZC.

Theorem 4.6. Let c1,c2 ∈ C and c1 be a proper descendant of c2. Then,
c2 6∈ ZC.

Proof. Assume that c2 ∈ ZC and c3 = c1 ⊕ c2. Then, by Lemma 3.11, there
exists an x ∈ F (0) such that x ∈ Dc(c2) and x 6∈ Dc(c

′), c′ 6= c2, c′ ∈ ZC.
Furthermore, by Lemma 3.6, x is a descendant of c2. By Lemma 3.6, if d(x, c1) <
w(x), then x is a descendant of c1. In this case, d(x, c2) = d(x, c1) + w(c3). Since
w(c3) ≥ 2, by Theorem 4.4, x 6∈ Dc(c2), which contradicts the statement that x ∈
Dc(c2). Therefore, d(x, c1) ≥ w(x). Similarly, we have d(x, c3) ≥ w(x). Therefore,
d(x, c2) = d(x, c1) + d(x, c3) − w(x) ≥ w(x). This contradicts the statement that
x ∈ Dc(c2).

The above theorem is much less restrictive than Theorem 3 in [9] which states
that if c1 and c3 are in N0, then c2 6∈ N0. The following result gives a low bound on
the number of codewords in ZC.

Theorem 4.7. All codewords of minimum weight belong to a ZC.
Proof. Let c be a codeword of minimum weight. From Lemma 3.8, there exists

one x ∈ F (0) and x is a descendant of c. Thus, d(c, c′) ≤ d(c,x) + d(x, c′) = w(c)−
w(x) + d(x, c′), where c′ 6= c and c′ ∈ C. Hence, d(x, c′) ≥ w(x) + [d(c, c′)− w(c)].
Since c is of minimum weight, d(c, c′)− w(c) ≥ 0. Thus, d(x, c′) ≥ w(x). But since
x 6∈ D(0), then x ∈ Dc(c), and x 6∈ Dc(c

′). Therefore, c ∈ ZC.

5. Analysis of the size of a Zero-Coverings. In this section we give sizes
of Zero-Coverings for some short codes that are obtained by computer searches. For
long codes, an asymptotic bound on the size of a Zero-Coverings is given. As pointed
out in section 2, the space and time complexity of the ZCA are determined by the
size of a ZC. Therefore, we will focus on the discussion of the size of a ZC.
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In Table 1 we give the sizes of the Zero-Coverings for some linear block codes.
We also indicate, for comparison, the numbers of codewords and coset leaders for
those codes. Since finding a ZC is an NP-hard computational problem (the minimum
covering problem), for some codes we can obtain only upper bounds on the sizes of a
ZC. The algorithm for solving the minimum covering problem used here is modified
from the approximation algorithm given in [5].

Table 1
The sizes of Zero-Coverings for some linear block codes.

code(n, k, dmin) 2k 2n−k |ZC|
BCH(15, 7, 5) 128 256 63
QR(17, 9, 5) 512 256 ≤ 76

BCH(21, 12, 5) 4096 512 ≤ 189
QR(23, 11, 8) 2048 4096 506
QR(31, 16, 7) 65536 32768 ≤ 2271
QR(47, 24, 11) 16777216 8388608 ≤ 17296

Now we give an asymptotic bound on the size of a ZC for long codes. The
asymptotic bound will be characterized by the function

FZC(R) = lim
n→∞ 1/n log2 |ZC|,

where R = k/n is the code rate [9].
Theorem 5.1.

FZC(R) ≤ H2(2H−1
2 (1−R))− (1−R) when R > 0.1887,

≤ R otherwise,

where H2(x) is the binary entropy function of x and H−1
2 is the inverse of H2(x) for

0 ≤ x ≤ 1/2.
Proof. For large n, the size of a ZC can be estimated by using the following

facts:
1. The number of codewords with weight j, aj can be estimated by aj =(

n
j

)
/2n−k for j ≥ dmin [11].

2. For virtually all linear (n, k) codes,

r = nH−1
2 (1−R) + o(n),

where o(n) denotes a function satisfying limn→∞ o(n)/n = 0 [4, 2, 8, 3].
3. For virtually all linear (n, k) codes, dmin ≥ nH−1

2 (1−R) + o(n) [11, 3].
By Theorem 4.5 and fact 1, we have

|ZC| ≤
2r+1∑
j=dmin

aj .

By facts 2 and 3, the above inequality will be

|ZC| ≤ (r + 2)B,

where B is the largest value among admin , admin+1, . . . , and a2r+1.
If 2r + 1 ≤ bn/2c, then

B = a2r+1;
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otherwise

B =

(
n

bn/2c
)
/2n−k.

By calculation, when R > 0.1887, 2r+1 ≤ bn/2c, where r = nH−1
2 (1−R)+o(n).

Furthermore, by the relation

2nH2(λ)−o(n) ≤
(
n

λn

)
≤ 2nH2(λ),

we have

B = 2n[H2(2H−1
2 (1−R))−(1−R)] when R > 0.1887,

= 2k otherwise.

Since r + 2 = nH−1
2 (1 − R) + o(n) + 2 � 2k or 2n[H2(2H−1

2 (1−R))−(1−R)] when n
is large, then

|ZC| ≤ 2n[H2(2H−1
2 (1−R))−(1−R)] when R > 0.1887,

≤ 2k otherwise.

Therefore,

FZC(R) ≤ H2(2H−1
2 (1−R))− (1−R) when R > 0.1887,

≤ R otherwise.

We remark here that the asymptotic bound turns out to be the same as that for
the size of a Zero-Neighbors presented in [9] that is based on a geometric argument.
However, the argument used here is simpler and more direct than that used in [9].

6. Conclusions. In this paper we have presented an improved ZNA-like decod-
ing algorithm, the Zero-Coverings algorithm. The time and space complexity analysis
of this algorithm are also given. Although the asymptotic bound given here indicates
that the complexity of this algorithm is growing exponentially with code length n,
from the computer simulation, a good computation gain can be obtained. For exam-
ple, by the results in Table 1, the computation gain for code (47, 24, 11) is at least
(223/17296)/24 = 20. However, due to limitation of the memory and computation
power of the computer, we can obtain simulation results only for short codes.

The decoding procedure presented here is a complete decoding procedure [11].
That is, the procedure always finds the codeword that is closest to the received vec-
tor. The procedure can be modified to an incomplete decoding (bounded-distance
decoding) procedure in order to further reduce the decoding computation needed.
Furthermore, although the decoding algorithm presented in this paper is designed for
binary linear block codes, it can be generalized to nonbinary linear block codes.

Appendix. In this appendix we give an example to show that ZGA is not an
optimal ZNA-like algorithm. Let code (12, 5, 3) be a linear code generated by the
following generating matrix:

G =


1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1

 .
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From computer simulation we have

ZG = ZC ∪ {111100000000},

where ZC is a set containing 12 codewords. Thus, |ZC| is less than |ZG|.
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