
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013 3553

On the Design of
Variable-Length Error-Correcting Codes

Ting-Yi Wu, Student Member, IEEE, Po-Ning Chen, Senior Member, IEEE,
Fady Alajaji, Senior Member, IEEE, and Yunghsiang S. Han, Fellow, IEEE

Abstract—A joint source-channel coding problem that com-
bines the efficient compression of discrete memoryless sources
with their reliable communication over memoryless channels
via binary prefix-free variable-length error-correcting codes
(VLECs) is considered. Under a fixed free distance constraint, a
priority-first search algorithm is devised for finding an optimal
VLEC with minimal average codeword length. Two variations
of the priority-first-search-based code construction algorithm
are also provided. The first one improves the resilience of the
developed codes against channel noise by additionally considering
a performance parameter Bdfree without sacrificing optimality in
average codeword length. In the second variation, to accommo-
date a large free distance constraint as well as a large source
alphabet such as the 26-symbol English data source, the VLEC
construction algorithm is modified with the objective of signif-
icantly reducing its search complexity while still yielding near-
optimal codes. A low-complexity sequence maximum a posteriori
(MAP) decoder for all VLECs (including our constructed optimal
code) is then proposed under the premise that the receiver
knows the number of codewords being transmitted. Simulations
show that the realized optimal and suboptimal VLECs compare
favorably with existing codes in the literature in terms of coding
efficiency, search complexity and error rate performance.

Index Terms—Joint source-channel coding, variable-length
codes, error resilient data compression, sequence maximum a
posteriori decoding, average codeword length, symbol error rate.

I. INTRODUCTION

ONE of Shannon’s key contributions in information theory
is the separation principle for source-channel coding

[27], which states that the source and channel coding oper-
ations can be separately designed and performed in tandem

Manuscript received August 2, 2012; revised January 17, 2013. The editor
coordinating the review of this paper and approving it for publication was E.
Ayanoglu.

T.-Y. Wu and P.-N. Chen are with the Department of Electrical and Com-
puter Engineering, National Chiao-Tung University (NCTU), Hsinchu 300,
Taiwan (e-mail: mavericktywu@gmail.com, poning@faculty.nctu.edu.tw).
They are also with the Center of Information and Communications Technology
of NCTU, Taiwan.

F. Alajaji is with the Department of Mathematics and Statistics, Queen’s
University, Kingston, ON K7L 3N6, Canada (e-mail: fady@mast.queensu.ca).

Y. S. Han is with the Department of Electrical Engineering, National
Taiwan University of Science and Technology, Taipei 106, Taiwan (e-mail:
yshan@mail.ntust.edu.tw).

This work was supported by the National Science Council of Taiwan under
NSC 98-2221-E-009-060-MY3, NSC 99-2221-E-009-076-MY3, NSC 99-
2221-E-011-158-MY3, and by the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

Parts of this work were presented at the IEEE International Symposium on
Information Theory (ISIT 2011), Saint-Petersburg, Russia, July-August 2011
[32].

Digital Object Identifier 10.1109/TCOMM.2013.072913.120564

without affecting the system’s optimality for reliably trans-
mitting a data source over a noisy channel. However, this
result hinges on the assumption that unlimited complexity
and coding delay can be afforded by the system, which
is unrealistic in today’s resource constrained communica-
tion systems. It is indeed well-known via both analytical
and empirical studies (e.g., see [1], [2], [14], [33] and the
references therein) that joint source-channel coding (JSCC)
can significantly outperform separate source-channel coding
(SSCC), particularly when the system has stringent delay
and complexity restrictions. JSCC, which may use codes of
fixed or variable length, is typically realized in two ways:
by coordinating the source and channel coding functions in
tandem or by combining them within a single step (examples
of various JSCC schemes can be found in [33]). In this
paper, we focus on variable-length single-step JSCC with the
objective of designing optimal or close-to-optimal variable-
length error-correcting codes (VLEC) with low complexity for
the efficient compression and communication of data sources
in the presence of channel noise. Here optimality is interpreted
as achieving minimal average codeword length among all
VLEC designs subject to a fixed free-distance constraint.
The successful development of such VLECs, which play
the dual role of good data compression and error-correcting
codes, provides an interesting alternative to the classical SSCC
scheme, particularly when the system’s complexity can be
significantly reduced without degrading its error performance.

First introduced in [17], [5], [6], VLECs were thoroughly
investigated by Buttigieg in [7], [9] and were shown to exhibit
properties akin to those of convolutional codes: they have
a memory structure, which can naturally be represented via
a trellis, and they are best suited for being decoded via a
sequence maximum-likelihood (ML) or maximum a posteriori
(MAP) Viterbi-like decoder (as opposed to decoding their
codewords instantaneously). Furthermore, Buttigieg showed
how the VLECs’ distance spectrum and the union bound can
be used to predict their error performance under hard-decision
ML decoding for the binary symmetric channel (BSC) and
identified the codes’ free distance dfree as a key parameter
which, when maximized, can improve the codes’ performance.
In related works, the error exponent of VLECs is analyzed [3]
and conditions for the existence of VLECs are studied [31],
[24].

In [7], Buttigieg originally proposed two techniques to
construct VLECs with a given dfree value. They are respec-
tively based on a greedy algorithm (GA) and a majority vote

0090-6778/13$31.00 c⃝ 2013 IEEE

3554 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

algorithm (MVA). Specifically, he employs either the GA or
MVA procedure to select as many codewords as possible of the
same length, where the selected codewords must satisfy certain
minimum distance conditions in order to reach the required
dfree. Later, Lamy and Paccaut [23] replaced Buttigieg’s GA
and MVA schemes with other ones in order to obtain a good
trade-off between system complexity and coding efficiency.
In [30], Wang et al. improved the coding efficiency of
VLECs by iteratively replacing longer codewords with shorter
ones. In [26], Savari and Kliewer focused on minimizing the
average codeword length of VLECs. In their design, each
codeword is required to have Hamming weight w, where w is a
multiple of an integer ≥ 2, resulting in a class of VLECs with
dfree ≥ 2. In [11], [13], [18], Diallo et al. proposed several
algorithms for obtaining VLECs with maximal dfree under the
premise that all codeword lengths are known in advance. A
similar approach was used in [12] for developing good error-
correcting arithmetic codes.

With respect to VLEC decoding, Buttigieg [7] used a trellis
representation of VLECs and modified the Viterbi algorithm
(VA) to realize a sequence MAP decoder, which is optimal in
terms of minimizing the VLECs’ sequence error probability.
Later in 2008, Huang et al. [19] proposed a trellis-based MAP
priority-first search decoding algorithm for VLECs based on a
suitable soft-decision MAP decoding criterion and empirically
showed a significant complexity improvement over Buttigieg’s
MAP decoder. MAP decoding techniques using an extended
trellis under the assumption that the receiver knows both the
number of transmitted bits and the number of transmitted
codewords were developed in [4], [21]. Other decoding meth-
ods for variable-length codes (VLC) that use other trellis VLC
representations include the sequence MAP decoder of [3] and
iterative (Turbo-like) decoders of [4], [22].

In this work, we present a novel priority-first search al-
gorithm that can construct prefix-free VLECs with minimal
average codeword length and free distance no less than a
pre-given d∗free. We next investigate how to select, among
all obtained optimal1 VLECs, the one with the best error
correction capability. We observe that the codes’ Levenshtein
coefficient Bdfree plays an important role in their error per-
formance: choosing the optimal code with the smallest Bdfree

yields the best system error rate. Furthermore, we modify
our construction algorithm to reduce its search complexity in
order to accommodate large values of dfree and large source
alphabets such as the 26-symbol English data source. We also
propose a low-complexity two-phase sequence MAP decoder
that can be applied to all VLECs (including our constructed
optimal and suboptimal codes) under the assumption that the
receiver knows both the number of transmitted bits and the
number of transmitted codewords. We show by simulations
that the resulting suboptimal VLECs outperform most existing
VLECs in the literature in terms of compression efficiency,
search complexity and error rate. We also compare our JSCC
codes with traditional SSCCs.

The rest of this paper is organized as follows. In Section II,
we formulate our problem and present some background

1We emphasize that, throughout the paper, an “optimal VLEC” is defined
as a VLEC with minimal average codeword length. In other words, an optimal
VLEC does not guarantee to yield the best error rate performance.

material about VLECs. In Section III, we describe our code
construction which guarantees the development of optimal
VLECs with a given free distance constraint. In Section IV,
two VLEC construction modifications are proposed respec-
tively for the design of optimal codes with enhanced error
correction capability and for the design of suboptimal VLECs
for large dfree and large source alphabet sizes. In Section V,
a low-complexity two-phase sequence MAP decoder is in-
troduced. Simulation results illustrating the performance of
the constructed optimal and suboptimal VLECs are given in
Section VI. Finally, conclusions are stated in Section VII.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider the JSCC problem of efficient compression
of a discrete memoryless (independent and identically dis-
tributed) source and its reliable communication over a noisy
channel via a single binary VLEC. We assume a binary phase-
shift keying (BPSK) modulated additive white Gaussian noise
(AWGN) channel (although other channel models can also be
considered) and employ optimal sequence MAP decoding in
the sense of minimizing the code’s sequence error probability.
The VLEC’s free distance dfree has already been identified
as a key error performance parameter, playing a similar role
as for convolutional codes: the larger dfree is, the better is
the code’s error resilience particularly at high signal-to-noise
ratios (SNRs) [7], [9]. Our objectives are four-fold:

• Designing an algorithm that guarantees the construction
of an optimal (i.e., with minimal average codeword
length) binary prefix-free VLEC for a given free distance
bound d∗free.

• Enhancing the error correction capability of the con-
structed optimal VLECs by optimizing an important
performance parameter Bdfree .

• Ensuring that the construction algorithms have a search
complexity superior to the state-of-the-art code con-
struction algorithms in the literature so that they can
accommodate large source alphabets such as the 26-
symbol English data source.

• Designing an efficient low-complexity sequence MAP
decoder under the premise that the receiver knows the
total number of transmitted VLEC codewords (in addition
to the total number of transmitted code bits).

The successful achievement of these objectives has inter-
esting applications for the effective compression and error-
resilient transmission of text documents over noisy channels.

In what follows, we present some preliminary background
about VLECs. Consider a K-ary discrete memoryless source
with alphabet S ! {α1,α2, . . . ,αK} and respective symbol
probabilities p1, p2, . . . , pK (such that

∑K
i=1 pi = 1). A (first-

order) VLEC encoder maps each symbol αi ∈ S to a
binary variable-length codeword ci, where i = 1, 2, . . . ,K .
The set of codewords is denoted by C = {c1, c2, . . . , cK}
and the average codeword length for code C is given by
C ! ∑K

i=1 pi|ci|, where |ci| is the length of codeword ci.

A. Sequence MAP Decoding Criterion

Let XL,N ! {x1x2x3 · · ·xL : ∀xi ∈ C and
∑L

i=1 |xi| =
N} be a set of bitstreams consisting of L (concatenated)

WU et al.: ON THE DESIGN OF VARIABLE-LENGTH ERROR-CORRECTING CODES 3555

(a) Trellis TN

(b) Trellis TL,N

Fig. 1. Trellis representations of a VLEC. The red-color, blue-color and
green-color arrows correspond respectively to the transition of transmitting
codewords c1, c2 and c3.

codewords with overall length N . Define XN ! ⋃
i≥1 Xi,N .

Assume that a sequence of VLEC codewords of overall length
N is transmitted over the binary-input AWGN channel and
that r ! (r1, r2, . . . , rN) is received at the channel out-
put. The sequence MAP (soft-decision) decoder then outputs
v̂ ! (v̂1, v̂2, . . . , v̂N) if v̂ satisfies [19]

N∑

i=1

(yi ⊕ v̂i)∥φi∥1 − ln Pr(v̂)

≤
N∑

i=1

(yi ⊕ vi)∥φi∥1 − ln Pr(v) (1)

for all

v ∈
{
XN if the receiver only knows N,

XL,N if the receiver knows both L and N,

where ⊕ is modulo-2 addition, Pr(·) denotes probability, ∥ ·∥1
denotes absolute value, φi is a log-likelihood ratio given by
φi ! ln[Pr(ri|0)/Pr(ri|1)] and yi is the hard decision of ri
given by

yi !
{
1 if φi < 0,

0 otherwise.

B. VLEC Trellis Diagrams

In [7], [9], Buttigieg employed a VLEC decoding trellis
TN as exemplified in Figure 1(a) for C = {00, 010, 0110}, in
which state Sj denotes that the number of bits decoded thus
far is j.

We can construct an extended trellis TL,N as defined
in [4], [21] under the assumption that the receiver knows
both L and N . An example of such extended trellis for
C = {00, 010, 0110} is shown in Figure 1(b), where Si,j

denotes that the number of decoded symbols and the number
of decoded bits thus far are i and j, respectively.

C. Free Distance

In [7], in order to analyze the error performance of a trellis-
based VLEC decoder, Buttigieg defined the free distance as
the minimal Hamming distance between any two distinct paths
which converge at the same node in the trellis. Thus, the free
distance dfree of C as defined in [7] depends on the structure
of its decoding trellis diagram. For the computation of dfree,
we will assume throughout the paper that the receiver knows
both L and N . Therefore, dfree is defined based on XL,N and
is given by

dfree(C) ! min{d(a, b) : a, b ∈ XL,N

for some L,N and a ̸= b}, (2)

where d(a, b) denotes the Hamming distance between bit-
streams a and b. The following lower bound on dfree(C) can
be shown [7], [9]

dfree(C) ≥ min{db(C), dc(C) + dd(C)}, (3)

where db(C) is the “overall minimum block distance” defined
as

db(C) ! min{d(ci, cj) : ci, cj ∈ C,
ci ̸= cj and |ci| = |cj |}, (4)

dc(C) is the “minimum converge distance” given by

dc(C) ! min{d(ci, c′j) : ci, cj ∈ C, |ci| < |cj |,
c′j is the suffix of cj and |c′j | = |ci|}, (5)

and dd(C) is the “minimum diverge distance” defined as

dd(C) ! min{d(ci, c′j) : ci, cj ∈ C, |ci| < |cj |,
c′j is the prefix of cj and |c′j | = |ci|}. (6)

III. OPTIMAL VLEC CONSTRUCTION

We herein present a new search algorithm for constructing
an optimal VLEC with a designed free-distance bound d∗free.
The search algorithm always outputs an optimal VLEC with
its dfree ≥ d∗free. This algorithm, which is a modification
and extension of the algorithm introduced in [20] for finding
optimal lossless data compression codes with reversible VLC
structure, uses a new search tree and a priority-first search
method.

To construct an optimal VLEC with K codewords and
dfree ≥ d∗free, we use a search tree in which each node X con-
tains three components denoted by the triplet {CX,AX, f(X)}.
Here, CX = {cX1, cX2, . . . , cXt} denotes the set of t code-
words that have been selected for the desired VLEC, and
AX = {aX

1,a
X
2, . . .} is the set of all bitstreams, which can

be future candidate codewords and hence do not contain any
bitstreams that the codewords currently in CX are their prefixes.
These bitstreams are listed in order of non-decreasing lengths:

3556 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

Fig. 2. Relation between a parent node and its children in a search tree.

|aX
1| ≤ |aX

2| ≤ · · · .2 Finally, f(X) denotes the metric employed
for finding an optimal VLEC and is given by

f(X) !
t∑

i=1

pi · |cXi |+
K∑

i=t+1

pi · |aX
i−t|. (7)

The search tree is binary (i.e., each of its nodes except a
leaf or terminal node has two children); the relation between
a parent node and its children is illustrated in Figure 2.
Specifically, for a parent node P, its left child L is obtained
by adding the next candidate codeword aP

1 into CL. Since aP
1

is now a codeword in CL, the set AL needs to be updated by
removing all bitstreams in AP whose prefix is aP

1. Hence, the
triplet of the left child L becomes

CL = CP ∪ {aP
1} (8)

AL = {aL
1,a

L
2, . . .}

= {a : a ∈ AP and aP
1 is not a prefix of a} (9)

f(L) =
t∑

i=1

pi · |cPi |+ pt+1 · |aP
1|

+
K∑

i=t+2

pi · |aL
i−t−1|. (10)

On the other hand, the right child R is obtained by rejecting
the next candidate codeword aP

1 from its parent node. So, the
triplet of the right child R becomes

CR = CP (11)

AR = {aP
2,a

P
3, . . .} = AP \ {aP

1} (12)

f(R) =
t∑

i=1

pi · |cPi |+
K∑

i=t+1

pi · |aP
i−t+1|. (13)

Finally, since the root node has not yet selected any codeword,
all bitstreams are its candidates; thus its components are given
by

Croot = ∅ (14)

Aroot = {aroot
1 ,aroot

2 , . . .}
= {0, 1, 00, 01, 10, 11, 000, 001, . . .} (15)

f(root) =
K∑

i=1

pi · |aroot
i |. (16)

Since every possible VLEC can be obtained by traversing
the search tree from the root node to its corresponding leaf

2Recall that candidate codewords of equal length can be listed in any
order without affecting the optimality of the output VLEC of our construction
algorithm. For programing convenience, we simply list candidate codewords
of equal length alphabetically in AX, e.g., see Aroot in (15).

nodes, a priority-first search algorithm can be applied on
the tree to find a VLEC whose average codeword length is
smallest among all VLECs with free distances no less than
d∗free. To reduce the search space, the average codeword length
of any known VLEC with free distance no less than d∗free is
denoted by Ub and used as an upper bound for the average
codeword length to exclude seemingly non-optimal VLECs
during the search process. The search algorithm for finding
an optimal VLEC is described as follows.
Step 1: Push the root node into the Encoding Stack.3 Set

upper bound Ub as the average codeword length of an
existing VLEC with free distance no less than d∗free.

Step 2: If the top node of the Encoding Stack has selected K
codewords (i.e., |Ctop| = K) and dfree(Ctop) ≥ d∗free,
then output Ctop as the optimal VLEC and stop the
algorithm.

Step 3: Generate the two children of the top node as in Fig-
ure 2 and then delete the top node from the Encoding
Stack. If the left child has selected K codewords with
its free distance ≥ d∗free and its associated metric f is
smaller than Ub, then update Ub = f .

Step 4: Discard the child node which satisfies any of the
following conditions:

1) It has selected more than K codewords for its
Cchild;

2) There is no more candidate in Achild and the
size of Cchild is less than K (i.e., Achild = ∅
and |Cchild| < K);

3) The metric f(child) is larger than Ub;
4) Its associated free distance dfree(Cchild) is less

than d∗free.4

Step 5: Insert the remaining children (Those children which
are not discarded in Step 4.) into the Encoding Stack,
and reorder the Encoding Stack in order of ascending
metrics. Go to Step 2.

It should be emphasized that the above construction algo-
rithm focuses only on prefix-free VLECs as most previous
works did [7], [9], [11], [12], [23], [26], [30]. Although
non-prefix-free but uniquely decodable VLECs can also be
constructed, they are not herein considered due to the added
complexity in testing their unique decodability. The proof
of the optimality of the above algorithm is provided in our
conference work [32].

IV. MODIFIED VLEC CONSTRUCTIONS

In this section, two modifications on the optimal VLEC
construction algorithm introduced in Section III are proposed.
The first modification further enhances the error-correcting

3The Encoding Stack can be implemented via the data structure named
HEAP [10]. One important property of the HEAP structure is that it can
access the node with the minimal metric (i.e., the top node in the Encoding
Stack) within O(log(n)) complexity, where n denotes the number of nodes
in the HEAP.

4In order to check this condition efficiently, the lower bound on the free
distance given in (3) is first computed; if it is less than d∗free, then Dijkstra’s
algorithm [12] is adopted to determine the exact free distance. This is realized
by transforming the finite-state VLEC encoder into a pairwise distance graph
and applying Dijkstra’s algorithm to find the graph’s shortest path, where the
resulting shortest path yields the VLEC’s free distance. To our knowledge,
Dijkstra’s algorithm is the most efficient method to evaluate dfree.

WU et al.: ON THE DESIGN OF VARIABLE-LENGTH ERROR-CORRECTING CODES 3557

capability of the found optimal VLEC by examining the union
bound coefficient Bdfree of all equivalent5 optimal VLECs
satisfying the free distance constraint and then outputting the
one with the smallest Bdfree , where Bdfree is a Levenshtein
parameter defined in Section IV-A below. By targeting a
suboptimal VLEC instead of an optimal one, the second
modification reduces considerably the search complexity of
the optimal construction algorithm in order to make feasible
the construction of VLECs for larger alphabet sizes (such as
the 26-symbol English data source) along with a large d∗free
(such as d∗free = 10).

A. Finding an optimal VLEC with the smallest Bdfree

In [7], [9], Buttigieg found that under hard-decision ML
decoding, the symbol error probability Pe(C) of a VLEC C
transmitted over the BSC with crossover probability ϵ can be
upper-bounded by

Pe(C) ≤
∞∑

h=dfree(C)

B̃hPh, (17)

where

B̃h !
∞∑

N=1

∑

a∈XN

Pr(a)·

⎛

⎝
∑

b : b∈XN and d(a,b)=h

L(a, b)

⎞

⎠ (18)

and

Ph !

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑h
e=(h+1)/2

(h
e

)
ϵe(1− ϵ)h−e if h is odd,

1
2

(h
h/2

)
ϵh/2(1− ϵ)h/2

+
∑h

e=h
2 +1

(h
e

)
ϵe(1− ϵ)h−e if h is even.

(19)

Note that in Buttigieg’s derivation, the symbol errors are
counted using the Levenshtein distance L(·, ·) between trans-
mitted sequence and decoded sequence, and the receiver
decodes based on trellis TN with N extending to infinity.

With a slight modification, a similar bound can be derived
under the additional assumption that the receiver also knows
the number of transmitted codewords L. In particular, (17)
remains of the same form with B̃h replaced with Bh, where

Bh !
∞∑

L=1

∞∑

N=1

∑

a∈XL,N

Pr(a)

·

⎛

⎝
∑

b : b∈XL,N and d(a,b)=h

L(a, b)

⎞

⎠ . (20)

The coefficient Bh, as expressed above in (20), can be
regarded as the average Levenshtein distance between all
converging path pairs that are at a Hamming distance h
from each other in the extended trellis TL,N . Thus, it is
evident that Bh plays a key role in the union bound (17),
particularly the first term Bdfree ! Bhmin , where hmin is
the smallest integer h no less than dfree(C) such that Bh is
positive. Accordingly, given a set of optimal VLECs, the one
with the smallest Bdfree is expected to have a better error

5Two VLECs are said to be equivalent if they have identical average
codeword length.

performance. It should be mentioned that in this paper we
use a soft-decision MAP decoder with respect to the AWGN
channel. The simplified union bound for the BSC however can
provide a much simplified view on the system performance
and hence the parameters dfree(C) and Bdfree obtained from
(17) are adopted in our code design.6

We then modify the algorithm in Section III to find the
optimal VLEC with the smallest Bdfree among all optimal
VLECs that has the minimum average codeword length. This
can be achieved by continuing the algorithm, even if the top
node of the Encoding Stack reaches the leaf node in Figure 2
(see Step 2 in Section III), until the average codeword length
of the new top node is greater than that of the optimal VLEC.
This continuation then guarantees that all optimal VLECs (of
equal average codeword length) are examined and the one with
the smallest Bdfree can be selected. As a result, only the first
two steps need to be modified:
Step 1′: Push the root node into the Encoding Stack. Set

upper bound Ub as the average codeword length of
an existing VLEC with free distance no less than
d∗free, and initialize B∗

dfree
= ∞.

Step 2′: If the metric f (namely, the average codeword
length) of the top node is strictly greater than Ub,
then output C∗ and stop the algorithm; else if the
top node of the Encoding Stack has selected K
codewords (i.e., |Ctop| = K), and dfree(Ctop) ≥ d∗free,
and Bdfree(Ctop) < B∗

dfree
, then retain C∗ = Ctop and

B∗
dfree

= Bdfree(Ctop). Delete the top node and reorder
the Encoding Stack in order of ascending metrics.

B. Suboptimal code construction with parameters
(∆,Γ,D, I)

The complexity and memory demand of the optimal code
construction algorithm in Section III grows significantly when
searching for VLECs corresponding to a large source alphabet
size K and a large free distance requirement d∗free. We herein
alleviate the algorithm’s complexity and memory demand by
constructing a suboptimal VLEC, which can accommodate
higher free distance targets and larger source alphabet sizes.
This is done based on four complexity reduction procedures.

First, we reduce the computational complexity incurred in
examining the exact free distance of the top node by using its
lower bound in (3) instead. Furthermore, Buttigieg recently
observed [8] that good codes usually have converging and
diverging distances (given in (5) and (6), respectively) that
are equal (for even values of dfree) or differing by one (for
odd values of dfree). Thus, we only focus on VLECs with
the above property. In other words, the new suboptimal code
construction only searches for the VLEC C that satisfies the
following conditions:

{
min{db(C), dc(C) + dd(C)} ≥ d∗free, and
|dc(C)− dd(C)| ≤ 1.

(21)

With this modification, the actual free distance of the output
VLEC may be strictly larger than the required d∗free; yet,
this saves considerable computational effort in calculating the

6We determine Bdfree using the method proposed in [7, Section 3.5.1.1].

3558 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

exact free distance for each node visited during the code search
process.

Second, we adopt the early-elimination concept from [28],
in which an efficient near-optimal sequential decoding algo-
rithm for convolutional codes was proposed. In short, the
authors in [28] propose to directly remove those nodes that are
far behind the farthest node having been explored during the
search process. Since the metric used in our code construction
algorithm is also nondecreasing along every path in the trellis
as in [28], these “far-behind” nodes are highly unlikely to re-
sult in a K-codeword offspring node whose average codeword
length is small, and hence can be early-eliminated.

The third modification, also borrowed from [28], is to
set a proper Encoding Stack size limitation in order to fix
the memory demand and indirectly to reduce the search
complexity.

In the last modification, we attempt to compensate for
potential losses in coding efficiency (average codeword length)
caused by the previous three modifications. Recall that the
average codeword length of any existing VLEC can be used
as the upper bound Ub in our search algorithm. Hence, when
our suboptimal approach results in a VLEC whose average
codeword length is smaller than the given Ub, we can update
the value of Ub with this average codeword length and launch a
new execution of our algorithm. This step can then be repeated
in a number of iterations until no improvements in coding
efficiency are realized or a prescribed maximal number of
iterations is reached.

Four parameters (∆,Γ,D, I) are accordingly added corre-
sponding to the last three modifications.
1: Early elimination window ∆: Ignore the top node in the

Encoding Stack, whose number of codewords |Ctop| is less
than lmax − ∆, where lmax is the largest |C| among all
expanded nodes.

2: Encoding Stack size Γ: When the number of nodes in the
Encoding Stack is larger than Γ, nodes are recursively
deleted from the Encoding Stack according to one of the
two criteria described below.

1) Deletion criterion D = Dl : Delete the node with
the smallest code size |C|.

2) Deletion criterion D = Dm : Delete the node with
the largest metric f .

3: The maximal number of iterations I.
The suboptimal algorithm, characterized by four parameters

(∆,Γ,D, I), can thus be obtained by modifying the optimal
algorithm in Section III and adding a new Step 6 as follows.
Step 1′′: Push the root node into the Encoding Stack. Set

upper bound Ub as the average codeword length of
an existing VLEC with free distance no less than
d∗free. Alternatively for the followup iteration, set
upper bound Ub as the average codeword length
of the output VLEC obtained from the previous
iteration. Initialize the target VLEC C∗ as the empty
set and lmax = 0.

Step 2′′: If the Encoding Stack is empty and C∗ ̸= ∅,
then output C∗ as the optimal VLEC and stop the
algorithm; else if both the Encoding Stack and C∗

are empty, then report a code search failure and stop

the algorithm.7

If |Ctop| < lmax − ∆, then directly delete the top
node from the Encoding Stack and redo Step 2′′;
else if lmax < |Ctop|, update lmax = |Ctop|.
If the top node of the Encoding Stack has selected
K codewords (i.e., |Ctop| = K) and Ctop satisfies
condition (21), then output Ctop as the optimal
VLEC and stop the algorithm.

Step 3′′: Generate the two children of the top node as in
Figure 2 and then delete the top node from the
Encoding Stack. Then update Ub as the metric f
of left child and put left child as C∗ if left child
satisfies all of the following conditions:

1) The left child has selected K codewords in his
Cleft;

2) Cleft satisfies condition (21);
3) Its associated metric f is smaller than Ub.

Step 4′′: Discard the child node which satisfies any of the
following conditions:

1) It has selected more than K codewords for its
Cchild;

2) There is no more candidate in Achild and the
size of Cchild is less than K (i.e., Achild = ∅
and |Cchild| < K);

3) The metric f(child) is larger than Ub;
4) It disobeys condition (21).

Step 5′′: After inserting the remaining children into the En-
coding Stack, recursively delete nodes from the En-
coding Stack based on the chosen deletion criterion
D until the Encoding Stack size is no greater than Γ.
Reorder the Encoding Stack in order of ascending
metrics. Go to Step 2′′.

Step 6 : Repeat Steps 1′′–5′′ until either the maximum num-
ber of iterations I is reached or the upper bound Ub

remains the same as the previous iteration.
We end this section by remarking on the free distances of

the VLECs found by the three code construction algorithms
introduced in this paper.

Recall that the two optimal code construction algorithms,
respectively introduced in Sections III and IV-A, guarantee to
output the VLEC whose average codeword length is smallest
among all VLECs with free distance never smaller than the
target free distance. In all cases we have examined, however,
the free distance of the resulting optimal VLECs is always
equal to the target free distance; although we conjecture the
validity of this observation, we could not confirm it with a
formal proof.

As expected, the suboptimal code construction algorithm

7Even if Ub is the average codeword length of an existing VLEC, the search
space could be forced to become empty due to extra node exclusions of the
first three complexity reduction modifications, i.e., requiring the free distance
lower bound to be no less than d∗free, early eliminations, and node deletions
for a fully filled Encoding Stack. Note that when a node is excluded, all of
its offspring nodes can no longer be visited; hence, it is possible that all the
valid nodes (i.e., all the valid VLECs) are removed after several recursions
of Steps 2′′–5′′.

Since, in the two earlier optimal code construction algorithms, the nodes
corresponding to optimal VLECs will never be excluded, the Encoding Stack
can never be empty prior to finding the optimal VLEC. Accordingly, it is not
necessary to conduct an empty Encoding Stack check in these algorithms.

WU et al.: ON THE DESIGN OF VARIABLE-LENGTH ERROR-CORRECTING CODES 3559

may produce a (suboptimal) VLEC with free distance strictly
larger than d∗free. However, in the particular case of the 26-
symbol English alphabet (as will be presented in Section VI),
the suboptimal code construction algorithm also consistently
deliver a (suboptimal) VLEC with free distance equal to d∗free,
which indicates that the free distance lower bound in (3) is
indeed tight for the found suboptimal VLEC. It should be
mentioned that the tightness of (3) depends on the distribution
of the source. In [13] and [18], it is shown that the tightness
of (3) may be weak when the source distribution is highly
unbalanced. Details will be given in Section VI.

V. TWO-PHASE SEQUENCE MAP (TPSMAP) DECODING

In [19], an efficient sequence MAP decoder with the as-
sumption that the receiver knows only the number of trans-
mitted bits N was proposed. This decoder therefore can only
operate on the traditional trellis TN shown in Figure 1(a). With
the additional information about the number of transmitted
symbols L, we herein propose a new two-phase sequence
MAP (TPSMAP) decoder, which can now operate on the
extended trellis TL,N (cf. Figure 1(b)), and whose average
decoding complexity is only slightly greater than that for
running the Viterbi algorithm (VA) on TN (even if TL,N has
significantly more nodes and more transitions than TN). We
next describe the TPSMAP decoding scheme.

In trellis TL,N , as defined in Section II-B and illustrated
in Figure 1(b), a path traversing from S0,0 to Si,j can be
labeled as x(i,j)

(0,0) ! x1x2 · · ·xi ∈ Xi,j , where each xi ∈ C.
Then, by following the MAP decoding criterion described in
Section II-A, the path metric of x(i,j)

(0,0) is defined as

g
(
x(i,j)
(0,0)

)
=

j∑

ℓ=1

(yℓ ⊕ bℓ)∥φℓ∥1 − ln Pr
(
x(i,j)
(0,0)

)
, (22)

where b1b2 · · · bj denotes the binary representation of path
x(i,j)
(0,0). Based on this new notation, the objective of the MAP

decoder that knows both L and N is to find a path whose
metric is the smallest among all valid paths x(L,N)

(0,0) from S0,0

to SL.N .
In short, the TPSMAP scheme first performs backward VA

on TN , whose size is significantly smaller than that of TL,N ,
and preserves the metric of each backward survivor path as
h(Sj). The first phase of the TPSMAP is described as follows.
Step 1: Associate a zero path metric to node SN in TN , i.e.,

h(SN) = 0.
Step 2: Apply the backward VA with path metric given by

(22) starting from SN in TN , and record the metric
and survivor path for each state as h(Si) and p(Si),
respectively.

Step 3: If the number of codewords correspond to survivor
path p(S0) is equal to L, then output path p(S0) as
the MAP decision and stop the algorithm; otherwise,
go to phase 2.

In the second phase, the TPSMAP applies a priority-first
search algorithm [15] on TL,N with the decoding metric of
path x(i,j)

(0,0) being re-defined as

m
(
x(i,j)
(0,0)

)
= g

(
x(i,j)
(0,0)

)
+ h (Sj) . (23)

The second phase of the decoder is next described.

Step 1: Initialize the path metric of x(0,0)
(0,0) as m(x(0,0)

(0,0)) =

h(S0), and load it into the Decoding Stack.8

Step 2: If the top node of the Decoding Stack reaches the
final state SL,N in TL,N , then output its associated
path as the MAP decision and stop the algorithm.

Step 3: Mark the state of the top node as visited. Then extend
the top node to all its successors and compute their
metrics according to (23). Delete the top node from
the Decoding Stack.

Step 4: Discard the successors if they had been marked as
visited. Also, discard the successors for which the
number of decoded symbols exceeds L or the number
of decoded bits exceeds N .

Step 5: Insert the remaining successors (those successors
which are not discarded in Step 4) into the Decoding
Stack and reorder the Decoding Stack in order of
ascending m-metrics defined in (23). Go to Step 2.

It can be noted that the second phase of the decoder follows
similar procedures as the code construction algorithm intro-
duced in Section III, except that the priority-first algorithm
is now applied on the trellis TL,N instead of applying it
on a search tree for code construction. Since some paths
of the trellis TL,N run across the same node, the priority-
first algorithm must avoid expanding the same node on the
trellis TL,N more than once. We therefore need to mark the
expanded node (top node) as visited in Step 3, and discard
the successors which have already been marked as visited
in Step 4. The proof of optimality for the above decoding
algorithm is presented in our conference work [32].

VI. SIMULATION RESULTS

In this section, we assess via simulations the error per-
formances of the found VLECs in terms of reconstructed
source symbol error rate (SER).9 In all simulations, the
source is assumed memoryless and the channel is the BPSK-
modulated AWGN channel. The decoding complexity of the
proposed two-phase sequence MAP (TPSMAP) decoder is
also examined. Furthermore, comparisons with other systems
in literature, including three known VLEC schemes and a
traditional SSCC system, are provided. For measuring the
time to search for the optimal and suboptimal VLECs, the
experiments were carried using the C programing language
under a 64-bit operation system Linux (Ubuntu 10.04 LTS)
executed on a desktop computer with a Intel-Core2 Duo E6600
2.4GHz CPU and 4GB memory.

As usual, the system signal-to-noise ratio (SNR) is given
by SNR ! E/N0, where E is the signal energy per channel
use and N0/2 is the variance of the zero-mean additive
channel noise sample. To account for the coding redundancy

8The role of the Decoding Stack is similar to that of the Encoding Stack,
except that the Decoding Stack stores the nodes of TL,N as its elements. It is
also implemented via the data structure named HEAP [10] and accesses the
node with minimal metric (i.e., its top node) within O(log(n)) complexity,
where n denotes its total number of nodes.

9As a convention, the SER here is the Levenshtein distance between the
transmitted sequence and the decoded sequence divided by the number of
transmitted source symbols (i.e., L).

3560 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

SNRs (dB)

Sy
m

bo
lE

rr
or

R
at

e

Lamy’s VLEC, R = Rc/Rs = 1/2.645 = 0.378
Buttigieg’s and Wang’s VLEC, R = Rc/Rs = 1/2.621 = 0.381
Optimal VLEC with Bdfree = 1.8268, R = Rc/Rs = 1/2.413 = 0.414
Optimal VLEC with smallest Bdfree = 0.0164, R = Rc/Rs = 1/2.413 = 0.414

Fig. 3. Error performances of different (3rd order) VLECs for a binary
non-uniform source with p0 = 0.8. The number of 3-bit source symbols per
transmission block is 10, which is equivalent to 30 source information bits.
The free distance dfree for all VLECs is dfree = 7.

of systems with different code rates, SNR per source symbol
is used in presenting the simulation results, which is given by

SNRs =
Es

N0
=

E

N0
· 1
R
, (24)

where Es is the energy per source symbol, and R is the overall
(average) system rate defined as the number of transmitted
source symbols per channel use. For an SSCC system, the
overall rate R satisfies R = Rc/Rs, where Rs is the source
coding rate (in coded bits/source symbol) and Rc is the
channel coding rate (in coded bits/channel use). Hence, for
an SSCC system employing a kth-order Huffman VLC10

followed by a tail-biting convolutional code, Rs is the average
codeword length of the Huffman code divided by k, and Rc is
the rate of the tail-biting convolutional code. Note that a VLEC
(or a single-step JSCC) can be regarded as having Rc = 1 with
Rs being its averaged source coding rate, since no explicit
channel coding is performed.

We first examine in Figure 3 the improvement in error
performance between the optimal code construction in Sec-
tion III and the modified optimal one (that guarantees to output
the optimal VLEC with the smallest Bdfree) in Section IV-A.
Here, we group three information bits, generated from a
binary non-uniform memoryless source with bit probability
p0 ! Pr(0) = 0.8, as one source symbol; hence, the VLECs
are 3rd order VLCs (i.e., k = 3), and the size of the source
alphabet is K = 23 = 8. Also shown in the same figure are the
error performances of three VLECs respectively obtained by
Buttigieg’s [7], Lamy’s [23] and Wang’s [30] code construc-
tion algorithms, which have the same free distance dfree = 7
as the optimal VLECs we constructed, where Buttigieg’s and
Lamy’s algorithms coincidentally yield an identical code in
this case. In each simulation, 10 source symbols (equivalently,
30 source information bits) are encoded and transmitted as a
block. All codes are decoded using the TPSMAP decoder of
Section V. Figure 3 shows that our optimal VLEC constructed
by the algorithm proposed in Section III has around 0.8 dB
coding gain over the three existing VLECs; it also indicates

10Recall that a kth order VLC maps a block of k source symbols onto a
variable-length codeword. So its average source coding rate is given by the
average codeword length divided by k.

that minimizing Bdfree can further pick up another 0.1 dB in
performance gain.

Table I summarizes the decoding complexity of the
TPSMAP for the VLECs of Figure 3. We notice that a
VLEC with higher average codeword length requires a higher
decoding complexity. This is somehow anticipated since the
decoding trellis is larger for a VLEC with higher average
codeword length. Along this observation, the optimal VLEC
and the optimal VLEC with the smallest Bdfree have expect-
edly similar decoding complexity because they have identical
average codeword length. In addition, with a smaller (actually,
the minimum) average codeword length, our optimal VLEC
decodes faster via the TPSMAP than the other three VLECs.

We next test the performance of the suboptimal code con-
struction algorithm of Section IV-B for the 26-symbol English
data source. Since there are two different distributions for the
English alphabet that are generally used in the literature for
constructing VLECs (e.g., compare [25], [30], [20], [26] with
[7], [9], [13], [18]), we provide simulation results for both
distributions; we will refer to them as Distributions 1 and 2,
respectively. The VLECs we obtain via our suboptimal code
construction algorithm are presented in Tables II and III for
Distributions 1 and 2, respectively.

In Table IV(a), we list, for different values of dfree, the
average codeword lengths (ALs) of the resulting VLECs
under Distribution 1 as well as the execution time needed
for their construction via our suboptimal algorithm and the
three algorithms referred above. For the sake of complete-
ness, the parameters used in each algorithm are reported
in Table IV(b).11 These parameters are chosen through a
number of trials in targeting a VLEC with smaller average
codeword length. The results indicate that by manipulating
the parameters, the VLECs obtained by our suboptimal code
construction algorithm can outperform all other three VLECs
in average codeword length. Table IV(a) also shows that our
suboptimal code construction algorithm is worse than Lamy’s
or Wang’s algorithms in terms of execution time for dfree ≤ 9;
however, we can prevent the construction complexity of our
algorithm from growing too quickly for dfree ≥ 10 by properly
adjusting its parameters under the premise that our algorithm
can still yield a better code than the other three algorithms.
Similar conclusions can be drawn about the performance of
the above algorithms under Distribution 2; the results are
presented in Table V.

Analogously to other schemes, many combinations of pa-
rameters need to be tested in our suboptimal algorithm to
arrive at a good VLEC construction. The main parameters that
control the algorithm’s complexity are the early-elimination
window ∆ and the Encoding Stack size Γ. Usually, com-
plexity increases when either ∆ or Γ increase, albeit with
the benefit of improving the VLEC average codeword length.
In general, it is not straightforward to decide on the right
choice of values for these parameters before testing them.
Despite this inconvenience, the proposed suboptimal approach
is efficient enough to test many combinations of parameters

11Buttigieg’s algorithm (specifically, MVA in [7]) and Wang’s algorithm
[30] are characterized by two parameters, L1 and Lmax. An additional
parameter Ls is needed for Lamy’s algorithm (specifically, noHole+Ls in
[23]).

WU et al.: ON THE DESIGN OF VARIABLE-LENGTH ERROR-CORRECTING CODES 3561

TABLE I
AVERAGE (AVG) AND MAXIMUM (MAX) NUMBERS OF DECODER BRANCH METRIC COMPUTATIONS AS WELL AS THEIR AVERAGE

CODEWORD LENGTHS (ALS) PER GROUPED SYMBOL FOR THE CODES OF FIGURE 3.
SNRs 1 dB 2 dB 3 dB 4 dB

VLEC system AL AVG MAX AVG MAX AVG MAX AVG MAX

Lamy’s VLEC 7.936 511 3631 510 1858 510 970 510 731
Buttigieg’s and Wang’s VLECs 7.864 500 3439 499 1303 499 720 499 670

Optimal VLEC 7.240 461 2970 460 1119 459 719 459 668
Optimal VLEC with smallest Bdfree 7.240 462 3040 460 1144 459 712 459 668

TABLE II
THE VLECS FOR THE ENGLISH ALPHABET WITH DISTRIBUTION 1 OBTAINED BY THE SUBOPTIMAL CODE CONSTRUCTION ALGORITHM FOR DIFFERENT

VALUES OF FREE DISTANCE.
Alphabet Probability dfree = 3 dfree = 5 dfree = 7 dfree = 9 dfree = 10 dfree = 11

E 0.14878610 0111 00001 00000000 00101101 000100000 0000000000
T 0.09354149 00101 011110 11111111 111111100 0000011110 00001011111
A 0.08833733 11011 0101011 000011111 1111000111 00101100111 000111101001
O 0.07245769 000110 1010000 111100001 11001000100 11011011000 0011010101111
R 0.06872164 010011 00110100 0011010100 110001111011 010111101100 00111100111001
N 0.06498532 101111 10010011 1100110011 0101010010100 101010010011 11101011100110
H 0.05831331 111010 11101111 01011010010 1001001100011 0110111000010 010101110010101
I 0.05644515 0001011 011001011 10101010101 00010000010001 1111100111101 111011101111010
S 0.05537763 1000100 101111100 11000101001 10100010101010 10110011110101 0111110110110011
D 0.04376834 1011001 110000100 001111001100 001100101001000 11001100001011 1100011111011100
L 0.04123298 1110010 1011110111 010101100010 100000110110011 011010110110011 01101101110011010
U 0.02762209 00000011 1101000010 101010010001 0001101010110111 100111011101111 11010010111110110
P 0.02575393 00000100 11000100111 110000111100 0100011011001010 111101101010100 101001001101110100
F 0.02455297 10001111 11110101000 0101001110110 1000000001110000 0110001101111001 1101011110110111100
M 0.02361889 10010101 110001010011 0110011000011 01000010011110111 1011110110000101 1110100001100110110
C 0.02081665 10100001 110111001100 0110100111001 01011011101011001 01001001110110110 01110010111111001010
W 0.01868161 10100110 1100010101000 1001011011001 10000110110001010 10100010110010001 011110001011111010011
G 0.01521216 11000000 1101110000010 1001110000110 000101101101110010 11010101111101001 0110011110111111000011
Y 0.01521216 010000011 11011101010111 1010001101100 010000110101010101 010010011101010011 1101010001011110010110
B 0.01267680 010000100 11011101101000 00110011110010 100110111010001000 110000101110001100 10100110101111111000101
V 0.01160928 100100000 110111000010111 01011001100111 0001101011011010001 111111100111111010 11101100000001111010010
K 0.00867360 110001101 110111010111001 01100101111100 0100001011101101010 1000110101001001101 010001101100111111000011
X 0.00146784 1000001001 110111011001100 01101100001011 0100001100000010000 1100101011110000111 101110010000111111010010
J 0.00080064 1100001111 1101110001111001 10011001011001 00010110111110110001 1110010001011110110 111011000001000110110110
Q 0.00080064 1100011100 1101110101100100 10100110010101 00011010110010011110 11100010011011000111 0101010101000111111000011
Z 0.00053376 10000010100 1101110110111111 001101101111001 01000011010011001000 11100101110110101011 1010110010001001110110010

TABLE III
THE VLECS FOR THE ENGLISH ALPHABET WITH DISTRIBUTION 2 OBTAINED BY THE SUBOPTIMAL CODE CONSTRUCTION ALGORITHM FOR DIFFERENT

VALUES OF FREE DISTANCE.
Alphabet Probability dfree = 3 dfree = 5 dfree = 7 dfree = 9 dfree = 10 dfree = 11

E 0.1270 0111 000000 0011111 00000101 000100000 0000000001
T 0.0906 00011 111111 01000110 001110011 0000011110 00001111101
A 0.0817 11101 0001110 000010000 0101101000 00101100111 011100011010
O 0.0751 001010 1111000 111101101 01110111001 11011011000 0111011101010
I 0.0697 010011 00101001 0001001001 001111100110 010111101100 10110110111000
N 0.0674 101111 11010110 1110111000 110010011000 101010010011 11011101000111
S 0.0633 110110 010110100 00000101100 0100111011111 0110111000010 101100101001110
H 0.0609 0010010 101100110 10001110011 01110110110110 1111100111101 111011010110000
R 0.0599 0100000 110010011 11110000001 10001011011100 10110011110101 1011100111010011
D 0.0425 1000110 111001101 010110100010 100011100011010 11001100001011 1110011000101100
L 0.0403 1011001 0100010101 100111010001 110100010101110 011010110110011 11011010110010100
C 0.0278 1101011 0101001011 101001111010 0000101011001010 100111011101111 110110100010011110
U 0.0276 10001011 1000110010 111000100101 1010111100111110 111101101010100 111011101101100010
M 0.0241 10010100 1010011001 0001001110101 1101011111010000 0110001101111001 1011101101111000000
W 0.0236 10100001 1011100101 1000011101010 01010000110010010 1011110110000101 1101101111000101111
F 0.0223 10100110 01001010101 1100100100001 10011111111001011 01001001110110110 1110010010011010010
G 0.0202 11000010 01011001011 00100010100011 11111011010111110 10100010110010001 10111011000010101110
Y 0.0197 11000101 10001100011 10110011110100 010111111101011110 11010101111101001 11101010111101110100
P 0.0193 000000100 10110100101 11001111110011 100111001010001010 010010011101010011 111001001001011110110
B 0.0149 100000001 011001000111 11011000101010 111000010011001110 011101110110101011 111010110000101101010
V 0.0098 100001111 100001010011 001001000100011 0010111010011001110 111000001010001101 111110100111111011101
K 0.0077 100100010 111010100011 011011001111100 1001000011010101010 1000110101001001101 1011101100000110000110
J 0.0015 0000001111 0011111100011 100111011100000 1110011011110010010 1011011101101111010 1110101101111111101101
X 0.0014 0000011010 00100111100011 0010001011100000 01101000011111001011 1110001001011110101 10111011011011111101100
Q 0.0010 00000111010 11000010100011 1101000011110100 10100000011010111110 11100111011011000111 11101000100101100010111
Z 0.0007 000001110010 011101111100011 1110001100100011 11011101111011001110 11111100100110111001 11111010001100010111010

in reasonable time. For example, to get the suboptimal VLEC
with dfree = 3 in Table II, we simulated all combina-
tions of the following parameters: ∆ = {1, 3, 5, 7, 9, 11, 13},
Γ = {20, 40, 60, 80, 100, 200, 300, 400, 500, 1000} and D =
{Dm,Dl}. It took us only about 29 minutes to simulate all
these 140 combinations within a single computer experiment.

We next provide efficiency comparisons with the recent
works of Diallo et al. [13] and Hijazi et al. [18]. 12 Notably
different from our work and also the main referenced works
in this paper (i.e., Buttigieg’s [7], Lamy’s [23] and Wang’s

12It should be mentioned that we did not actually implement the systems
of [13] and [18]; instead, the efficiency results of these systems are directly
retrieved from each paper. Due to differences in the experimental platforms,
the comparisons between our system and those of [13] and [18], especially
in terms of execution time, may not be on a fully equal footing. They are
however herein provided for the sake of reference.

[30]), Diallo et al. and Hijazi et al. do not construct codes
for a given distribution but for a pre-specified set of codeword
lengths. The distributions assumed in their papers are there-
fore primarily for the computation of the resulting average
codeword length. To compare with the VLEC of [13], we
simulated our suboptimal code construction for dfree = 4 under
the same used distribution for the 26-symbol English alphabet
(Distribution 2 given in Table III). The VLEC designed in [13,
Table IV] has an average codeword length of 7.3375 and an
execution time of 310 hours. Our suboptimal code construction
algorithm, when initialized by an upper bound given by the
average length of the code in [13] (i.e., with Ub = 7.3375) and
parameters (∆ = 3,Γ = 200,Dl, I = 1) yields an improved
VLEC with an average codeword length of 6.4794 within only

3562 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

TABLE IV
LIST OF THE VLECS OBTAINED BY THREE EXISTING CODE CONSTRUCTION SCHEMES AND THE VLECS OBTAINED BY OUR SUBOPTIMAL CODE

CONSTRUCTION ALGORITHM FOR THE 26-SYMBOL ENGLISH ALPHABET WITH DISTRIBUTION 1 GIVEN IN TABLE II: (a) AVERAGE CODEWORD LENGTHS
(ALS) OF THE FOUND CODES AND EXECUTION TIME FOR EACH CODE CONSTRUCTION ALGORITHM; (b) PARAMETERS USED IN EACH ALGORITHM. THE

SUBOPTIMAL ALGORITHM IS INITIALIZED WITH Ub SET TO EQUAL THE SMALLEST OF THE AVERAGE CODEWORD LENGTHS OF THE VLECS BY
BUTTIGIEG, LAMY AND WANG.

(a)

Algorithm Buttigieg’s Lamy’s Wang’s Suboptimal
AL Time AL Time AL Time AL Time

dfree = 3 6.272617 2m2s 6.309980 4s 6.266612 <1s 6.189350 18s
dfree = 5 8.378035 6m42s 8.400986 44s 8.378035 12s 8.333866 2m27s
dfree = 7 10.559646 4h31m 10.599945 5m43s 10.488923 27s 10.302508 8m41s
dfree = 9 12.737255 6h27m 12.806644 9m52s 12.737255 2m30s 12.532291 5m29s
dfree = 10 12.757672 11h45m 12.867893 17m54s 12.757672 47m46s 12.593140 9m35s
dfree = 11 14.876166 19h14m 15.354549 21m43s 15.024952 2h15m 14.580329 14m53s

(b)

Algorithm Buttigieg’s Lamy’s Wang’s Suboptimal
Parameters (L1, Lmax) (L1, Lmax, Ls) (L1, Lmax) (∆,Γ,D,I)
dfree = 3 (4, 13) (4, 13, 10) (4, 13) (5, 300,Dm, 2)
dfree = 5 (6, 15) (6, 15, 12) (6, 15) (3, 500,Dl, 1)
dfree = 7 (7, 16) (7, 16, 13) (7, 16) (5, 2000,Dm, 1)
dfree = 9 (9, 18) (9, 18, 15) (9, 18) (1, 60,Dm, 1)
dfree = 10 (10, 19) (10, 19, 15) (10, 19) (1, 40,Dl, 2)
dfree = 11 (12, 21) (12, 21, 17) (12, 21) (1, 4,Dl, 1)

TABLE V
LIST OF THE VLECS OBTAINED BY THREE EXISTING CODE CONSTRUCTION SCHEMES AND THE VLECS OBTAINED BY OUR

SUBOPTIMAL CODE CONSTRUCTION ALGORITHM FOR THE 26-SYMBOL ENGLISH ALPHABET WITH DISTRIBUTION 2 GIVEN IN TABLE
III: (a) AVERAGE CODEWORD LENGTHS (ALS) OF THE FOUND CODES AND EXECUTION TIME FOR EACH CODE CONSTRUCTION

ALGORITHM; (b) PARAMETERS USED IN EACH ALGORITHM. THE SUBOPTIMAL ALGORITHM IS INITIALIZED WITH Ub SET TO EQUAL
THE SMALLEST OF THE AVERAGE CODEWORD LENGTHS OF THE VLECS BY BUTTIGIEG, LAMY AND WANG.

(a)

Algorithm Buttigieg’s Lamy’s Wang’s Suboptimal
AL Time AL Time AL Time AL Time

dfree = 3 6.4038 20s 6.4047 14s 6.3574 <1s 6.2560 7s
dfree = 5 8.4740 5m16s 8.5049 47s 8.4740 9s 8.3223 1m13s
dfree = 7 10.5388 1h55m 10.5110 12m01s 10.5388 47s 10.3615 12m13s
dfree = 9 12.8898 3h14m 12.9644 13m04s 12.8898 4m22s 12.6647 6m03s
dfree = 10 12.8959 9h10m 13.0095 58m29s 12.8959 19m41s 12.7507 8m49s
dfree = 11 15.0345 17h37m 15.0846 38m53s 15.0345 1h20m 14.6521 16m12s

(b)

Algorithm Buttigieg’s Lamy’s Wang’s Suboptimal
Parameters (L1, Lmax) (L1, Lmax, Ls) (L1, Lmax) (∆,Γ,D,I)
dfree = 3 (4, 13) (4, 13, 13) (4, 13) (6, 200,Dm, 1)
dfree = 5 (6, 15) (6, 15, 13) (6, 15) (2, 250,Dm, 1)
dfree = 7 (7, 18) (7, 18, 15) (7, 18) (1, 3000,Dm, 1)
dfree = 9 (9, 18) (9, 18, 16) (9, 18) (1, 20,Dl, 1)
dfree = 10 (10, 20) (10, 20, 17) (10, 20) (3, 40,Dl, 1)
dfree = 11 (11, 21) (11, 21, 18) (11, 21) (1, 12,Dl, 1)

2 seconds of execution. 13

In [18, Table 3], Hijazi et al. provide a VLEC for dfree =
7 within an execution time of 13 minutes and 31 seconds
for a given set of codeword lengths. For Distribution 2 in
Table III, the resulting average codeword length is 10.4213.
In [18, Table 4], they provide another VLEC for dfree = 7,
resulting in a better average codeword length of 10.1138 under
Distribution 2, but no execution time is given.

In contrast, our best to-date suboptimal code construc-
tion, as shown in Table V with parameters (∆ = 1,Γ =

13We have noticed from recent results, that even without making use of
the Ub parameter (i.e., by setting Ub = ∞), the (3,200,Dl,1) suboptimal
algorithm still yields a VLEC with an average codeword length of 6.4794
within only 2 seconds of execution. This further shows that the proposed
suboptimal algorithm is highly efficient.

3000,Dm, I = 1) and Ub = 10.5110, outputs a VLEC
for dfree = 7 with an average codeword length of 10.3615,
which is in between 10.4213 [18, Table 3] and 10.1138 [18,
Table 4], under an execution time of 12 minutes and 13
seconds. On the other hand, our current suboptimal code
construction algorithm, when initialized with Ub = 10.4213
(and also Ub = 10.1138), either reports a code search failure
or cannot converge to a solution in reasonable time, depending
on the choice of parameters (∆,Γ,D, I). It should be pointed
out however, that unlike our suboptimal algorithm, the scheme
of [18] requires a priori knowledge of all codeword lengths
before it is run. Hence arriving at the right choice of codeword
lengths for any given dfree and alphabet size requires additional
trials (whose execution duration are not reported in [18]).
Nonetheless, it is certainly of interest, to further improve the

WU et al.: ON THE DESIGN OF VARIABLE-LENGTH ERROR-CORRECTING CODES 3563

8 8.5 9 9.5 10 10.5 11
10

−5

10
−4

10
−3

10
−2

10
−1

SNRs (dB)

Sy
m

bo
lE

rr
or

R
at

e

Wang’s VLEC, R = Rc/Rs = 1/15.025 = 0.067
Buttigieg’s VLEC, R = Rc/Rs = 1/14.876 = 0.067
Lamy’s VLEC, R = Rc/Rs = 1/15.355 = 0.065
Suboptimal VLEC, R = Rc/Rs = 1/14.580 = 0.069

Fig. 4. Error performances of the VLECs of Table IV with dfree = 11 for
the 26-symbol English alphabet (with Distribution 1). The number of source
symbols per transmission block is L = 10.

efficiency of our algorithm and assess whether or not the
average codeword length of 10.1138 is optimal or not for
dfree = 7.

Figure 4 illustrates the SER performances of the VLECs
presented in Table IV with dfree = 11. Again, 10 source sym-
bols are encoded and transmitted as a block in each simulation,
and all codes are decoded using the TPSMAP decoder in
Section V. We observe from the figure that the VLEC obtained
by our suboptimal code construction algorithm outperforms
the other three VLECs by at least 0.15 dB. The decoding
complexities of these systems are summarized in Table VI.
As anticipated, the VLEC obtained by our suboptimal code
construction algorithm has the smallest average codeword
length and hence its decoding complexity is smaller than
those of the other three VLECs, particularly in the maximum
number of branch metric computations.

Finally, we compare the SER performance of one subopti-
mal VLEC shown in Table IV with that of a traditional SSCC
system for the situation where the source is the memoryless
26-symbol English data. The SSCC system consists of a
Huffman source coder and a tail-biting convolutional channel
(TBCC) coder. We use (3, 1, 3), (3, 1, 4), (3, 1, 5) and (3, 1, 6)
TBCCs respectively with generator polynomial [54, 64, 74],
[52, 66, 76], [47, 53, 75] and [564, 624, 754] (in octal) [29]
such that the resulting SSCC systems have approximately the
same code rate R ≈ 0.08 as the VLEC to be compared with.
Also, the dfree of the chosen VLEC is 10, while the largest min-
imum Hamming distances dmin for (3, 1, 3), (3, 1, 4), (3, 1, 5)
and (3, 1, 6) TBCCs are 10, 12, 13 and 15, respectively. Both
the VLEC and the TBCCs are decoded by sequence decoders,
where the one for the VLEC is the TPSMAP proposed in
Section V, and the one for the TBCCs is the priority-first
search decoding algorithm (PFSA) introduced in [16]. The
results are illustrated in Figure 5.

We remark from Figure 5 that for almost all simulated
SNRs, the suboptimal VLEC outperforms the SSCC using
a TBCC of memory order no larger than 5. In compari-
son with the SSCC equipped with the (3, 1, 6) TBCC, the
suboptimal VLEC still performs better when SNRs is less
than 9 dB. Table VII summarizes the decoding complexities
of the suboptimal VLEC and the TBCCs in terms of the

8 8.5 9 9.5 10 10.5 11
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNRs (dB)

Sy
m

bo
lE

rr
or

R
at

e

(3, 1, 3) TBCC with dmin = 10 + Huffman, R = 0.333/4.156. = 0.080

(3, 1, 4) TBCC with dmin = 12 + Huffman, R = 0.333/4.156. = 0.080

(3, 1, 5) TBCC with dmin = 13 + Huffman, R = 0.333/4.156. = 0.080

(3, 1, 6) TBCC with dmin = 15 + Huffman, R = 0.333/4.156. = 0.080

Suboptimal VLEC with dfree = 10, R = 1/12.593 = 0.079

Fig. 5. Error performances of the SSCC (specifically, first order Huffman
+ TBCC) and the VLEC of Table IV with dfree = 10 for the 26-symbol
English alphabet (with Distribution 1). The number of source symbols per
transmission block is L = 10.

branch metric computations. It indicates that the VLEC system
is more efficient than the SSCC system using a TBCC of
memory orders 5 and 6. Note that in this table, the decoding
complexity of the Huffman coder is not even included. We
can then conclude that the VLEC system can achieve a better
performance than an SSCC system of comparable decoding
complexity. We end the discussion by pointing out again
that the VLEC system only requires one encoder and one
decoder, while the SSCC system needs separate source coder
and channel coder at both transmitter and receiver sides. This
can be considered another advantage of the VLEC system over
the SSCC system.

VII. CONCLUSION

In this work, a novel search algorithm is proposed for
constructing optimal prefix-free VLECs for the effective joint
source-channel coding of memoryless sources over memory-
less channels. The optimal construction algorithm is modified
to construct optimal VLECs with improved resilience against
channel noise through a critical union bound parameter Bdfree .
A suboptimal but much more efficient construction algorithm
is next presented to construct VLECs with large free dis-
tances and for large source alphabets such as the 26-symbol
English data source. A low-complexity two-phase sequence
MAP (TPSMAP) decoder for the VLECs is also proposed.
Simulations show that the developed optimal and suboptimal
VLECs can have evident gains over most existing VLECs of
identical free distance in terms of average codeword length,
error rate performance and decoding complexity. Also shown
in this paper is that our VLEC system outperforms traditional
separate source/channel coding systems of similar overall rate
at low to medium SNRs with the benefit of considerably
smaller decoding complexity. Future research directions may
include further improving the efficiency of our sub-optimal
algorithm, extending our design to Markov sources as well as
investigating powerful VLEC iterative decoding methods (e.g.,
cf. [4], [22]) with manageable complexity.

3564 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

TABLE VI
AVERAGE (AVG) AND MAXIMUM (MAX) NUMBERS OF DECODER BRANCH METRIC COMPUTATIONS FOR THE CODES OF FIGURE 4.

SNRs 8 dB 9 dB 10 dB 11 dB

VLEC system AVG MAX AVG MAX AVG MAX AVG MAX

Wang’s VLEC 3124 11131 3123 4524 3123 4093 3123 4000
Buttigieg’s VLEC 3112 16433 3111 5950 3111 4001 3111 4001

Lamy’s VLEC 3211 14675 3210 5959 3209 4391 3209 4391
Suboptimal VLEC 3108 10096 3104 4349 3104 3995 3104 3995

TABLE VII
AVERAGE (AVG) AND MAXIMUM (MAX) NUMBERS OF DECODER BRANCH METRIC COMPUTATIONS FOR THE CODES OF FIGURE 5. THE PARAMETER λ

USED IN PFSA IS INDICATED INSIDE THE PARENTHESES.
SNRs 8 dB 9 dB 10 dB 11 dB

Scheme AVG MAX AVG MAX AVG MAX AVG MAXCode Decoder

(3, 1, 3) TBCC [54, 64, 74] PFSA(3) 753 2049 739 1518 731 1483 730 1253
(3, 1, 4) TBCC [52, 66, 76] PFSA(4) 1466 4192 1444 3298 1435 2916 1432 2528
(3, 1, 5) TBCC [47, 53, 75] PFSA(5) 2907 8909 2875 6437 2865 4851 2862 4661

(3, 1, 6) TBCC [564, 624, 754] PFSA(6) 5773 21062 5734 12814 5724 9063 5721 8687

Suboptimal VLEC TPSMAP 2698 8322 2695 7362 2694 3840 2694 3840

REFERENCES

[1] F. Alajaji, N. Phamdo, and T. Fuja, “Channel codes that exploit the
residual redundancy in CELP-encoded speech,” IEEE Trans. Speech
Audio Process., vol. 4, pp. 325–336, Sep. 1996.

[2] E. Ayanoglu and R. Gray, “The design of joint source and channel trellis
waveform coders,” IEEE Trans. Inf. Theory, vol. 33, no. 6, pp. 855–865,
Nov. 1987.

[3] V. B. Balakirsky, “Joint source-channel coding with variable length
codes,” in Proc. 1997 IEEE Int. Symp. Inform. Theory, p. 419.

[4] R. Bauer and J. Hagenauer, “Iterative source/channel-decoding using
reversible variable length codes,” in Proc. 2000 Data Compression Conf.,
pp. 93–102.

[5] M. A. Bernard and B. D. Sharma, “Some combinatorial results on variable
length error-correcting codes,” ARS Combinatoria, vol. 25B, pp. 181–194,
1988.

[6] M. A. Bernard and B. D. Sharma, “A lower bound on average codeword
length of variable length error-correcting codes,” IEEE Trans. Inf. Theory,
vol. 36, no. 6, pp. 1474–1475, Nov. 1990.

[7] V. Buttigieg, “Variable-length error-correcting codes,” Ph.D. thesis,
Univ. of Manchester, England, 1995.

[8] V. Buttigieg, personal communication, 2012.
[9] V. Buttigieg and P. G. Farrell, “Variable-length error-correcting codes,”

IEE Proc. Commun., vol. 147, no. 4, pp. 211–215, Aug. 2000.
[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms. MIT Press, 2001.
[11] A. Diallo, C. Weidmann, and M. Kieffer, “Optimizing the free distance

of error-correcting variable-length codes,” in Proc. 2010 IEEE Int.
Workshop Multimedia Signal Process., pp. 245–250.

[12] A. Diallo, C. Weidmann, and M. Kieffer, “Efficient computation and
optimization of the free distance of variable-length finite-state joint
source-channel codes,” IEEE Trans. Commun., vol. 59, no. 4, pp. 1043–
1052, Apr. 2011.

[13] A. Diallo, C. Weidmann, and M. Kieffer, “New free distance bounds and
design techniques for joint source-channel variable-length codes,” IEEE
Trans. Commun., vol. 60, no. 10, pp. 3080–3090, Oct. 2012.

[14] P. Duhamel and M. Kieffer, Joint Source-Channel Decoding: A Cross-
Layer Perspective with Applications in Video Broadcasting over Mobile
and Wireless Networks. Academic Press, 2010.

[15] Y. S. Han, P.-N. Chen, and H.-B. Wu, “A maximum-likelihood soft-
decision sequential decoding algorithm for binary convolutional codes,”
IEEE Trans. Commun., vol. 50, no. 2, pp. 173–178, Feb. 2002.

[16] Y. S. Han, T.-Y. Wu, H.-T. Pai, P.-N. Chen, and S.-L. Shieh, “Priority-
first search decoding for convolutional tail-biting codes,” in Proc. 2008
Int. Symp. Inform. Theory and its Applications, pp. 1–6.

[17] W. E. Hartnett, Foundation of Coding Theory. D. Reidel Publishing Co.,
1974.

[18] H. Hijazi, A. Diallo, M. Kieffer, L. Liberti, and C. Weidmann, “A MILP
approach for designing robust variable-length codes based on exact free
distance computations,” in Proc. 2012 Data Compression Conf., pp. 257–
266.

[19] Y.-M. Huang, Y. S. Han, and T.-Y. Wu, “Soft-decision priority-first
decoding algorithms for variable-length error-correcting codes,” IEEE
Commun. Lett., vol. 12, no. 8, pp. 572–574, Aug. 2008.

[20] Y.-M. Huang, T.-Y. Wu, and Y. S. Han, “An A∗-based algorithm
for constructing reversible variable-length codes with minimum average
codeword length,” IEEE Trans. Commun., vol. 58, no. 11, pp. 3175–3185,
Nov. 2010.

[21] S. Kaiser and M. Bystrom, “Soft decoding of variable-length codes,” in
Proc. 2000 IEEE Int. Conf. on Commun., vol. 3, pp. 1203–1207.

[22] J. Kliewer and R. Thobaden, “Iterative joint source-channel decoding
of variable-length codes using residual source redundancy,” IEEE Trans.
Wireless Commun., vol. 4, no. 3, pp. 919–929, May 2005.

[23] C. Lamy and J. Paccaut, “Optimized constructions for variable-length
error correcting codes,” in Proc. 2003 IEEE Inform. Theory Workshop,
pp. 183–186.

[24] C. Lamy and F. X. Bergot, “Lower bounds on the existence of binary
error-correcting variable-length codes,” in Proc. 2003 IEEE Inform.
Theory Workshop, pp. 300–303.

[25] J. C. Maxted and J. P. Robinson, “Error recovery for variable length
codes,” IEEE Trans. Inf. Theory, vol. 31, no. 6, pp. 794–801, Nov. 1985.

[26] S. A. Savari and J. Kliewer, “When Huffman meets Hamming: a class
of optimal variable-length error correcting codes,” in Proc. 2010 Data
Compression Conf., pp. 327–336.

[27] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical J., vol. 27, pt. I, pp. 379–423; pt. II, pp. 623–656, 1948.

[28] S.-L. Shieh, P.-N. Chen, Y. S. Han, and T.-Y. Wu, “Early-elimination
modification for priority-first search decoding,” IEEE Trans. Commun.,
vol. 58, no. 12, pp. 3459–3469, Dec. 2010.

[29] P. Stahl, J. B. Anderson, and R. Johannesson, “Optimal and near-optimal
encoders for short and moderate-length tail-biting trellises,” IEEE Trans.
Inf. Theory, vol. 45, no. 7, pp. 2562–2571, Nov. 1999.

[30] J. Wang, L.-L. Yang, and L. Hanzo, “Iterative construction of reversible
variable-length codes and variable-length error-correcting codes,” IEEE
Commun. Lett., vol. 8, no. 11, pp. 671–673, Nov. 2004.

[31] T. Wenisch, P. F. Swaszek, and A. K. Uht, “Combined error correcting
and compressing codes,” in Proc. 2001 IEEE Int. Symp. Inform. Theory,
pp. 238.

[32] T.-Y. Wu, P.-N. Chen, F. Alajaji, and Y. S. Han, “On the construction
and MAP decoding of optimal variable-length error-correcting codes,” in
Proc. 2011 IEEE Int. Symp. Inform. Theory, pp. 2223–2227.

[33] Y. Zhong, F. Alajaji, and L. L. Campbell, “On the joint source-channel
coding error exponent for discrete memoryless systems,” IEEE Trans. Inf.
Theory, vol. 52, no. 4, pp. 1450–1468, Apr. 2006.

Ting-Yi Wu was born in Tainan, Taiwan, in 1983.
He received the B.Sc. and M.Sc. degrees in Com-
puter Science and Information Engineering from Na-
tional Chi-Nan University, Nantou, Taiwan, in 2005
and 2007, respectively. From 2007 to 2009, he was a
research assistant of the Graduate Institute of Com-
munication Engineering, National Taipei University,
Taipei, Taiwan. He is currently pursuing the Ph.D.
degree in Institute of Communications Engineering,
National Chiao-Tung University, Hsinchu, Taiwan.
His current research interests include error-control

coding and information theory.

WU et al.: ON THE DESIGN OF VARIABLE-LENGTH ERROR-CORRECTING CODES 3565

Po-Ning Chen (S’93–M’95–SM’01) was born in
Taipei, R.O.C. in 1963. He received the B.S. and
M.S. degrees in electrical engineering from the
National Tsing-Hua University, Taiwan in 1985 and
1987, respectively, and the Ph.D. degree in electrical
engineering from University of Maryland, College
Park, in 1994. From 1985 to 1987, he was with
Image Processing Laboratory in National Tsing-Hua
University, where he worked on the recognition of
Chinese characters. During 1989, he was with Star
Tech. Inc., where he focused on the development of

finger-print recognition systems. After the reception of Ph.D. degree in 1994,
he jointed Wan Ta Technology Inc. as a vice general manager, conducting
several projects on Point-of-Sale systems. In 1995, he became a research staff
in Advanced Technology Center, Computer and Communication Laboratory,
Industrial Technology Research Institute in Taiwan, where he led a project
on Java-based Network Managements. Since 1996, he has been an Associate
Professor in the Department of Communications Engineering at the National
Chiao-Tung University, Taiwan, and was promoted to a full professor since
2001. He was elected to be the Chair of the IEEE Communications Society
Taipei Chapter in 2006 and 2007, during which the IEEE ComSoc Taipei
Chapter won the 2007 IEEE ComSoc Chapter Achievement Awards (CAA)
and 2007 IEEE ComSoc Chapter of the Year (CoY). He has served as the
chairman of the Department of Communications Engineering, National Chiao-
Tung University, during 2007–2009.

Dr. Chen received the annual Research Awards from the National Science
Council, Taiwan, R.O.C., five years in a row since 1996. He then received the
2000 Young Scholar Paper Award from Academia Sinica, Taiwan. His Experi-
mental Handouts for the course of Communication Networks Laboratory have
been awarded as the Annual Best Teaching Materials for Communications
Education by the Ministry of Education, Taiwan, R.O.C., in 1998. He has
been selected as the Outstanding Tutor Teacher of the National Chiao-Tung
University in 2002. He was also the recipient of the Distinguished Teaching
Award from the College of Electrical and Computer Engineering, National
Chiao-Tung University, Taiwan, in 2003. His research interests generally lie
in information and coding theory, large deviation theory, distributed detection
and sensor networks.

Fady Alajaji (S’90–M’94–SM’00) received the
B.E. degree with distinction from the American
University of Beirut, Lebanon, and the M.Sc. and
Ph.D. degrees from the University of Maryland,
College Park, all in electrical engineering, in 1988,
1990 and 1994, respectively. He held a postdoctoral
appointment in 1994 at the Institute for Systems
Research, University of Maryland.

In 1995, he joined the Department of Mathemat-
ics and Statistics at Queen’s University, Kingston,
Ontario, where he is currently a Professor of Math-

ematics and Engineering. Since 1997, he has also been cross-appointed in the
Department of Electrical and Computer Engineering at the same university.
From 2003 to 2008, he served as chair of the Queen’s Mathematics and
Engineering program. His research interests include information theory, digital
communications, error control coding, joint source-channel coding and data
compression.

Dr. Alajaji currently serves as Area Editor and Editor for Source and
Source-Channel Coding for the IEEE TRANSACTIONS ON COMMUNICA-
TIONS. He served as organizer and Technical Program Committee member of
several international conferences and workshops. He received the Premier’s
Research Excellence Award from the Province of Ontario.

Yunghsiang S. Han (S’90–M’93–SM’08–F’11) was
born in Taipei, Taiwan, 1962. He received B.Sc.
and M.Sc. degrees in electrical engineering from
the National Tsing Hua University, Hsinchu, Taiwan,
in 1984 and 1986, respectively, and a Ph.D. degree
from the School of Computer and Information Sci-
ence, Syracuse University, Syracuse, NY, in 1993.

He was from 1986 to 1988 a lecturer at Ming-Hsin
Engineering College, Hsinchu, Taiwan. He was a
teaching assistant from 1989 to 1992, and a research
associate in the School of Computer and Information

Science, Syracuse University from 1992 to 1993. He was, from 1993 to 1997,
an Associate Professor in the Department of Electronic Engineering at Hua
Fan College of Humanities and Technology, Taipei Hsien, Taiwan. He was
with the Department of Computer Science and Information Engineering at
National Chi Nan University, Nantou, Taiwan from 1997 to 2004. He was
promoted to Professor in 1998. He was a visiting scholar in the Department
of Electrical Engineering at University of Hawaii at Manoa, HI from June
to October 2001, the SUPRIA visiting research scholar in the Department of
Electrical Engineering and Computer Science and CASE center at Syracuse
University, NY from September 2002 to January 2004 and July 2012 to June
2013, and the visiting scholar in the Department of Electrical and Computer
Engineering at University of Texas at Austin, TX from August 2008 to June
2009. He was with the Graduate Institute of Communication Engineering at
National Taipei University, Taipei, Taiwan from August 2004 to July 2010.
From August 2010, he is with the Department of Electrical Engineering at
National Taiwan University of Science and Technology as Chair professor. His
research interests are in error-control coding, wireless networks, and security.

Dr. Han was a winner of the 1994 Syracuse University Doctoral Prize and
a Fellow of IEEE.

