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Abstract—Today’s large-scale distributed storage systems are
commonly built using commodity software and hardware. As a
result, crash-stop and Byzantine failures in such systems become
more and more prevalent. In the literature, regenerating codes
have been shown to be a more efficient way to disperse informa-
tion across multiple storage nodes and recover from crash-stop
failures. In this paper, we propose a novel decoding design of
product-matrix constructed regenerating codes in conjunction
with integrity check that allows exact regeneration of failed
nodes and data reconstruction in the presence of Byzantine
failures. A progressive decoding mechanism is incorporated in
both procedures to leverage computation performed thus far.
Unlike previous works, our new regenerating code decoding has
the advantage that its building blocks, such as Reed-Solomon
codes and standard cryptographic hash functions, are relatively
well-understood because of their widespread applications. The
fault tolerance and security properties of the proposed schemes
are also analyzed. In addition, the performance of the proposed
schemes, in terms of the average number of access nodes and
the reconstruction failure probability versus the node failure
probability, are also evaluated by Monte Carlo simulations.

Index Terms—Network storage, regenerating code, Byzantine
failures, Reed-Solomon code, error-detection code.

I. INTRODUCTION

TORAGE is becoming a commodity due to the emergence

of new storage media and the ever decreasing cost of
conventional storage devices. Reliability, on the other hand,
continues to pose challenges in the design of large-scale
distributed storage systems such as data centers. Today’s
data centers operate on commodity hardware and software,
where both crash-stop and Byzantine failures (as a result of
software bugs and malicious attacks) are likely to be the norm.
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To achieve persistent storage, one common approach is to
disperse information pertaining to a data file (the message)
across nodes in a network. For instance, with [n, k] maximum-
distance-separable (MDS) codes, such as Reed-Solomon (RS)
codes, data are encoded and stored across n nodes, while an
end user or a data collector can retrieve the original data file
by accessing any k of the storage nodes, a process referred to
as data reconstruction.

Upon the failure of any storage node, data stored in the
failed node need to be regenerated (recovered) to maintain
the functionality of the system. A straightforward way for
data recovery is to first reconstruct the original data and then
regenerate the data stored in the failed node. However, it is
wasteful to retrieve the entire B symbols of the original file,
just to recover a fraction of that stored in the failed node.
A more efficient way is to use the so-called regenerating
codes which was introduced in the pioneering works by
Dimakis et al. in [1], [2]. In data regeneration, each storage
node stores o symbol and a total of d surviving nodes are
accessed to retrieve S < « symbols from each node. A
trade-off can be made between the storage overhead and the
repair bandwidth needed for regeneration. Minimum Storage
Regenerating (MSR) codes minimize first, the amount of
data stored per node, and then the repair bandwidth, while
Minimum Bandwidth Regenerating (MBR) codes carry out the
minimization in the reverse order. The design of regenerating
codes have received much attention in recent years [3]-
[11]. Most notably, Rashmi et al. proposed optimal exact-
regenerating codes using a product-matrix reconstruction that
recovers exactly the same stored data of the failed node (and
thus the name exact-regenerating) [11].

Existing work assumes crash-stop failures on storage nodes.
However, with Byzantine failures, the stored data may be
tampered resulting in erroneous data reconstruction and re-
generation. In [12], the code capability and resilience were
presented for error-correcting regenerating codes. The authors
also stated that it is possible to decode an [n,k,d] MBR
code up to [2=EEl| errors, and further claimed that any
[n,k,d > 2k—2] MSR code can decode up to [ “=5+L | errors.
However, no explicit decoding procedure was provided. Thus
it remains an open problem as to whether practical decoding
algorithms can be designed with such an error correction
capability.!

In fact, Dimakis e al. stated several open problems in the end of their
survey on regenerating codes [13]. Specifically, Open Problems 2 and 4 stated
in [13] explicitly call for ways to “repair” Reed-Solomon codes in order
to fully realize the potential advantages of reduced update complexity and
efficient decoding under errors in distributed storage applications. These open
problems are partially settled by the results in this paper.
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Specifically, as inspired by [11], we consider the problem of
exact regeneration for Byzantine fault tolerance in distributed
storage networks and design practical decoding algorithms for
RS-code-based MBR and MSR codes that can tolerate Byzan-
tine faults. Two challenging issues arise when nodes may
fail arbitrarily besides erasure faults. First, we need to verify
whether the regenerated or reconstructed data are correct. Sec-
ond, efficient algorithms are needed that incrementally retrieve
additional stored data and perform data reconstruction and
regeneration when errors have been detected. Cryptographic
hash function is adopted to verify the integrity of stored data.’
In particular, for data reconstruction, the hash value is coded
along with the original data and distributed among storage
nodes. For data regeneration, hash values for each storage
node are stored distributively to ensure the correctness of
verification in face of node failures. Incremental retrieval,
reconstruction and regeneration are made possible by the use
of a progressive decoding procedure. Finally, we would like
to emphasize that it is of practical significance to be able to
tackle a new challenge using a new solution approach with
well-understood ingredients (i.e., decoders of RS codes in this
case). The proposed decoding schemes are conceptually novel
and practically significant.

The rest of the paper is organized as follows. Related work
is briefly surveyed in Section II. We give an overview of
regenerating codes and RS codes in Section III to prepare
the readers with necessary background. The design of error-
correcting exact regenerating codes for the MSR points and
MBR points are presented in Section IV and Section V,
respectively. Section VI provides performance evaluation of
the proposed schemes. Finally, we conclude the paper in
Section VII.

II. RELATED WORK

Regenerating codes were introduced in the pioneer works
by Dimakis efr al. in [1], [2]. In these works, the so-called
cut-set bound was derived which is the fundamental limit
for designing regenerating codes. In these works, the data
reconstruction and regeneration problems were formulated as
a multicast network coding problem. From the cut-set bound
between the source and the destination, the parameters of the
regenerating codes were shown to satisfy the bound, which
reveals the trade-off between storage and repair bandwidth.
Those parameters satisfying the cut-set bound with equality
were also derived.

The regeneration codes with parameters satisfying the cut-
set bound with equality were proposed in [3], [4]. In [3] a
deterministic construction of the regenerating codes with d =
n — 1 was presented. In [4], the network coding approach was
adopted to design the regenerating codes. Both constructions
achieved functional regeneration but not exact regeneration.
Recently, a decentralized minimum-cost repair scheme was
proposed in [14].

Exact regeneration was considered in [5]-[7]. In [5],
a search algorithm was proposed to search for exact-
regenerating MSR codes with d n — 1; however, no

2Data integrity refers to assuring the consistency and accuracy of data after
any data process or transmission. Integrity check (verification) is a mechanism
or process for checking data integrity.
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systematic construction method was provided. In [6], the MSR
codes with k£ = 2,d = n — 1 were constructed by using the
concept of interference alignment, which was borrowed from
the context of wireless communications. In [7], the authors
provided an explicit method to construct the MBR codes with
d = n — 1. No computation is required for these codes during
the regeneration of a failed node. Explicit construction of the
MSR codes with d = k + 1 was also provided. However,
these codes can perform exact regeneration only for a subset
of failed storage nodes.

In [15], the authors proved that exact regeneration is im-
possible for MSR codes with [n, k,d < 2k — 3] when § = 1.
Based on interference alignment approach, a code construction
was provided for the MSR codes with [n = d + 1,k,d >
2k — 1]. In [11], the explicit constructions for optimal MSR
codes with [n,k,d > 2k — 2] and optimal MBR codes
were proposed. The construction was based on the product of
two matrices: information matrix and encoding matrix. The
information matrix (or its sub-matrices) is symmetric in order
to have exact-regeneration property. However, the authors only
considered crash-stop failures of storage nodes. In this work,
we extend the code design in [11] to devise an efficient
decoding scheme that can resist not only crash-stop failures
but also Byzantine failures of storage nodes.

The progressive decoding mechanism for distributed storage
was first introduced in [16]. The scheme retrieved just enough
data from surviving storage nodes to recover the original
data in the presence of crash-stop and Byzantine failures.
The decoding was performed incrementally such that both
the communication and computation costs can be minimized.
In [16], each data generating node generates the coded data
without communicating with other data generating nodes,
and distributes the coded data to the storage nodes. Only
data reconstruction was considered in [16]. No regenerating
scheme was proposed therein.

The problem of security on regenerating codes were con-
sidered in [8]-[10]. In [8], the authors considered the security
problem against eavesdropping and adversarial attackers dur-
ing the regeneration process. They derived upper bounds on
the maximum amount of information that can be stored safely.
An explicit code construction was given for d =n — 1 in the
bandwidth-limited regime. Later, the code based on product-
matrix framework was proposed against the eavesdropping
attack [9]. It can achieve the information-theoretic secrecy
capacity. The problem of Byzantine fault tolerance for regen-
erating codes was considered in [10]. The authors studied the
resilience of regenerating codes which support multi-repairs.
By using collaboration among newcomers, upper bounds on
the resilience capability of regenerating codes were derived.
Even though our work also deals with the Byzantine failures,
it does not need to have multiple newcomers to recover the
failures. In [17], the regenerating codes for erasure networks
was considered. The fundamental bandwidth-storage tradeoffs
was derived when erasure probability of channels was known.
The maximum probability of successful data regeneration was
also derived over erasure channels. In [18], the problem of
a minimum-cost repair for multi-hop storage networks with
known topology and known link costs was investigated, where
the repair cost was defined to be the total link costs required
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in the regeneration process. A lower bound of the repair cost
was derived and strategies for cooperation among surviving
nodes were devised for tandem, star, grid and fully connected
networks. Both [17] and [18] focused on functional regenera-
tion, but not exact regeneration. Kurihara and Kuwakado [19]
analyzed the secrecy capacity of MBR codes, and proposed
[n, k, d, m] secure regenerating codes that prevent information
leakage even when an eavesdropper has data of m storage
nodes or repairing data for m failed nodes.

The coding for errors and erasures for random linear net-
work coding has been considered in [20]. In this work a Reed-
Solomon-like code was constructed and its decoding scheme
was proposed.

In our earlier conference version [21], we have proposed
an MSR code to handle Byzantine failures for d = 2k — 2.
In comparison, in this paper, we obtain a much more general
result for exact regeneration with d up to n — 1. Additionally,
instead of using cyclic redundancy check (CRC), we apply
hash functions for data integrity, which is more tamper-
resistant. Finally, simulation study is carried out to study the
performance of the proposed decoding mechanisms.

III. PRELIMINARIES

A. Regenerating Codes

Regenerating codes achieve bandwidth efficiency in the
regeneration process by storing additional symbols in each
storage node or accessing more storage nodes. Let o be the
number of symbols over a finite field GF'(q) stored in each
storage node and S < « the number of symbols downloaded
from each storage during regeneration. To repair the stored
data in the failed node, a newcomer accesses d surviving nodes
with the total repair bandwidth d. In general, the total repair
bandwidth is much less than B. A regenerating code can be
used not only to regenerate coded data but also to reconstruct
the original data symbols. Let the number of storage nodes
be n. An [n, k, d] regenerating code requires at least k and d
surviving nodes to ensure successful data reconstruction and
regeneration [11], respectively. Clearly, k < d < n — 1. An
example of regeneration taken from [13] is given in Fig. 1.

The main results given in [2], [3] are the so-called cut-set
bound on the repair bandwidth. It states that any regenerating
code must satisfy the following inequality:

k—1
B <Y minfa, (d—1i)B} . (1)
=0

Minimizing « in (1) results in a regenerating code with
minimum storage requirement; and minimizing /3 results in
that with minimum repair bandwidth [11]. It is impossible to
have minimum values both on « and 3 concurrently, and thus
there exists a trade-off between storage and repair bandwidth.
The two extreme points in (1) are referred to as the minimum
storage regeneration (MSR) and minimum bandwidth regen-
eration (MBR) points, respectively. The values of « and /3 for
MSR point can be obtained by first minimizing « and then

minimizing 3:

B
T %
B

b = kd—k+1)

@)

Reversing the order of minimization we have 8 and « for
MBR as

2B
p= kQd—k+1)
2dB
“ T Red—krD) @

As defined in [11], an [n, k, d] regenerating code with parame-
ters (o, 3, B) is optimal if 1) it satisfies the cut-set bound with
equality, and ii) neither o nor 8 can be reduced unilaterally
without violating the cut-set bound. Clearly, both MSR and
MBR codes are optimal regenerating codes.

It has been proved that when designing [n, k, d] MSR for
k/(n+1) <1/2 or MBR codes, it suffices to consider those
with 8 = 1 [11]. Throughout this paper, we assume that 5 =1
for code design. Hence (2) and (3) become

a = d—k+1

B = k(d-k+1)=ka @)
and

a = d

B = kd-k(k-1)/2, 5)

respectively, when 5 = 1.

There are two ways to regenerate data for a failed node. If
the replacement data generated is exactly the same as those
stored in the failed node, we call it the exact regeneration.
If the replacement data generated is only to guarantee the
data reconstruction and regeneration properties, it is called
functional regeneration. In practice, exact regeneration is more
desired since there is no need to inform each node in the
network regarding the replacement. In addition, it is easy to
keep the code systematic via exact regeneration, where partial
data can be retrieved without accessing k£ nodes. Throughout
this paper, we only consider exact regeneration and design
exact-regenerating codes with error-correction capabilities. We
target for all possible n, k& for the MBR points and k/(n+1) <
1/2 for the MSR points.

B. Reed-Solomon codes

Since Reed-Solomon (RS) codes will be used in the design
of regenerating codes, we briefly describe the encoding and
decoding mechanisms of RS codes.

RS codes are well studied error-correction codes. They not
only can recover data when nodes fail, but also can guarantee
recovery when a subset of nodes are Byzantine. RS codes
operate on symbols of m bits, where all symbols are from
the finite field GF(2™). An [n, k] RS code is a linear code,
with parameters n = 2™ — 1 and n — k = 2¢, where n is the
total number of symbols in a codeword, k£ is the total number
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Fig. 1. An example of regeneration from [13].

of information symbols, and ¢ is the symbol-error-correction
capability of the code.?

Encoding: Let the sequence of k information symbols
in GF(2™) be u = [ug,u1,...,ur—1] and u(z) be the
information polynomial of u represented as*

k

—1
- Up—1T .

u(z) = up + urx + - -
The codeword polynomial, ¢(x), corresponding to u(z) can
be encoded as [22]

u(a®) + u(a)z +u(a®z® + - +u(a™ Hz"

c(x)

where ¢ is a generator (or a primitive element) in GF(2™).
In the matrix form, the codeword

C [607617"'acﬁ—1]
= [u(a®),u(a"),...,u(a ")
is encoded as
c=uG ,
where
1 1 1
a0 al ai—1
G- (CLO)2 (al)Z (aﬁ—l)Z
(aO)kfl (al)kfl (aﬁfl)kfl
Let
g(z) = (z—a)(x—ad®)---(z—a*)

= (6)
for g; € GF(2™). It can be proved that ¢(z) is divisible by
g(z), ie., a,a?, ... a are roots of c(z).

PRI

go + g1 + gox? + - + goyz?t |

3The number of storage nodes, 7, might be less than the length of the RS
code, 7. In this case, a shortened RS code with length n < 7 is employed
in our proposed scheme.

4We use polynomial and vectorized representations of information symbols,
codewords, received symbols and errors interchangeably in this work.

Decoding: The decoding process of RS codes is more
complex. A complete description can be found in [23].

Let 7(z) be the received polynomial and rN(:c? = c(z) +
e(x) +v(x) = c(x) + N(x), where e(z) = 377, eja’ is the
error polynomial, y(x) = Z?;(} ;27 the erasure polynomial,
and \(7) Z;:Ol A\;jx? = e(z)+~(z) the errata polynomial.
Note that g(x) and (hence) c(z) have a,a?, ..., a?" as roots.
This property is used to determine the error locations and
recover the information symbols.

The RS codes are optimal in terms of the minimum
Hamming distance as it meets the Singleton bound [23].
An [n,k] RS code can recover from any v errors as long
as v < Lﬁ’T’HJ, where s is the number of erasure (or
irretrievable symbols). The decoding that handles both error
and erasure is called the error-erasure decoding.

In GF(2™), addition is equivalent to bit-wise exclusive-
or (XOR), and multiplication is typically implemented with
multiplication tables or discrete logarithm tables. To reduce the
complexity of multiplication, Cauchy Reed-Solomon (CRS)
codes [24] have been proposed to use a different construction
of the generator matrix, and convert multiplications to XOR
operations for erasure. However, CRS codes incur the same
complexity as RS codes for error correction.

IV. ENCODING AND DECODING OF ERROR-CORRECTING
EXACT-REGENERATING CODES FOR THE MSR POINTS

In this section, we demonstrate how to perform error cor-
rection on MSR codes designed to handle Byzantine failures
by extending the code construction in [11]. The MSR code
C with parameters [n,k,d] for any 2k —2 < d < n -1
can be constructed from an MSR code C’ with parameters
W =n+lK =k+{,d =d+ (], where d = 2k’ — 2 and
¢ =d—(2k —2). We call C’ the mother code of C. Note that
the encoding and decoding of C' are performed through C’.
By 4), wehavea=d—k+1=d — Kk +1, B = ka, and
B’ = K'a = B+ Y. Hence, both codes share the same « and
only differ in {cv information symbols. If we have a systematic
version of C” and set the last ¢ columns of information matrix
U to zeros, then the actual number of storage nodes for c’
becomes n’ — ¢ = n, where U is an o x k' matrix. In such
case, C’ can be used to encode and decode the B symbols. It
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is clear that d’ = 2k’ — 2 and we have
a=d -k +1=kK—1=d/2

and
B =FKa=ala+1).

We assume that the symbols in data are elements from
GF(2™). Hence, the size of the data is mB bits for § = 1.
Note that since d < n — 1 it is clear that 2k —2 <n —1 and
then k/(n+1) <1/2.

A. Verification for Data Reconstruction

Since we need to design codes with Byzantine fault toler-
ance it is necessary to perform integrity check after the original
data are reconstructed. Two common verification mechanisms
can be used: CRC and cryptographic hash function. Both
methods add redundancy to the original data before they are
encoded. In order to enhance the strength of verification on
storage data, cryptographic hash function [25] is utlized in this
work.

A cryptographic hash function is a one-way function that
takes an arbitrary block of data and returns a fixed-size binary
string, namely, the hash value. Modifying the input data with-
out changing the hash value is computationally infeasible [25,
Chapter 9]. Furthermore, it is also infeasible to generate
the input data given the hash value alone. The design of
cryptographic hash functions is usually based on block ciphers
such as AES. Since the length of input data of a block cipher
is fixed to some numbers, the Merkle-Damgard construction
is adopted [26], [27]. A common length of the hash value is
224 bits as in SHA-224 [28]. Since the size of the original
data is usually large, the redundancy added by imposing a
cryptographic hash function is acceptable. For example, for a
[100, 20, 38] MSR code with « = 19, B = 19 x 20 = 380,
we need to operate on GF(2!1) such that the size of the
original data is 4180 bits. The redundancy added by the a
cryptographic hash function is 224/4180 = 5.4%. Hence, in
the following, we assume that the hash value has been added
to the original data and the resultant size is B symbols.

B. Encoding

We arrange the information sequence

m = [m()amlv . 'amB—l]

into an information matrix U with size avx &’ such that the first
k columns contain the B symbols of the information sequence
and the last ¢ columns of U are zeros. Let the generator matrix,
G, of the MSR code is chosen as

a0 al a1
G- (aO)Q (al)z (an/—l)z 7
(a())d’—l (al)d’—l (an’—l)d’—l

SA shorter lengh of hash value (160 bits) can be used such as in SHA-1;
however, the security strength becomes weaker.
The reason to choose GF(2!1) will be clear in the next section.

d' = 2a, and «a is a generator of GF(2™). Note that G is
a generator matrix of the [n’,d'] RS code. One important
property of G is that any &’ columns are linearly independent.
The information matrix U’ to be encoded is obtained as

UGy =U,
where
U = [Z175],

Z;’s are symmetric matrices with dimension axa for j = 1, 2,
and G} is the last k¥’ columns of G. Given U, we need to
solve for U’. In this encoding, each row of the information
matrix U’ produces a codeword of length n’. Since the last ¢
symbols are zeros, the actual length of each codeword is n.
Since the [n’,d'] RS code is adopted to construct the MSR
code, for the ith row of U’, the corresponding codeword is

[pi(a® = 1),p;(a"),... Skl (7)

where p;(x) is a polynomial with all elements in the ith row
. . . d —1 ;

of U’ as its coefficients, that is, p;(z) = ijo w7 and w;j,

1 < j <k, are the first k& elements in the ¢th row of U. In the

matrix form, we have

pi(@ ) i wge

UG =[Co],

where O is all zero matrix with size o x ¢ and C is the
codeword vector with dimension (o x m). Note that each
row of C' is decoded separately in all decoding procedures.
Finally, the ith column of C' is distributed to storage node ¢

for1 <i<n.
The generator matrix G of the RS code can be reformulated
as

G =
r 1 1 1 h
a° al an’—l
(aO)Q (a1)2 (an’—l)Q
(ao)“fl (al)a—l (an/fl)afl

(CLO)al (al)al (an/fl)al
(aO)aaO (al)aal (an'—l)aan/—l
(aO)a(aO)Z (al)a(al)z (an’—l)a(an’—l)Q

(an,fl)u(an,fl)ufl i

L (ao)_“(ao)"‘fl
(&l
®

where G contains the first o rows in G and A is a diagonal
matrix with (a®)®, (a')®, (a?)*,..., (™ 1) as diagonal
elements. We require (a®)®, (a')®, (a2)*,..., (™ 1" to
be all distinct. This can be guaranteed if this code is over
GF(2™) for m > [logyn’] and ged(2™ — 1, ) = 1.

It is easy to see that the o symbols stored in storage node
iis

(al)a(al)a—l

U’ . ) ng
(a" 1) gy
where g7 is the ith column in G.
Next we present the process to calculate the entries of U’
from U. The process is similar to the decoding process given

} = 7197 + (' 1) Zag]
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in [11]. Recall that U'Gy
columns of (. That is

= U, where Gy is the last £’

/ _ Gk/
UGy = [Z1Z2] l: leA :|
=[2G + ZoGr A . )
Multiplying G7, to (9), we have
G;;F,Zlék/ + G%‘;ZQG']C/A = P+QA
= GuU, (10)

where P = G}, Z,Gy and Q = G}, Z5Gyy. Since Z;, i = 1,2,
are symmetric, P and @ are too. The (4, j)th, 1 <i,j < &’
and i # j, element of P 4+ QA is

pij + qijat? = D® 1)
and the (j,4)th element is given by
pji + qjia (12)

Combining (11) and (12) we can obtain the values of p;; and
gij since =Y £ (=D for all § # 4, p;; = pji, and
qij = 4ji-

Now consider P = G, Z1G)y. We re-index g,,/_js,; as g;
for 1 < i < k. Since the only unknown elements in P are
those on diagonal and

GLZ\Gy = Z [ g7 43 9 ]

we have ith row of P excluding the element on diagonal as

9.2 91 a3 g1 9 gi |-
Since £/ = o+ 1 and
(gl &% gl 9 g |

is invertible due to construction, we can obtain g;Z; for 1 <
1 < k’. Selecting the first « of them yields

Since

9o
is invertible, we can solve for Z;. Z> can be obtained similarly
from Q.

A final remark is that each column in G can be generated
by knowing the index of the column and the generator a.
Therefore, each storage node does not need to store the entire
G to perform exact regeneration.
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C. Decoding for Data Reconstruction

The generator polynomial of the [n/,d’] RS code encoded
by (7) has a”~¢,a" %=1 ... @ as roots [23].” Without loss of
generality, we assume that the data collector retrieves encoded
symbols from k storage nodes jo, ji, ..., Jjk—1 and forms the
received matrix Y, xj. First, the information sequence m is
recovered by the procedure given in Section IV-B as follows.

The data collector pads £ columns of zeros to Yy« to form
Yaxks- It then collects the k& columns of G corresponding
to storage nodes jo, ji,..., Jjk—1 as the first £ columns
of G and the last ¢ columns from the last ¢ columns of
G. The data collector calculates (Gj/)" Yo and obtains P
and @ from (@k/)T Yo xi via (11) and (12). Denote Gy as
(67 )1<i<ks. For 1 < j < k' — 1, it obtains P, by taking the
jth row of P and deleting the jth element in it. It calculates

and then obtains

[Pj ([gﬂ )_1} i1
71 = <[gj]1§j§k’l> h ([I’j ([9?]1@;1}’1)1} » ) )

Zy can be obtained by replacing P with () in the above
procedure. Then multiplying U’ = [Z; Z3] by Gy to obtain
the original U and the information sequence m.

If the recovered information sequence does not pass the
integrity check, we need to perform the error-erasure decoding.
In addition to the received encoded symbols from k storage
nodes, the data collector needs to retrieve the encoded symbols
from d + 2 — k storage nodes of the remaining storage nodes.
The data collector then performs error-erasure decoding to
obtain m.® If the recovered information sequence passes the
integrity check, the process finishes; otherwise, two more
symbols need to be retrieved. The data collector continues the
decoding process until it successfully recovers the correct in-
formation sequence or no more storage nodes can be accessed.
In each step, the progressive decoding that we proposed in [16]
is applied to reduce the computation complexity. Note that the
RS code used is capable of correcting up to | (n—d)/2] errors.

The decoding algorithm with integrity check is summarized
in Algorithm 1. Note that, in practice, Algorithm 1 will be
repeated 3 times for each retrieved symbol when 3 > 1.°

1<i<k’/—1
iA]

D. Verification for Regeneration

To verify whether the recovered data are the same as those
stored in the failed node, integrity check is needed. However,
such a check should be performed based on information
stored on nodes other than the failed node. We consider two
mechanisms for verification.

In the first scheme, each storage node keeps the hash
values for the remaining n — 1 storage nodes. When the
newcomer accesses d surviving storage nodes, it also asks
for the hash values for the failed node from them. Using the
majority vote on all received hash values, the newcomer can

"Recall that n/ —d' = n — d.

8The information sequence is now part of the codeword due to the
construction of U’ from U.

9By definition, /3 is the number of symbols sent out from each of the d
surviving nodes. Hence, it should be kept as an integer by modifying B.
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Algorithm 1: Decoding of MSR Codes for Data Recon-
struction
begin

The data collector randomly chooses k storage nodes
and retrieves encoded data, Y, «; Pad ¢ columns of
zeros to Yo« to form Y, «pr;

Collect the k columns of G corresponding to storage
nodes jo, j1,..., jx_1 as the first k& columns of G}
and the last ¢ columns from the last ¢ columns of G}

Calculate (@k/)T Yo ; Obtain P and Q from
(Gr)" Yo via (11) and (12);

Denote Gy as [ ]1<i<p; For 1 < j <k’ — 1, obtain
p; by taking jth row of P and deleting jth element

-1
in it; Calculate [pj ([g?] 199_’71) }

and

7 1<5<k/ —1

then obtain Z; =

<[gj]1<j<k'1>

Obtain Z3 by replacing P with @ in the above

procedure;
Obtain m in U by multiplying U’ = [Z; Z5] with
Gus
if HashTest(m) = SUCCESS then
| return m;
else

Retrieve d — k more encoded data from remaining
storage nodes and merge them into Yy xq; j < d’;
while j <n/ —2 do

JEIi+2

Retrieve two more encoded data from
remaining storage nodes and merge them into
Y. and assign zeros to the last £ columns
of Yoy ;3

Perform progressive error-erasure decoding
on each row in Y, ; to recover ¢. Then
obtain the m directly from ¢;

if HashTest(m) = SUCCESS then
| return m;

L r(;turn FAIL;

obtain the correct hash value if no more than [(d — 1)/2]
accessed storage nodes are compromised. To see the storage
complexity of this scheme, let us take a numerical example.
Consider a [100, 20, 38] MSR code with 5 = 1000, =
19 x B = 19000, B = 4.18Mb. The total number of bits
stored in each node is then 19000 x 11 = 209000. If a 224-
bit hash value is added to each storage node, the redundancy
is r(n — 1)/(am) = 224 x 99/209000 ~ 10% and the
extra bandwidth for transmitting the hash values is around
r/(Bm) = 224/11000 ~ 2%, where r is the size of the hash
value. Hence, both redundancy for storage and bandwidth are
manageable for large (’s.

When S is small, we adopt an error-correcting code to
encode the r-bit hash value. This can improve the storage
and bandwidth efficiency. First we select the operating finite
field GF(2™') such that 2 > n — 1. Then an [n — 1, k] RS

-1
—1
(oot )
7 1<G<k/ =1

code with k& = [r/m’] is used to encode the hash value. Note
that this code is different from the RS code used for MSR
data regeneration. In encoding the hash value of a storage
node into n — 1 symbols and distributing them to the n — 1
other storage nodes, extra (n — 1)m’ bits are needed on each
storage node. When the newcomer accesses d storage nodes to
repair the failed node ¢, these nodes also send out the symbols
associated with the hash value for node :. The newcomer then
can perform error-erasure decoding to recover the hash value.
The maximum number of compromised storage nodes among
the accessed d nodes that can be handled by this approach
is [(d — k)/2] and the extra bandwidth is dm’. Since m’ is
much smaller than n — 1 and r, the redundancy for storage
and bandwidth can be reduced. Taking the previous numerical
example, we have m’ = 8 and k = 28. Note that after the
newcomer regenerates the data stored in the failed node, it
requests the hash values from the other n — 1 nodes.

E. Decoding for Regeneration

Let node ¢ be the failed node to be recovered. During re-
generation, the newcomer accesses s surviving storage nodes,
where d < s < n — 1. Without loss of generality, we assume
that the storage nodes accessed are jo, ji,..., Jjs—1. Bvery
accessed node takes the inner product between its a symbols
and

g;=[1 (@ H (@) .. (a1, (13)

where g, can be generated by index ¢ and the generator a,
and sends the resultant symbol to the newcomer. Since the
MSR code is a linear code, the resultant symbols transmitted,

Yior Yjis Yjar---» Yj._., that are appended ¢ 0’s, can be
decoded to the codeword ¢, where
[c[o] = g;-(U-G)

if (n—s)+2e < n—d+ 1, where e is the number of
errors among the s resultant symbols. Multiplying [c|0] by
the inverse of the first d’ columns of G, i.e., G‘;,l, one can
recover

g:- U

which is equivalent to
9i- %1 Za) =19, 21 9, 2] -

Recall that g; is the transpose of 7th column of G, the first
a rows in G. Since Z;, for j = 1,2, are symmetric matrices,
(9,2;,)T = Z;gT. The o symbols stored in the failed node i
can then be calculated as

(9:21)" + (a1 (g Z2)"

The progressive decoding procedure in [16] can be applied
in decoding yj,, Yj1s Yjoor---> Yj._,- First, the newcomer
accesses d storage nodes and decodes Y., Yji s Yjos---» Yju_s
to obtain ¢ and « symbols by (14). Then, it verifies the
hash value. If the integrity check is passed, the regeneration
is successful; otherwise, two more surviving storage nodes
need to be accessed. Then the newcomer decodes the received
Yjor Yjis Yjor+-+» Yja, 10 Obtain ¢ and recover o symbols.

(14)
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The process repeats until a sufficient number of correctly
stored data have been retrieved to recover the failed node.
Again, in practice, when S > 1, the decoding needs to be
performed [ times to recover Sa symbols before verifying
the hash value. The data regenerating algorithm with integrity
check is summarized in Algorithm 2.

Algorithm 2: Decoding of MSR Codes for Regeneration

begin
Assume node ¢ is failed.
The newcomer randomly chooses d storage nodes;
Each chosen storage node combines its symbols as a
(8 x a) matrix and multiply it by g, in (13);
The newcomer collects these resultant vectors as the
first d columns in a (f x d’) matrix Y. Assign zeros
to the last ¢ columns of Y.
The newcomer obtains the hash value for node 7;
jds
repeat
Perform progressive error-erasure decoding on
each row in Y to recover C (error-erasure
decoding performs /3 times);
M = [C|0]G", where G}, is the inverse of the
first d’ columns of G
Obtain the Sa information symbols, s, from M
by the method given in (14);
if HashTest(s) = SUCCESS then

| return s;
else
JEI+2
The newcomer accesses two more remaining
storage nodes;
Each chosen storage node combines its
symbols as a (5 x «) matrix and multiply it
by g, given in (13);
The newcomer merges the resultant vectors
into Ygy ;3

until j > n’ — 2;
| return FAIL;

V. ENCODING AND DECODING OF ERROR-CORRECTING
EXACT-REGENERATING CODES FOR THE MBR POINTS

In this section we demonstrate that by selecting the same RS
codes as that for MSR codes and designing a proper decoding
procedure, the MBR codes in [11] can be extended to handle
Byzantine failures. Since the verification procedure for MBR
codes is the same as that of MSR codes, it is omitted.

A. Encoding

Let the information sequence m = [mg, m1,...,mp_1] be
arranged into an information matrix U with size o X d such
that

Uji = My, for: <j <k
Uji = M, fOI'k'F].SZSd,].S]Sk
0 otherwise

Ui = )
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where k1 = (1 —1)(k+1)—i(i+1)/2+j and ko = (i — k —
1)k + k(k 4+ 1)/2 + j. In the matrix form, we have

Uv:|:141 Ag:|7

As O
where A; is a k X k matrix, As a (d — k) x k matrix, 0 is the
(d— k) x (d — k) zero matrix. Both A; and U are symmetric.
It is clear that U has a dimension d x d (or a X d).

We apply an [n,d] RS code to encode each row of U.
Let p;(x) be the polynomial with all elements in the ith row
of U as its coefficients. That is, p;(z) = Z?;& u;jz’. The
corresponding codeword of p;(z) is thus

[pi(ao = 1)api(a1)7 s 7pi(an_1)] .

Recall that @ is a generator of GF'(2™). In the matrix form,
we have

5)

(16)

U-G=C,
where
[ 1 1 1 i
a® al an!
(a0)2 (al)Z (an71)2
G = (a())k—l (al)k—l (an—l)k—l ’
(aO)k (al)k (an—l)k
(aO)dfl (al)dfl (anfl)dfl

and C' is the codeword vector with dimension (« x n). G is
called the generator matrix of the [n,d] RS code. G can be
divided into two sub-matrices as

=[5 ]
where
1 1 1
a0 al a1
G — (a®)? (al)? (a"1)? (17)
(a®)F=1  (al)h-1 (@ 1)k-1
and
(a®)* (al)F (@ 1)
B =
(a®)4-1  (a})d-1 (a"—1)d-1

Note that G}, is a generator matrix of the [n, k] RS code and
it will be used in the decoding process for data reconstruction.

B. Decoding for Data Reconstruction

The generator polynomial of the RS code encoded by (17)
has a™~*,a™ %=1, ... a as roots [23]. Hence, the progressive
decoding scheme given in [16] can be applied to decode the
proposed code if there are errors in the retrieved data. Unlike
the decoding procedure given in Section IV-C, where an [n, d]
RS decoder is applied, we need an [n, k] RS decoder for MBR
codes.
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Without loss of generality, we assume that the data
collector retrieves encoded symbols from s storage nodes
Jos Jis--+, Jjs—1, k < s < n. Recall that & = d in MBR.
Hence, the data collector receives d vectors where each vector
has s symbols. Collecting the first k£ vectors as Y} and the
remaining d — k vectors as Y;_j. From (15), we can view the
codewords in the last d — k rows of C' as being encoded by
G}, instead of G. Hence, the decoding procedure of [n, k] RS
codes can be applied on Y to recover the codewords in the
last d — k rows of C. Let G}, be the first ¥ columns of G,
and C‘d, r be the recovered codewords in the last d — k& rows
of C. Ay in U can be recovered as

Ay=Car-Gi (18)
We then calculate flg - B and only keep the jpth, jith, ...,
Js—1th columns of the resultant matrix as F, and subtract F/
from Y},:

Y=Y, —E. (19)

Applying the RS decoding algorithm again on Y, we can
recover A; as

/11 = ék . GA;.Cil (20)
Hash value is computed on the decoded information sequence
to verify the recovered data. If the integrity check is passed,
the data reconstruction is successful; otherwise the progressive
decoding procedure is applied, where two more storage nodes
need to be accessed from the remaining storage nodes in
each round until no further errors are detected. The detailed
data reconstruction algorithm can be found in our conference
version [21].

C. Decoding for Regeneration

Decoding for regeneration with MBR is very similar to that
with MSR. After obtaining g; - U, we take its transposition.
Since U is symmetric, we have U T —U and

ut-gl =U-gf .

A integrity check is performed on all Sa symbols. If the
integrity check is passed, the S« symbols are the data stored in
the failed node; otherwise, the progressive decoding procedure
is applied.

VI. PERFORMANCE EVALUATION

In this section, we first analyze the fault-tolerance capability
of the proposed codes in presence of crash-stop and Byzantine
failures, and then carry out numerical simulations to evaluate
the performance for proposed schemes.

A. Fault-tolerance capability

In analyzing the fault-tolerance capability, we consider two
types of failures, namely, crash-stop failures and Byzantine
failures. Nodes are assumed to fail independently (as opposed
in a coordinated fashion). In both cases, the fault-tolerance
capability is measured by the maximum number of failures
that the system can handle to maintain correctness.

Crash-stop failure: Crash-stop failures can be viewed as
an erasure in the codeword. Since at least £ nodes need to
be available for data reconstruction, it can be shown that the
maximum number of crash-stop failures that can be tolerated
in data reconstruction is n — k. For regeneration, d nodes
need to be accessed. Thus, the fault-tolerance capability is
n —d — 1. Note that since all live nodes contain correct data,
the associated hash values are also correct.

Byzantine failure: In general, in RS codes, two additional
correct code fragments are needed to correct one erroneous
code fragment. However, in the case of data regeneration, the
capability of the newcomer to obtain the correct hash value
also matters. In the analysis, we assume that the majority rule
scheme is used in the process to obtain the correct hash value.
Data regeneration fails if the newcomer cannot obtain the
correct hash value even when the number of compromised
nodes is less than the maximum number of faults the RS
code can handle. Hence, we must take the minimum of
the capability of the RS code (in MBR and MSR) and the
capability to recover the correct hash value. Thus, with MSR
and MBR codes, [25%] and [25%| erronecous nodes can
be tolerated in data reconstruction. On the other hand, the
fault-tolerance capability of MSR and MBR codes for data
regeneration are both min { | 2=2=L] |41}

Table I summarizes the quantitative results of the fault-
tolerance capability of MSR and MBR codes.

B. Simulation study

The performance of the proposed decoding scheme for MSR
and MBR codes are evaluated by Monte Carlo simulations.
For comparison, the performance of a traditional decoding
scheme that is non-progressive is also provided. For the non-
progressive decoding scheme, after k nodes are accessed, if
the integrity check fails, the data collector will access all
remaining n— k nodes in data reconstruction. Similarly, after d
nodes are accessed, if the integrity check fails, the newcomer
will access all remaining surviving n — d — 1 nodes in data
regeneration. Each data point is generated from 10* simulation
results. Storage nodes may fail arbitrarily with the Byzantine
failure probability ranging from 0 to 0.5. In both schemes,
[n, k, d] is chosen to be [100, 20, 38].!° Thus o = 19, and the
largest possible n’ = n+¢ =1004+100—1—2x 2042 = 241.
For MSR codes, as discussed in Section IV-B, for the fi-
nite field GF(2™), m needs to satisfy m > [log,n’] and
ged(2™ — 1, ) = 1. This gives m = 8 as 2% = 256 > 241 is
co-prime to 19. The finite field associated with MBR can be
made smaller (e.g., m = 7). For simplicity, in the simulations,
we select the same operating finite field GF(2%) for both MSR
and MBR codes.

Figure 2 and Figure 3 show the performance of the MSR
code in data reconstruction and regeneration, respectively.
As shown in Fig. 2, as the failure probability of each node
reduces, the average number of nodes accessed and the failure
rate of reconstruction decrease. When the failure probability
reduces to 0, there are £k = 20 nodes that need to be accessed.
This is due to the fact that at least £ nodes need to be

10Since the commonly used finite field size corresponds to m = 8 bits, the
code [100, 20, 38] is chosen to operate on G'F'(2%).
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TABLE 1
FAULT-TOLERACE CAPABILITY OF MSR AND MBR CODES

| I MSR code I MBR code [l
Data reconstruction Regeneration Data reconstruction Regeneration
Crash-stop failures n—k n—d n—k n—d
PR —d - —d— d— —& - —d— d—
Byzantine faults | === mln{L”le, LTIJ} [ "5~ mm{L”le, LTIJ}

[100,20,38] MSR Codes for Data Reconstruction
100

90r

70

50

40t

20t

Average Number of Accesses (nodes)

— — — Non-progressive ]
Progressive (Proposed)

0.3 0.2
Node Failure Probability

0
0.5 0.4 0.1 0

(a) Average number of accessed nodes

[100,20,38] MSR Codes for Data Reconstruction
1 T T T :
— — — Non-progressive
Progressive (Proposed)||

0.9F

0.7

0.6

0.4r

Failure Rate of Reconstruction

0.2F

0 ;
0.4

0.3
Node Failure Probability

0.2 0.1 0

(b) Failure rate of data reconstruction

Fig. 2. The comparison between proposed progressive decoding scheme and
the traditional non-progressive approach on varying node failure probability
for data reconstruction using the [100, 20, 38] MSR code.

accessed in data reconstruction for the [100,20,38] code.
When the failure probability is 0.4, or roughly 40 nodes failed,
one needs to retrieve data from all 100 nodes. Meanwhile,
when the actual number of failure nodes is greater than 31,
reconstruction is less feasible with MSR.!! As a result, when
the failure probability is around 0.31, roughly only half of
the time, the reconstruction is successful. Similar observations

""The error-erasure decoding adopted in the progressive decoding procedure
in [16] can decode up to 80 errors; however, its decoding capability depends
on the order of accessing extra nodes.

[100,20,38] MSR Codes for Data Regeneration
100

—_ = — —— T

90r

70

50

401

201 .

Average Number of Accesses (nodes)

— — — Non-progressive ]
Progressive (Proposed)

0.3 0.2
Node Failure Probability

o
&)

0.4 0.1 0

(a) Average number of accessed nodes

[100,20,38] MSR Codes for Data Regeneration
1 T T T :

N — — — Non-progressive
Progressive (Proposed)||

Failure Rate of Regeneration
© © o o 9o © o
MW R B N ®

o
-
T

0.4

o

0.3
Node Failure Probability

bt
o

0.2 0.1 0

(b) Failure rate of data regeneration

Fig. 3. The comparison between proposed progressive decoding scheme and
the traditional non-progressive approach on varying node failure probability
for data regeneration using the [100, 20, 38] MSR code.

can be made for regeneration as shown in Fig. 3. The main
differences are i) when the failure probability is 0, d = 38
nodes need to be accessed, and ii) the maximum number of
accessible nodes is n — 1 = 99 in presence of a single failure
node. It is not surprising that the proposed decoding scheme
has a smaller average number of accesses than the traditional
one. Moreover, the advantage is more pronounced in presence
of Byzantine faults. Specifically, the proposed scheme has a
lower failure rate than the traditional one because the failure
nodes may be not accessed in the progressive decoding when
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[100,20,38] MBR Codes for Data Reconstruction
100 T T

—— T

90t
801
70t
60}
501
401

301

201

Average Number of Accesses (nodes)

10 — — — Non-progressive ]
— Progressive (Proposed)

0 ;
0.5 0.4 0.3 0.2 0.1 0
Node Failure Probability

(a) Average number of accessed nodes

[100,20,38] MBR Codes for Data Reconstruction
1 T T T :
— — — Non-progressive
Progressive (Proposed) |

0.9

0.7

0.6}

0.4}

0.3f

Failure Rate of Reconstruction

0.1

0.5 0.4 0.3 0.2 0.1 0
Node Failure Probability

(b) Failure rate of data reconstruction

Fig. 4. The comparison between the proposed progressive decoding scheme
and the traditional non-progressive approach on varying node failure proba-
bility for data reconstruction using the [100, 20, 38] MBR code.

the number of the failure nodes is larger than the fault-
tolerance capability.

Figure 4 and Figure 5 show the performance of the MBR
code in data reconstruction and regeneration, respectively.
Again, as the failure probability reduces, the total number
of nodes accessed and the failure rate of reconstruction and
regeneration decrease. When comparing Fig. 4 with Fig. 2, we
see a slower growth in both qualities as the failure probability
increases. This is because in MBR, if there exists an error
in the first £ = 20 nodes accessed, only two extra nodes are
needed for each error, while with MSR codes, d — k = 18
nodes need to be accessed first and two extra nodes are needed
for each additional error (Algorithm 1). In contrast, the per-
formance of the MBR code for code regeneration is identical
to that of the MSR code. The advantage of the proposed
scheme over the traditional non-progressive decoding scheme
is similar to that in the case of the MSR code.

[100,20,38] MBR Codes for Data Regeneration

100
. 9%
(2]
[0
8 80
£
2 70
[%]
[%]
& 60
Q
<<
5 50
5
g 40
2
o 30r §
g
o 20 .
>
< 10| — — — Non-progressive ]
Progressive (Proposed)
0 n n i i
0.5 0.4 0.3 0.2 0.1 0
Node Failure Probability
(a) Average number of accessed nodes
[100,20,38] MBR Codes for Data Regeneration
1 T T T :
N — — — Non-progressive
0.9r \ Progressive (Proposed)||
0.8F 1

0.7

0.61

0.4r
0.3f

Failure Rate of Regeneration
o
2

011

0 i i
0.5 0.4 0.3 0.2 0.1 0
Node Failure Probability

(b) Failure rate of data regeneration

Fig. 5. The comparison between proposed progressive decoding scheme and
the traditional non-progressive approach on varying node failure probability
for data regeneration using the [100, 20, 38] MBR code.

VII. CONCLUSIONS

In this paper, the problem of exact regeneration with error
correction capability for Byzantine fault tolerance in dis-
tributed storage networks has been addressed. We showed that
the Reed-Solomon codes combined with cryptographic hash
functions can be used for both data reconstruction and regener-
ation, and can realize both MSR and MBR. Progressive decod-
ing can be applied in both application scenarios to reduce the
computation complexity in presence of erroneous data. Finally,
we analyzed the fault-tolerance capability of the proposed
schemes and carried out Monte Carlo simulation studies. We
found that both the average number of access nodes and the
reconstruction failure probability were significantly lower with
the the proposed schemes for MSR and MBR. The proposed
MSR and MBR codes generalized our earlier results for MSR
codes. By utilizing well-understood components such as RS
codes and hash functions, our proposed schemes hold promises
in practical implementation in both software and hardware.
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The decoding schemes proposed here are for MSR and
MBR codes based on the product-matrix construction. As fu-
ture work, it will be interesting to see whether the similar idea
can be extended to codes based on the interference alignment
construction. Furthermore, it has been shown that exact regen-
eration is impossible for MSR codes with [n, k,d < 2k — 3]
when § = 1. That is, the rates of codes considered in this
work are roughly less than 1/2. In the future work, we would
like to examine high-rate codes with functional regeneration
in their Byzantine fault tolerance.
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