
1

Update-Efficient Error-Correcting Product-Matrix
Codes

Yunghsiang S. Han, Fellow, IEEE, Hung-Ta Pai, Senior Member. IEEE, Rong Zheng, Senior Member. IEEE,
Pramod K. Varshney, Fellow, IEEE

Abstract—Regenerating codes provide an efficient way to
recover data at failed nodes in distributed storage systems. It
has been shown that regenerating codes can be designed to
minimize the per-node storage (called MSR) or minimize the
communication overhead for regeneration (called MBR). In this
work, we propose new encoding schemes for error-correcting
MSR and MBR codes that generalize our earlier results on error-
correcting regenerating codes. General encoding schemes for
product-matrix MSR and MBR codes are derived such that the
encoder based on Reed-Solomon (RS) codes is no longer limited
to the Vandermonde matrix proposed earlier. Furthermore, MSR
codes and MBR codes with the least update complexity can be
found. A decoding scheme is proposed that utilizes RS codes
to perform data reconstruction for MSR codes. The proposed
decoding scheme has better error correction capability and
incurs least number of node accesses when errors are present.
A new decoding scheme is also proposed for MBR codes that is
more capable and can correct more error-patterns. Simulation
results are presented that exhibit the superior performance of
the proposed schemes.

Index Terms—Distributed storage, Regenerating codes, Reed-
Solomon codes, Decoding, Product-Matrix codes

I. INTRODUCTION

Cloud storage is gaining popularity as an alternative to
enterprise storage. In cloud storage, data is stored in virtualized
pools of storage typically hosted by third-party data centers.
Reliability is a key challenge in the design of distributed
storage systems that provide cloud storage. Both crash-stop
and Byzantine failures (as a result of software bugs and
malicious attacks) are likely to be present during data retrieval.
A crash-stop failure makes a storage node unresponsive to
access requests. In contrast, a Byzantine failure responds
to access requests with erroneous data. To achieve better
reliability, one common approach is to replicate data files on
multiple storage nodes in a network. There are two kinds of
approaches: duplication (Google) [1] and erasure coding [2],
[3]. In the duplication approaches, an exact copy of each
data is stored at multiple storage nodes, thus requiring lots
of storage space. The advantage of this type of approaches is
that only one storage node needs to be accessed to obtain the

Part of this work was presented at the IEEE International Symposium on
Information Theory (ISIT 2013).

Han is with the Dept. of Electrical Engineering, National Taiwan University
of Science and Technology, Taipei, Taiwan (e-mail: yshan@mail.ntust.edu.tw),
Pai is with the Dept. of Communication Engineering, National Taipei Uni-
versity, Taiwan, R.O.C., Zheng is with the Dept. of Computing and Software,
McMaster University, Hamilton, ON, Canada, and Varshney is with the
Dept. of Electrical Engineering and Computer Science, Syracuse University,
Syracuse, NY USA.

original data. In contrast, in the second category of approaches,
erasure coding is employed to encode the original data and
then the encoded data is distributed to storage nodes. Typically,
multiple storage nodes need to be accessed to recover the
original data. One popular class of erasure codes is the
maximum-distance-separable (MDS) codes. With [n, k] MDS
codes such as Reed-Solomon (RS) codes, k data items are
encoded and then distributed to and stored at n storage nodes.
A user or a data collector can retrieve the original data by
accessing any k of the storage nodes, a process referred to as
data reconstruction.

Any storage node can fail due to hardware or software
faults. Data stored at the failed nodes need to be recovered
(regenerated) to remain functional to perform data reconstruc-
tion. The process to recover the stored (encoded) data at a
storage node is called data regeneration. A simple way for
data regeneration is to first reconstruct the original data and
then recover the data stored at the failed node. However,
it is not efficient to retrieve the entire B symbols of the
original file to recover a much smaller fraction of data stored
at the failed node. Regenerating codes, first introduced in the
pioneering works by Dimakis et al. in [4], [5], allow efficient
data regeneration. To facilitate data regeneration, each storage
node stores α symbols and any d surviving nodes can be
accessed to retrieve β ≤ α symbols from each node. A trade-
off exists between the storage overhead and the regeneration
(repair) bandwidth needed for data regeneration. Minimum
Storage Regenerating (MSR) codes first minimize the amount
of data stored per node, and then the repair bandwidth, while
Minimum Bandwidth Regenerating (MBR) codes carry out
the minimization in the reverse order. There have been many
works that focus on the design of regenerating codes [6]–
[15]. There are two categories of approaches to regenerate
data at a failed node. If the replacement data is exactly
the same as that previously stored at the failed node, we
call it exact regeneration. Otherwise, if the replacement data
only guarantees the correctness of data reconstruction and
regeneration properties, it is called functional regeneration.
In practice, exact regeneration is more desirable since there
is no need to inform each node in the network regarding
the replacement. Furthermore, it is easy to keep the codes
systematic via exact regeneration, where partial data can be
retrieved without accessing all k nodes. It has been proved that
no linear code performing exact regeneration can achieve the
MSR point for any [n, k, d < 2k−3] when β is normalized to
1 [16]. However, when B approaches infinity, this is achievable
for any k ≤ d ≤ n− 1 [17]. In this work, we only consider

2

exact regeneration.
There are several existing code constructions of regenerating

codes for exact regeneration [9], [13], [17], [18]. In [9], Wu
and Dimakis apply ideas from interference alignment [19],
[20] to construct the codes for n = 4 and k = 2. The idea
was extended to the more general case of k < max{3, n/2}
in [18]. In [13], Rashmi et al. used product-matrix construction
to design optimal [n, k, d ≥ 2k − 2] MSR codes and [n, k, d]
MBR codes for exact regeneration. These constructions of
exact-regenerating codes are the first for which the code length
n can be chosen independently of other parameters. How-
ever, only crash-stop failures of storage nodes are considered
in [13]. Recently, a decentralized minimum-cost repair scheme
for crash-stop failures was proposed in [21] by Gerami et.
al. In [21], optimal-cost repair is formulated as a convex
optimization problem for networks with convex transmission
costs and is solved via dual decomposition.

The problem of the security of regenerating codes was
considered in [11], [12], and [22]–[25]. In [11], the security
problem in the presence of eavesdropping and adversarial at-
tack during the data reconstruction and regeneration processes
was considered. Upper bounds on the maximum amount of
information that can be stored safely were derived. Pawar et
al. [11] also gave an explicit code construction for d = n−1 in
the bandwidth-limited regime. The problem of Byzantine fault
tolerance for regenerating codes was considered in [12]. Og-
gier and Datta [12] investigated the resilience of regenerating
codes when supporting multi-repairs. By collaboration among
newcomers, they derived upper bounds on the resilience ca-
pability of regenerating codes. Kurihara and Kuwakado [24]
analyzed the secrecy capacity of MBR codes, and proposed
[n, k, d,m] secure regenerating codes that prevent information
leakage even when an eavesdropper is able to acquire data of
m storage nodes or repaired data for m failed nodes. Our work
deals with Byzantine failures for product-matrix regenerating
codes and it does not need to have multiple newcomers to
recover the data in the presence of failures.

Based on the code construction in [13], Han et al. extended
the work of Rashmi et al. [13] to provide decoding algorithms
that can handle Byzantine failures [22]. In [22], decoding algo-
rithms for both MSR and MBR error-correcting product-matrix
codes were provided. In particular, the decoding algorithm
for an [n, k, d] MBR code given in [22], [25] has the error
correction capability of ⌊n−k+1

2 ⌋ = n−k
2 since n− k is even.

In [23], the code capability and resilience were discussed for
error-correcting regenerating codes. Rashmi, et al. [23] proved
that it is possible to decode an [n, k, d] MBR code up to ⌊n−k

2 ⌋
errors. The authors also claimed that any [n, k, d ≥ 2k − 2]
MSR code can be decoded up to ⌊n−k

2 ⌋ errors. However no
explicit decoding (data reconstruction) procedure was provided
due to which these codes cannot be used in practice. Thus, one
contribution of this paper is to present a decoding algorithm
for MSR codes.

In addition to bandwidth efficiency and error correction
capability, another desirable feature for regenerating codes is
update complexity [26], defined as the number of nonzero
elements in the row of the encoding matrix with the maximum

Hamming weight.1 The smaller the number, the lower is the
update complexity. Low update complexity is desirable in
scenarios where updates are frequent.

One drawback of the decoding algorithms for MSR codes
given in [22] is that, when one or more storage nodes have er-
roneous data, the decoder needs to access extra data from many
storage nodes (at least k more nodes) for data reconstruction.
Furthermore, when one symbol in the original data is updated,
all storage nodes need to update their respective data. Thus,
the MSR and MBR codes in [22] have the maximum possible
update complexity. Both of these deficiencies are addressed
in this paper. First, we propose a general encoding scheme
for MSR codes. As a special case, least-update-complexity
codes are designed. We also design least-update-complexity
encoding matrix for the MBR codes by using the coefficients
of generator polynomials of the [n, k] and [n, d] RS codes.
The proposed codes not only have least update complexity
but also have the smallest number of updated symbols when
a single data symbol is modified. This is in contrast to the
existing product-matrix codes. Second, a new decoding algo-
rithm is presented for MSR codes. It not only exhibits better
error correction capability but also incurs low communication
overhead when errors occur in the accessed data. Third, we
devise a decoding scheme for the MBR codes that can correct
more error patterns compared to the one in [22].

The main contributions of this paper beyond the existing
literature are as follows:

• General encoding schemes of product-matrix MSR and
MBR codes are derived. The encoder based on RS codes
is no longer limited to the Vandermonde matrix proposed
in [13] and [22].

• MSR and MBR codes with systematic generator matrices
of RS codes are provided. These codes have the least
update complexity compared to that of existing codes
such as systematic MSR and MBR codes proposed by
Rashmi et al. [13].

• A detailed decoding algorithm for data construction of
MSR codes is provided. It is non-trivial to extend the
decoding procedure given in [13] to handle errors. The
difficulty arises from the fact that an error in the received
data will propagate to many places during the decoding
process in [13].

• The decoding algorithm of MBR codes that can decode
beyond the error-correction capability for some error
patterns is also presented. This decoding algorithm can
correct up to

n− k

2
+

⌊
n− k + 1− ⌊n−k+1

2 ⌋
2

⌋
errors, though not all error patterns up to this number of
errors can be corrected.

The rest of this paper is organized as follows. Section II
gives an overview of error-correcting regenerating codes. Sec-
tion III presents the least-update-complexity encoding and de-

1The update complexity defined in [26] is not equivalent to the maximum
number of encoded symbols that must be updated while a single data symbol
is modified.

3

coding schemes for error-correcting MSR regenerating codes.
Section IV describes the least-update-complexity encoding of
MBR codes and the corresponding decoding scheme. Sec-
tion V details the evaluation results for the proposed decoding
schemes. Section VI concludes the paper with a discussion on
potential future work. Since only error-correcting regenerating
codes are considered in this work, unless stated otherwise, we
refer to error-correcting MSR and MBR codes as MSR and
MBR codes in the rest of the paper.

II. ERROR-CORRECTING PRODUCT-MATRIX
REGENERATING CODES

In this section, we give a brief overview of regenerating
codes, and the MSR and MBR product-matrix code construc-
tions presented in [13].

A. Regenerating Codes

Let α be the number of symbols stored at each storage node
and β ≤ α be the number of symbols downloaded from each
storage node during regeneration. To repair the stored data at
the failed node, a helper node accesses d surviving nodes. The
design of regenerating codes ensures that the total regenerating
bandwidth be much less than that of the original data, B.
A regenerating code must be capable of reconstructing the
original data symbols and regenerating coded data at a failed
node. An [n, k, d] regenerating code requires at least k nodes
to ensure successful data reconstruction, and d surviving nodes
to perform regeneration [13], where n is the number of storage
nodes and k ≤ d ≤ n− 1.

The cut-set bound given in [5], [6] provides a constraint on
the repair bandwidth. Based on this bound, any regenerating
code must satisfy the following inequality:

B ≤
k−1∑
i=0

min{α, (d− i)β} . (1)

From (1), α or β can be minimized achieving either the min-
imum storage requirement or the minimum repair bandwidth
requirement, but not both. The two extreme points in (1) are
referred to as the minimum storage regeneration (MSR) and
minimum bandwidth regeneration (MBR) points, respectively.
The values of α and β for the MSR point can be obtained by
first minimizing α and then minimizing β:

α = d− k + 1, B = k(d− k + 1) = kα , (2)

where we normalize β and set it equal to 1.2 Reversing the
order of minimization we have α for MBR as

α = d, B = kd− k(k − 1)/2 , (3)

while β = 1.

2It has been proved that when designing [n, k, d] MSR codes for k/(n+
1) ≤ 1/2, it suffices to consider those with β = 1 [13].

B. Product-Matrix MSR Codes With Error Correction Capa-
bility

Next, we describe the MSR code construction originally
given in [13] and adopted later in [22]. Here, we assume d =
2α.3 The information sequence m = [m0,m1, . . . ,mB−1]
can be arranged into an information vector U = [Z1Z2] with
size α× d such that Z1 and Z2 are symmetric matrices with
dimension α × α. An [n, d = 2α] RS code is adopted to
construct the MSR code [13]. Let a be a generator of GF (2m).
In the encoding of the MSR code, we have

U ·G = C, (4)

where

G =

1 1 · · · 1
a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...
(a0)d−1 (a1)d−1 · · · (an−1)d−1

 ,

and C is the codeword vector with dimension (α× n).
It is possible to rewrite generator matrix G of the RS code

as,

G =

1 1 · · · 1
a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...
(a0)α−1 (a1)α−1 · · · (an−1)α−1

(a0)α1 (a1)α1 · · · (an−1)α1
(a0)αa0 (a1)αa1 · · · (an−1)αan−1

(a0)α(a0)2 (a1)α(a1)2 · · · (an−1)α(an−1)2

...
(a0)α(a0)α−1 (a1)α(a1)α−1 · · · (an−1)α(an−1)α−1

(5)

=

[
Ḡ
Ḡ∆

]
, (6)

where Ḡ contains the first α rows in G, and ∆ is a diagonal
matrix with (a0)α, (a1)α, (a2)α, . . . , (an−1)α as diagonal
elements, namely,

∆ =

(a0)α 0 0 · · · 0 0
0 (a1)α 0 · · · 0 0

...
0 0 0 · · · 0 (an−1)α

 . (7)

Note that if the RS code is over GF (2m) for m ≥ ⌈log2 nα⌉,
then it can be shown that (a0)α, (a1)α, (a2)α, . . . , (an−1)α

are all distinct. According to the encoding procedure, the α
symbols stored at storage node i are given by,

U ·
[

gT
i

(ai−1)αgT
i

]
= Z1g

T
i + (ai−1)αZ2g

T
i ,

where gT
i is the ith column in Ḡ.

3An elegant method to extend the construction of d > 2α based on the
construction of d = 2α has been given in [13]. Since the same technique can
be applied to the code constructions proposed in this work, it is omitted here.

4

C. Product-Matrix MBR Codes With Error Correction Capa-
bility

In this section, we describe the MBR code constructed
in [13] and reformulated later in [22]. Note that at the
MBR point, α = d. Let the information sequence m =
[m0,m1, . . . ,mB−1] be arranged into an information vector
U with size α× d, where

U =

[
A1 AT

2

A2 0

]
, (8)

A1 is a k × k symmetric matrix, A2 a (d− k)× k matrix, 0
is the (d − k) × (d − k) zero matrix. Note that both A1 and
U are symmetric. It is clear that U has a dimension d× d (or
α×d). An [n, d] RS code is chosen to encode each row of U .
The generator matrix of the RS code is given as

G =

1 1 · · · 1
a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...
(a0)k−1 (a1)k−1 · · · (an−1)k−1

(a0)k (a1)k · · · (an−1)k

...
(a0)d−1 (a1)d−1 · · · (an−1)d−1

, (9)

where a is a generator of GF (2m). Let C be the codeword
vector with dimension (α× n). It can be obtained as

U ·G = C.

From (9), G can be divided into two sub-matrices as

G =

[
Gk

S

]
, (10)

where

Gk =

1 1 · · · 1
a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...
(a0)k−1 (a1)k−1 · · · (an−1)k−1

 (11)

and

S =

 (a0)k (a1)k · · · (an−1)k

...
(a0)d−1 (a1)d−1 · · · (an−1)d−1

 .

It can be shown that Gk is a generator matrix of the [n, k] RS
code and it will be used in the decoding for data reconstruc-
tion.

III. ENCODING AND DECODING SCHEMES FOR
PRODUCT-MATRIX MSR CODES

In this section, we propose a new encoding scheme for [n, d]
error-correcting MSR codes. With a feasible matrix ∆, Ḡ in (6)
can be any generator matrix of the [n, α] RS code. The code
construction in [13], [22] is thus a special case of our proposed
scheme. We can also select a suitable generator matrix such
that the update complexity of the resulting code is minimized.

A decoding scheme is then proposed that uses the subcode of
the [n, d] RS code, the [n, α = k − 1] RS code generated by
Ḡ, to perform the data reconstruction.

A. Encoding Schemes for Error-Correcting MSR Codes

RS codes are known to have very fast decoding algorithms
and exhibit good error correction capability. From (6) in
Section II-B, a generator matrix G for product-matrix MSR
codes needs to satisfy:

1) G =

[
Ḡ
Ḡ∆

]
, where Ḡ contains the first α rows in G

and ∆ is a diagonal matrix with distinct elements in the
diagonal.

2) Ḡ is a generator matrix of the [n, α] RS code and G is a
generator matrix of the [n, d = 2α] RS code.

Next, we present a sufficient condition for Ḡ and ∆ such
that G is a generator matrix of an [n, d] RS code. We first
introduce some notations. Let g0y(x) =

∏n−y−1
i=0 (x− ai) and

the [n, y] RS code generated by g0y(x) be C0y . Similarly, let
g1y(x) =

∏n−y
i=1 (x − ai) and the [n, y] RS code generated

by g1y(x) be C1y. Clearly, a0, a1, a2, . . . , an−y−1 are roots
of g0y(x), and a1, a2, . . . , an−y are roots of g1y(x). It can
be shown that, by the Mattson-Solomon polynomial [27],
we can choose Ḡ0y =

[
ḡ0 ḡ1 · · · ḡn−1

]
, where

ḡi = [(ai)1, (ai)2, . . . , (ai)y]T , as the generator matrix of C0y .
Similarly, we can choose Ḡ1y =

[
g̃0 g̃1 · · · g̃n−1

]
,

where g̃i = [(ai)0, (ai)1, . . . , (ai)y−1]T , as the generator
matrix of C1y . Note that, C0y and C1y have the same weight
distribution.

Theorem 1: Let Ḡ be a generator matrix of the [n, α] RS
code C0α. Let the diagonal elements of ∆ be b0, b1, . . . , bn−1

such that bi ̸= bj for all i ̸= j, and (b0, b1, . . . , bn−1)
is a codeword in C1(α+1) but not C1α. In other words,

(b0, b1, . . . , bn−1) ∈ C1(α+1)\C1α. Then, G =

[
Ḡ
Ḡ∆

]
is

a generator matrix of the [n, d] RS code C0d.
Proof: See Appendix A.

When the RS code is over GF (2m), we have the following
results. The detailed proof can be found in [28].

Corollary 1: Under the condition that the RS code is over
GF (2m) for m ≥ ⌈log2 n⌉ and gcd(2m − 1, α) = 1, the
diagonal elements of ∆, b0, b1, . . . , bn−1, can be chosen as

γ(a0)α, γ(a)α, γ(a2)α, . . . , γ(an−1)α ,

where γ ∈ GF (2m)\{0}.
It is important to note that by setting γ = 1 in Corollary 1,

we obtain the generator matrix G given in (6) first proposed
in [13], [22] as a special case.4

One advantage of the proposed scheme is that it can now
operate on a smaller finite field than that of the scheme in [13],
[22]. Another advantage is that one can choose Ḡ (and ∆
accordingly) freely as long as Ḡ is the generator matrix of
an [n, α] RS code. In particular, as discussed in Section I,
to minimize the update complexity, it is desirable to choose

4Though the roots in G given in (6) are different from those for the
proposed generator matrix, they generate RS codes with the same weight
distribution.

5

a generator matrix that has the least row-wise maximum
Hamming weight. Next, we present a least-update-complexity
generator matrix that satisfies (6).

Corollary 2: Suppose ∆ is chosen according to Corollary 1.
Let Ḡ be the generator matrix associated with a systematic
[n, α] RS code. That is, Ḡ = [B I], where

B =

b00 b01 b02 · · · b0(n−α−1)

b10 b11 b12 · · · b1(n−α−1)

b20 b21 b22 · · · b2(n−α−1)

...
...

b(α−1)0 b(α−1)1 b(α−1)2 · · · b(α−1)(n−α−1)

 ,(12)

I is the identity matrix,

xn−α+i = ui(x)g(x) + bi(x) for 0 ≤ i ≤ α− 1 ,

where ui(x) is the quotient and

bi(x) = bi0 + bi1x+ · · ·+ bi(n−α−1)x
n−α−1

is the remainder when xn−α+i is divided by g(x). Note that
both xn−α+i and g(x) are known before the construction of
B so that the division is feasible to obtain bi(x). Then, G =[

Ḡ
Ḡ∆

]
is a least-update-complexity generator matrix.

Proof: The result holds since each row of Ḡ is a nonzero
codeword with the minimum Hamming weight n− α+ 1.

Note that the above claim for least-update-complexity is
true with product-matrix construction only when Ḡ and G are
chosen as the generator matrices of MDS codes.

The update complexity defined in [26] differs from the
maximum number of encoded symbols that must be updated
when a single data symbol is modified. For instance, when the
modified data symbol is located on the diagonal of Z1 or Z2,
(n−α+1) encoded symbols need to be updated. Otherwise,
in general, when two symbols in U are modified, 2(n−α+1)
encoded symbols need to be updated. Hence, the least update-
complexity codes found previously do not necessarily imply
the least number of encoded symbols to be updated for a single
modified data symbol. If pre-processing on the information
vector is allowed or d ̸= 2k − 2, the number of encoded
symbols to be updated in this case might be further reduced.

B. Decoding Scheme for MSR Codes

Unlike the decoding scheme in [22] that uses the [n, d] RS
code, we propose to use the subcode of the [n, d] RS code,
i.e., the [n, α = k − 1] RS code generated by Ḡ, to perform
data reconstruction. The advantages of using the [n, k − 1]
RS code are two-fold. First, its error correction capability is
higher. Specifically, it can tolerate ⌊n−k

2 ⌋ instead of ⌊n−d
2 ⌋

errors. Second, it only requires the access of two additional
storage nodes (as opposed to d − k + 2 = k nodes) for each
extra error.

Without loss of generality, we assume that the data collector
retrieves encoded symbols from k + 2v (v ≥ 0) storage
nodes, j0, j1, . . . , jk+2v−1. We also assume that there are v
storage nodes whose received symbols are erroneous. The
stored information on the k + 2v storage nodes are collected
as the k + 2v columns in Yα×(k+2v). The k + 2v columns
of G corresponding to storage nodes j0, j1, . . . , jk+2v−1 are

denoted as the columns of Gk+2v. First, we discuss data
reconstruction when v = 0. The decoding procedure is similar
to that in [13].

No Error: In this case, v = 0 and there is no error in Y .
Then,

Yα×k = UGk

= [Z1Z2]

[
Ḡk

Ḡk∆k

]
= [Z1Ḡk + Z2Ḡk∆k] . (13)

Multiplying ḠT
k to both sides of (13), we have [13]

ḠT
k Yα×k = ḠT

k UGk

= [ḠT
k Z1Ḡk + ḠT

k Z2Ḡk∆k]

= P +Q∆k . (14)

Since Z1 and Z2 are symmetric, P and Q are symmetric as
well. The (i, j)th element of P + Q∆k, 1 ≤ i, j ≤ k and
i ̸= j, is

pij + qija
(j−1)α , (15)

and the (j, i)th element is given by

pji + qjia
(i−1)α . (16)

Since a(j−1)α ̸= a(i−1)α for all i ̸= j, pij = pji, and qij =
qji, combining (15) and (16), the values of pij and qij can be
obtained. Note that we only obtain k− 1 values for each row
of P and Q since no elements in the diagonal of P or Q are
obtained.

To decode P , recall that P = ḠT
k Z1Ḡk. P can be treated as

a portion of the codeword vector, ḠT
k Z1Ḡ. By the construction

of Ḡ, it is easy to see that Ḡ is a generator matrix of the
[n, k− 1] RS code. Hence, each row in the matrix ḠT

kZ1Ḡ is
a codeword. Since we know k−1 components in each row of
P , it is possible to decode ḠT

kZ1Ḡ by the error-and-erasure
decoder of the [n, k − 1] RS code.5

Since one cannot locate any erroneous position from the
decoded rows of P , the decoded α codewords are accepted
as ḠT

k Z1Ḡ. By collecting the last α columns of Ḡ as Ḡα to
find its inverse (here it is an identity matrix), one can recover
ḠT

kZ1 from ḠT
k Z1Ḡ. Since any α rows in ḠT

k are independent
and thus invertible, we can pick any α of them to recover Z1.
Z2 can be obtained similarly by Q.

It is not trivial to extend the above decoding procedure to
the case of errors. The difficulty arises from the fact that for
any error in Yα×n, this error will propagate into many places
in P and Q, due to operations involved in (14), (15), and (16),
such that many of their rows cannot be decoded successfully
or correctly (Please refer to Lemma 1). In the following, we
present the procedure to locate erroneous columns in Y based
on RS decoder.

5The error-and-erasure decoder of an [n, k − 1] RS code can successfully
decode a received vector if s + 2v < n − k + 2, where s is the number
of erasure (no symbol) positions, v is the number of errors in the received
portion of the received vector, and n − k + 2 is the minimum Hamming
distance of the [n, k − 1] RS code.

6

Multiple Errors: Before presenting the proposed decoding
algorithm, we first prove that a decoding procedure can always
successfully decode Z1 and Z2 if v ≤ ⌊n−k

2 ⌋ and all storage
nodes are accessed. Assume the storage nodes with errors
correspond to the ℓ0th, ℓ1th, . . ., ℓv−1th columns in the
received matrix Yα×n. Then,

ḠTYα×n

= ḠTUG+ ḠTE

= ḠT [Z1Z2]

[
Ḡ
Ḡ∆

]
+ ḠTE

= [ḠTZ1Ḡ+ ḠTZ2Ḡ∆] + ḠTE , (17)

where

E =
[
0α×(ℓ0−1)|eT

ℓ0 |0α×(ℓ1−ℓ0−1)| · · · |eT
ℓv−1

|0α×(n−ℓv−1)

]
.

Lemma 1: There are at least n−k+2 errors in each of the
ℓ0th, ℓ1th, . . ., ℓv−1th columns of ḠTYα×n.

Proof: From (17), we have

ḠTYα×n = P +Q∆+ ḠTE.

The error vector in ℓj th column is then

ḠTeTℓj =
(
eℓj Ḡ

)T
. (18)

Since Ḡ is a generator matrix of the [n, k− 1] RS code, eℓj Ḡ
in (18) is a nonzero codeword in the RS code. Hence, the
number of nonzero symbols in eℓj Ḡ is at least n− k+2, the
minimum Hamming distance of the RS code.
Let ḠTYα×n = P̃ + Q̃∆, where P̃ and Q̃ can be obtained
via (15) and (16). Let P̃i be the ith row of P̃ for 1 ≤ i ≤ n.
After decoding row P̃i, we have the corresponding decoded
codeword P̂i.6 Let P̂ be the matrix containing P̂i as its ith
row, 1 ≤ i ≤ n. We next state the main theorem to perform
data reconstruction.

Theorem 2: Let EP = P̂ ⊕ P̃ be the error pattern vector.
Assume that the data collector accesses all storage nodes and
there are v, 1 ≤ v ≤ ⌊n−k

2 ⌋, of them with errors. Then, there
are at least n− k+2− v nonzero elements in ℓj th column of
EP , 0 ≤ j ≤ v − 1, and at most v nonzero elements in the
rest of the columns of EP .

The proof can be found in our conference version of the
paper [28]. In Figure 1, we present an illustrative example
for ease of understanding of the main idea of Theorem 2. In
the decoding process, P̃ is found from the received matrix Y .
Each row of P̃ is then decoded to obtain P̂ . Since P̂ is not
symmetric, Z1 cannot be obtained from it. According to Ep,
one can identify the first column of Y as erroneous. In Fig. 1,
erroneous elements in Y , P̃ , and P̂ are boxed.

The above theorem allows us to design a decoding algorithm
that can correct up to ⌊n−k

2 ⌋ errors.7 In particular, we need
to examine the erroneous positions in ḠTE. Since 1 ≤ v ≤
⌊n−k

2 ⌋, we have n − k + 2 − v ≥ ⌊n−k
2 ⌋ + 1 > v. Thus,

6If the decoder cannot generate a valid codeword when decoding P̃i, then
we set P̂i = P̃i.

7In constructing P̃ we only get n−1 values (excluding the diagonal). Since
the minimum Hamming distance of an [n, k− 1] RS code is n− k+ 2, the
error-and-erasure decoding scheme can only correct up to ⌊n−1−k+2−1

2
⌋

errors.

Fig. 1. An example to illustrate the results of Theorem 2

the approach to locate all erroneous columns in P̃ is to find
out all columns in EP whose number of nonzero elements
are greater than or equal to ⌊n−k

2 ⌋ + 1. After we locate all
erroneous columns, we can follow a procedure similar to that
given in the no error (or single error) case to recover Z1 from
P̂ .

The above decoding procedure is guaranteed to recover Z1

(Z2) when all n storage nodes are accessed. However, it is not
very efficient in terms of bandwidth usage. Next, we present
a progressive decoding version of the proposed algorithm that
accesses extra nodes only when necessary. Before presenting
it, we need the following corollary.

Corollary 3: Consider that one accesses k + 2v storage
nodes, among which v nodes are erroneous and 1 ≤ v ≤
⌊n−k

2 ⌋. There are at least v + 2 nonzero elements in the ℓJ th
column of EP , 0 ≤ j ≤ v−1, and at most v nonzero elements
among the remaining columns of EP .

Proof: This is a direct result from Theorem 2 when we
delete n−(k+2v) elements in each column of EP according to
the size of Yα×(k+2v) and n−k+2−v−{n−(k+2v)} = v+2.

Based on Corollary 3, we can design a progressive decoding
algorithm [29] that retrieves extra data from the remaining
storage nodes when necessary. To handle Byzantine fault
tolerance, it is necessary to perform integrity check after the
original data is reconstructed. Two verification mechanisms
have been suggested in [22]: cyclic redundancy check (CRC)
and cryptographic hash function. Both mechanisms introduce
redundancy to the original data before they are encoded and
are suitable to be used in combination with the decoding
algorithm.

The progressive decoding algorithm starts by accessing k
storage nodes. Error-and-erasure decoding succeeds only when
there is no error. If the integrity check passes, then the data
collector recovers the original data. If the decoding procedure
fails or the integrity check fails, then the data collector
retrieves two more blocks of data from the remaining storage
nodes. Since the data collector has k+2 blocks of data, error-
and-erasure decoding can correctly recover the original data if
there is only one erroneous storage node among the k+1 nodes
accessed. If the integrity check passes, then the data collector
recovers the original data. If the decoding procedure fails or

7

the integrity check fails, then the data collector retrieves two
more blocks of data from the remaining storage nodes. The
data collector repeats the same procedure until it recovers the
original data or runs out of the storage nodes. The detailed
decoding procedure is summarized in Algorithm 1 given in
our conference version of the paper [28].

IV. ENCODING AND DECODING SCHEMES FOR
PRODUCT-MATRIX MBR CODES

In this section, we will find a generator matrix of the form
(10) such that the row with the maximum Hamming weight has
the least number of nonzero elements. This generator matrix
is thus a least-update-complexity matrix. A decoding scheme
for MBR codes that can correct more error patterns is also
provided.

A. Encoding Scheme for MBR Codes

Let g(x) =
∏n−k

j=1 (x − aj) =
∑n−k

i=0 gix
i be the generator

polynomial of the [n, k] RS code and f(x) =
∏n−d

j=1 (x −
aj) =

∑n−d
i=0 fix

i the generator polynomial of the [n, d] RS
code, where a is a generator of GF (2m).8 A matrix G can be
constructed as

G =

[
Gk

S

]
, (19)

where

Gk =

g0 g1 · · · gn−k 0 0 · · · 0
0 g0 · · · gn−k−1 gn−k 0 · · · 0

...
0 · · · 0 g0 g1 g2 · · · gn−k

(20)

and

S =

f0 f1 · · · fn−d 0 0 · · · 0 0
0 f0 · · · fn−d−1 fn−d 0 · · · 0 0

...
0 · · · 0 f0 · · · fn−d 0 · · · 0

 .(21)

The dimensions of Gk and S are k × n and (d − k) × n,
respectively. Next, we state the main theorem about the rank
of G given in (19).

Theorem 3: The rank of G given in (19) is d. That is, it is
a generator matrix of the MBR code.
The proof of Theorem 3 can be found in Appendix B.

Corollary 4: The G given in (19) is the least-update-
complexity matrix.

Proof: See Appendix C.
Since C̄ is also a cyclic code, it can be arranged as a

systematic code. Gk is then given by Gk = [Bk I], where

Bk =

b00 b01 b02 · · · b0(n−k−1)

b10 b11 b12
b20 b21 b22 · · · b1(n−k−1)

...
...

b(k−1)0 b(k−1)1 b(k−1)2 · · · b(k−1)(n−k−1)

 ,(22)

8We assume that n− k and n− d are even.

I is the identity matrix,

xn−k+i = ui(x)g(x) + bi(x) for 0 ≤ i ≤ k − 1 ,

and bi(x) = bi0 + bi1x + · · · + bi(n−k−1)x
n−k−1. It is easy

to see that G with Gk as a submatrix is still a least-update-
complexity matrix. The advantage of a systematic code will
become clear in the decoding procedure of the MBR code.
Note that the above claim for least-update-complexity is true
with product-matrix construction only when Gk and G are
chosen as the generator matrices of MDS codes.

We now consider the number of encoded symbols that need
to be updated when a single data symbol is modified. First,
we assume that the modified data symbol is located in A1. If
the modified data symbol is located on the diagonal of A1,
(n− k + 1) encoded symbols need to be updated; otherwise,
two corresponding encoded symbols in A1 are modified such
that 2(n− k+1) encoded symbols need to be updated. Next,
we assume that the modified data symbol is located in A2.
Then (n − k + 1) + (n − d + 1) = 2n − k − d + 2 encoded
symbols need to be updated.

B. Decoding Scheme for MBR Codes

The generator polynomial of the RS code encoded by (22)
has an−k, an−k−1, . . . , a as roots. Hence, the progressive
decoding scheme based on the [n, k] RS code given in [22] can
be applied to decode the MBR code. The decoding algorithm
given in [22] is slightly modified as follows.

Assume that the data collector retrieves encoded symbols
from ℓ storage nodes j0, j1, . . . , jℓ−1, k ≤ ℓ ≤ n. The data
collector receives d vectors where each vector has ℓ symbols.
Denoting the first k vectors among the d vectors as Yk×ℓ and
the remaining d− k vectors as Y(d−k)×ℓ. By the encoding of
the MBR code, the codewords in the last d−k rows of C can
be viewed as encoded by Gk instead of G. Hence, the decoder
of the [n, k] RS code can be applied on Y(d−k)×ℓ to recover
the codewords in the last d− k rows of C.

Let C̃(d−k)×k be the last k columns of the codewords
recovered by the error-and-erasure decoder in the last d − k
rows of C. Since the code generated by (22) is a systematic
code, A2 in U can be reconstructed as

Ã2 = C̃(d−k)×k . (23)

We then calculate the j0th, j1th, . . ., jℓ−1th columns of ÃT
2 ·B

as Ek×ℓ, and subtract Ek×ℓ from Yk×ℓ:

Y ′
k×ℓ = Yk×ℓ − Ek×ℓ . (24)

Applying the error-and-erasure decoding algorithm of the
[n, k] RS code again on Y ′

k×ℓ we can reconstruct A1 as

Ã1 = C̃k×k . (25)

The decoded information sequence is then verified by data
integrity check. If the integrity check is passed, the data re-
construction is successful; otherwise the progressive decoding
procedure is applied, where two more storage nodes need to
be accessed from the remaining storage nodes in each round
until no further errors are detected.

8

The decoding capability of the above decoding algorithm is
n−k
2 . Since each erroneous storage node sends α = d symbols

to the data collector, in general, not all α symbols are wrong
if failures in the storage nodes are caused by random faults.
Hence, the decoding algorithm given in [22] can be modified
as follows to extend error correction capability. After decoding
Y(d−k)×ℓ, one can locate the erroneous columns of Y(d−k)×ℓ

by comparing the decoded result to it. Assume that there are v
erroneous columns located. Delete the corresponding columns
in Ek×ℓ and Yk×ℓ and we have

Y ′
k×(ℓ−v) = Yk×(ℓ−v) − Ek×(ℓ−v) . (26)

Applying the error-and-erasure decoding algorithm of the
[n, k] RS code again on Y ′

k×(ℓ−v) to reconstruct A1 if
ℓ − v ≥ k; otherwise progressive decoding is applied. The
modified decoding algorithm is summarized in Algorithm 1.
The advantage of the modified decoding algorithm is that it
can correct up to

n− k

2
+

⌊
n− k + 1− ⌊n−k+1

2 ⌋
2

⌋
errors even though not all error patterns up to this number of
errors can be corrected.

Algorithm 1: Decoding of MBR Codes for Data Recon-
struction
begin

The data collector randomly chooses k storage nodes
and retrieves encoded data, Yd×k;
ℓ← k;
repeat

Perform progressive error-erasure decoding on
last d− k rows in Yd×ℓ, Y(d−k)×ℓ, to recover C̃
(error-erasure decoding performs d− k times);
Locate the erroneous columns in Y(d−k)×ℓ

(assume to have v columns);
Calculate Ã2 via (23);
Calculate Ã2 ·B and obtain Y ′

k×(ℓ−v) via (26);
if (ℓ− v ≥ k) then

Perform progressive error-erasure decoding
on Y ′

k×(ℓ−v) to recover the first k rows in
codeword vector (error-erasure decoding
performs k times);
Calculate Ã1 via (25);
Recover the information sequence m̃ from
Ã1 and Ã2;
if integrity-check(m̃) = SUCCESS then

return m̃;

ℓ← ℓ+ 2;
Retrieve two more encoded data from remaining
storage nodes and merge them into Yd×ℓ;

until ℓ ≥ n− 2;
return FAIL;

One important function of regenerating codes is to perform
data regeneration with least repair bandwidth when one node

00.10.20.30.40.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Failure Probability

F
ai

lu
re

 R
at

e
of

 R
ec

on
st

ru
ct

io
n

[20,10,18] MSR Codes for Data Reconstruction

Non−progressive
Previous Progressive [22]
Proposed Progressive

Fig. 2. Comparison of the failure rate between the algorithm in [22] and the
proposed algorithm for [20, 10, 18] MSR codes

00.10.20.30.40.5
10

11

12

13

14

15

16

17

18

19

20

Node Failure Probability

A
ve

ra
ge

 N
um

be
r

of
 A

cc
es

se
s

(N
od

es
)

[20,10,18] MSR Codes for Data Reconstruction

Non−progressive
Previous Progressive [22]
Proposed Progressive

Fig. 3. Comparison of the number of node accesses between the algorithm
in [22] and the proposed algorithm for [20, 10, 18] MSR codes

has failed. Since the decoding schemes proposed in [22]
can be applied directly without modification to the proposed
MSR and MBR codes in this work, the decoding schemes of
data regeneration for these codes are omitted in this work.
The interested readers can refer to [22] for details on these
decoding schemes.

V. PERFORMANCE EVALUATION

In this section, we first analyze the fault-tolerance capability
of the proposed codes in the presence of crash-stop and
Byzantine failures, and then carry out numerical simulations to
evaluate the performance of the proposed schemes. The issue
of update-efficiency is also discussed in this section.

The fault-tolerance capability of product-matrix MSR and
MBR codes has been investigated fully in [22] where CRC
or cryptographic hash function was adopted as the data
integrity check. Their error-correction capability was also
presented in [23]. Progressive decoding algorithms have been

9

implemented that incrementally retrieve additional stored data
and perform data reconstruction when errors have been de-
tected. Since cryptographic hash functions have better security
strength than CRC on data integrity check, it is adopted
to verify the integrity of stored data. In particular, for data
reconstruction, the hash value is coded along with the original
data and distributed among storage nodes.

We consider two types of failures, crash-stop failures and
Byzantine failures. Nodes are assumed to fail independently.
In both cases, the fault-tolerance capability is measured by
the maximum number of failures that the system can handle
to maintain functionality.

A crash-stop failure on a node can be viewed as an erasure
in the codeword. Since k nodes need to be alive for data
reconstruction, the maximum number of crash-stop failures
that can be tolerated in data reconstruction is n−k. Note that
since all accessed nodes contain correct data, the associated
hash values are also correct. For an error-correcting code,
two additional correct code fragments are needed to correct
one erroneous code fragment. Thus, with the proposed MSR
decoding algorithm, ⌊n−k

2 ⌋ erroneous nodes can be tolerated
in data reconstruction. The proposed MBR decoding algorithm
can not only tolerate any n−k

2 erroneous nodes but it can also
correct up to

n− k

2
+

⌊
n− k + 1− ⌊n−k+1

2 ⌋
2

⌋
errors even though not all error patterns up to this number of
errors can be corrected.

The proposed data reconstruction algorithms for MSR and
MBR codes have also been evaluated by Monte Carlo sim-
ulations. In the simulations, the codes based on shortened
RS codes are employed for simulations. They are compared
with the data reconstruction algorithms previously proposed
in [22]. The performance of a traditional decoding scheme that
is non-progressive is also provided for comparison purposes.9

After k nodes are accessed, if the integrity check fails, the
data collector will access all remaining n − k nodes for data
reconstruction in the non-progressive decoding scheme. Each
data point is generated from 103 simulation runs. Storage
nodes may fail arbitrarily with the Byzantine failure proba-
bility ranging from 0 to 0.5. In both schemes, [n, k, d] and m
are chosen to be [20, 10, 18] and 5, respectively.

In the first set of simulations, we compare the proposed
algorithm with the progressive algorithm in [22] and the non-
progressive algorithm in terms of the failure rate of reconstruc-
tion and the average number of node accesses, which indicates
the required bandwidth for data reconstruction. Failure rate is
defined as the percentage of runs for which reconstruction
fails (due to insufficient number of healthy storage nodes).
Figure 2 shows that the proposed algorithm can successfully
reconstruct the data with much higher probability than the
previous progressive or non-progressive algorithm for the same

9Since no data integrity check is performed in the decoding algorithms
given in [23], to reach error-correction capability of the MSR and MBR
codes, n nodes need to be accessed. Hence, the number of accessed nodes in
decoding algorithms in [23] is much larger than those of the non-progressive
version presented here.

00.10.20.30.40.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Failure Probability

F
ai

lu
re

 R
at

e
of

 R
ec

on
st

ru
ct

io
n

[20,10,18] MBR Codes for Data Reconstruction

Non−progressive
Previous Progressive [22]
Proposed Progressive

Fig. 4. Failure-rate comparison between the previous algorithm in [22] and
the proposed algorithm for [20, 10, 18] MBR codes

00.10.20.30.40.5
10

11

12

13

14

15

16

17

18

19

20

Node Failure Probability

A
ve

ra
ge

 N
um

be
r

of
 A

cc
es

se
s

(N
od

es
)

[20,10,18] MBR Codes for Data Reconstruction

Non−progressive
Previous Progressive [22]
Proposed Progressive

Fig. 5. Node-access comparison between the previous algorithm in [22] and
the proposed algorithm for [20, 10, 18] MBR codes

node failure probability. For example, when the node failure
probability is 0.1, only about 1% of the time, reconstruction
fails using the proposed algorithm, in contrast to 50% with
the old algorithm. The advantage of the proposed algorithm is
also pronounced in the average number of accessed nodes for
data reconstruction, as illustrated in Fig. 3. For example, on
an average, only 2.5 extra nodes are needed by the proposed
algorithm under the node failure probability of 0.1; while over
6.5 extra nodes are required by the old algorithm in [22]. It
should be noted that the actual saving attained by the new
algorithm depends on the values of n, k, d and the number of
errors.

The previous and proposed decoding algorithms for MBR
codes are compared in the second set of simulations. Figures 4
and 5 show that both of the progressive algorithms have
identical failure rates of reconstruction and average num-
ber of accessed nodes. This result implies that the specific
error patterns, which only the proposed algorithm is able

10

to handle for successful data reconstruction, do not occur
very frequently. However, the computational complexity of
the proposed algorithm for MBR encoding is much lower
since no matrix inversion and multiplications are needed in
(23) and (25). Moreover, both the progressive algorithms are
better than the non-progressive algorithm in failure rates for
reconstruction and average number of accessed nodes.

In the evaluation of the update complexity, two measures
are considered: the metric given in [26] and the number of
updated symbols when a single data symbol is modified. The
first metric corresponds to the maximum number of nonzero
elements in all rows of the generator matrix G. Denote by
η(R) the ratio of the update complexity of the proposed
generator matrix to that of the generator matrix given in [13],
where R = k/n. It can be seen that,

ηMSR(R) =
n− α+ 1

n
≈ 1−R

for MSR codes since the generator matrix of the MSR code
proposed in [13] is a Vandermonde matrix. Two types of
generator matrices of the MBR codes have been proposed
in [13]: the Vandermonde matrix and a systematic matrix based
on Cauchy matrix. With Vandermonde matrix,

ηMBR(R) =
n− k + 1

n
≈ 1−R .

The systematic matrix based on Cauchy matrix is given by [13][
Ik ϕT

0 ∆T

]
,

where Ik is the k×k identity matrix, 0 is the (d−k)×k all-
zero matrix, and [ϕ ∆] is a Cauchy matrix. Since all elements
in the Cauchy matrix are nonzero,

ηMBR(R) =
n− k + 1

n− k + 1
= 1 .

The number of updated symbols that need to be modified
when a single data symbol is changed in MSR and MBR codes
are summarized in Table I. By the arguments given in previous
sections, the average number of updated symbols when a sin-
gle data symbol is modified for the proposed MSR and MBR
codes are 2(n − α + 1) α

α+1 and kd(n−k+1)+k(d−k)(n−d+1)
2kd−k(k−1) ,

respectively. These numbers for Vandermonde-matrix based
MSR and MBR codes are 2n α

α+1 and n(2kd−k2)
2kd−k(k−1) , respec-

tively. The number is kd(n−k+1)+k(d−k)(n−k)
2kd−k(k−1) for the sys-

tematic MBR code based on Cauchy matrix. Note that, the
numbers for systematic codes based on linear remapping are
obtained from simulations. From Table I, one can observe that
the proposed method has the best performance in terms of
the number of updated symbols when a single data symbol is
modified, and the systematic version based on linear remap-
ping performs the worst among all schemes in the table. For
example, for the [20, 10, 18] MSR code, the average number
of encoded symbols that need to be updated for a single
data symbol modification is 88 in the systematic version
based on linear remapping but only 22 with the proposed
encoding matrix. This is a 4-fold improvement in complexity.
In the case of the [100, 40, 78] MSR code, the improvement
is 19-fold. Hence, the proposed approach has much lower

update complexity than the systematic approach. It can be
seen that after linear remapping, the modified symbols occur
in almost all check positions of the code vector. This is
because even when only one data symbol is modified, due
to the symmetry requirement on the information matrix, the
modification propagates to check positions of all codewords
(rows) in the code vector through linear remapping. One can
also observe that even though the Cauchy-based MBR code
results in the same maximum number of nonzero elements in
all rows of the generator matrix as the proposed MBR code,
it requires more symbol updates when a single data symbol is
modified.

Next we compare the update complexity of the proposed
schemes to other codes that are not based on product-matrix
framework. In [26], the authors proved that there exists an
MBR code with logarithmic complexity with respect to the
number of storage nodes n when n is very large. The scheme
takes advantage of randomization during the construction
of update-efficient codes and is asymptotically optimal. In
contrast, the proposed scheme is based on Reed-Solomon
codes, and thus its best update complexity is linear with n.
We also compare the proposed [6, 3, 4] MSR code to the
[6, 3, 5] MSR code given in Fig. 9 of [18] designed using
an interference alignment approach. The maximum number of
nonzero elements in all rows of the generator matrix G for the
[6, 3, 5] code in [18] is 6 and 5 for the proposed [6, 3, 4] code,
respectively. The average number of updated symbols when a
single data symbol is modified for the [6, 3, 5] code in [18] is
6 and 6.7 for the proposed [6, 3, 4] code, respectively.

VI. CONCLUSION

In this work, we proposed new encoding and decoding
schemes for the [n, d] error-correcting MSR and MBR codes
that generalize the previously proposed codes in [22]. Through
both theoretical analysis and numerical simulations, we have
demonstrated the superior low update complexity, and low
computation complexity of the new codes, as well as an
improved error correction capability for MBR codes.

Clearly, there is a trade-off between the update complexity
and error correction capability of regenerating codes. In this
work, we first designed encoders of product-matrix regenerat-
ing codes and then optimized their update complexity. Possible
future work includes the study of encoding schemes that first
design regenerating codes with good update complexity and
then optimize their error correction capability.

The least update-complexity codes in this work minimize
the maximum number of nonzero elements in all rows of the
generation matrix, but they do not minimize the number of
symbol updates when a single data symbol is modified. For
instance, due to symmetry requirement on the information
vector, two symbols need to be updated in the information
vector during the encoding process for a single modified
symbol in some cases. Another possible future work is to seek
codes with the least number of updated encoded symbols.

11

TABLE I
COMPARISON OF THE AVERAGE NUMBER OF UPDATED SYMBOLS WHEN A SINGLE DATA SYMBOL IS MODIFIED

MSR code MBR code
[20 10 18] [100 40 78] [20 10 18] [100 40 78]

Proposed method 22 121 8 48
Vandermonde matrix 36 195 19 99

Systematic version based on linear remapping [13]∗ 88 2323 34 807
Systematic version based on Cauchy matrix [13] - - 10 60

∗ The numbers are obtained from simulation experiments

APPENDIX A
PROOF OF THEOREM 1

We need to prove that each row of Ḡ∆ is a codeword
of C0d and all rows in G are linearly independent. Let
Ĉ0α be the dual code of C0α. It is well-known that Ĉ0α

is an [n, n − α] RS code [30], [31]. Similarly, let Ĉ0d

be the dual code of C0d and its generator matrix be Hd.
Note that Hd is a parity-check matrix of C0d. Let hd(x) =
(xn − 1)/g0d(x) and hα(x) = (xn − 1)/g0α(x). Then, the
roots of hd(x) and hα(x) are an−d, an−d+1, . . . , an−1 and
an−α, an−α+1, . . . , an−1, respectively. Since an RS code is
also a cyclic code, the generator polynomials of Ĉ0d and
Ĉ0α are ĥd(x) and ĥα(x), respectively, where ĥd(x) =
xn−dhd(x

−1) and ĥα(x) = xn−αhα(x
−1). Clearly, the roots

of ĥd(x) are a−(n−d), a−(n−d+1), . . . , a−(n−1) that are equiv-
alent to ad, ad−1, . . . , a1. Similarly, the roots of ĥα(x) are
aα, aα−1, . . . , a1. Since ĥd(x) has roots of ad, ad−1, . . . , a1,
we can choose

Hd =
[
h0 h1 · · · hn−1

]
, (27)

where hi = [(ai)0, (ai)1, . . . , (ai)n−d−1]T , as the generator
matrix of Ĉ0d. To prove that each row of Ḡ∆ is a codeword
of the RS code C0d generated by G, it is sufficient to show
that Ḡ∆HT

d = 0. From the symmetry of ∆, we have

Ḡ∆HT
d = Ḡ (Hd∆)

T
.

Thus, we only need to prove that each row of Hd∆ is
a codeword in Ĉ0α. Let the diagonal elements of ∆ be
b0, b1, . . . , bn−1. The ith row of Hd∆ is thus ri(x) =∑n−1

j=0 bj(a
j)i−1xj in the polynomial representation. Let

(b0, b1, . . . , bn−1) be a codeword in C1(α+1). Then, we have

n−1∑
j=0

bj(a
ℓ′)j = 0 for 1 ≤ ℓ′ ≤ n− α− 1 . (28)

Substituting x = aℓ, for 1 ≤ ℓ ≤ α, into ri(x), it becomes

ri(a
ℓ) =

n−1∑
j=0

bj(a
j)i−1(aℓ)j =

n−1∑
j=0

bj(a
i−1+ℓ)j . (29)

Let ℓ′ = i − 1 + ℓ. Since 1 ≤ i ≤ n − d and 1 ≤ ℓ ≤ α,
1 ≤ ℓ′ ≤ n− α − 1. By (28), ri(aℓ) = 0 for 1 ≤ i ≤ n− d
and 1 ≤ ℓ ≤ α. Hence, each row of Hd∆ is a codeword in
Ĉ0α.

The bis need to make all rows in G linearly inde-
pendent. Since all rows in Ḡ or those in Ḡ∆ are lin-
early independent, it is sufficient to prove that C0α ∩
C∆ = {0}, where C∆ is the code generated by Ḡ∆.

Let c′ be a codeword in C∆. c′ = c∆ for some
c ∈ C0α. We can choose Ḡ =

[
ḡ0 ḡ1 · · · ḡn−1

]
,

where ḡi = [(ai)1, (ai)2, . . . , (ai)α]T , as the genera-
tor matrix of C0α. Then c′ = uḠ∆ for some u =
[u0, u1, . . . , uα]. Evaluating c′(x) at a0, a1, . . . , an−α−1 and
putting them into a matrix form, we have uḠ∆G̃ =
z , where G̃ =

[
g̃0 g̃1 · · · g̃n−α−1

]
, g̃i =

[(ai)1, (ai)2, . . . , (ai)n−1]T , and z is an (n−α)-dimensional
vector. If z = 0, then c∆ ∈ C0α; otherwise, c∆ ̸∈ C0α. Tak-
ing transpose on both sizes of (A), it becomes G̃T∆ḠTuT =
zT , where

G̃T∆ḠT

=

n−1∑
j=0

bja
j

n−1∑
j=0

bj(a
2)j · · ·

n−1∑
j=0

bj(a
α)j

n−1∑
j=0

bj(a
2)j

n−1∑
j=0

bj(a
3)j · · ·

n−1∑
j=0

bj(a
α+1)j

...
n−1∑
j=0

bj(a
n−α)j

n−1∑
j=0

bj(a
n−α+1)j · · ·

n−1∑
j=0

bj(a
n−1)j

.(30)

Since (b0, b1, . . . , bn−1) ∈ C1(α+1),

n−1∑
j=0

bj(a
ℓ)j = 0 for 1 ≤ ℓ ≤ n− α− 1 . (31)

Substituting (31) into (30) and taking out rows with all zeros,
we have MuT = z̃, where

M =

0 · · · 0

n−1∑
j=0

bj(a
n−α)j

0 · · ·
n−1∑
j=0

bj(a
n−α)j

n−1∑
j=0

bj(a
n−α+1)j

...
n−1∑
j=0

bj(a
n−α)j · · ·

n−2∑
j=0

bj(a
n−2)j

n−1∑
j=0

bj(a
n−1)j

,

(32)
and

z̃ =

zn−2α

zn−2α+1

...
zn−α−1

 . (33)

If
∑n−1

j=0 bj(a
n−α)j = 0, i.e., an−α is a root of

∑n−1
j=0 bjx

j ,
then c′ = [1, 0, . . . , 0]Ḡ∆ ∈ C0α due to the fact that u =
[1, 0, . . . , 0] makes MuT = z̃ = 0. Thus, we need to exclude
the codewords in C1(α+1) that have an−α as a root. These
codewords turn out to be in C1α. If

∑n−1
j=0 bj(a

n−α)j ̸= 0,

12

then it is clear that the only u making z̃ = 0 in (33) is the
all-zero vector. Hence, any (b0, b1, . . . , bn−1) ∈ C1(α+1)\C1α

does not make z̃ zero except u = 0.

APPENDIX B
PROOF OF THEOREM 3

Let the codes generated by Gk and G be C̄ and C,
respectively. It can be seen that any row in Gk and S is a
cyclic shift of the previous row. Hence, all rows in Gk and
S are linearly independent. Now we only consider the linear
combination of rows in G chosen from both Gk and S. Since
C̄ is a linear code, the portion of the linear combination that
contains only rows from Gk results in a codeword, named c,
in C̄. Assume that the rows chosen from S are the j0th, j1th,
. . ., and jℓ−1th rows. Recall that S can be represented by a
polynomial matrix as

B(x) =
[
f(x) xf(x) x2f(x) · · · xd−k−1f(x)

]T
.

Hence, in the polynomial form, the linear combination can be
represented as

c(x) +
ℓ−1∑
i=0

bix
ji−1f(x) , (34)

where c(x) is not the all-zero codeword and not all bi = 0.
Since c(x) is the code polynomial of C̄, it is divisible by g(x)
and can be represented as u(x)g(x). Assume that (34) is zero.
Then we have

u(x)g(x) = −f(x)
ℓ−1∑
i=0

bix
ji−1 . (35)

Recall that g(x) =
∏n−k

i=1 (x− ai) and f(x) =
∏n−d

i=1 (x− ai).
Hence,

g(x) = f(x)

n−k∏
i=n−d+1

(x− ai) . (36)

Substituting (36) into (35) we have

u(x)
n−k∏

i=n−d+1

(x− ai) = −
ℓ−1∑
i=0

bix
ji−1 . (37)

That is,
∑ℓ−1

i=0 bix
ji−1 is divisible by

∏n−k
i=n−d+1(x − ai).

However, the degree of
∏n−k

i=n−d+1(x − ai) is d − k and the
degree of

∑ℓ−1
i=0 bix

ji−1 is at most d−k−2 when ℓ = d−k−1,
the largest possible value for ℓ. Thus,

∑ℓ−1
i=0 bix

ji−1 is not
divisible by

∏n−k
i=n−d+1(x − ai) since not all bi = 0. This is

a contradiction. Since all rows in Gk and S are codewords in
C, G is then a generator matrix of the [n, d] RS code C.

APPENDIX C
PROOF OF COROLLARY 4

Since Gk must be the generator matrix of the [n, k] RS code
C̄, the Hamming weight of each row of Gk is greater than or
equal to the minimum Hamming distance of C̄, n−k+1. Since
the degree of g(x) is n− k and itself is a codeword in C̄, the
nonzero coefficients of g(x) is n− k+1 and each row of Gk

is with n−k+1 Hamming weight. A similar argument can be

applied to each row of S such that the Hamming weight of it
is n−d+1. Thus, the G given in (19) has the least number of
nonzero elements. Further, Since Gk is the generator matrix
of the [n, k] code, the minimum Hamming of its row can have
is n− k+ 1, namely, the minimum Hamming distance of the
code. Hence, the row with maximum Hamming weight in G
is n− k + 1.

ACKNOWLEDGEMENT

This work was supported in part by National Science Coun-
cil of Taiwan, under grants NSC 99-2221-E-011-158-MY3,
NSC 101-2221-E-011-069-MY3, and in part by National Sci-
ence and Engineering Council of Canada under Discovery
Grant. Han’s work was completed during his visit to Syracuse
University from 2012 to 2013.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in
the 19th ACM SIGOPS Symp. on Operating Systems Principles, Bolton
Landing, NY, October 2003.

[2] J. K. et al., “OceanStore: an architecture for global-scale persistent
storage,” in the 9th International Conference on Architectural Support
for programming Languages and Operating Systems, Cambridge, MA,
November 2000.

[3] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker, “Total recall:
system support for automated availability management,” in the 1st Conf.
on Networked Systems Design and Implementation, San Francisco, CA,
March 2004.

[4] A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” in IEEE IINFOCOM,
Anchorage, Alaska, May 2007, pp. 2000–2008.

[5] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran, “Network coding for distributed storage systems,” IEEE Trans.
Inform. Theory, vol. 56, pp. 4539 – 4551, September 2010.

[6] Y. Wu, A. G. Dimakis, and K. Ramchandran, “Deterministic regenerat-
ing codes for distributed storage,” in the 45th Annual Allerton Confer-
ence on Control, Computing, and Communication, Urbana-Champaign,
Illinois, September 2007.

[7] Y. Wu, “Existence and construction of capacity-achieving network codes
for distributed storage,” IEEE Journal on Selected Areas in Communi-
cations, vol. 28, pp. 277 – 288, February 2010.

[8] D. F. Cullina, “Searching for minimum storage regenerating codes,”
California Institute of Technology Senior Thesis, 2009.

[9] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” in IEEE Int. Symp. on
Information Theory, Seoul, Korea, July 2009, pp. 2276–2280.

[10] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit
construction of optimal exact regenerating codes for distributed stor-
age,” in the 47th Annual Allerton Conference on Control, Computing,
and Communication, Urbana-Champaign, Illinois, September 2009, pp.
1243–1249.

[11] S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic dis-
tributed storage systems against eavesdropping and adversarial attacks,”
IEEE Trans. Inform. Theory, pp. 6734–6753, 2011.

[12] F. Oggier and A. Datta, “Byzantine fault tolerance of regenerating
codes,” in IEEE International Conference on Peer-to-Peer Computing,
2011, pp. 112–121.

[13] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Trans. Inform. Theory, vol. 57, pp. 5227–
5239, August 2011.

[14] M. Gerami, M. Xiao, and M. Skoglund, “Optimal-cost repair in multi-
hop distributed storage system,” in IEEE Int. Symp. on Information
Theory, 2011, pp. 1437–1441.

[15] M. Gerami and M. Xiao, “Repair for distributed storage systems with
erasure channels,” in IEEE International Conference on Communica-
tions, 2013, pp. 4058–4062.

[16] N. Shah, K. V. Rashmi, P. Kumar, and K. Ramchandran, “Interference
alignment in regenerating codes for distributed storage: Necessity and
code constructions,” IEEE Trans. Inform. Theory, vol. 58, no. 4, pp.
2134–2158, 2012.

13

[17] H. M. V. R. Cadambe, S. A. Jafar, “Distributed data storage with
minimum storage regenerating codes - exact and functional repair are
asymptotically equally efficient,” arXiv:1004.4299v1 [cs.IT] 24 Apr
2010.

[18] C. Suh and K. Ramchandran, “Exact-repair mds code construction using
interference alignment,” IEEE Trans. Inform. Theory, pp. 1425 – 1442,
March 2011.

[19] V. R. Cadambe and C. Jafar, “Interference alignment and degrees of
freedom of the k-user interference channel,” IEEE Trans. Inform. Theory,
pp. 3425 – 3441, August 2008.

[20] M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, “Communi-
cation over MIMO X channels: Interference alignment, decomposition,
and performance analysis,” IEEE Trans. Inform. Theory, pp. 3457 –
3470, August 2008.

[21] M. Gerami, M. Xiao, C. Fischione, and M. Skoglund, “Decentralized
minimum-cost repair for distributed storage systems,” in IEEE Interna-
tional Conference on Communications, 2013, pp. 1910–1914.

[22] Y. S. Han, R. Zheng, and W. H. Mow, “Exact regenerating codes for
byzantine fault tolerance in distributed storage,” in IEEE INFOCOM
2012, Orlendo, FL, March 2012.

[23] K. Rashmi, N. Shah, K. Ramchandran, and P. Kumar, “Regenerating
codes for errors and erasures in distributed storage,” in IEEE Int. Symp.
on Information Theory, Cambridge, MA, July 2012.

[24] M. Kurihara and H. Kuwakado, “Coding for errors and erasures in
random network coding,” IEICE Trans. on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E79-A, no. 2, pp. 1298
– 1304, February.

[25] Y. Han, H.-T. Pai, R. Zheng, and W. H. Mow, “Efficient exact regenerat-
ing codes for byzantine fault tolerance in distributed networked storage,”
IEEE Trans. Commun., vol. 62, no. 2, pp. 385–397, February 2014.

[26] A. S. Rawat, S. Vishwanath, A. Bhowmick, and E. Soljanin, “Update ef-
ficient codes for distributed storage,” in IEEE Int. Symp. on Information
Theory, Saint Petersburg, Russia, July 2011.

[27] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. New York, NY: Elsevier Science Publishing Company, Inc.,
1977.

[28] Y. Han, H.-T. Pai, R. Zheng, and P. Varshney, “Update-efficient regen-
erating codes with minimum per-node storage,” in IEEE Int. Symp. on
Information Theory, July 2013, pp. 1436–1440.

[29] Y. S. Han, S. Omiwade, and R. Zheng, “Progressive data retrieval for
distributed networked storage,” IEEE Trans. on Parallel and Distributed
Systems, vol. 23, pp. 2303–2314, December 2012.

[30] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, Inc., 2004.

[31] T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Yunghsiang S. Han Yunghsiang S. Han (S’90-
M’93-SM’08-F’11) was born in Taipei, Taiwan,
1962. He received B.Sc. and M.Sc. degrees in
electrical engineering from the National Tsing Hua
University, Hsinchu, Taiwan, in 1984 and 1986,
respectively, and a Ph.D. degree from the School of
Computer and Information Science, Syracuse Uni-
versity, Syracuse, NY, in 1993. He was from 1986 to
1988 a lecturer at Ming-Hsin Engineering College,
Hsinchu, Taiwan. He was a teaching assistant from
1989 to 1992, and a research associate in the School

of Computer and Information Science, Syracuse University from 1992 to 1993.
He was, from 1993 to 1997, an Associate Professor in the Department of
Electronic Engineering at Hua Fan College of Humanities and Technology,
Taipei Hsien, Taiwan. He was with the Department of Computer Science
and Information Engineering at National Chi Nan University, Nantou, Taiwan
from 1997 to 2004. He was promoted to Professor in 1998. He was a visiting
scholar in the Department of Electrical Engineering at University of Hawaii at
Manoa, HI from June to October 2001, the SUPRIA visiting research scholar
in the Department of Electrical Engineering and Computer Science and CASE
center at Syracuse University, NY from September 2002 to January 2004 and
July 2012 to June 2013, and the visiting scholar in the Department of Electrical
and Computer Engineering at University of Texas at Austin, TX from August
2008 to June 2009. He was with the Graduate Institute of Communication
Engineering at National Taipei University, Taipei, Taiwan from August 2004
to July 2010. From August 2010, he is with the Department of Electrical
Engineering at National Taiwan University of Science and Technology as
Chair Professor. He is also a Chair Professor at National Taipei University
from February 2015. His research interests are in error-control coding, wireless
networks, and security.

Dr. Han was a winner of the 1994 Syracuse University Doctoral Prize and
a Fellow of IEEE. One of his papers won the prestigious 2013 ACM CCS
Test-of-Time Award in cybersecurity.

Hung-Ta Pai (S’91–M’99–SM’11) was born in
Taichung, Taiwan. He received a B.Sc. degree from
National Tsing Hua University, Taiwan, in 1992,
and the M.Sc. and Ph.D. degrees from the Univer-
sity of Texas at Austin, Texas, in 1996 and 1999,
respectively, all in electrical engineering. Hung-Ta
Pai served as an Army officer from 1992 to 1994.
He worked as a senior design engineer at Silicon
Integrated Systems Corp from 1999 to 2001. He
was, from 2001 to 2002, an assistant professor at the
Department of Electrical Engineering, Tatung Uni-

versity, Taiwan. He was an assistant professor at the Department of Electrical
Engineering, National Taiwan University of Science and Technology, Taiwan
from 2002 to 2004. He was a visiting scholar in the Department of Electrical
and Computer Engineering at the University of Texas at Austin from August
2010 to July 2011. He has since August 2004 been with National Taipei
University, Taiwan where he is currently a professor of the Department of
Communication Engineering.

His research interests include communication systems and signal process-
ing.

14

Rong Zheng (S’03-M’04-SM’10) received her
Ph.D. degree from Dept. of Computer Science, Uni-
versity of Illinois at Urbana-Champaign and earned
her M.E. and B.E. in Electrical Engineering from
Tsinghua University, P.R. China. She is on the fac-
ulty of the Department of Computing and Software,
McMaster University. She was with University of
Houston between 2004 and 2012. Rong Zheng’s
research interests include network monitoring and
diagnosis, cyber physical systems, and sequential
learning and decision theory. She received the Na-

tional Science Foundation CAREER Award in 2006. She serves on the
technical program committees of leading networking conferences including
INFOCOM, ICDCS, ICNP, etc. She served as a guest editor for EURASIP
Journal on Advances in Signal Processing, Special issue on wireless location
estimation and tracking, Elsevlers Computer Communications Special Issue on
Cyber Physical Systems; and Program co-chair of WASA’12 and CPSCom’12.

Pramod K. Varshney Pramod K. Varshney was
born in Allahabad, India, on July 1, 1952. He
received the B.S. degree in electrical engineering
and computer science (with highest honors), and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Illinois at Urbana-Champaign
in 1972, 1974, and 1976 respectively.

During 1972-76, he held teaching and research as-
sistantships at the University of Illinois. Since 1976
he has been with Syracuse University, Syracuse, NY
where he is currently a Distinguished Professor of

Electrical Engineering and Computer Science and the Director of CASE:
Center for Advanced Systems and Engineering. He served as the Associate
Chair of the department during 1993-96. He is also an Adjunct Professor
of Radiology at Upstate Medical University in Syracuse, NY. His current
research interests are in distributed sensor networks and data fusion, detection
and estimation theory, wireless communications, physical layer security and
image processing. He has published extensively. He is the author of Distributed
Detection and Data Fusion, published by Springer-Verlag in 1997. He has
served as a consultant to several major companies.

While at the University of Illinois, Dr. Varshney was a James Scholar, a
Bronze Tablet Senior, and a Fellow. He is a member of Tau Beta Pi and is the
recipient of the 1981 ASEE Dow Outstanding Young Faculty Award. He was
elected to the grade of Fellow of the IEEE in 1997 for his contributions in
the area of distributed detection and data fusion. He was the guest editor of
the special issue on data fusion of the Proceedings of the IEEE, January
1997. In 2000, he received the Third Millennium Medal from the IEEE
and Chancellor’s Citation for exceptional academic achievement at Syracuse
University. He is the recipient of the IEEE 2012 Judith A. Resnik Award and
Doctor of Engineering honoris causa from Drexel University in 2014. He is
on the editorial board of Journal on Advances in Information Fusion and IEEE
Signal processing Magazine. He was the President of International Society of
Information Fusion during 2001.

