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Abstract—Evolving secret sharing schemes do not require
prior knowledge of the number of parties n, which may be
infinitely countable. It is known that the evolving 2-threshold
secret sharing scheme and prefix coding of integers have a one-to-
one correspondence. However, it is unknown what prefix coding
of integers should be used to construct a better secret sharing
scheme. In this paper, we introduce a metric K5 to evaluate
evolving 2-threshold secret sharing schemes X such that a smaller
Ky of a scheme is better. The metric K is related to the ratio
of the sum of the share sizes for the first n parties in scheme X
and the sum of the share sizes for the optimal (2, n)-threshold
secret sharing scheme. Then we prove that the metric K > 1.5
and construct a new prefix coding of integers, termed )\ code, to
achieve the metric K, = 1.59375. Thus, this shows that the range
of the metric K for the optimal (2, co)-threshold secret sharing
scheme is 1.5 < Ky, < 1.59375. In addition, an achievable lower
bound on the sum of share sizes for (2, n)-threshold secret sharing
schemes is also provided.

Index Terms—evolving secret sharing, universal coding of
integers, prefix coding of integers, global metric.

I. INTRODUCTION

The secret sharing scheme was first proposed independently
by Shamir [1] and Blakley [2] in 1979. To store a sensitive
secret safely, the secret sharing scheme encodes the secret
into n shares, and each share is assigned to a party. Some
specific subsets of n parties are set as qualified subsets, and
others as unqualified subsets. When m parties form a qualified
subset, they can use their own shares to recover the sensitive
secret. Conversely, when m parties form an unqualified subset,
they cannot recover the secret or even obtain any information
about the secret. Secret sharing has been applied in widespread
applications, such as verifiable signature sharing [3], threshold
digital signatures [4], [5], and electronic voting [6].

Shamir [1] and Blakley [2] proposed (¢, n)-threshold secret
sharing, which means that any ¢ parties among n parties
form a qualified subset. General secret sharing schemes were
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introduced by Ito et al. [7]. Traditional secret sharing schemes
assume that the number of parties n is known in advance,
or the upper bound of n can be estimated. However, this
assumption carries the following potential costs. When the
estimated n is too small, secret sharing shall be re-made; when
the estimated n is too large, it may cause waste.

Recently, an evolving secret sharing scheme was introduced
by Komargodski et al. [8], [9]. The evolving secret sharing
does not require prior knowledge of the upper bound of n,
and n may be infinitely countable. Komargodski et al. found a
one-to-one correspondence between the evolving 2-threshold
secret sharing scheme and prefix coding of integers, where
2-threshold means that any m > 2 parties form a qualified
subset and any single party forms an unqualified subset.
In 2018, D’Arco et al. [10] reinterpreted the equivalence
between the evolving 2-threshold secret sharing scheme and
prefix coding of integers with a new perspective. In 2020,
Okamura and Koga [11] extended the shared secret from
1-bit to any /¢-bit based on the work of D’Arco et al.,
and by combining Shamir’s secret sharing scheme, proposed
an evolving 2-threshold secret sharing scheme using D-ary
prefix codes. In addition, there are studies on evolving secret
sharing schemes for dynamic thresholds and robustness [12],
probabilistic evolving secret sharing [13], and evolving ramp
secret sharing [14], [15].

Although the evolving 2-threshold secret sharing scheme
can be completely characterized by the prefix coding of
integers, we do not know which prefix code should be chosen
to improve the secret sharing scheme’s performance. Precisely,
we need a metric to determine which evolving 2-threshold
secret sharing scheme constructed by the prefix coding of
integers performs better. Although the previous work did not
propose a clear metric for the evolving 2-threshold secret
sharing, some works [9], [11] focused on the asymptotic
performance of the evolving 2-threshold secret sharing, where
asymptotic performance focuses on the situation of the secret
sharing scheme when the number of parties n tends to infinity
and requires that the share distributed at a sufficiently large
moment be as small as possible. However, in the problem
setting and actual scenario, the number of parties n is unknown
and does not necessarily tend to infinity. Therefore, it is
relatively one-sided to focus only on cases where n tends to
infinity.

Universal coding of integers [16], [17], [18] is a subclass of
prefix coding of integers. The most famous universal coding
of integers, the Elias codes [16], is applied to the evolving 2-
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threshold secret sharing scheme [8], [9], [11]. In recent years,
the metric, called minimum expansion factor K [19], [20],
for universal coding of integers has been introduced. The idea
of building the minimum expansion factor K will be applied
in this paper.

In this paper, based on prefix coding of integers, we intro-
duce a metric K, for evolving 2-threshold secret sharing and
construct good evolving 2-threshold secret sharing schemes
under this metric. Unlike previous works [9], [11] that focused
on the asymptotic performance of evolving 2-threshold secret
sharing, we consider the global performance, which refers to
all cases where the number of parties n is considered. That
is, the metric Ky is not only suitable for n tending to infinity
but also for small n, even n = 2 or n = 3. Ky, is the first
metric for evolving 2-threshold secret sharing schemes in all
cases with the number of parties n. The contributions of this
paper are enumerated as follows.

1) An achievable lower bound on the sum of share sizes for
(2, n)-threshold secret sharing schemes is proved (see
Theorem 4).

2) A new metric for evolving 2-threshold secret sharing
schemes is introduced (see Definition 8).

3) Under the new metric, evolving 2-threshold secret shar-
ing schemes whose performance is close to the optimal
scheme are constructed (see Section V).

The paper is structured as follows. Section II introduces
some background knowledge. Section III proves an achievable
lower bound on the sum of share sizes for (2,n)-threshold
secret sharing schemes. Section IV proposes a new metric
for evolving 2-threshold secret sharing schemes. Section V
constructs evolving 2-threshold secret sharing schemes whose
performance is close to the optimal scheme under the new
metric. The comparisons are placed in Section VI. Section
VII concludes this work.

II. PRELIMINARIES

We first introduce some necessary notations. Let N be the
set of positive integers. Let B := {0, 1}, and let B* be a set
consisting of all finite-length binary strings. #S denotes the
cardinality of the set S. |«| denotes the length of string «v. For
a positive integer n, let [n] := {1,2,...,n}.

A. Secret Sharing Scheme

Let P = {Py, P2,...,P,} denote the set of participants,
and let 27 be the power set of the set P. M C 2% is called
monotone if for any S; € M and S; C S5, then Sy € M.
Before defining secret sharing scheme, we first define the
access structure as follows.

Definition 1 M C 27 is said to be an access structure if
M is non-empty and monotone. Elements in M are called
qualified, and elements not in M are called unqualified.

Definition 2 Let t and n both be positive integers, and 1 <
t < n. The (t,n)-threshold access structure M refers to the
set containing only all elements in 2F of size at least t, i.e.

M={Ac2P |#A>1t}.

The definition of secret sharing scheme is given based on the
access structure.

Definition 3 A secret sharing scheme % for an access
structure M  consists of a pair of probabilistic algo-
rithms (S, R). The sharing algorithm S generates n shares
shggsl), Sh;‘?, ceey shgfz according to the secret s € S and the
number of participants n. The recovery algorithm R outputs
a string according to the shares of the subset A € 2F. The
algorithm is required to satisfy:
o Correctness: For every qualified set A € M and any
secret s € S, the recovery algorithm R can recover the
secret s with probability 1, i.e.

PriR(A, {sh{}jen) = 5] = 1.

e Secrecy: Each unqualified set B ¢ M does not get
any information about the secret s, that is, for any two
different secrets s1,s2 € S, each unqualified set B ¢ M
and each type of shares SH assigned to B,

Pr({sh;}jep = SH|s = s1)
= Pr({sh;}jcp = SH|s = s2).
For designing a secret sharing scheme, the goal is to generate
the sum of share sizes > ., |sh§§;)| is as small as possible,
which can make the amount of communication as small as
possible.

The following introduces two important conclusions that
will be used later.

Theorem 1 [21], [22] Suppose that 3 is (t,n)-thresholded
secret sharing scheme for 1-bit secret, and the j-th share size
is m; bits, where 2 <t <mn, j € [n| and m; € N. Then, the
sum of share sizes

ij > nlogy(n —t + 2).

j=1

In particular, when t = 2, the sum of share sizes for (2,n)-
threshold secret sharing schemes

n
Z m; > nlog, n.

j=1
Lemma 1 [21], [22], [9] Suppose that X is (2,n)-
thresholded secret sharing scheme for 1-bit secret, and the
Jj-th share size is m; bits, where j € [n| and m; € N. Then,

227}” <1

j=1

B. Evolving Secret Sharing Scheme

Because the number of participants n is uncertain and the
upper bound of n cannot be estimated in real scenarios, a
class of secret sharing schemes needs to be defined so that
n can be infinitely countable. Naturally, in this scenario, the
parties participating in secret sharing will not be present at
the same time. We assume that at the ¢-th moment, the ¢-th
person P, arrives at the scene and asks for the distribution of
subsequent shares. The previously distributed shares should
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not be changed, which can effectively reduce the amount of
communication. Let PN = {Py, Ps,..., P,,...} denote the
set of participants. Definitions 1 and 2 are naturally extended
to the following definitions.

Definition 4 [9] Suppose that M C 2PN s monotone, and
for each time t € N, M, := MnN 9{PuP2s P} s an access
structure. Then M is said to be an evolving access structure.

Definition 5 [9] Let m be a positive integer. The evolving
m-threshold access structure M refers to the set consisting
only of all elements in 2PN of size at least m, i.e.

M={Aec2PN|#A>m}.

For simplicity, we use (m, oo)-threshold to represent evolving
m-threshold. Now, the formal definition of the evolving secret
sharing scheme is as follows.

Definition 6 [8], [9] Let S denote a domain of secrets, where
#S > 2. Let M denote an evolving access structure. An
evolving secret sharing scheme ¥ for S and M consists of a
pair of probabilistic algorithms (S, R). The sharing algorithm
S and the recovery algorithm R are required to satisfy:
1) At time t € N, the sharing algorithm S generates
share shgf) according to the secret s € S and shares

shﬁ{fl), shgij, ey

S(s,{sh$) Yicp—1)) = shis).

2) Correctness: For each time t € N, every qualified set
A € M, and any secret s € S, the recovery algorithm
‘R can recover the secret s with probability 1, i.e.

Pr{R(A, {sh{V}ica) = 5] = 1.

3) Secrecy: For each time t € N, each unqualified set B ¢
M does not get any information about the secret s, that
is, for each time t, any two different secrets s1,s3 € S,
each unqualified set B ¢ M, and each type of shares
SH assigned to B,

Pr({sh;}jep = SH|s = s1)
= Pr({sh;}jep = SH|s = s2).

The most important theorem for (2, 0o)-thresholded secret
sharing scheme is shown below.

Theorem 2 [8], [9] Let 0 : N — B* be a prefix coding
of integers. The length of its t-th codeword is L, (t), where
t € N. Such an integer code exists if and only if there exists
a (2,00)-threshold secret sharing scheme X for 1-bit secret,
and the t-th share size is L, (t) bits.

shg)_l, ie.

Theorem 2 shows the equivalence between the (2,00)-
thresholded secret sharing scheme and prefix coding of inte-
gers. An interesting and essential understanding of Theorem 2
can be found in [10].

C. The Minimum Expansion Factor K for Universal Coding
of Integers

Universal coding of integers is a class of binary prefix
code, such that the ratio of the expected codeword length

to max{1, H(P)} is within a constant for any decreasing
probability distribution P of N (i.e., Y .o, P(n) = 1, and
P(m) > P(m+ 1) > 0 for all m € N), where H(P) :=
— > | P(n)log, P(n) is the entropy of P. The formal
definition of universal coding of integers is as follows.

Definition 7 [16], [19] Let 0 : N — B* be a binary prefix
coding of integers. Let L,(-) denote the length function of o
so that L,(m) = |o(m)| for all m € N. o is called universal
if there exists a constant K, independent of P, such that

Ep(L,)

max{1, H(P) 0

<K
}
for any decreasing probability distribution P with finite en-
tropy, where

=Y P(n)Ls(n)

denotes the expected codeword length for o. Then K, is called
the expansion factor. Let K = inf{K, |VP and H(P) <
oo} be the infimum of the set of expansion factors and K} is
called the minimum expansion factor.

The minimum expansion factor K} is the smallest of the ex-
pansion factors. For any universal coding of integers, its mini-
mum expansion factor K is unique. The minimum expansion
factor K}, as a metric, evaluate the compression performance
of universal coding of integers. Therefore, universal coding of
integers o is called optimal if o achieves the smallest K.

Finally, we introduce two classes of universal coding of
integers, ¢ code [20] and n code [19], which can achieve small
expansion factors. In particular, ¢ code is currently the only
universal coding of integers that can achieve K, = 2.5. The
two codes are briefly introduced as follows.

The unary code « of the non-negative integer m is con-
structed as m bits of 0 followed by a single 1. Let 5(m)
denote the standard binary representation of m € N, and let
B(m) denote the removal of the most significant bit 1 of 5(m).
For example, o(2) = 001, $(10) = 1010 and 5(10) = 010.
Note that 3(1) is a null string. We define 5(0) as a null string,
and the length of the null string is 0.

1) The code ¢ : N — B* can be expressed as

1, ifm=1,
(m) = 4 a(EN0BTm, i [8(m)] is even,
a(lﬁ(";)‘ YY8(m), otherwise,

for all m € N. The codeword length is given by

POl ¢ 1sm))

LL(m) \_
S L%J + Llogy m]
g + - [logy m],

for2<meNand L,(1)=1.
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2) The code 1 : N — B* can be expressed as

o 2=y g 1y,
n(m) = if |8(m — 1)| is even,
Q(W)Om, otherwise,
for all m € N. The codeword length is given by
Ly(m) = 14 [FHI =D g )
=g (L8l D)o - 1)

3
<3+ [logy(m — 1)),

for2<meNand L, (1) = 1.

III. AN ACHIEVABLE LOWER BOUND ON THE SUM OF
SHARE SIZES FOR (2,n)-THRESHOLD SECRET SHARING
SCHEMES

In this section, an achievable lower bound on the sum
of share sizes for (2,n)-threshold secret sharing schemes
is proved. For simplicity, an achievable lower bound on
the sum of share sizes for (¢, n)-threshold secret sharing
schemes is called the capacity of (¢, n)-threshold secret sharing
schemes. Let min[sum(2,n)] denote the minimum sum of
share sizes in all (2,n)-threshold secret sharing schemes.
Thus, min[sum(2, n)] is the capacity of (2, n)-threshold secret
sharing schemes. The optimal (2,n)-threshold secret sharing
scheme is defined as the secret sharing scheme that achieves
capacity.

In the early 1990s, Kilian and Nisan first proposed and
proved Theorem 1 in an email, but it was not officially
published. This unpublished result has been mentioned in
numerous papers and the proof by Kilian and Nisan was first
published in [22]. Theorem 1 shows that the sum of share sizes
for (2,n)-threshold secret sharing schemes is greater than or
equal to nlogsyn, i.e.

min[sum(2,n)] > nlog, n.

This section gives a tighter bound than the lower bound
nlog, n and this bound is achievable, that is, this section gives
the exact expression for min[sum(2, n)]. First, a result similar
to Theorem 2 is given.

Theorem 3 Let o : [n] — B* be a prefix code. The length
of its t-th codeword is L,(t), where t € [n]. Such a prefix
code exists if and only if there exists a (2, n)-threshold secret
sharing scheme X for 1-bit secret, and the t-th share size is

L, (t) bits.

Proof (<) Suppose that there exists a (2,n)-threshold se-
cret sharing scheme X for 1-bit secret, and the t-th share size
is L, (t) bits. From Lemma 1, we obtain
> o

L,G) =
= 2Ls(5)
Due to Kraft’s inequality [23], we know that there exists a
prefix code with codeword lengths L,(1),L,(2),...,Ly(n).

(=) Suppose that there is a prefix code with codeword
lengths L,(1), Ly(2),...,Ly(n). Next, we construct a (2,n)-
threshold secret sharing scheme Y. for 1-bit secret. Let s € B
be the secret and M denote the maximum value among
Ly(1),Ls(2),...,Ls(n). Initially, the dealer randomly gen-
erates a binary string Q of length M. Let Q|; denote the
first L, (t) bits of the string Q. If s = 0, then the t-th share
is sh(t) = o(t) ® Ql; If s = 1, then the t-th share is
sh(t) = Q|i. The t-th share size is L, (t) bits.

In the recovery secret stage, let the two different shares be
sh(ty) and sh(ts). Without loss of generality, we assume that
[sh(t1)| < |sh(ta)|. If sh(t1) is a prefix of sh(ts), the output
is 1; otherwise, the output is 0.

(2.1) Correctness: If s = 0, then sh(t1) = o(t1) ® Q|+, and
sh(tz) = o(t2) ® Qls,. Since Qlv, is a prefix of Q|¢, and
o(t1) is not a prefix of o(t2), then sh(ty) is not a prefix
of sh(ta). Therefore, O is correctly output. If s =1, then
sh(t1) = Qly, and sh(tz) = Q|,. Since Q|t, is a prefix
of Qli,, 1 is correctly output.

(2.2) Secrecy: Because Q| is uniformly distributed on Bl (),
whether s = 0 or s = 1, there is a share sh(t) uniformly
distributed on BY=(®). Therefore, for any single party A
and each string SH € BL=®),

1
PT(Sh(t) = SH|S = 0) = m
= Pr(sh(t) = SH|s =1).

From Theorem 2, we know that there is a one-to-one
correspondence between the (2, co)-thresholded secret sharing
scheme and the prefix coding of integers. Theorem 3 shows
a one-to-one correspondence between the (2, n)-thresholded
secret sharing scheme and the prefix code with n codewords.
Theorem 2 can be viewed as the case where the number of
codewords n tends to infinity in Theorem 3. Next, the main
theorem of this section is given.

Theorem 4 Let n be an integer greater than 1, then
min[sum(2,n)] = nm + 2l,
where m := |logyn] and | :=n — 2™,

Proof Suppose that % is a (2,n)-threshold secret sharing
scheme for 1-bit secret, and the j-th share size is m; bits,
where j € [n]. We need to find a scheme ¥ that mini-
mizes the sum Z;;l mj, that is, find the minimum value
min[sum(2,n)] of 37_, mj.

Due to Theorem 3, Y. corresponds to a prefix code o : [n] —
B*, and the length of its j-th codeword is mj, where j € [n].
To make Z;.Lzl m; minimum is equivalent to minimizing the
expected codeword length L = Z?:1 P(j)m; = % Z?zl mj
of the prefix code o with probability distribution

pP= <P(1):P(2):---:P(n):l>.

n
Because given a probability distribution, Huffman code is the
prefix code with the smallest expected codeword length [24].
Therefore, it is only necessary to calculate the expected
codeword length when encoding with Huffman code in the
case of the probability distribution P. From P is a uniform
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distribution and the encoding rule of Huffiman code [24], it
can be observed that the code tree obtained by encoding is
a full binary tree and the layers of leaf nodes differ by at
most 1, so the lengths of all codewords differ by at most 1.
Then, there are 2™ — | codewords with codeword length m
and 2l codewords with codeword length of m + 1. Therefore,
the minimum value of Z?Zl m;j is

- +2(m+1)
=m2™ +ml + 2l
=nm + 2l.

min[sum(2,n)] = m(2™

From Theorem 4, nm+21 is the capacity of (2, n)-threshold
secret sharing scheme. Since 7 log, n is the lower bound, there
must be nm + 2l > nlog,n. To show that our results are
novel, we compare nm + 2! and nlog, n only from a purely
mathematical point of view.

Lemma 2 For any n = 2™ +1 € N, where m = |logyn|, we
have

nm + 20 > nlogyn. )

Proof Let x :=logon and y:=x — |x], then 0 <y < 1. We
obtain

nm + 2l > nlogyn
— nllogyn| + 2n —2-2°e2" > plog, n
— n(2+ |logyn| —logyn) > 2 2les2n]
= 2%(24 |z] —z) > 227
—=2W(2—-y)>2

Therefore, it is equivalent to proving that 2Y(2 — y) > 2 for
y €[0,1). Let f(y) := 2¥(2—y). By calculating the derivative,
we know that f(y) is strictly monotonically increasing over the
interval [0,yo) and strictly monotonically decreasing over the

interval [yo, 1), where yo = 2— ——. Therefore, for y € [0, 1),

In2’

f(y) = min{f(0), f(1)} = 2.

From the proof process of Lemma 2, we know that when
y =0, i.e., n is a power of 2, inequality given in (2) becomes
equal. Due to the monotonicity of the function f(y), it is rea-
sonable to guess that at the midpoint 2™ 4 2™~ 1 between 2™
and 2™+ (i.e., the average of two adjacent powers of 2), the
difference between the two sides of (2) is large. Thus, Table I
lists some values comparing nm + 2/ and nlog, n. Table I
confirms that, when n = 2™, nm + 2l = m - 2™ = nlogyn.
In addition, it can be found that the difference at 2 + 2m—1
is larger when m is larger. Interestingly, the difference at
2m 4+ 2m=1 js 2 times that at 2! + 2m~2, This finding
is verified below.

Let ny := 2" +2m"1 and ng := 2m~14+2m~2 Let d(n) :=
nm + 21 — nlogy n, we obtain

we have

d(n1) = nym + 2™ — ny logy ny
= 2nom + 2™ — 2nylog,y(2ns)
= 2ngy(m — 1) + 2™ — 2ny log, no
= 2d(na).

TABLE I: Comparison of some values of nm+2! and nlog, n

n nm + 21 nlogy,n | difference
2 2 2 0
4 8 8 0
8 24 24 0
16 64 64 0
32 160 160 0
64 384 384 0
27 896 896 0
28 2048 2048 0
29 4608 4608 0
210 10240 10240 0
211 22528 22528 0
212 49152 49152 0
213 106496 106496 0
214 229376 229376 0
3 35 475 0.25
6 16 15.51 0.49
12 44 43.02 0.98
24 112 110.04 1.96
48 272 268.08 3.92
96 640 632.16 7.84
27 4 26 1472 1456.31 15.69
28 4 27 3328 3296.63 31.37
29 4 28 7424 7361.25 62.75
210 4 99 16384 16258.50 125.50
211 4 210 35840 35589.00 251.00
212 4 ol1 77824 77322.01 501.99
213 4 912 167936 | 166932.02 | 1003.98
214 4 913 | 360448 | 358440.04 | 2007.96

Note: After rounding n log, n, retain two decimal places.

This shows that when m tends to infinity, the difference at
2m 4 2m=1 tends to infinity. Therefore, the achievable lower
bound nm + 2 proved in this paper is not only a new result
but also very meaningful.

IV. A NEW METRIC FOR (2, 00)-THRESHOLD SECRET
SHARING SCHEMES

For simplicity, integer codes mentioned in this paper refer
to the prefix coding of integers. Theorem 2 shows that there is
a one-to-one correspondence between the (2, co)-thresholded
secret sharing scheme and integer codes. In this section, we
strive to formulate a metric that can be used to determine
which integer code is more suitable for constructing (2, co)-
thresholded secret sharing schemes.

In the traditional secret sharing, since shares are distributed
at one time, the metric to measure is the sum of share sizes,
and the smaller sum is better. In the evolving secret sharing,
the specific number of parties participating in secret sharing is
not known, and even the number of parties may be infinitely
countable. Therefore, it is impossible to calculate the sum of
share sizes by distributing all the shares at one time.

In this paper, the metrics we focus on are for the global per-
formance rather than the asymptotic performance of (2, c0)-
thresholded secret sharing. Two approaches are discussed first.

A. Two approaches

A simple approach is to construct a (2, co)-threshold secret
sharing scheme so that the share length generated at any ¢ time
is the smallest. Unfortunately, such a scheme does not exist.

From Theorem 2, for any (2, co)-thresholded secret sharing
scheme 3, there exists an integer code o, such that the ¢-th
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codeword length L, (t) is exactly the size of share distributed
by the scheme X at the ¢-th moment. From the theory of prefix
codes, it is impossible to have a complete integer code o that,
for any complete integer code ¢) and any positive integer t,
L,(t) < Ly(t), where an integer code is called complete if the
integer code makes Kraft’s inequality [23] equal. The reason
is as follows.

Lemma 3 Considering two different complete integer codes
Y and o, if t is sufficiently large and L,(t) < Ly(t), then
there must be a smaller positive integer to such that L, (tg) >
Ly (to).

Proof Assuming that such ty does not exist, then for any t €
N, we have L,(t) < Ly(t). Due to ¢ # o and both codes
being complete prefix, we further obtain that there exists t1 €
N such that Ly (t1) < Ly(t1). Then,

1 1 1
—_— -
Z Lo (t Ly(t1) 2: Lo (t)
teN2 2 2ba(n teN\{t1}2 (

1 1
> st > SL® =L
teN\{t:}

This contradicts that o is a complete prefix code.

Lemma 3 shows that the codeword length advantage of the
o at larger integers is at the expense of codeword length at
smaller integers. So this simple approach does not work.

Another approach is to consider whether there is a (2, c0)-
threshold secret sharing scheme such that the share size L(t)
generated at sufficiently large moments ¢ are all the small-
est. This essentially considers the asymptotic performance
of (2,00)-threshold secret sharing schemes. Although the
previous works [9], [11] did not precisely formulate metrics,
they all believed that the standard for a good scheme is that the
integer code is at a sufficiently large time ¢, and the codeword
length L(t) is as small as possible.

It is known that the codeword length advantage at larger
integers is at the expense of codeword length at smaller
integers. However, in evolving secret sharing, the share size
L(t) of the larger moment ¢ is obviously not as important
as the share size of the smaller moment due to the unknown
number of parties. Therefore, this idea is unreasonable when
considering global performance, and we need to find more
reasonable and feasible metrics.

B. The global metric Ky,

In fact, evolving secret sharing has one thing in common
with universal coding of integers: they both face unknowns.
Evolving secret sharing has no prior knowledge of the number
of parties, and universal coding of integers has no prior
knowledge of probability distributions. Therefore, we suggest
proposing a metric similar to the metric minimum expansion
factor K} to evaluate the overall performance of (2,00)-
threshold secret sharing schemes. The new metric is defined
as follows.

Definition 8 Let ¥ be a (2,00)-threshold secret sharing
scheme, which corresponds to the integer code o, and the

size of the share distributed at t-th moment is L, (t) bits. The
global metric K, of the scheme X is defined as follows:

v Lo(t
Ky := sup —,Zt:l ®)
2<neN mln[sum(27 Tl)]

i1 Lo (1)

3)

= su
2<neN  nm + 21

b

where m = |logyn] and | :=n — 2™.

The meaning of the global metric Ky is that no matter
how many parties participate in secret sharing when any fixed
number of parties is ng, the sum of the share sizes for the
(2, 00)-threshold secret sharing scheme ¥ is less than or equal
to Ky times of the sum of the share sizes for the optimal
(2, mg)-threshold secret sharing scheme.

Finally, the optimal (2, co)-threshold secret sharing scheme
and the optimal integer code for (2, 0o)-threshold secret shar-
ing schemes are defined below.

Definition 9 The (2, 0o)-threshold secret sharing scheme with
the smallest global metric Ky is called the optimal (2,00)-
threshold secret sharing scheme. The integer code correspond-
ing to the optimal (2,00)-threshold secret sharing scheme is
called the optimal integer code for (2,00)-threshold secret
sharing schemes.

V. THE RANGE OF Ky FOR THE OPTIMAL
(2, 00)-THRESHOLD SECRET SHARING SCHEME

In this section, we study the range of the global metric
K, for the optimal (2, co0)-threshold secret sharing scheme.
First, the lower bound of the global metric Ky is given. For
simplicity, let
21 Lo(t)

= =120 4)

£(n,0) nm + 21

Consider the case where the number of parties n = 2. Due to
L,(1) > 1 and L,(2) > 2 for any integer code o, we obtain
2

L,(t 3
L(2,0) = 7Zt:1 ®) > —.
2x14+2x0 72
Therefore, the global metric Ky satisfies Ky > 1.5.
Next, we will construct schemes Y in the following two
subsections so that its the global metric K is close to the
lower bound 1.5.

A. Panning Code

In this subsection, we construct (2,00)-threshold secret
sharing schemes with small K5, using known universal coding
of integers. The length of the second codeword of the exisiting
constructed universal coding of integers o is strictly greater
than 2 [16], [19], [20], that is, L,(2) > 3 and

L(2,0) = W > 2.

Hence, the global metric Ky is far from the lower bound
1.5. Therefore, we proposed a novel panning code o+ which
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is constructed from an existing integer code o. The panning
code ot : N — B* is constructed as follows.

ot (m) = { (o 1),

for all m € N. If the length of the first codeword of integer
code ¢ is 1, then the length of the first codeword of o7 is 1
and the length of the second codeword of o7 is 2.

Before considering which integer code to be used to con-
struct the (2, 00)-threshold secret sharing scheme, we first
prove the following lemma.

if m=1,
otherwise,

Lemma 4 Let the integer code o satisfy L,(1) =1, L,(2) =
2 and

Lo(t) < a+bllogy(t — 1)/, ©)
forall 3 <t eN, where a and b are positive constants. Then
lim L(n,o) <b. (6)

n——+00
Furthermore, when (5) meets the equal sign, (6) also meets
the equal sign.

Proof Ler m = |logyn| and | = n — 2™. When the integer
n > 3, we have

ZL i(a—i—blogz t—l)J)

t=3

n—1
=3+a(n—2) —i—szlog2
m—1 (7)
=3+a(n—2 —|—b<lm—|—2d )
d=1
=3+an-2)+ [l —22”+2}
=3+a(n—2)+b(nm+ 2 —2n+ 2).

Then, we obtain
3+a(n—2)+b(nm~+20—2n+2)

lim £(n,o)< lim

n— 400 n——+o00 nm + 21
. 3+an—2a+2b—2bn
=b+ lim
n—-+oo nm + 21
-2
=b+ lim (a b)n

n—+oo nm + 21
=b.

From the above calculation process, it is easy to see that when
(5) meets the equal sign, (6) also meets the equal sign.

Lemma 4 shows that the integer code o should be chosen
so that the constant b for the panning code oT in (5) is as
small as possible. Because the global metric Ks; > 1.5, we
want that the constant b in (5) takes 1.5. In this case, when
n =2 and n tends to infinity, £(n,o™") is less than or equal
to 1.5, and it is reasonable to hope that the global metric at
other time instant is better.

Both ¢ code and 7n code satisfy that the length of the first
codeword is 1, and the constant b in (5) can be set to be
1.5. Therefore, at the end of this subsection, we analyze the
global metrics for (2, 00)-threshold secret sharing schemes
corresponding to ¢+ code and i code respectively.

First, we analyze the global metrics K+ corresponding to
T code. The ¢ code satisfy L,+(1) =1, L,+(2) =2 and

3
L+ (t) [logy(t —1)].
for all 3 < ¢ € N. When n = 4, we obtain
>y Lt (1)
4x24+2x%x0

When 2 < n < 15, we can directly verify that £(n,:") <
1.625. When n > 16 (i.e. m > 4), a = % and b = % can be
substituted into (7) to get

7
=Lt-1)+1<5+5

L(4,07) = = 1.625.

CO

1
ZL < S(m+20) + on— 1.

Thus, we have
1.5(nm 4+ 21) +0.5n — 1

nm + 2l
0.5n—1

Ln,+) <

< 1.625.

Therefore, the global metric corresponding to the :* code is
K+ =1.625.

Second, we analyze the global metrics K+ corresponding
to nt code. The ™ code satisfy L,+(1) = 1, L,+(2) = 2
and

3
5 oga(t —2)].
for all 3 < ¢ & N. When n = 32, we obtaln
i2y L (1)
32x5+2x0

When 2 < n < 512, we can directly verify that £(n,n™) <
1.61875. When n > 512 (i.e. m > 9), we consider the
following two cases.
1) n is a power of 2:
In this case, n = 2™ and nm + 2l = nm. When m > 9,
we obtain

Lyc(t)=Ly(t—1)+1<44°2

L£(32,n") = = 1.61875.

t=1 t=3

n—2
=4n -5+ - ) |log,t]

t=2

3 m—1
:471—5—1-5[ d 2d—(m—1)}

d=1

3
:4n—5+§[(m—2)2m—m+3]
—fnm—i-n—§m—1
2 2°

Thus, we have
n—1.5m—0.5

L(n,nT) < 1.5+

< 1.61875.
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2) n is not a power of 2:
In this case, n = 2™ 4+l and 1 <[ < 2™ — 1. When
m > 9, we obtain

Z L,7+ (t
t=1

n—2
3
)§4n—5+§ztlog2tj

t=2

m—1
:4n—5+g[(1—1)m+2d-2d}

d=1
l

f4n75+2 m —m +(m — 2)2m+2}

|
(nm+21>+n—15m 2.

Thus, we have
n—15m-—2
nm + 21
<15+ >
nm

< 1.61875.

Ln,nT) < 1.5+

In summary, when m > 9, we obtain £L(n,n") < 1.61875.
Therefore, the global metric corresponding to the 7 code is
Kg+ = 1.61875.

It can be seen that the global metrics K;+ = 1.625
and Ky+ = 1.61875 are close to the lower bound 1.5.
Hence, (2, 0c0)-threshold secret sharing schemes I+ and H™
corresponding to +* code and "t code have good performance
under the new metric defined in Definition 8.

B. X code achieves K5 = 1.59375

In this subsection, we construct a new integer code, termed
A code, to achieve the global metric K,y = 1.59375. In the
previous subsection, the panning codes constructed using the
existing integer codes achieve good global metrics. At present,
the best performance is the global metric K+ = 1.61875,
which is achieved by n* code. The structure of A code is
related to n* code, and the specific structure is as follows.

Let a € B™ denote a codeword of length m, then a0 and
al are two codewords of length m + 1. We call the process
from a to a0 and al as the splitting of a. If a is a codeword
of o code, and a is replaced by two codewords after a splits,
then o code is said to be split at a, and o code after the split
is noted as o[a]. Obviously, if o code is a prefix code, then
ola] code is still a prefix code.

A code is essentially the code obtained after n* code is
splits at " (5), n*(8), n*(9), n*(14), n*(15), n*(16) and
nT(17), that is,

A=n" [ (5), n7(8),n™(9), n*(14),n™(15), ).

Table 11 lists the first 24 codewords of ™ code and A code.
The underlined part in Table II is related to the split codeword.

fil Ly(t) = 174 can be obtained by simple calculations.
When n > 25, \(n) = n*(n—7) = 0n(n — 8). Therefore, we
obtain

*(16),7n

La(n) = Lo(n —8) +1 < 4+ [logy(n — 9)),

for all 25 <n € N.

TABLE II: The first 24 codewords of nt code and X\ code

n nT code \ code

1 1 1

2 01 01

3 0010 0010

4 00110 00110

5 00111 001110
6 0001000 001111

7 0001001 0001000
8 0001010 0001001
9 0001011 00010100
10 00011000 00010101
11 00011001 00010110
12 00011010 00010111
13 00011011 00011000
14 00011100 00011001
15 00011101 00011010
16 00011110 00011011
17 00011111 000111000
18 | 0000100000 | 000111001
19 | 0000100001 | 000111010
20 | 0000100010 | 000111011
21 | 0000100011 | 000111100
22 | 0000100100 | 000111101
23 | 0000100101 | 000111110
24 | 0000100110 | 000111111

Next, we analyze the global metric K, corresponding to A
code. When n = 16, we obtain

2L IA()
16 x4+2x0

When 2 < n < 2048, we can directly verify that L(n,\) <
1.59375. When n > 2048 (i.e. m > 11), we have

> L)
t=1

L(16,)\) = = 1.59375.

n

=174+ ) Lx(t)

t=25

< 174 4 4(n — 24)

Z |log, (t —

t 25

3n79
= 4 — I tl.
78 4+ n+2f;Log2 |

According to the value of [ = n—2™, the following two cases
are discussed.
1) 8<I<2m —1:
When m > 11, we obtain

n—9 m—1
> logyt) = > d-2*+m(l—8)
d=4

t=16
= (m —2)2™ — 32+ ml — 8m.

—~

Thus, we have

78+4n+1.5[(m—2)2m—32+ml78m

nm + 2l
n — 12m + 30

nm + 21
n

nm + 21
1
<154+ —
m
< 1.59375.

L(n,A) <
=15+

<15+
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Fig. 1: £(n, o) of § code, ¢ code and A code when 2 < n <
212,

2) 0<I<8:
When m > 11, we obtain
n—9 m—1
> logyt] = > d-2¢ 4 (m—1)(1-8)
t=16 d=4

=(m—2)2" =24+ ml—8m — L.
Thus, we have

78+4n+1.5[(m—z)zm—24+m1—8m—z

£ A) < nm + 21
n — 12m — 1.5] + 42
=15+
nm + 2l
n

154+ ——
< + nm + 2l
< 1.59375.

In summary, when m > 11, we obtain £(n,A) < 1.59375.
Therefore, the global metric corresponding to the A\ code is
Ky = 1.59375. Furthermore, we prove that the range of
the global metric Ky, for the optimal (2, co)-threshold secret
sharing scheme is 1.5 < Ky, < 1.59375.

VI. COMPARISONS

In this section, we compare the global performance of
(2, 00)-threshold secret sharing schemes constructed by Elias §
code [16], ¢ code [20], and the proposed A code. Komargodski
et al. use § code to construct a (2,00)-threshold secret
sharing scheme that is almost optimal in terms of asymptotic
performance [9]. ¢ code is currently the best universal coding
of integers with the smallest expansion factor [20]. A (2, c0)-
threshold secret sharing scheme constructed by A code is
currently the best integer code in terms of global performance.

L(n,o) is defined in (4), which represents the ratio of the
sum of the share sizes for scheme X at the first n moments
to the capacity of (2,n)-threshold secret sharing schemes.
Figure 1 is drawn according to the code lengths of these

three integer codes, the abscissa is the logarithmic value of
the number of parties n, and the ordinate is £(n,o). From
Figure 1, we obtain Ky = 1.59375 < Ka = Kj = 2.5 (strict
proof similar to calculation in Section V). Therefore, A code is
better than § code and ¢ code in terms of global performance.
The fold line of A\ code is flat overall. The advantage of
code and ¢ code over A\ code at relatively large n is obtained
at the expense of the first four points in Figure 1. Similarly,
the advantage of ¢ code over ¢ code at sufficiently large n is
to sacrifice about the first 2'! points in Figure 1.

Although the metric K, reflects the global performance of
(2, 00)-threshold secret sharing scheme, it can be seen from
Figure 1 that this metric has limitation. When the number of
parties n is clearly greater than 6, the scheme of A code will
not be better than the scheme of ¢ code and ¢ code. Therefore,
if the number of parties n is known to be greater than or equal
to n;, we can define a new metric Kx(n;) dependent on n;
as follows.

21 Lo(s)
K = 5=
> (nl) nlsgunpeN mln[sum(27 n)}
= sup L(n,o).
n;<neN
In particular, when n; = 2, the metric Ks:(n;) becomes K. In
addition, hI}’rl Kx(n) = liIE L(n, o) can be considered
n;—+oo n—+4oo
as a metric for asymptotic performance. The study of the
properties of K (n;) is a promising future work.

VII. CONCLUSIONS

In this paper, we propose a new metric Ky for evolving
2-threshold secret sharing schemes X and study the range
of the global metric Ky for the optimal (2,0c0)-threshold
secret sharing scheme. First, we show that the global metric
Ky, > 1.5 and use the existing universal coding of integers
to construct schemes with good global metrics. Second, we
construct a new integer code, termed A code, to achieve
the global metric Ky = 1.59375. This work shows that
the range of the global metric K for the optimal (2,00)-
threshold secret sharing scheme is 1.5 < Ky < 1.59375.
Furthermore, the capacity of (2,n)-threshold secret sharing
scheme is proved. The future work is listed as follows.

1) Is it possible to construct an integer code whose global
metric is strictly less than 1.59375?

2) The explicit value of K5, of the optimal (2, 0o)-threshold
secret sharing scheme is still unknown.

3) Let n; be a known lower bound on the number of parties
n. Research on general metric Kx;(n;), where n; > 2 is
an arbitrary integer.
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