
Efficient Soft-Decision Decoding Algorithms for Linear

Block Codes Using Algorithm A*

by

Yunghsiang Sam Han

Abstract of Dissertation

August, 1993

A class of novel and efficient maximum-likelihood soft-decision decoding algorithms,

and a new class of efficient suboptimal soft-decision decoding algorithms for linear

block codes are presented in this dissertation.

The approach used here converts the decoding problem into a problem of search-

ing through a graph for an equivalent code of the transmitted code. Algorithm A*,

which uses a priority-first search strategy, is employed to search through this graph.

This search is guided by an evaluation function f defined to take advantage of the

information provided by the received vector and the inherent properties of the trans-

mitted code. This function f is used to reduce the search space drastically and to

adapt these decoding algorithms to the noise level.

Simulation results for the (128, 64) binary extended BCH code show that, for

most real channels of the 35,000 samples tried, the proposed maximum-likelihood

soft-decision decoding algorithms are fifteen orders of magnitude more efficient in

time and in space than that proposed by Wolf. Simulation results for the (104, 52)

binary extended quadratic residue code are also given.

The simulation results show that for the samples tried, the performance of a

proposed suboptimal soft-decision decoding algorithm is at most within 0.25 dB of

the performance of a maximum-likelihood soft-decision decoding algorithm for the

(104, 52) binary extended quadratic residue code and within 0.5 dB for the (128, 64)

binary extended BCH code for very low signal-to-noise ratios.

We also determine an upper bound of the probability distribution of the compu-

tations performed in the proposed maximum-likelihood soft-decision decoding algo-

rithms. The results of this bound show that these decoding algorithms are efficient

for most practical communication systems.

Efficient Soft-Decision Decoding Algorithms

for Linear Block Codes Using Algorithm A*

by

Yunghsiang Sam Han

B.S. National Tsing Hua University, Taiwan, 1984

M.S. National Tsing Hua University, Taiwan, 1986

Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in School of Computer and Information Science

in the Graduate School of Syracuse University

August, 1993

Approved

Date

Acknowledgements

I would like to thank Dr. Carlos Hartmann for his encouragement and guidance. This

work would not have been possible without his advice and commitment. I would also

like to thank Dr. Kishan Mehrotra for his help in the analysis of algorithms. Thanks

are also due to Dr. Harold Mattson, Jr., and Dr. Luther Rudolph for providing

invaluable advice at a very early stage of this work. I am grateful to Mr. Chih-

chieh Chen for implementing a prototype of the decoding algorithm in software and

pointing out an important property of that decoding algorithm.

The School of Computer and Information Science supported me throughout my

graduate career. I am also grateful to the Northeast Parallel Architectures Center for

allowing me the use of their facilities. Dr. Hari Krishna, one of the best instructors

I have ever had, deserves special mention for having helped make clear to me some

important concepts in coding theory.

Special thanks are due to Mrs. Elaine Weinman for her invaluable help in the

preparation of this manuscript. I also thank Dr. Chilukuri K. Mohan for his comments

on this work.

The work presented in this dissertation was partially supported by the National

Science Foundation under Contract NCR-9205422.

I would like to give special thanks to my family, my wife Chihching and my

son Justin. This dissertation would not have been possible without my wife who

ii

supported and encouraged me at every step of my long journey toward my degree.

iii

Contents

Acknowledgements ii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Digital Communication System . 2

1.2 Channel Model . 3

1.3 Binary Linear Block Code (BLBC) 4

1.4 Soft-Decision Decoding . 7

1.5 Trellis and Code Tree . 9

1.6 Soft-Decision Decoding Algorithms 14

1.7 Synopsis of the Dissertation . 19

2 Algorithm A* 21

2.1 General Graph-Search Procedure . 22

2.2 The Optimality of Algorithm A* . 24

2.3 The Monotone Restriction on Algorithm A* 26

iv

3 Maximum-Likelihood Decoding Algorithm 28

3.1 Equivalent Code of the Transmitted Code 29

3.2 Evaluation Function . 29

3.3 Speed-up Techniques . 35

3.4 Simulation Results for the AWGN Channel 37

4 Analysis of the Performance of the Algorithm 46

4.1 A Simple Heuristic Function hs . 46

4.2 Performance of Maximum-Likelihood Decoding Algorithm Using Func-

tion hs . 47

5 Suboptimal Decoding Algorithm 55

5.1 Criteria for Limiting the Size of List OPEN 56

5.2 Simulation Results for the AWGN Channel 58

6 Conclusions and Further Research 63

6.1 Conclusions . 63

6.2 Further Research . 65

A Proof of Theorems in Chapter 2 66

A.1 Proof of Theorem 2.1 . 66

A.2 Proof of Theorem 2.2 . 67

A.3 Proof of Theorem 2.3 . 67

A.4 Proof of Theorem 2.4 . 69

A.5 Proof of Theorem 2.5 . 69

A.6 Proof of Theorem 2.6 . 70

v

B Algorithms in Chapter 3 71

B.1 Reordering the Positions of Received Vector 71

B.2 Algorithm to Calculate h(1)(m) . 72

B.2.1 Algorithm for the Case SC∗ = {0} 73

B.2.2 Algorithm for the Case SC∗ 6= {0} 76

B.3 Outline and Complexity Analysis of the Decoding Algorithm in Chapter 3 78

C Proof of Properties in Chapter 3 90

C.1 Proof of Property 3.1 . 90

C.2 Proof of Property 3.2 . 91

D Proof of Theorems in Chapter 4 93

D.1 Proof of Theorem 4.1 . 93

D.2 Proof of Theorem 4.3 . 98

E Proof of Theorems in Chapter 5 100

vi

List of Tables

3.1 Simulation for the (104, 52) code . 41

3.2 Bit error probability and coding gain for the (104, 52) code 42

3.3 Distributions of N(φ), C(φ), and M(φ) for the (104, 52) code for

γb = 5 dB . 42

3.4 Simulation for the (128, 64) code . 43

3.5 Bit error probability and coding gain for the (128, 64) code 43

3.6 Distributions of N(φ), C(φ), and M(φ) for the (128, 64) code for

γb = 5 dB . 44

5.1 The average number of nodes visited during the decoding of (104, 52)

code . 60

5.2 The average number of nodes visited during the decoding of (128, 64)

code . 61

B.1 Order of complexities . 88

vii

List of Figures

1.1 The digital communication system 2

1.2 An example of a trellis of the (6, 3) code 11

1.3 An example of a code tree of the (6, 3) code 13

3.1 Geometric interpretation of f(m) . 34

4.1 Average number of nodes visited for the (48, 24) code 49

4.2 Average number of codewords tried for the (48, 24) code 51

4.3 Ñ for the (104, 52) code and the (128, 64) code 52

4.4 C̃ for the (104, 52) code and the (128, 64) code 53

5.1 Performance of suboptimal decoding algorithm for the (104, 52) code 59

5.2 Performance of suboptimal decoding algorithm for the (128, 64) code 61

viii

Chapter 1

Introduction

The goal of any communication system is to transfer information correctly from source

to destination. The medium used for transmission is called a channel. Since most

of the channels used are subject to noise, for reliable transmission of information

over a noisy channel, specific techniques are required to correct errors introduced by

channels.

The error-control technique discussed in this dissertation originated with the pub-

lication of “A Mathematical Theory of Communication” by Shannon [34] in which he

proposed the ideas of source coding and channel coding. He proved that without loss

of generality we can treat source coding and channel coding as two separate prob-

lems, and information transmitted over a channel can be regarded as binary digits.

Hence, the problem in channel coding is to find an encoder and a decoder such that

the probability of error can be minimized for transmission. Shannon also proved that

the probability of error in the information transmitted over a noisy channel can be

reduced to any desired level if the data rate is within a calculable figure called the

channel capacity. However, since his proof is non-constructive, he left open the ques-

tion of finding a specific code that can be used on a channel to achieve any desired

1

CHAPTER 1. INTRODUCTION 2

Demodulator

Channel

Modulator

Decoder

Encoder

?

?

¾

-

¾

-

¾

Received information

Digitized information

Errors

Figure 1.1: The digital communication system

low probability error. Thus, one of the important problems in coding theory is how

to construct these codes. In practice, any code needs an efficient decoder. Hence,

another significant problem in this field is how to find an efficient decoding algorithm

for a specific code, the problem upon which this dissertation will focus. The following

sections will review some basic concepts of a communication system incorporating

coding. Some existing decoding algorithms are also briefly investigated.

1.1 Digital Communication System

A block diagram of a typical digital communication system incorporating coding is

shown in Figure 1.1 [37]. The input of a channel encoder is a stream of digitized

information, i.e., a stream of 0’s and 1’s, and we assume that every digit is equally

likely to be a 0 or 1. The channel encoder divides the incoming data stream into

sequences of fixed length k. There are 2k binary sequences of length k, each of which

is mapped to a distinct codeword by the encoder, with any codeword a sequence of

CHAPTER 1. INTRODUCTION 3

binary digits of length n. The mapping is a one-to-one correspondence between the

k digits coming in to the encoder and the n digits going out from the encoder. The

entire collection of codewords is called a code.

The n digits going out from the encoder are sent at discrete intervals to a modu-

lator where they are transformed into specified waveforms (signals) for transmission

over the channel.

The channel is a transmission medium that introduces a number of effects such as

attenuation, distortion, interference, and noise [37]. These effects make it uncertain

whether information will be received correctly.

The demodulator tries to decide on the values of the transmitted signals and

pass those decisions to the decoder. If a demodulator quantizes each signal into two

levels and decides on the values of the signal in terms of 0 or 1, it is called a hard-

decision demodulator. If a modulator passes the analog output of filters matched

to the signals to the decoder, it is called a soft-decision demodulator [37]. The n

values coming from the demodulator constitute a received vector that will be used to

estimate the transmitted codeword by the decoder.

A decoder tries to use some rule to estimate the transmitted codeword on a given

received vector. Normally, a decoding rule should be chosen that will minimize error

probability.

1.2 Channel Model

A transmission channel can be characterized in terms of the set of input variables, the

set of output variables, and the probability of receiving an output element when an

input element has been transmitted [21]. Many channel models have been analyzed

in [43, 21]. This dissertation considers only the time-discrete memoryless channel,

CHAPTER 1. INTRODUCTION 4

since it is suitable for the channels to which coding technique is applied.

Definition 1.1 [21] The time-discrete memoryless channel (TDMC) is a channel

specified by an arbitrary input space A, an arbitrary output space B, and for each

element a in A , a conditional probability measure on every element b in B that is

independent of all other inputs and outputs.

The channel input is a sequence of elements from A, the channel output is a se-

quence of elements from B, and each output element depends statistically only on

the corresponding input element.

An example of TDMC is the Additive White Gaussian Noise channel (AWGN

channel). We assume that antipodal signaling is used in the transmission of bina-

ry signals over the channel. A 0 is transmitted as +
√

E and a 1 is transmitted

as −√E, where E is the signal energy per channel bit. Thus, the input space is

A = {0, 1} and the output space is B = R. When a sequence of input elements

(c0, c1, . . . , cn−1) is transmitted, the sequence of output elements (r0, r1, . . . , rn−1) will

be rj = (−1)cj
√

E + ej, j = 0, 1, . . . , n− 1, where ej is a noise sample of a Gaussian

process with single-sided noise power per hertz N0. The variance of ej is N0/2 and

the signal-to-noise ratio (SNR) for the channel is γ = E/N0.

1.3 Binary Linear Block Code (BLBC)

Most definitions and results in this section are taken from McEliece [29]. Usually the

input stream for a channel will consist of binary digits, and the source generates a

0 or 1 with the same probability. In block coding, the input stream is segmented

into fixed length blocks, each of which is called a message. Each message contains k

binary digits. The encoder transfers each message u to a binary n-tuple c with n > k

CHAPTER 1. INTRODUCTION 5

according to some rules. This binary n-tuple c is referred to as a codeword of the

message u, and there is one-to-one correspondence between u and its codeword c.

The collection of all codewords of messages is called a code C. Before a well-known

encoding rule that will generate a linear block code is introduced, we give a definition

of the Galois field of order 2 [25].

Definition 1.2 The Galois field of order 2, denoted by GF (2), is a set of two ele-

ments 0 and 1, and the operations of modulo-2 addition ⊕ and modulo-2 multiplication

×.

Definition 1.3 An (n, k) binary linear block code is a k-dimensional subspace of the

n-dimensional vector space Vn = {(x0, x1, . . . , xn−1)|∀xi xi ∈ GF (2)}; n is called the

length of the code, k the dimension.

An (n, k) BLBC can be specified by any set of k linear independent codewords

c,c,. . . ,ck−. Every codeword in C is one of the 2k linear combinations
k−1∑

i=0

aici,

where ai ∈ GF (2). If we arrange the k codewords into a k×n matrix G, G is called

a generator matrix for C.

It is easy to encode the message by linear block codes. Let u = (u0, u1, . . . , uk−1),

where ui ∈ GF (2). The corresponding codeword of u can be obtained by multiplying

G to u. That is, c = (c0, c1, . . . , cn−1) = uG. If a BLBC maps ui to ci for 0 ≤ i ≤ k−1,

then the BLBC is called systematic code. For a given code C with generator matrix

G, it is well known that we have a systematic code with generator matrix G′ where

G′ is obtained by permuting the columns of G and by doing some row operations on

G. In this case, the code generated by G′ is an equivalent code of that generated by

G. Notice that, the generator matrix G′ of a systematic code has the form of [IkA],

where Ik is the k × k identity matrix.

CHAPTER 1. INTRODUCTION 6

An (n, k) linear block code can also be specified by another matrix called the

parity-check matrix.

Let C be an (n, k) BLBC. A parity check for C is an equation of the form

a0c0 ⊕ a1c1 ⊕ . . .⊕ an−1cn−1 = 0,

which is satisfied for any c = (c0, c1, . . . , cn−1) ∈ C. The collection of all vectors

a = (a0, a1, . . . , an−1) forms a subspace of Vn. It is denoted by C⊥ and is called the

dual code of C. The dimension of C⊥ is n − k and C⊥ is an (n, n − k) BLBC. Any

generator matrix of C⊥ is a parity-check matrix for C and is denoted by H . Hence,

HcT = 0 for any c ∈ C.

Definition 1.4 The Hamming weight of a codeword c, WH(c), is the number of 1’s

of the codeword. The Hamming distance between two codewords c and c′ is defined

as dH(c, c′) = the number of components in which c and c′ differ.

From the above definition we observe that dH(c,0) = WH(c). That is, the Ham-

ming weight of a codeword is the Hamming distance between it and the all-zero

codeword. For a linear block code, two important properties regarding Hamming

distance and Hamming weight are:

1. Let HW be the set of all distinct Hamming weights that codewords of C may

have. Furthermore, let HD(c) be the set of all distinct Hamming distances

between c and any codeword. Then, HW = HD(c) for any c ∈ C.

2. If C and C ′ are equivalent to each other, then the HW for C is the same as

that for C ′.

The smallest nonzero element in HW is referred to as dmin, the minimum distance

of the code C; dmin is a very important parameter for a code since it determines the

error-correcting capability of the code.

CHAPTER 1. INTRODUCTION 7

In the next section we will describe how to decode a received vector.

1.4 Soft-Decision Decoding

The premise of soft-decision decoding is to take into consideration the analog output

of filters matched to the signals. That is, real numbers are used and associated with

every component of the codeword in the decoding procedure. Soft-decision decoding

can provide about 2 dB of additional coding gain when compared to hard-decision

decoding [12].

In general, an optimal decoding rule of a linear block code is to estimate a code-

word ĉ such that ĉ is the most likely transmitted codeword when the received vector

r is given. That is, the optimal decoding rule minimizes error probability. Formally,

an optimal decoding rule can be formulated as follows:

Let C be the transmitted (n, k) binary linear block code and r be a received

vector:

set ĉ = c` where c`∈ C and

Pr(c`|r) ≥ Pr(c|r) for all c ∈ C.

If all codewords of C have equal probability of being transmitted, then to maximize

Pr(c|r) is equivalent to maximizing Pr(r|c), where Pr(r|c) is the probability that

r is received when c is transmitted, since

Pr(c|r) =
Pr(r|c)Pr(c)

Pr(r)
.

Definition 1.5 A maximum-likelihood decoding rule (MLD rule), which minimizes

error probability when each codeword is transmitted equiprobably, decodes a received

vector r to a codeword c`∈ C such that

Pr(r|c`) ≥ Pr(r|c) for all c ∈ C.

CHAPTER 1. INTRODUCTION 8

For a time-discrete memoryless channel, the MLD rule can be formulated as

set ĉ = c` where c` = (c`0, c`1, . . . , c`(n−1)) ∈ C and

n−1∏

j=0

Pr(rj|c`j) ≥
n−1∏

j=0

Pr(rj|cj) for all c = (c0, c1, . . . , c(n−1)) ∈ C.

Let S(c,c`) ⊆ {0, 1, . . . , n − 1} be defined as j ∈ S(c, c`) iff c`j 6= cj. Then the

MLD rule can be written as

set ĉ = c` where c` ∈ C and

∑

j∈S(c,c`)

ln
Pr(rj|c`j)

Pr(rj|cj)
≥ 0 for all c ∈ C.

Following the formulation given in [23], we define the bit log-likelihood ratio of ri as

φi = ln
Pr(ri|0)

Pr(ri|1)
.

Furthermore, let φ = (φ0, φ1, . . . , φn−1). The absolute value of φi is called the re-

liability of position i of received vector. By [23, Theorem 5] the MLD rule can be

written as

set ĉ = c`, where c` ∈ C and
n−1∑

j=0

(φj − (−1)c`j)2 ≤
n−1∑

j=0

(φj − (−1)cj)2 for all c ∈ C. (1.1)

Thus, we will say that c` is the “closest” codeword to φ.

Let y = (y0, y1, . . . , yn−1) be the hard-decision of φ. That is

yi = 1 if φi < 0;

= 0 otherwise.

Furthermore, let s = yHT be the syndrome of y and let E(s) be the collection of all

error patterns whose syndrome is s. Another useful form of MLD rule can be stated

as

set ĉ = y ⊕ e`, where e` ∈ E(s) and

CHAPTER 1. INTRODUCTION 9

n−1∑

j=0

e`j|φj| ≤
n−1∑

j=0

ej|φj| for all e ∈ E(s). (1.2)

One straightforward way to implement the MLD rule is to calculate Pr(r|c) =
n−1∏

j=0

Pr(rj|cj) for every codeword in C and select the codeword that maximizes it. In

practice this can be done only for those codes with a small number of codewords,

that is, low rate codes or middle-to-high rate codes with short block length. Indeed,

the MLD soft-decision decoding problem of linear codes has been shown to be an

NP-hard problem [7, 39, 17]. That means that it is extremely difficult to discover

a polynomial time algorithm for MLD soft-decision decoding of linear codes. Thus,

some suboptimal soft-decision decoding algorithms trade performance for decoding

time and space complexities. In Section 1.6 we will describe existing decoding algo-

rithms that implement the MLD rule and some that are suboptimal. A decoding

algorithm which implements the MLD rule will be referred as an optimal decoding

algorithm.

1.5 Trellis and Code Tree

In this section we demonstrate how to convert a decoding problem to a graph-search

problem on a graph in which a path represents a codeword in code C.

We now give a short description of a trellis [1] for code C where the search will

be performed. Let H be a parity-check matrix of C, and let hi, 0 ≤ i ≤ n − 1 be

the column vectors of H . Furthermore, let c = (c0, c1, . . . , cn−1) be a codeword of C.

With respect to this codeword, we recursively define the states st, −1 ≤ t ≤ n−1, as

s−1 = 0

CHAPTER 1. INTRODUCTION 10

and

st = st−1 + ctht =
t∑

i=0

cihi, 0 ≤ t ≤ n− 1.

Clearly, sn−1 = 0 for all codewords of C. The above recursive equation can be used

to draw a trellis diagram. In this trellis, s−1 = 0 identifies the start node at level

−1; sn−1 = 0 identifies the goal node at level n− 1; and each state st, 0 ≤ t ≤ n− 2

identifies a node at level t. Furthermore, each transition (arc) is labeled with the

appropriate codeword bit ct. Thus, there is a one-to-one correspondence between the

codewords of C and the sequences of labels encountered when traversing a path in

the trellis from the start node to the goal node. Note that the trellis defined here

corresponds to the expurgated trellis of [44].

The best way to understand the construction of a trellis of code C is through an

example.

Example 1.1 Let

G =




1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1




be a generator matrix of C and let

H =




1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1




be a parity-check matrix of C. A trellis of C is shown in Figure 1.2.

A code tree is another way to represent every codeword of an (n, k) code C as

a path through a tree containing n + 1 levels . The code tree can be treated as an

expanded version of the trellis, where every path is totally distinct from every other

CHAPTER 1. INTRODUCTION 11

(110)T

(101)T

(011)T

(010)T

(001)T

(000)T

level -1 0 1 2 3 4 5

0 0 0 0 0 0

0

0 0

0

0 0

1 1

1

1 1

1 1

1

1

1

1
1

Figure 1.2: An example of a trellis of the (6, 3) code

CHAPTER 1. INTRODUCTION 12

path. The leftmost node is called the start node. There are two branches, labeled by

0 and 1, respectively, that leave each node at the first k levels. After the k levels,

there is only one branch leaving each node. The 2k rightmost nodes are called goal

nodes.

Next, we describe how to determine the sequence of labels encountered when

traversing a path from a node at level k to a goal node.

Let G be a generating matrix of C whose first k columns form the k × k identi-

ty matrix. Furthermore, let c0, c1, . . . , ck−1 be the sequence of labels encountered

when traversing a path from the start node to a node m at level k − 1. Then

ck, ck+1, . . . , cn−1, the sequence of labels encountered when traversing a path from

node m to a goal node, can be obtained as follows:

(c0, c1, . . . , ck, ck+1, . . . , cn−1) = (c0, c1, . . . , ck−1)G.

An example of a code tree follows:

Example 1.2 Let

G =




1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1




be a generator matrix of C. The code tree for this code is shown in Figure 1.3.

Now we describe how to convert a decoding problem to a graph-search problem.

From Inequality 1.1, we want to find a codeword c` such that
n−1∑

j=0

(φj − (−1)c`j)2

is the minimum among all the codewords. Thus, if we properly specify the arc costs

on a trellis or a code tree, the MLD rule can be written as follows:

Find a path from the start node to a goal node such that the cost of the

path is minimum among all the paths from the start node to a goal node,

CHAPTER 1. INTRODUCTION 13

0

1

1

1

0

0

1

1

1

1

0

0

0

0

0 0 0

0 1 1

1 10

1 1 0

1 1 0

1 10

0 1 1

0 0 0

level -1 0 1 2 3 4 5

Figure 1.3: An example of a code tree of the (6, 3) code

where a cost of a path is the summation of the cost of arcs in the path.

Such a path is called an optimal path.

To explain in more detail, in the trellis of C the cost of the arc from st−1 to st =

st−1 + ctht is assigned the value (φt− (−1)ct)2. In the code tree of C, the cost of the

arc from a node at level t− 1 to a node at level t is assigned the value (φt− (−1)ct)2,

where ct is the label of the arc. Thus the solution of the decoding problem is converted

into finding a path from the start node to a goal node in the trellis (code tree), that

is, a codeword c= (c0, c1, . . . , cn−1) such that
n−1∑

j=0

(φj− (−1)cj)2 is minimum among all

paths from the start node to a goal node.

CHAPTER 1. INTRODUCTION 14

1.6 Soft-Decision Decoding Algorithms

The goal of soft-decision decoding algorithms of linear block codes is to select the

codeword closest to φ. There are two methods to construct a set of codewords from

which the decoding algorithm can select such a codeword [12].

• Before the search procedure begins, a fixed number of codewords are selected.

The algorithm then searches through all those codewords in order to determine

the closest codeword to φ. The advantage of this type of decoding algorithm is

that the computational effort to minimize the size of those codewords needed to

be stored can be done in advance and then only those codewords will be stored

in the decoder. Unfortunately, Bruck and Naor proved that, in general, it is

unlikely that the size of those codewords will be bounded by a polynomial of k

or n− k [10]. We will discuss more algorithms of the next type whose time and

space complexities are random variables of the received vector.

• In contrast with the above algorithms, decoding algorithms of this type gener-

ate the next codeword to be examined by observing the effect of the previous

generated codeword or by utilizing any reliable information that may be avail-

able. Although the effort of decoding the next codeword to be examined of this

type of decoding algorithm may be greater, the number of codewords examined

can sometimes be less, especially for a high SNR channel. Unfortunately, it is

difficult to analyze the performance of this type of algorithm since the number

of codewords examined will be a random variable.

In 1978, Wolf proposed a block code version of the Viterbi algorithm to be used

to decode linear block codes [44]. The decoding problem was first converted to a

graph-search problem on a trellis derived from a parity-check matrix of the code.

CHAPTER 1. INTRODUCTION 15

The MLD rule could then be implemented by applying the Viterbi algorithm [42].

His decoding procedure for binary linear block codes is as follows.

Let C be an (n, k) linear block code with parity check-matrix H . First, construct

a trellis for C and then apply the Viterbi algorithm to the trellis. How to construct

a trellis for C has been described in Section 1.5, and we will therefore concentrate

here on how the Viterbi algorithm works.

Basically, the Viterbi algorithm is a dynamic programming algorithm that is ex-

ecuted as follows:

1. For every node at level `, calculate the sum of arc costs of every path from the

start node to this node.

2. Keep the path with the lowest sum of arc costs and discard the others.

3. Apply the same process to any node at every level until the goal node at level

n− 1.

4. The surviving path from the start node to the goal node is an optimal path.

In Step 1 of the above procedure, the calculation of the sum of the arc costs of a path

from the start node to another node can be obtained by adding the arc cost to a node

in the previous level. Thus, the Viterbi algorithm can be performed level-by-level

to minimize the number of computations needed. Consequently, Wolf’s algorithm

uses a breadth-first search strategy to accomplish the search of an optimal path

through a trellis. Therefore, the time and space complexities of this algorithm are of

O(n×min(2k, 2n−k)) [14], since it traverses the entire trellis.

One way to improve Wolf’s algorithm is to reduce the number of states in a trellis

for C [20, 30, 5]. In [20], Forney gave a general procedure to reduce the number of

states in a trellis.

CHAPTER 1. INTRODUCTION 16

Forney’s method is as follows. Let C be an (n, k) linear block code. Let c =

(c0, c1, . . . , cn−1) be an n-tuple over GF (2), and let c(i)
p = (c0, c1, . . . , ci) and c

(i)
f =

(ci+1, ci+2, . . . , cn−1),−1 ≤ i ≤ n − 1. For code C, let C(i)
p be the linear code that

consists of c(i)
p for all c∈C such that c

(i)
f = (0, 0, . . . , 0). Similarly, let C

(i)
f be the

linear code that consists of c
(i)
f for all c∈C such that c(i)

p = (0, 0, . . . , 0). Denote

the dimensions of c(i)
p and c

(i)
f by kpi and kfi, respectively. Forney showed that the

number of states at the ith level is 2si , where si = k−kpi−kfi. The minimal trellis size

index, denoted as s = max
i

(si), depends on the order of the columns in the generator

matrix G or in the parity-check matrix H . However, for long codes, it is difficult

to find an order from which the minimal trellis size index is the smallest among all

possible orders, since it depends on the code structure [5]. Algorithms to find such

orders for the Golay code and the Reed-Muller codes are described in [20].

Another decoding algorithm that performs the MLD rule and searches through

a trellis or code tree was proposed by Battail [2]. This algorithm can be treated as a

branch-and-bound search algorithm that searches through a graph that is a trellis or

a code tree for a code C* equivalent to code C.

Now we describe Battail’s algorithm in more detail. Let C be an (n, k) linear block

code with generator matrix G. C* is obtained from C by permuting the positions of

codewords of C in such a way that the first k positions of codewords in C* correspond

to the “most reliable linearly independent” positions in the received vector φ. G* is

a generator matrix of C* whose first k columns form the k × k identity matrix. Let

φ* = (φ∗0, φ
∗
1, . . . , φ

∗
n−1) be used as the “received vector.” It is obtained by permuting

the positions of φ in the same manner in which the columns of G can be permuted

to obtain G*.

Let us define

Z(φ*,cm) = Zu(φ*,cm) + Zs(φ*,cm),

CHAPTER 1. INTRODUCTION 17

where

Zu(φ*,cm) =
k−1∑

j=0

(
φ∗j − (−1)cm

j

)2

and

Zs(φ*,cm) =
n−1∑

j=k

(
φ∗j − (−1)cm

j

)2
.

Then from Inequality 1.1, optimal decoding consists of determining m̂ such that

Z(φ*,cm̂) ≤ Z(φ*,cm) for any cm∈C*.

The decoding procedure is now as follows.

Let y* = (y∗0, y
∗
1, . . . , y

∗
n−1) be the hard-decision of φ*. First calculate c1 =

(y∗0, y
∗
1, . . . , y

∗
k−1)×G* and set a threshold σ = Z(φ*,c1), where σ is an upper bound

on the cost of an optimal path. Then other information vectors u, corresponding

to vectors c that belong to the code C*, are tried in the order of non-decreasing

Zu(φ*,c). Z(φ*,c), which corresponds to vectors c, is then computed. If Z(φ*,c) is

found for some c less than the current σ, then Z(φ*,c) becomes the new threshold,

and c will be the best solution found so far. Continue the decoding procedure until

Zu(φ*,c) exceeds the current threshold. The author did not address clearly how

to order the paths according to Zu(φ*,c) and this could affect the efficiency of the

algorithm.

Another way to perform the MLD rule is to find an error pattern that satisfies

Inequality 1.2 [16, 36, 35, 24, 26]. A general decoding procedure for these algorithms

is as follows [26].

Let y be the hard-decision of φ. Determine the syndrome s of y. If s = 0, then

output ĉ = y. Otherwise, find an error pattern e whose syndrome is s such that
n−1∑

j=0

ej|φj| is minimal. Output ĉ = y ⊕ e. Of these algorithms, [24] will be described

in more detail, but we first need to describe Chase’s algorithms [11].

CHAPTER 1. INTRODUCTION 18

The main idea of Chase’s algorithms is to select a set of test patterns that are

closed to y, and for each of them use a hard-decision decoder to obtain an error

pattern whose syndrome is the same as that of y. Let C be an (n, k) code with

minimum distance dmin. The basic procedure of Chase is as follows:

1. Find y, the hard-decision of φ.

2. Introduce some patterns of errors, t, to generate test pattern ts = t + y.

3. Decode each ts to c using a hard-decision decoder if possible.

4. Compute
n−1∑

j=0

(φj − (−1)cj)2 for all c obtained in Step 3 and select the c such

that
n−1∑

j=0

(φj − (−1)cj)2 is minimal.

Chase proposed three methods to introduce t. The first generates t, the all-zero

pattern and all error patterns with Hamming weight bdmin/2c; the second generates

t, all 2bdmin/2c combinations of values in the bdmin/2c-least reliable positions and zeros

in all other positions; the third generates t, all the vector that have 1’s in the i-least

reliable positions and zeros elsewhere (for dmin odd, i = 0, 2, 4, . . . , dmin − 1 and for

dmin even, i = 0, 1, 3, . . . , dmin − 1).

The first method will give the best performance, since it generates the largest

number of error patterns. However, as this number is too large for most practical

systems, this method can only be implemented for short codes or codes with small

dmin. It is easy to see that all the methods proposed by Chase are suboptimal soft-

decision decoding algorithms. In [24], the authors give a way to calculate the proper

Hamming weight for the error patterns in Chase’s second method in order to perform

the MLD rule.

Suppose there is a t error-correcting hard-decision decoder available for code C.

Let c be the closest codeword to φ found so far by the algorithm and e = c ⊕ y.

CHAPTER 1. INTRODUCTION 19

Furthermore, let u = (u00, u01, . . . , u0(n−1)), the vector obtained by permuting the

positions of φ with non-decreasing reliability. Let S(c) = {φi| yi = ci, 0 ≤ i ≤
n − 1} and v = (v0, v1,vn−WH(e)−1) contain all the distinct elements in S(c) as

its components such that |v0| ≤ |v1| ≤ . . . ≤ |vn−WH(e)−1|. First, we calculate the

smallest j ∈ {0, 1, 2, . . . , n− 1} that satisfies the inequality

n−1∑

i=0

ei|φi| <
dmin−WH(e)−t−2∑

i=0

|vi|+
t∑

i=0

|ui+j+1|.

Then, to check if c is the closest codeword to φ, we need to check error patterns that

are all 2j+1 combinations of values in the j + 1-least reliable positions and the zeros

in all other positions.

1.7 Synopsis of the Dissertation

This dissertation is organized in the following way. A detailed description of algorithm

A* is given in Chapter 2 and some important properties of algorithm A* are also

discussed.

In Chapter 3 we present a class of novel and efficient maximum-likelihood soft-

decision decoding algorithms for linear block codes. The approach used here converts

the decoding problem into a search problem through a graph that is a trellis or code

tree for an equivalent code of the transmitted code. Algorithm A* is employed to

search through this graph. This search is guided by an evaluation function f defined

to take advantage of the information provided by the received vector and the inherent

properties of the transmitted code.

In Chapter 4 we investigate how to determine the computational performance

of our decoding algorithms. Since the number of nodes visited and the number of

codewords tried by our decoding algorithms are random variables, their probability

CHAPTER 1. INTRODUCTION 20

distributions are given.

In Chapter 5 we present a class of suboptimal soft-decision decoding algorithms

that use a generalized algorithm A*. In these algorithms we limit the number of

nodes stored using two criteria.

In Chapter 6 we describe several conclusions and recommend some further research

topics.

Chapter 2

Algorithm A*

As mentioned in Section 1.5, when the decoding problem is converted into a graph-

search problem, we are interested in finding a path from the start node representing

the initial condition to a goal node that represents the termination condition. This

path leads us to construct a codeword that maximizes Pr(r|c), where c ∈ C.

Thus, the decoding problem is mapped to a more general graph-search problem.

In this graph each arc is assigned a cost, and the cost of a path is the sum of the costs

of the arcs connecting the nodes in this path. The problem is how to find an optimal

path from the start node to a goal node, that is, a path with minimum (maximum)

cost. Algorithm A*, widely used in Artificial Intelligence, is an efficient procedure for

finding an optimal path if one exists in a graph. We apply algorithm A* only to finite

graphs. In the following sections we will discuss algorithm A*. Most definitions and

results in this chapter are taken from Nilsson [31].

21

CHAPTER 2. ALGORITHM A* 22

2.1 General Graph-Search Procedure

A successor operator, when applied to a node m, gives all the immediate successors

of node m. We call this process of applying a successor operator to a node expanding

the node. In order to describe algorithm A* more easily, we first give a general

graph-search procedure as presented in [31]:

Procedure GRAPHSEARCH

1. Create a search graph, G, consisting solely of the start node, ms. Put ms on a

list called OPEN.

2. Create a list called CLOSED that is initially empty.

3. LOOP: if OPEN is empty, exit with failure.

4. Select the first node on OPEN, remove it from OPEN, and put it on CLOSED.

Call this node m.

5. If m is a goal node, exit successfully with the solution obtained by tracing a

path along the pointers from m to ms in G. (Pointers are established in Step 7.)

6. Expand node m, generating the set, M , of its successors that are not ancestors

of m. Install these members of M as successors of m in G.

7. Establish a pointer to m from those members of M that were not already in G
(i.e., not already on either OPEN or CLOSED). Add these members of M to

OPEN.

For each member of M that was already on OPEN or CLOSED, decide whether

or not to redirect its pointer to m. For each member of M already on CLOSED,

decide for each of its descendants in G whether or not to redirect its pointer.

CHAPTER 2. ALGORITHM A* 23

8. Reorder the list OPEN, either according to some arbitrary scheme or according

to heuristic merit.

9. Go LOOP.

This procedure maintains two lists of nodes of the given graph, namely, list

CLOSED and list OPEN. List CLOSED contains the set of nodes that were ex-

panded. List OPEN contains the set of nodes that were visited, but not expanded.

If the graph being searched is not a tree, it is possible that some of the ele-

ments of set M have already been visited—that is, they are already on list OPEN

or list CLOSED. The problem of determining whether a newly generated node is on

these lists can be computationally very expensive. For this reason we may decide to

avoid making this test, in which case the search tree may contain several repeated

nodes. These node repetitions lead to redundant successor computations and there

is a trade-off between the computation cost for testing for repeated nodes and the

computation cost for generating a larger search tree. In steps 6 and 7 of procedure

GRAPHSEARCH, testing for repeated nodes is performed.

In an uninformed search procedure, no heuristic information from the problem

has been used in reordering the list OPEN in Step 8. In this case, the two well-

known search methods are the breadth-first and depth-first; however, these methods

are exhaustive in nature, and thus in practice are applicable only to graphs with small

numbers of nodes and paths.

In many cases it is possible to use some inherent properties of a problem to help

reduce the search. The search procedure using this information is called a heuristic

search method. In many situations it is possible to specify heuristics that reduce

considerably the search effort without compromising the optimality of the solution.

CHAPTER 2. ALGORITHM A* 24

2.2 The Optimality of Algorithm A*

One well-known heuristic search method that guarantees to find the optimal solution if

one exists is the algorithm A* [31]. Algorithm A* uses a cost function called evaluation

function f to guide the search through the graph. This function f is computed for

every node added to list OPEN in Step 7 of the procedure GRAPHSEARCH. In

Step 8 of this procedure we reorder the list OPEN according to the value of the

function f . From now on, in order to simplify the description of algorithm A*, we

assume that an optimal path is one that minimizes the cost function.

Definition 2.1 For every node m, the evaluation function f is a function whose

value f(m) at node m estimates the cost of the minimum cost path that goes through

node m; f(m) is computed as

f(m) = g(m) + h(m),

where g(m) estimates the cost of the minimum cost path from start node ms to node

m, and h(m) estimates the cost of the minimum cost path from node m to a goal

node. Function h is called the heuristic function.

In algorithm A*, the next node to be expanded is the one with the smallest value of

f on the list OPEN since this node imposes the fewest severe constraints.

Definition 2.2 Let f ∗ be a function such that f ∗(m) at any node m is the actual

cost of a minimum cost path that goes through node m. Analogously,

f ∗(m) = g∗(m) + h∗(m),

where g∗(m) is the actual cost of a minimum cost path from start node ms to node

m, and h∗(m) is the actual cost of a minimum cost path from node m to a goal node.

CHAPTER 2. ALGORITHM A* 25

An obvious choice for g(m) is the cost of the path in the search tree from start node

ms to node m, given by summing all the arc costs encountered while constructing

the minimum cost path from start node ms to node m. Note that this path is

the lowest cost path from start node ms to node m found so far by the algorithm.

The value of g(m) may decrease if the search tree is altered in Step 7 of procedure

GRAPHSEARCH. From now on we assume that function g is calculated in this

way. In this case, g(m) ≥ g∗(m) for every node m of the graph. Furthermore,

if h(m) = 0 for any node m, then algorithm A* becomes a version of Dijkstra’s

algorithm [15].

In order to guarantee that algorithm A* finds an optimal path if one exists, we

impose the following condition on the heuristic function h.

Condition 1 For every node m of the graph, h(m) ≤ h∗(m).

Thus, all the function h used in algorithm A* must satisfy the above condition. We

now give the main theorem of algorithm A*.

Theorem 2.1 Algorithm A* will find an optimal path if one exists.

The proof of Theorem 2.1 will be found in Appendix A.1.

Note that in order to define h(m) ≤ h∗(m), we use the properties of the problem.

Next, we give a theorem that is useful for analyzing the behavior of algorithm A*.

Theorem 2.2 For any node m selected for expansion by algorithm A*, f(m) ≤
f ∗(ms).

The proof of Theorem 2.2 will be found in Appendix A.2.

When we have more than one function h, the following theorem indicates which

is the most efficient.

CHAPTER 2. ALGORITHM A* 26

Theorem 2.3 Let two evaluation functions f1(m) = g1(m) + h1(m) and f2(m) =

g2(m)+h2(m) satisfy h1(m) < h2(m) ≤ h∗(m) for every non-goal node m. Algorithm

A*, using evaluation function f2, will never expand more nodes than algorithm A*

using evaluation function f1.

The proof of Theorem 2.3 is given in Appendix A.3.

Furthermore, if two compared algorithms use the same tie-breaking rule that is

independent of the values of g and h, then the above results hold when h1(m) ≤
h2(m) ≤ h∗(m) is satisfied for every node m [32]. Thus, if h(m) ≥ 0 for any node

m, then algorithm A*, using this function h, will never expand more nodes than the

above version of Dijkstra’s algorithm.

Another theorem to be used in our decoding algorithm to reduce the size of list

OPEN follows.

Theorem 2.4 Algorithm A* still finds an optimal path (if one exists) if it removes

from list OPEN any node m for which f(m) > UB, where UB is an upper bound on

the cost of an optimal path.

The proof of Theorem 2.4 is given in Appendix A.4.

We next introduce an important restriction that can be imposed on function h to

improve the efficiency of algorithm A*.

2.3 The Monotone Restriction on Algorithm A*

The monotone restriction is a reasonable restriction that when imposed on function

h can substantially decrease the computation time and storage of algorithm A*.

CHAPTER 2. ALGORITHM A* 27

Definition 2.3 Function h is said to satisfy the monotone restriction if and only if

for all nodes mi and mj, such that node mj is a successor of node mi,

h(mi)− h(mj) ≤ c(mi,mj),

where c(mi,mj) is the arc cost between node mi and node mj.

Theorem 2.5 If the monotone restriction is satisfied, then algorithm A* has already

found a minimum cost path from the start node to the node it selects to expand.

The proof of Theorem 2.5 is given in Appendix A.5.

An important consequence of the above theorem is that when the monotone re-

striction is satisfied, algorithm A* does not need to update the minimum cost path

from the start node to any node that is already on list CLOSED. Furthermore, when

expanding node m, it does not need to update the minimum cost path from the start

node to any descendant of an immediate successor of node m that is already on list

CLOSED. Another useful theorem regarding monotone restriction is stated below.

Theorem 2.6 Assume that the monotone restriction is satisfied. If node mi is se-

lected for expansion, then f(mi) ≤ f(mj), where mj is an immediate successor of

node mi, which is not on list CLOSED.

The proof of Theorem 2.6 is given in Appendix A.6.

From the description of algorithm A*, it is clear that the most important factor

in its efficiency is the selection of the heuristic function h and, consequently, the

evaluation function f . Furthermore, Algorithm A* can be considered as a branch-

and-bound type algorithm. In general, it is difficult to give any idea of how well

a branch-and-bound algorithm will perform on a given problem. Nevertheless, the

technique is sufficiently powerful that it is often used in practical applications [9]. In

the next section we will describe how to apply algorithm A* to the decoding problem.

Chapter 3

Maximum-Likelihood Decoding

Algorithm

In this chapter we present a class of novel and efficient maximum-likelihood soft-

decision decoding algorithms for linear block codes. The approach used here converts

the decoding problem into a search problem through a graph that is a trellis or code

tree for an equivalent code of the transmitted code. Algorithm A*, which is described

in Chapter 2, is employed to search through this graph. This search is guided by an

evaluation function f defined to take advantage of the information provided by the

received vector and the inherent properties of the transmitted code. This function

f is used to reduce drastically the search space and to make the decoding efforts of

these decoding algorithms adaptable to the noise level.

For ease of explanation we will assume from now on that the received vector is φ

instead of r.

28

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 29

3.1 Equivalent Code of the Transmitted Code

Our decoding algorithms, guided by evaluation functions f , search through a graph

that is a trellis or a code tree for a code C*, which is equivalent to code C. C* is

obtained from C by permuting the positions of codewords of C in such a way that

the first k positions of codewords in C* correspond to the “most reliable linearly in-

dependent” positions in the received vector φ. In Appendix B.1 we give an algorithm

to obtain G* from G. G* is a generator matrix of C* whose first k columns form

the k × k identity matrix. The time complexity of this algorithm is also discussed in

this appendix.

In our decoding algorithms the vector φ* = (φ∗0, φ
∗
1, . . . , φ

∗
n−1) is used as the “re-

ceived vector.” It is obtained by permuting the positions of φ in the same manner in

which the columns of G can be permuted to obtain G*. Furthermore, the descrip-

tion of decoding algorithms in the following sections is based only on the trellis. The

description based on the code tree is similar to that of the trellis.

3.2 Evaluation Function

As we pointed out in Section 2.3, the selection of evaluation function f is of the

utmost importance, since it determines the search effort of algorithm A*. We now

describe the function f we use in our decoding algorithms.

In order to define function f , we need first to specify the arc costs. As mentioned

in Section 1.5, in the trellis of C*, the cost of the arc from st−1 to st = st−1 + c∗t h
∗
t

is assigned the value (φ∗t − (−1)c∗t)2. Thus the solution of the decoding problem is

converted into finding a path from the start node to the goal node, that is, a codeword

c* = (c∗0, c
∗
1, . . . , c

∗
n−1) such that

n−1∑

i=0

(φ∗i − (−1)c∗i)2 is minimum among all paths from

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 30

the start node to the goal node.

Now we define function f for every node m in the trellis as

f(m) = g(m) + h(m).

As noted in Section 2.2, g(m) is the lowest cost path from the start node to node

m found so far by the algorithm, where the cost of a path from the start node to node

m is obtained by summing all the arc costs encountered while constructing this path.

We now define a class of heuristic functions. Furthermore, if a function h belongs

to this class it will satisfy h(m) ≤ h∗(m) for every node m. Recall that h∗(m) is the

cost of a minimum cost path from node m to the goal node. In order to define a

function h that is a “good” estimator of h∗, we must use properties of the linear block

code that are invariant under every permutation of the positions of the codewords.

As in Section 1.3, let HW = {wi|0 ≤ i ≤ I} be the set of all distinct Hamming

weights that codewords of C may have. Furthermore, assume w0 < w1 < · · · < wI .

Thus, from the arguments in Section 1.3, HW for C* is the same as that for C.

Moreover, the Hamming distance between any two codewords of C* must belong to

HW . Our heuristic functions are defined to take into consideration this fact and the

linear property of C*.

Let SC∗ be a given subset of C*, and let Pi(SC∗) be the set that contains all the

subsets of SC∗ of cardinality i, 0 ≤ i ≤ |SC∗ |, where |SC∗ | is the cardinality of SC∗ .

For a given SC∗ we now define our heuristic function, h(i), of order i, 0 ≤ i ≤ |SC∗ |.

1. For nodes at level `,−1 ≤ ` < k − 1:

Let m be a node at level `, and let v0, v1, . . . , v` be the labels of the lowest cost

path P ′
m from the start node to node m found so far by the algorithm.

If SC∗ = ∅, then h(0)(m) = 0. Otherwise, let Yi ∈ Pi(SC∗), and we now construct

the set, T (m,Yi), of all binary n-tuples v such that their first ` + 1 entries are

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 31

the labels of P ′
m and dH(v, c∗) ∈ HW for all c∗∈ Yi. That is,

T (m,Yi) = {v|v = (v0, v1, . . . , v`, v`+1, . . . , vn−1) and

∀c∗ ∈ Yi, dH(v, c∗) ∈ HW}.

Note that T (m,Yi) 6= ∅. This can easily be seen by considering the binary

k-tuple u = (v0, v1, . . . , v`, 0, . . . , 0) and noting that uG∗ ∈ T (m,Yi).

Finally, we define h(i) as

h(i)(m) = max
Yi∈Pi(SC∗)



 min

v∈T (m,Yi)





n−1∑

i=`+1

(φ∗i − (−1)vi)2







 .

2. For nodes at level `, k − 1 ≤ ` < n:

Because of the linear property of C* and the fact that the first k columns of G*

are linearly independent, there is only one path from any node at level k− 1 to

the goal node. Furthermore, we can easily determine the labels v∗k, v
∗
k+1, . . . , v

∗
n−1

of this path using G* and calculate its cost
n−1∑

i=k

(
φ∗i − (−1)v∗i

)2
. In view of the

above fact, we define function h(i) as

h(i)(m) =
n−1∑

i=`+1

(
φ∗i − (−1)v∗i

)2
,

where v∗`+1, v
∗
`+2, . . . , v

∗
n−1 are the labels of the only path Pm from node m to

the goal node.

Note that if node m is the goal node, then h(i)(m) = 0. Furthermore, h(i)(m) =

h∗(m), since there is only one path from node m to the goal node and h(i)(m)

is the cost of this path.

Obviously, h(i)(m) ≤ h∗(m) for any node m in the trellis.

For a given SC∗ and i, the ith order evaluation function f is f(m) = g(m)+h(i)(m).

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 32

It is very important that the time complexity for calculating h(i)(m) be “reason-

able,” for otherwise the time taken by the decoding algorithm is spent on calculating

h(i)(m), even though there are only a few nodes to be visited (open) in the trellis.

In Appendix B.2 we present an algorithm to calculate h(1)(m) for node m at level

`,−1 ≤ ` < k − 1 whose time complexity is O(|SC∗| × n).

We now give properties of heuristic function h(i) that will be used to speed up

the decoding procedure. The proofs of properties 3.1 and 3.2 are given in Appendix

C.1 and C.2, respectively. Properties 3.3 and 3.4 are immediate consequences of the

definition of function h(i).

Property 3.1 For a given SC∗

h(i)(m1) ≤ h(i)(m2) + c(m1,m2),

where node m2 is an immediate successor of node m1, and c(m1,m2) is our arc cost

from node m1 to node m2.

Property 3.2 For a given SC∗ and i, if nodes m`1 and m`2 are immediate successors

of node mj, then

f(m`1) = f(mj) or f(m`2) = f(mj).

Now let SC∗ and S ′C∗ be nonempty subsets of C∗, and let h(i) be the ith order

heuristic function corresponding to SC∗ , and h′(i) for S ′C∗ .

Property 3.3 If SC∗ ⊆ S ′C∗ and 0 ≤ i ≤ |SC∗ |, then

h(i)(m) ≤ h′(i)(m) for every node m.

Property 3.4 If 0 ≤ i ≤ j ≤ |SC∗|, then

h(i)(m) ≤ h(j)(m) for every node m.

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 33

We remark here that the decoding algorithm using function h(j)
(
h′(i)

)
will not

expand more nodes than the decoding algorithm using function h(i)
(
h(i)

)
. However,

the time complexity for calculating h(j)(m)
(
h′(i)(m)

)
will be higher than that of

h(i)(m)
(
h(i)(m)

)
.

For the special case of SC∗ = {0}, the first-order heuristic function is the heuristic

function proposed in [22].

When a first-order heuristic function h(1) is used, the time and space complexities

of the algorithm proposed here are O(|SC∗ |×n×N(φ)) and O(n×M(φ)), respectively,

where

N(φ) = the number of nodes visited during the decoding of φ,

M(φ) = the maximum number of nodes that need to be stored

during the decoding of φ.

The derivation of these results is given in Appendix B.3.

We now give a geometric interpretation of the first-order evaluation function f(m)

for a node m at level `,−1 ≤ ` < k − 1. Consider the set of all n-tuples over the

real numbers. Figure 3.1 depicts c*, φ*, and all the points v = (v0, v1, . . . , vn−1)

whose entries are 0 and 1 and dH(c∗,v) ∈ HW . For calculating f(m), we con-

sider the lowest cost path P ′
m from the start node to node m found so far by

the algorithm. Let v0, v . . . , v` be the labels of P ′
m. Now we consider only those

points v defined above whose first ` + 1 entries are v0, v1, . . . , v`. In Figure 3.1,

they are indicated by a check mark. From the points with check marks we s-

elect one that minimizes
∑̀

i=0

(
φ∗i − (−1)vi

)2
+

n−1∑

i=`+1

(φ∗i − (−1)vi)2. This point is

v′ = (v0, v1, . . . , v`, v
′
`+1, . . . , v

′
n−1) in Figure 3.1. Thus f(m) =

∑̀

i=0

(
φ∗i − (−1)vi

)2
+

n−1∑

i=`+1

(
φ∗i − (−1)v′i

)2
.

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 34

• •

•

•

•

••

•

•

√

√

w1

c*
. . .

φ*
√

v′

w2
•

Figure 3.1: Geometric interpretation of f(m)

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 35

For long block codes it may be impossible to determine the set HW; however,

our algorithm will still find the optimal solution even if in the computation of func-

tion h the algorithm considers all the Hamming weights of any superset of HW. The

algorithm using a superset of HW may visit more nodes than that using HW. Fur-

thermore, as pointed out in Section 2.2, the algorithm will not open fewer nodes if it

uses a proper superset of HW instead of HW in the computation of heuristic function.

3.3 Speed-up Techniques

In this section we present some properties of the decoding algorithms that can be

used to speed up the decoding procedure. In order to simplify the presentation of

these techniques we assume that function h belongs to the class of heuristic functions

defined above.

By Property 3.1, function h satisfies the monotone restriction,

h(mi) ≤ h(mj) + c(mi,mj),

where node mj is an immediate successor of node mi and c(mi,mj) is our arc cost

from node mi to node mj. Then, as we pointed out in Section 2.3, we do not need

to store the list CLOSED if we do not check for repeated nodes and we do not have

to update the parentage in the search tree of any successors of the node that our

algorithm selects to expand.

Let node m1 at level ` < k − 2 be the node on list OPEN selected for expansion.

Let h(m1) =
n−1∑

i=`+1

(φ∗i − (−1)vi)2 . Consider now the path P m1 from node m1 to node

m2 at level k−2, whose labels are v`+1, v`+2, . . . , vk−2. It is easily seen by Property 3.2

and the definition of our function h that the value of function f for every node in

path P m1 is equal to f(m1). Furthermore, by Theorem 2.6 we can conclude that path

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 36

P m1 will be the path followed by the algorithm. Thus, we do not have to calculate

the values of function f for the nodes of this path, which reduces considerably the

time complexity of the algorithm.

Our algorithm will search the trellis only up to level k− 1, since we can construct

the only path from any node m at level k − 1 to the goal node using G*. The labels

of the combined paths from the start node to node m, and from node m to the goal

node, correspond to a codeword. So the cost of this path, which is equal to f(m),

can be used as an upper bound on the cost of an optimal path. By Theorem 2.4, we

can use this upper bound to reduce the size of list OPEN. Furthermore, since there is

a codeword whose corresponding path in the trellis has cost equal to f(m), then we

need to keep only one node on list OPEN whose f value is equal to the upper bound.

The trellis search can be stopped at any time when we know that a codeword c∗`

=
(
c∗`0, c

∗
`1, . . . , c

∗
`(n−1)

)
generated satisfies Inequality 1.1. The following criterion can

be used to indicate this fact.

Criterion 3.1 If h(i)(ms) =
n−1∑

j=0

(
φ∗j − (−1)c∗`j

)2
, then c∗` satisfies Inequality 1.1.

Recall that ms is the start node.

The validity of this criterion is based on the fact that, since C* ⊆ T (ms, Yi), then

h(i) (ms) ≤
n−1∑

j=0

(
φ∗j − (−1)c∗tj

)2
for any c∗t ∈ C∗.

Note that the decision criterion introduced in [38] is equivalent to the above crite-

rion for the special case, SC∗ =
{
c∗`

}
. It is easy to show that if a codeword c∗` satisfies

the criterion given by Inequalities 3.7a and 3.7b in [19], then it will also satisfy the

criterion given in [38].

It is important to mention that the set SC∗ does not need to be fixed during the

decoding of φ. In the case where SC∗ is allowed to change, we have an adaptive de-

coding procedure. In order to avoid increasing computation time when SC∗ is changed

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 37

at some stage of the decoding procedure, we may not want to recalculate the values

of function h(i) with respect to the set SC∗ for every node on list OPEN. Under these

circumstances, nodes on list OPEN may have values of function h(i) calculated with

respect to different sets; thus we can no longer guarantee that monotone restriction

will be satisfied, and we cannot assure that when a node is selected for expansion the

decoding algorithm has already found a minimum cost path from the start node to

this node. Therefore, the decoding algorithm may not find an optimal path, but by

not checking for repeated nodes it is ensured that the decoding algorithm will find

an optimal path. This can easily be seen, since the procedure will now generate a

code tree, and h(i)(m) ≤ h∗(m) for every node of the tree, independently of the set

SC∗ used to compute h(i)(m). Thus, f(m) ≤ g(m) + h∗(m). As the procedure is now

generating a code tree, the cost of the minimum cost path from the start node to a

goal node that goes through node m is g(m)+h∗(m). If we do not check for repeated

nodes, then the adaptive version of decoding algorithm will never delete all optimal

paths during the search procedure.

The outline and complexities of the adaptive algorithm are given in Appendix B.3.

3.4 Simulation Results for the AWGN Channel

In this section we present simulation results for the (104, 52) binary extended qua-

dratic residue code and the (128, 64) binary extended BCH code when these codes

are transmitted over the Additive White Gaussian Noise (AWGN) channel described

in Section 1.2. In order to account for the redundancy in codes of different rates, we

used the SNR per transmitted information bit γb = Eb/N0 = γn/k in our simulation.

We do not know HW for these two codes, so we use a superset for them. For

(104,52) we know that dmin = 20 and that the Hamming weight of any codeword is

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 38

divisible by 4 [27]. Thus, for this code the superset used is {x|(x is divisible by 4 and

20 ≤ x ≤ 84) or (x = 0) or (x = 104)}. For (128,64), the superset used is {x| (x is

even and 22 ≤ x ≤ 106) or (x = 0) or (x = 128)}.
We have implemented our adaptive decoding algorithm for the case i = 1, that is,

we use a first-order heuristic function. Furthermore, the set SC∗ has cardinality 1 and

is updated according to the following rule: For every codeword c∗1 generated during

the decoding of φ, if the value of h(1)(ms) calculated with respect to c∗1 is greater

than the value of h(1)(ms) calculated with respect to the codeword in SC∗ , then set

SC∗ = {c∗1}. The rationale behind this rule is that, for any node m, h(1)(m) ≥
h(1)(ms) whenever these values are calculated with respect to the same set SC∗ .

Simulation results attested to the fact that the efficiency of this decoding algorithm

depends strongly on the selection of the initial set SC∗ .

In our implementation this initial set is constructed by considering the codeword

c∗, obtained as follows. Let y = (y0, y1, . . . , yn−1) be the hard-decision of φ*. Fur-

thermore, let u = (u0, u1, . . . , uk−1) = (y0, y1, . . . , yk−1). That is,

ui =





0 if φ∗i ≥ 0;

1 if φ∗i < 0;
,

and φ∗ = (φ∗0, φ
∗
1, . . . , φ

∗
k−1, φ

∗
k, . . . , φ

∗
n−1). Now we let SC∗ = {c∗}, where c∗ = u ·G∗.

In the implementation of our decoding algorithm we decided not to check for

repeated nodes. In this situation the graph becomes a code tree. Thus, we do not

have to keep list CLOSED. Furthermore, list OPEN is always kept ordered according

to the values f of its nodes. In this case, by the analysis in Appendix B.3, the

time complexity and the space complexity of our algorithm are O(n × N(φ)) and

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 39

O(n×M(φ)), respectively. Recall that

N(φ) = the number of nodes visited during the decoding of φ,

M(φ) = the maximum number of nodes that need to be stored

during the decoding of φ.

The values of N(φ) and M(φ) will strongly depend upon the SNR. In Chapter 4, we

will give an upper bound on the average of N(φ) for a simple heuristic function. In

the worst case, the time and space complexities of our algorithm are O(n×2k), which

are, under the condition k ≤ (n − k), equal to those of Wolf’s algorithm [44], which

are O(n×min(2k, 2n−k)) [14].

First, we give simulation results for the (104,52) code. Quadratic residue codes

are known to be very good codes that are very difficult to decode even when only

hard-decision decoding is employed [6, 12, 8, 33]. Some quadratic residue codes

have been decoded by using information-set decoding algorithms [3]. However, these

algorithms are sub-optimal, that is, do not implement the MLD rule. Thus, the only

two maximum-likelihood soft-decision decoding algorithms known to us that can be

used to decode the (104,52) code are Wolf’s algorithm [44] and Hwang’s algorithm

[23].

It is difficult to compare the performance of our algorithm with that of Hwang’s,

because he found the subset of codewords that must be stored for implementing

the MLD rule only for very short codes [23, Table I]. However, we observe that the

complexities of Wolf’s algorithm are approximately the same as those of Hwang’s for

the codes presented in Table I of [23]. More evidence of this claim can be obtained

by using the results presented in [13]. We will therefore compare the performance of

our algorithm to that of Wolf’s. We will assume for comparison purposes that the

time and space complexities of Wolf’s algorithm are of O(n×min(2k, 2n−k)), since it

is difficult to find, using Forney’s procedure [20], a trellis with minimum number of

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 40

states for the (104, 52) code.

The simulation results for the (104, 52) code for γb equal to 5 dB, 6 dB, 7 dB,

and 8 dB are given in Table 3.1. These results were obtained by simulating 35,000

samples for each SNR. Note that the time and space complexities of Wolf’s algorithm

are proportional to 252 ≈ 4.50× 1015.

Since during simulation no decoding errors occurred for any of the above SNRs,

the bit error probability is estimated using the formula [19],

nd

√
dmin/(4πnkγb) e−(kdminγb/n), (3.1)

where nd is the number of codewords of Hamming weight dmin. The value of nd was

calculated using the results presented in [28]. Table 3.2 gives an estimate of the bit

error probability and coding gain for above SNRs.

The distributions of N(φ), C(φ), and M(φ) for the (104, 52) code for γb equal to

5 dB are given in Table 3.3.

We now give the simulation results for the (128,64) code. Since an algebra-

ic decoder that corrects up to 10-bit errors can be constructed for this code, the

maximum-likelihood soft-decision decoding algorithm recently proposed in [24] can

be implemented. However, in this paper simulation results are given only for very

short codes up to length 23. Sub-optimal decoding procedures for this code have been

proposed in [16, 3]. Again, we will assume for comparison purposes that the time and

space complexities of Wolf’s algorithm are of O(n × min(2k, 2n−k)), since it is very

difficult to find, using Forney’s procedure [20], a trellis with the minimum number

of states for the (128, 64) code. Note that the time and space complexities of Wolf’s

algorithm are proportional to 264 ≈ 1.84× 1019.

The simulation results for the (128,64) code for γb equal to 5 dB, 6 dB, 7 dB,

and 8 dB are given in Table 3.4. These results were obtained by simulating 35,000

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 41

γb 5 dB 6 dB 7 dB 8 dB

max ave max ave max ave max ave

N(φ) 142123 19 2918 1 221 1 0 0

C(φ) 32823 5 519 2 35 2 1 1

M(φ) 13122 4 1912 1 155 1 0 0

where

N(φ) = the number of nodes visited during the decoding of φ,

C(r) = number of codewords constructed in order to decide on

the closest codeword to φ;

M(φ) = the maximum number of nodes that need to be stored

during the decoding of φ.

max = maximum value among 35,000 samples;

ave = average value among 35,000 samples;

γb = Eb/N0.

Table 3.1: Simulation for the (104, 52) code

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 42

γb 5 dB 6 dB 7 dB 8 dB

Pb 2.028× 10−10∗ 5.023× 10−14∗ 1.494× 10−18∗ 3.079× 10−24∗

CG 7.90 8.35 8.80 9.05

Pb = bit error probability;

CG = coding gain (dB);

* Calculate using Formula 3.1.

Table 3.2: Bit error probability and coding gain for the (104, 52) code

Frequencies
Interval

N(φ) C(φ) M(φ)

0 34030 0 34196

1–2,000 953 34994 801

2,001–4,000 8 2 0

4,001–6,000 1 1 0

6,001–8,000 1 0 0

8,001–10,000 1 0 1

10,001–18,000 2 0 2

18,001–40,000 1 3 0

40,001–144,000 3 0 0

more than 144,000 0 0 0

Table 3.3: Distributions of N(φ), C(φ), and M(φ) for the (104, 52) code for γb = 5 dB

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 43

γb 5 dB 6 dB 7 dB 8 dB

max ave max ave max ave max ave

N(φ) 216052 42 13603 2 1143 1 0 0

C(φ) 38219 8 1817 2 91 2 1 1

M(φ) 16626 7 856 1 965 1 0 0

Table 3.4: Simulation for the (128, 64) code

γb 5 dB 6 dB 7 dB 8 dB

Pb 1.57× 10−12* 1.71× 10−16* 1.82× 10−21* 1.02× 10−27*

CG 8.85 9.22 9.50 9.70

Table 3.5: Bit error probability and coding gain for the (128, 64) code

samples for each SNR.

Table 3.5 gives only an estimate of the bit error probability and coding gain for

above SNRs, because no decoding error occurred during simulation. When calculating

Pb using Formula 3.1, the value of nd = 243, 840 was taken from [4].

The distributions of N(φ), C(φ), and M(φ) for the (128, 64) code for γb equal to

5 dB are given in Table 3.6.

Simulation results for these codes show that for the 35,000 samples tried, a drastic

reduction on the search space was achieved for most practical communication systems

where the probability of error is less than 10−3 (γb greater than 6.8 dB) [12], even

when the algorithm uses a superset of HW.

In order to verify the contribution of our heuristic function h to the efficiency

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 44

Frequencies
Interval

N(φ) C(φ) M(φ)

0 33614 0 33893

1–2,000 1324 34988 1096

2,001–4,000 21 2 4

4,001–6,000 8 2 4

6,001–8,000 7 0 0

8,001–10,000 7 4 0

10,001–18,000 7 2 3

18,001–40,000 4 2 0

40,001–218,000 8 0 0

more than 218,000 0 0 0

Table 3.6: Distributions of N(φ), C(φ), and M(φ) for the (128, 64) code for γb = 5 dB

CHAPTER 3. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 45

of our decoding algorithm, we implemented Dijkstra’s algorithm with our speed-up

techniques for the (128, 64) code. Simulation results for 6 dB indicate that, for the

two samples that did not satisfy Criterion 3.1 among the 35,000 samples, more than

350,000 nodes needed to be stored. On the other hand, our algorithm needed to store

at most 856 nodes to decode these samples.

Simulation results showed that our adaptive decoding algorithm described in this

section is at least one order of magnitude more efficient in time and space than that

proposed in [22], where SC∗ = {0} during the entire decoding procedure.

Chapter 4

Analysis of the Performance of

the Algorithm

In this chapter we investigate how to determine the computational performance of

the decoding algorithms proposed in Chapter 3. Since the number of nodes visited,

N(φ), and the number of codewords tried, C(φ), are random variables, the probability

distributions of them will be given for the AWGN channel.

4.1 A Simple Heuristic Function hs

In this section we define a simple heuristic function hs. In the following section, this

function hs will be used by a simple version of the decoding algorithms proposed in

Chapter 3 to determine these computational performances.

Let m be a node at level ` < k−1, and let v0, v1, . . . , v` be the labels of the lowest

cost path P ′
m from the start node to node m found so far by the algorithm. Define

46

CHAPTER 4. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM 47

hs as

hs(m) =
n−1∑

i=`+1

(|φi| − 1)2 .

For a node at a level greater than k−2, the function hs will be defined as in Section 3.2.

We now show that if m is not start node ms, and m is at level ` < k − 1, then

the time complexity of calculating hs(m) is a constant. Let node m be an immediate

successor of node m′, which is on path P ′
m. Furthermore, let y be the hard-decision

of φ. Then

hs(m) = hs(m
′)− (|φ`| − 1)2.

Consequently,

f(m) = f(m′) + (y` ⊕ v`)(4× |φ`|),

where v` is the label of the arc between node m′ and node m. Thus, the time

complexity of calculating f(m) is a constant when node m is not start node ms.

It is easy to see that hs(m) ≤ h(m) for every node m in the trellis or code tree,

where h is the heuristic function proposed in Chapter 3.

4.2 Performance of Maximum-Likelihood Decod-

ing Algorithm Using Function hs

In this section we determine the computation performance of the decoding algorithms

proposed in Chapter 3. In order to do this, we first derive the computational perfor-

mance of a simplified version of them, which we denote by SDA. In this version:

1. Use function hs as the heuristic function.

2. The search is performed on a code tree of the (n, k) code C.

3. No ordering is performed on the positions of φ.

CHAPTER 4. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM 48

4. None of any speed-up technique mentioned in Section 3.3 is used.

We now state the main results of the computational performance of SDA when code

C is transmitted over the AWGN channel described in Section 1.2. In order to

account for the redundancy in codes of different rates, we use the SNR per transmitted

information bit γb = Eb/N0 = γn/k in this chapter.

Theorem 4.1 Let N be the average number of nodes visited and let G be the standard

normal distribution. Then

N ≤ Ñ ,

where

Ñ = 2


k +

k−2∑

`=0

`+1∑

d=1




` + 1

d


 G

(
−µ(`, d)

σ(`, d)

)
 ,

µ(`, d) =
√

N0



2d

√
k

n
γb + (n− `− 1)


2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb






 ,

σ2(`, d) = N0



2d + (n− `− 1)


(4

k

n
γb + 2)G(−

√
2
k

n
γb)− 2

√
k
n
γb

π
e−

k
n

γb

−

2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb




2







,

and

γb =
Eb

N0

.

The proof of Theorem 4.1 is given in Appendix D.1.

From the above theorem and Chebyshev’s inequality [18], we have the probability

distribution of the number of nodes visited.

Theorem 4.2 The probability distribution of the number of nodes visited is

Pr(Ns(φ) ≥ L) ≤ Ñ

L
,

CHAPTER 4. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM 49

1

10

100

1000

10000

100000

2 3 4 5 6 7 8

ave
rag

e n
umb

er
of

nod
es

vis
ite

d

SNR per transmitted information bit (dB)

formula in Theorem 4.1SDAthe decoding algorithm proposed in Section 3.4

Figure 4.1: Average number of nodes visited for the (48, 24) code

where Ns(φ) is the number of nodes visited when SDA decodes φ.

The values of Ñ for the (48, 24) code for γb equal to 2 dB, 3 dB, 4 dB, 5 dB, 6 dB,

7 dB, and 8 dB are given in Figure 4.1. In this figure is also given the average number

of nodes visited by the SDA, and by the decoding algorithm proposed in Section 3.4.

These averages were obtained by simulating 10,000 samples. According to the results

shown in Figure 4.1 the average number of nodes visited by the decoding algorithm

proposed in Section 3.4 is much smaller than the number visited by the other two,

especially for low SNRs.

Next, we give the results of the number of codewords tried.

CHAPTER 4. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM 50

Theorem 4.3 Let C be the average number of codewords tried.

C ≤ C̃,

where

C̃ = 2


1 +

k−1∑

d=1




k − 1

d


 G

(
−µ(d)

σ(d)

)
 ,

µ(d) =
√

N0



2d

√
k

n
γb + (n− k + 1)


2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb






 ,

σ2(d) = N0



2d + (n− k + 1)


(4

k

n
γb + 2)G(−

√
2
k

n
γb)− 2

√
k
n
γb

π
e−

k
n

γb

−

2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb




2







,

and

γb =
Eb

N0

.

The proof of Theorem 4.3 is given in Appendix D.2.

From the above theorem and Chebyshev’s inequality [18], we have the probability

distribution of the number of codewords tried.

Theorem 4.4 The probability distribution of the number of codewords tried is

Pr(Cs(φ) ≥ L) ≤ C̃

L
,

where Cs(φ) is the number of codewords tried when SDA decodes φ.

The values of C̃ for the (48, 24) code for γb equal to 2 dB, 3 dB, 4 dB, 5 dB, 6 dB,

7 dB, and 8 dB are given in Figure 4.2. In this figure is also given the average number

of codewords tried by the decoding algorithm proposed in Section 3.4. This average

was obtained by simulating 10,000 samples. The average number of codewords tried

CHAPTER 4. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM 51

1

10

100

1000

10000

100000

2 3 4 5 6 7 8

ave
rag

e n
umb

er
of

cod
ewo

rd
tri

ed

SNR per transmitted information bit (dB)

formula in Theorem 4.3the decoding algorithm proposed in Section 3.4

Figure 4.2: Average number of codewords tried for the (48, 24) code

CHAPTER 4. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM 52

2

4

6

8

10

12

14

2 3 4 5 6 7 8

ave
rag

e n
umb

er
of

nod
es

vis
ite

d (
in

log
10

sca
le)

SNR per transmitted information bit (dB)

the (104,52) codethe (128,64) code

Figure 4.3: Ñ for the (104, 52) code and the (128, 64) code

by the SDA is not given in Figure 4.2, since they are very close to those calculated by

the formula in Theorem 4.3. The results in Figure 4.2 show that the average number

of codewords tried by the decoding algorithm proposed in Section 3.4 is much smaller

than the average number for the other one, especially for low SNRs.

In Figures 4.3 and 4.4 we give the values of Ñ for the (104, 52) code and the

(128, 64) code for γb from 2 dB to 8 dB, and C̃ for the (104, 52) code and the (128, 64)

code for γb from 2 dB to 8 dB, respectively.

From Theorems 2.3, 4.2, and 4.4, we have the probability distributions of N(φ)

and C(φ).

CHAPTER 4. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM 53

0

2

4

6

8

10

12

2 3 4 5 6 7 8

ave
rag

e n
umb

er
of

cod
ewo

rd
tri

ed
(in

 lo
g10

 sc
ale

)

SNR per transmitted information bit (dB)

the (104,52) codethe (128,64) code

Figure 4.4: C̃ for the (104, 52) code and the (128, 64) code

CHAPTER 4. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM 54

Theorem 4.5

Pr(N(φ) ≥ L) ≤ Ñ

L
.

Theorem 4.6

Pr(C(φ) ≥ L) ≤ C̃

L
.

From Theorem 4.5 the average number of nodes visited for the decoding algorithms

proposed in Chapter 3 is smaller than or equal to the average numbers shown in

Figure 4.3. Thus, the decoding algorithms proposed in Chapter 3 are efficient for codes

of moderate lengths for most practical communication systems where the probability

of error is less than 10−3 (γb greater than 6.8 dB).

Chapter 5

Suboptimal Decoding Algorithm

In Chapter 3 we proposed a class of maximum-likelihood soft-decision decoding algo-

rithms for linear block codes using Algorithm A*. These algorithms, guided by eval-

uation functions f , search through a trellis or a code tree. Each of these algorithms

maintains a list OPEN of nodes of the trellis or the code tree that are candidates

to be expanded. The algorithm selects for expansion the node on list OPEN with

minimum values of function f . Function f is used to reduce drastically the search

space and to make the decoding efforts of this decoding algorithm adaptable to the

noise level; however, for low SNRs the number of nodes on list OPEN is still too large

for the algorithm to have practical application.

The results of our simulations have shown that the number of nodes that need

to be stored on list OPEN before the optimal path is found is much smaller than

the total number of nodes stored before the algorithm stops. Thus we may limit the

search with small degradations on the performance of the algorithm.

In this chapter we present a class of suboptimal soft-decision decoding algorithms

that use a generalized algorithm A*. In these algorithms we limit the size of list

OPEN using two criteria that we will describe in the next section.

55

CHAPTER 5. SUBOPTIMAL DECODING ALGORITHM 56

5.1 Criteria for Limiting the Size of List OPEN

The two criteria used to limit the size of list OPEN are:

1. If the probability that an optimal path goes through a node is smaller than a

given parameter, then we do not store this node.

2. If a node needs to be stored on list OPEN when the size of list OPEN has

reached a given upper bound, then we discard the node on list OPEN with the

maximum value of function f .

Memory requirement is usually a crucial factor in the practical implementation of

any decoding algorithm. Thus, in the second criterion we limit the size of list OPEN

by giving an upper bound on the maximum number of nodes that can be stored on

list OPEN.

To use the first criterion we need to calculate the probability that an optimal path

goes through a node. We demonstrate below how to calculate this probability for the

AWGN channel described in Section 1.2.

For any received vector r, if an optimal decoding algorithm decodes it to a non-

transmitted codeword, then it is very difficult for a suboptimal decoding algorithm to

decode it to the transmitted codeword. Thus, when an optimal decoding algorithm

decodes a received vector to a non-transmitted codeword we do not care which code-

word a suboptimal decoding algorithm will decode to. Therefore, it is reasonable to

consider only those received vectors that will be decoded to transmitted codewords

by an optimal decoding algorithm. That is, when we derive the probability that an

optimal path goes through a node, we may assume that no decoding error will occur

if we employ an optimal decoding algorithm. Under this assumption we have the

following theorem.

CHAPTER 5. SUBOPTIMAL DECODING ALGORITHM 57

Theorem 5.1 Let an (n, k) code C be transmitted over the AWGN channel. When

no decoding error occurs, the probability distribution of f ∗(ms) is approximately a

normal distribution with mean µ and variance σ2, where

µ = n
N0

2
,

σ2 = n
N2

0

2
.

The proof of Theorem 5.1 is given in Appendix E.

Let node m be a node in a trellis or the code tree of the transmitted (n, k) code

C and let UB be the lowest upper bound on the cost of an optimal path found so

far by the algorithm. If an optimal path goes through node m, then the cost of an

optimal path, f ∗(ms), is greater than or equal to h(m) and less than or equal to UB.

Thus, the probability that an optimal path goes through node m is less than or equal

to Pr(h(m) ≤ f ∗(ms) ≤ UB). This leads us to the following theorem.

Theorem 5.2 Let T be the probability that an optimal path goes through node m.

Furthermore, let UB be an upper bound on the cost of an optimal path. Then

T ≤ 1

σ
√

2π

∫ UB

h(m)
e−

1
2
(t−µ

σ
)2dt,

where

µ = n
N0

2
,

σ2 = n
N2

0

2
.

Thus, when a node is visited, the algorithm calculates T for this node. If T is less

than a given threshold, then we will discard this node.

We now describe the outline of our decoding algorithms. In our suboptimal de-

coding algorithms we will fix the maximum number of nodes, MB, allowed on list

CHAPTER 5. SUBOPTIMAL DECODING ALGORITHM 58

OPEN. As in optimal decoding algorithms, list OPEN is always kept ordered. When

a node, m, is visited, the algorithm calculates T for this node. If T is less than a given

threshold δ, then we discard this node. Otherwise, we need to insert this node into

list OPEN. If the number of nodes on list OPEN is equal to MB, then the algorithm

discards the node with larger f value between node m and the node with the largest

f value on list OPEN. The algorithm inserts the remaining node into list OPEN.

We remark here that Criterion 3.1 can also be used with suboptimal decoding

algorithms and, furthermore, all the speed-up techniques in Section 3.3 can also be

applied to suboptimal decoding algorithms.

From the above outline of suboptimal decoding algorithms it can be seen that we

must have an efficient memory management to insert nodes into and delete nodes from

list OPEN in order to implement suboptimal decoding algorithms as well as optimal

decoding algorithms. We implement list OPEN using B-tree, a data structure that

deals efficiently with the insertion and deletion of nodes [40].

5.2 Simulation Results for the AWGN Channel

In order to verify the performance of our suboptimal decoding algorithms, we give

simulation results for the (104, 52) binary extended quadratic residue code and for

the (128, 64) binary extended BCH code when these codes are transmitted over the

AWGN channel described in Section 1.2.

We have implemented a suboptimal version of the adaptive decoding algorithm

that uses a first-order heuristic function. Since this suboptimal decoding algorithm is

performed on low SNRs, the initial S∗C is constructed by considering the 16 codewords

as follows. Let y = (y0, y1, . . . , yn−1) be the hard-decision of φ*. Furthermore, let

S = {u|u = (u0, u1, . . . , uk−1) and ui = yi for 0 ≤ i ≤ k − 5}. For every element u

CHAPTER 5. SUBOPTIMAL DECODING ALGORITHM 59

0.0001

0.001

0.01

0.1

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

bit
 er

ror
 pr

oba
bil

ity

SNR per transmitted information bit (dB)

uncoded datalower bound on maximum-likelihoodthreshold=0.0threshold=0.25threshold=0.5

Figure 5.1: Performance of suboptimal decoding algorithm for the (104, 52) code

in S, we get a codeword c∗ = u · G∗. Now we let SC∗ = {c∗}, where the value of

h(1)(ms), calculated with respect to c∗, is the largest among all the 16 codewords.

The rule of updating S∗C is the same as that in Section 3.4.

The simulation results for the (104, 52) code for γb equal to 1.5 dB, 1.75 dB, 2.0

dB, 2.25 dB, 2.5 dB, and 2.75 dB are given in Figure 5.1 and in Table 5.1 for three

threshold values. MB is equal to 3,000.

In Figure 5.1 we also give a lower bound on the bit error probability of the

maximum-likelihood decoding algorithm. This lower bound is obtained as follows.

For every sample, when suboptimal decoding algorithm terminates, we have a code-

word that is obtained from the algorithm. If this codeword is closer to the received

vector than the transmitted codeword is, then any optimal decoding algorithm will

CHAPTER 5. SUBOPTIMAL DECODING ALGORITHM 60

threshold 1.5 dB 1.75 dB 2.0 dB 2.25 dB 2.5 dB 2.75 dB

0.0 26357 23909 18366 13240 10070 6698

0.25 10976 9643 6481 3980 2879 1579

0.5 3166 2827 1818 950 703 344

Table 5.1: The average number of nodes visited during the decoding of (104, 52) code

also decode the received vector to a non-transmitted codeword. Thus, we assume the

optimal decoding algorithm will decode to the codeword obtained from the subopti-

mal decoding algorithm and report if a decoding error occurs. Bit error probability

of the uncoded data is also given in Figure 5.1.

From Figure 5.1, for the (104, 52) code, the performance of the suboptimal decod-

ing algorithm with δ = 0.0 is within 0.25 dB of the performance of an optimal decod-

ing algorithm; the performance of the suboptimal decoding algorithm with δ = 0.25

is within 0.5 dB of the performance of an optimal decoding algorithm; and the per-

formance of the suboptimal decoding algorithm with δ = 0.5 is within 1 dB of the

performance of an optimal decoding algorithm. Thus, for the samples tried, limiting

the size of list OPEN to 3,000 nodes introduced only a small degradation on the

performance of the algorithm for the (104, 52) code; however, the average numbers of

nodes visited for the samples tried is several orders of magnitude smaller than those

given in Figure 4.3.

The simulation results for the (128, 64) code for γb equal to 1.0 dB, 1.25 dB,

1.5 dB, 1.75 dB, and 2.0 dB are given in Figure 5.2 and in Table 5.2 for three

threshold values. MB is equal to 6,000.

In Figure 5.2 we also give a lower bound on the bit error probability of the

maximum-likelihood decoding algorithm and bit error probability of the uncoded

CHAPTER 5. SUBOPTIMAL DECODING ALGORITHM 61

0.0001

0.001

0.01

0.1

1 1.2 1.4 1.6 1.8 2

bit
 er

ror
 pr

oba
bil

ity

SNR per transmitted information bit (dB)

uncoded datalower bound on maximum-likelihoodthreshold=0.0threshold=0.25threshold=0.5

Figure 5.2: Performance of suboptimal decoding algorithm for the (128, 64) code

threshold 1.0 dB 1.25 dB 1.5 dB 1.75 dB 2.0 dB

0.0 88325 82650 75905 65223 55474

0.25 54416 41694 35613 29554 23162

0.5 22294 16705 13478 10389 6910

Table 5.2: The average number of nodes visited during the decoding of (128, 64) code

CHAPTER 5. SUBOPTIMAL DECODING ALGORITHM 62

data.

From Figure 5.2, for the (128, 64) code, the performance of the suboptimal decod-

ing algorithm with δ = 0.0 is within 0.5 dB of the performance of an optimal decoding

algorithm; the performance of the suboptimal decoding algorithm with δ = 0.25 is

within 0.6 dB of the performance of an optimal decoding algorithm; and the perfor-

mance of the suboptimal decoding algorithm with δ = 0.5 is within 0.75 dB of the

performance of an optimal decoding algorithm. Thus, for the samples tried, limiting

the size of list OPEN to 6,000 nodes introduced only a small degradation on the

performance of the algorithm for the (128, 64) code; however, the average numbers of

nodes visited for the samples tried is several orders of magnitude smaller than those

given in Figure 4.3.

Chapter 6

Conclusions and Further Research

6.1 Conclusions

In this dissertation we have proposed a novel decoding technique. Simulation results

for the linear block codes in Section 3.4 show that, for the 35,000 samples tried, this

decoding technique drastically reduced the search space, especially for most practical

communication systems where the probability of error is less than 10−3 (γb greater

than 6.8 dB) [12]. For example, the results of Table 3.4 at 6 dB show that, for the

35,000 samples tried, in the worst case this decoding algorithm is approximately 15

orders of magnitude more efficient in time and space than Wolf’s algorithm.

We would like to emphasize here the flexibility of this decoding technique. For

example, (1) it is applicable to any linear block code; (2) it does not require the

availability of a hard decision decoder; (3) in order to make it more efficient to decode a

particular code, we can design a heuristic function that takes advantage of the specific

properties of this code; (4) any stopping criterion can be easily incorporated into it.

63

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 64

Furthermore, we would like to point out that the algorithms present in this dis-

sertation are suitable for a parallel implementation, one reason being that when cal-

culating h(m) for node m, the algorithm has determined the labels of the path from

node m to a node at level k−2 that it will follow, so the successors of the nodes in this

path can be open simultaneously and processed independently. This will substantially

reduce the idle time of processors and the overhead due to processor communication;

thus we expect a very good speed-up from parallel versions of our algorithms.

In Chapter 4 we determine an upper bound of the probability distribution of the

number of nodes visited by our decoding algorithms. From the figures shown in that

chapter, these decoding algorithms are efficient for most practical communication

systems where the probability of error is less than 10−3 (γb greater than 6.8 dB).

For low SNRs and for codes of moderate to long lengths, the number of nodes

visited during the decoding procedure may be great and make the proposed decoding

algorithm impractical. Thus in Chapter 5 we develop a class of suboptimal decoding

algorithms based on a generalized algorithm A*. From Figures 5.1 and 5.2, the per-

formance of the suboptimal decoding algorithms is within 0.25 dB of the performance

of an optimal decoding algorithm for the (104, 52) binary extended quadratic residue

code and within 0.5 dB for the (128, 64) binary extended BCH code.

The decoding approach proposed in this dissertation may make an impact on

both the theoretical and practical branches of coding theory. Theoreticians will be

challenged to identify and construct classes of linear codes whose properties maximize

the efficiency of this decoding procedure. And practitioners will want to find the most

efficient way to implement this algorithm in a fast, single-purpose processor using

sequential/parallel structures.

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 65

6.2 Further Research

Several research topics that might be chosen as follow-ups to the work presented in

this dissertation include:

1. Using more properties of a specified linear block code in the design of a new

function h in order to decode this code more efficiently.

2. Finding a tighter upper bound on the average number of nodes visited by our

decoding algorithms.

3. Applying algorithm A* to the decoding of convolutional codes.

4. Designing parallel versions of our decoding algorithms.

5. Designing a class of linear block codes that can be efficiently decoded by our

decoding algorithms.

Appendix A

Proof of Theorems in Chapter 2

In this appendix we give all the proofs of theorems in Chapter 2.

A.1 Proof of Theorem 2.1

We prove by contradiction that when a goal node is selected for expansion, algorithm

A* has already found a minimum cost path from the start node to this goal node.

Thus, when the algorithm selects to expand the goal node, it has found an optimal

path.

Let node mg1 be a goal node selected for expansion by algorithm A*. Assume

that the path from the start node to node mg1 found so far by algorithm A* is not an

optimal path. Let P ′∗
mg2

= (ms,m0, . . . ,m`, . . . ,mg2) be an optimal path. Note that

mg1 and mg2 may be two distinct goal nodes. Let node m` be the first node in this

sequence of nodes that is on list OPEN. Furthermore, let g∗(m) be the actual cost of

a minimum cost path from the start node to node m. By Condition 1,

f(m`) = g∗(m`) + h(m`) ≤ g∗(m`) + h∗(m`) = g∗(mg2).

66

APPENDIX A. PROOF OF THEOREMS IN CHAPTER 2 67

Since the cost, g(mg1), of the path from the start node to the goal node mg1 found

so far by algorithm A* is larger than g∗(mg2), then f(m`) < f(mg1). Contradiction.

A.2 Proof of Theorem 2.2

Let m be any node selected for expansion by algorithm A*. If m is a goal node, we

have f(m) = f ∗(ms). Now, assume that m is not a goal node. Since m is not a goal

node, then there is a node m′ on list OPEN which is on an optimal path from ms to

a goal node with f(m′) ≤ f ∗(ms). Thus, f(m) ≤ f ∗(ms).

A.3 Proof of Theorem 2.3

Let algorithm A1 be algorithm A* using function f1, and let algorithm A2 be algorithm

A* using function f2. We prove this theorem using induction on the depth of a node

in the search tree generated by algorithm A2 at termination.

First, we prove that if algorithm A2 expands a node m having zero depth in its

search tree, then so will algorithm A1. In this case, node m is node ms. If ms is a

goal node, then neither algorithm expands any nodes. If ms is not a goal node, both

algorithms expand node ms.

Now we assume (the induction hypothesis) that algorithm A1 expands all the

nodes expanded by algorithm A2 that have depth less than or equal to k in the search

tree generated by algorithm A2. We need to show that any node m expanded by

algorithm A2, and of depth k +1 in the search tree generated by algorithm A2, is also

expanded by algorithm A1.

By the induction hypothesis, any ancestor of node m in the search tree generated

APPENDIX A. PROOF OF THEOREMS IN CHAPTER 2 68

by algorithm A2 is also expanded by algorithm A1. Thus,

g1(m) ≤ g2(m).

Now assume that algorithm A1 did not expand node m, which was expanded by

algorithm A2. Clearly, at the termination of algorithm A1, node m must be on list

OPEN for algorithm A1 since algorithm A1 expanded an immediate ancestor of node

m. Since algorithm A1 terminated in a minimum cost path without expanding node

m, then

f1(m) ≥ f ∗(ms).

Thus,

g1(m) + h1(m) ≥ f ∗(ms).

Since g1(m) ≤ g2(m) we have

h1(m) ≥ f ∗(ms)− g2(m).

Since algorithm A2 expanded node m, by Theorem 2.2

f2(m) ≤ f ∗(ms).

or

g2(m) + h2(m) ≤ f ∗(ms)

or

h2(n) ≤ f ∗(ms)− g2(m).

Thus,

h2(m) ≤ h1(m).

Contradiction. So, any node m expanded by algorithm A2, and of depth k + 1 in the

search tree generated by algorithm A2, is also expanded by algorithm A1.

APPENDIX A. PROOF OF THEOREMS IN CHAPTER 2 69

A.4 Proof of Theorem 2.4

Consider an optimal path P ∗ = (ms,m0, . . . ,m`, . . . ,mg). Let node m` be the first

node in this sequence of nodes that is on list OPEN. Thus

f(m`) = g∗(m`) + h(m`),

where g∗(m) is the actual cost of a minimum cost path from the start node to node

m. By Condition 1,

f(m`) = g∗(m`) + h(m`) ≤ g∗(m`) + h∗(m`).

Since g∗(m`) + h∗(m`) < UB, then

f(m`) < UB.

Thus, node m` will not be deleted from list OPEN.

A.5 Proof of Theorem 2.5

We prove by contradiction that if the monotone restriction is satisfied, then when a

node is selected for expansion, algorithm A* has already found a minimum cost path

from the start node to this node.

Let node mt be any node selected for expansion by algorithm A*. Assume that the

path from the start node to node mt found so far by algorithm A* is not a minimum

cost path from the start node to node mt. Let P ′∗
mt

= (ms,m0, . . . ,m`, . . . ,mt−1, mt)

be a minimum cost path from the start node to node mt. Let node m` be the first

node in this sequence of nodes that is on list OPEN. Furthermore, let g∗(m) be the

actual cost of a minimum cost path from the start node to node m. By the monotone

APPENDIX A. PROOF OF THEOREMS IN CHAPTER 2 70

restriction,

g∗(mt−1) + h(mt−1) ≤ g∗(mt−1) + h(mt) + c(mt−1,mt) = g∗(mt) + h(mt).

By transitivity we have that

g∗(m`) + h(m`) ≤ g∗(mt) + h(mt).

Since g∗(m`) + h(m`) = f(m`) and g∗(mt) < g(mt), then f(m`) < f(mt). Contradic-

tion.

A.6 Proof of Theorem 2.6

Assume node mi is selected for expansion. We now consider two cases:

Case 1. mj was not visited. In this case

f(mj) = g∗(mi) + c(mi,mj) + h(mj),

where g∗(m) is the actual cost of a minimum cost path from the start node to node

m. By the monotone restriction, f(mj) ≥ g∗(mi) + h(mi) = f(mi).

Case 2. mj is on list OPEN. In this case, since mj is not selected for expansion

or by Case 1, then f(mj) ≥ f(mi).

Appendix B

Algorithms in Chapter 3

In this appendix we give algorithms in Chapter 3.

B.1 Reordering the Positions of Received Vector

Let φ = (φ0, φ1, . . . , φn−1) be the received vector. If |φi| > |φj|, then we consider

that φi is more “reliable” than φj, where |x| is the absolute value of x. Let φ′ =

(φ′0, φ
′
1, . . . , φ

′
n−1) be a vector obtained by permuting the positions of φ such that

|φ′i| ≥ |φ′i+1| for 0 ≤ i < n− 1. The k × n matrix G′ is obtained from G by applying

this same permutation to the columns of G. In order to give an algorithm to obtain

G*, the generator matrix of C*, from G′, we first introduce some definitions.

Let A be an r×m matrix. Given a set S = {i1, i2, . . . , is} ⊂ {0, 1, 2, . . . ,m−1} we

say that S is a sub-information set of A iff the columns of A indexed by i1, i2, . . . , is

are linearly independent. Furthermore, we define the SW operator. For 0 ≤ i, j < m,

SW (A, i, j) is the r×m matrix obtained from A by swapping columns i and j of A.

The following is an algorithm to obtain G* from G′ for 2 ≤ k < n.

1. i ← 1; j ← 1; S = {0}; G∗
1 ← G′.

71

APPENDIX B. ALGORITHMS IN CHAPTER 3 72

2. If S ∪ {j} is a sub-information set of G∗
1, then G∗

1 ← SW (G∗
1, i, j);

else

j ← j + 1;

go to 2.

3. S ← S ∪ {i}.
4. If |S| = k, then stop;

else

i ← i + 1;

j ← j + 1;

go to 2.

5. Transform G∗
1 into G* by row operation such that the

first k columns of G* form a k × k identity matrix.

The time complexity of the procedure to construct G* is O(k2 × n); however,

many of the operations performed during this construction can be done in parallel.

In this case, the time complexity becomes O(k × n).

B.2 Algorithm to Calculate h(1)(m)

We present an algorithm to calculate h(1)(m) for node m at level `,−1 ≤ ` < k − 1,

whose time complexity is O(|SC∗| × n).

First, we present this algorithm for the special case SC∗ = {0}. Then we show

how this algorithm can be applied to calculate h(1)(m) for the case SC∗ = {c∗} by

modifying φ*. Finally, it is immediately clear how to calculate h(1)(m) in general.

For ease of notation, we denote h(1)(m) by h(m).

APPENDIX B. ALGORITHMS IN CHAPTER 3 73

B.2.1 Algorithm for the Case SC∗ = {0}
We will show that to calculate h(m) we need to construct at most two vectors be-

longing to T (m, {0}).
Consider a node m at level ` and let P ′

m be the lowest cost path from the start

node to node m found so far by the algorithm. Furthermore, let v0, v1, . . . , v` be the

labels of P ′
m. Since f(m) = g(m) + h(m) =

∑̀

i=0

(
φ∗i − (−1)vi

)2
+ h(m), then h(m)

depends only on the values of φ∗`+1, φ
∗
`+2, . . ., and φ∗n−1.

Let u` =
(
u`(`+1), u`(`+2), . . . , u`(n−1)

)
be obtained by permuting the positions of

(
φ∗`+1, φ

∗
`+2, . . . , φ

∗
n−1

)
in such a manner that u`i ≤ u`(i+1) for (` + 1) ≤ i ≤ (n − 2).

We remark here that we can easily construct u` from u−.

Recall that

T (m, {0}) = {v|v = (v0, v1, . . . , v`, v`+1, . . . , vn−1) , WH(v) ∈ HW} ,

and

h(m) = min
v∈T (m,{0})





n−1∑

i=`+1

(φ∗i − (−1)vi)2



 .

Because of the definition of T (m,Yi), we can compute h(m) using u` instead of
(
φ∗`+1, φ

∗
`+2, . . . , φ

∗
n−1

)
.

Let vp =
(
v0, v1, . . . , v`, vp(`+1), vp(`+2), . . . , vp(`+w), vp(`+w+1), . . . , vp(n−1)

)
and v =

(v0, v1, . . . , v`, v`+1, . . . , vn−1) belong to T (m, {0}) such that WH(vp) = WH(v). Fur-

thermore, let vp(`+i) = 1 for 1 ≤ i ≤ w and vp(`+i) = 0 for (w + 1) ≤ i ≤ (n − 1).

Thus

vp = (v0, v1, . . . , v`, 1, 1, . . . , 1, 0, . . . , 0) .

Lemma B.1
n−1∑

i=`+1

(u`i − (−1)vpi)2 ≤
n−1∑

i=`+1

(u`i − (−1)vi)2 .

APPENDIX B. ALGORITHMS IN CHAPTER 3 74

proof.

D1 =
n−1∑

i=`+1

(u`i − (−1)vpi)2 −
n−1∑

i=`+1

(u`i − (−1)vi)2

= 2
n−1∑

i=`+1

{
u`i

((−1)vi − (−1)vpi)
}
.

Let S = {x|vx = 0 and ` + 1 ≤ x < w + ` + 1} and S ′ = {x|vx = 1 and w + ` + 1 ≤
x < n}. Since vp = (v0, v1, . . . , v`, 1, 1, . . . , 1, 0, . . . , 0) and WH(v) = WH(vp), then

|S| = |S ′|. So D1 = 4


∑

i∈S

u`i −
∑

i∈S′
u`i


 ≤ 0 since |S| = |S ′|, u`i ≤ u`j, i ∈ S and

j ∈ S ′. 2

By Lemma B.1, when calculating the value of h(m) we need only to consider

vectors in T (m, {0}) with patterns such as vp. Thus we need to consider only a

subset of T (m, {0}), T ′(m, {0}), such that it contains only vectors with patterns

such as vp. Note that T ′(m, {0}) 6= ∅.
Let w` be the number of components in u` that are negative and let v′p =

(
v0, v1, . . . , v`, v

′
p(`+1), v

′
p(`+2), . . . , v

′
p(`+w′), v

′
p(`+w′+1), . . . , v

′
p(n−1)

)
∈ T ′(m, {0}). Fur-

thermore, let v′p(`+i) = 1 for 1 ≤ i ≤ w′ and v′p(`+i) = 0 for (w′ + 1) ≤ i ≤ (n− 1).

Lemma B.2 If w′ < w ≤ w`, then

n−1∑

i=`+1

(u`i − (−1)vpi)2 <
n−1∑

i=`+1

(
u`i − (−1)v′pi

)2
.

proof.

D2 =
n−1∑

i=`+1

(u`i − (−1)vpi)2 −
n−1∑

i=`+1

(
u`i − (−1)v′pi

)2

= 4
`+w∑

i=`+w′+1

u`i < 0,

since u`i < 0, ` + 1 ≤ i < ` + w` + 1. 2

APPENDIX B. ALGORITHMS IN CHAPTER 3 75

Lemma B.3 If w` < w < w′, then

n−1∑

i=`+1

(u`i − (−1)vpi)2 ≤
n−1∑

i=`+1

(
u`i − (−1)v′pi

)2
.

The proof of this lemma is similar to that in Lemma B.2.

We now consider three different patterns of u`.

Case 1. All components of u` are negative.

In this case, by Lemma B.2,

h(m) =
n−1∑

i=`+1

(φ∗i − (−1)vi)2 ,

where v = (v0, v1, . . . , v`, v`+1, . . . , vn−1) is the vector in T ′(m, {0}) with maximum

Hamming weight.

Case 2. All components of u` are greater than or equal to zero.

In this case, by Lemma B.3,

h(m) =
n−1∑

i=`+1

(φ∗i − (−1)vi)2 ,

where v = (v0, v1, . . . , v`, v`+1, . . . , vn−1) is the vector in T ′(m, {0}) with minimum

Hamming weight.

Case 3. u` has at least one negative and one positive component.

Let w` = WH ((v0, v1, . . . , v`)). By Lemma B.2 and Lemma B.3 we can easily

show that at most two vectors in T ′(m, {0}) must be inspected to calculate h(m).

These vectors are:

1. v′ =
(
v0, v1, v`, v

′
`+1, . . . , v

′
n−1

)
, such that WH(v′) is the largest value among all

the vectors v belonging to T ′(m, {0}) satisfying WH(v) ≤ w` + w`.

APPENDIX B. ALGORITHMS IN CHAPTER 3 76

2. v′′ =
(
v0, v1, . . . , v`, v

′′
`+1, . . . , v

′′
n−1

)
, such that WH(v′′) is the smallest value

among all vectors v belonging to T ′(m, {0}) satisfying WH(v) > w` + w`.

We remark here that if u` belongs to Case 3, then at least one of the vectors v′ or v′′

will always exist.

If both v′ and v′′ exist, then

h(m) = min





n−1∑

i=`+1

(
φ∗i − (−1)v′i

)2
,

n−1∑

i=`+1

(
φ∗i − (−1)v′′i

)2



 .

Otherwise, h(m) is calculated using the vector that exists.

B.2.2 Algorithm for the Case SC∗ 6= {0}
Now we show that we can use the procedure presented in Section B.2.1 to calculate

h(m) for any c∗ = (c∗0, c
∗
1, . . . , c

∗
` , c

∗
`+1, . . . , c

∗
n−1). In order to differentiate the heuristic

function calculated with respect to {0} and {c∗}, we denote the heuristic function,

calculating with respect to {0} by h0.

Consider a fictitious node m′ such that a path Pm′ from the start node to node

m′ has labels v0 ⊕ c∗0, v1 ⊕ c∗1, . . . , v` ⊕ c∗` .

Lemma B.4

h(m) = min
v∈T (m′,{0})





n−1∑

i=`+1

(
(−1)c∗i φ∗i − (−1)vi

)2



 ,

where

T (m′, {0}) = {v|v = (v0 ⊕ c∗0, v1 ⊕ c∗1, . . . , v` ⊕ c∗` , v`+1, . . . , vn−1) and

dH(v,0) ∈ HW} .

Note that this value is h0(m
′) when we assume that the received vector is

(
(−1)c∗0φ∗0,

(−1)c∗1φ∗1, . . . , (−1)c∗n−1φ∗n−1

)
.

APPENDIX B. ALGORITHMS IN CHAPTER 3 77

proof.

h(m) = min
v′∈T (m,{c∗})





n−1∑

i=`+1

(
φ∗i − (−1)v′i

)2





= min
v′∈T (m,{c∗})





n−1∑

i=`+1

(
(−1)c∗i φ∗i − (−1)c∗i⊕v′i

)2



 .

Let v = c∗ ⊕ v′. Thus v′ = v ⊕ c∗. We must show that v′ ∈ T (m, {c∗}) iff

v ∈ T (m′, {0}).

v′ ∈ T (m, {c∗}) iff v′ = (v0, v1, . . . , v`, v
′
`+1, . . . v

′
n−1),

and dH (v′, c∗) ∈ HW

iff v ⊕ c∗ =
(
v0, v1, . . . , v`, v

′
`+1, . . . , v′n−1

)
,

and dH(c∗ ⊕ v′,0) ∈ HW

iff v = (v0 ⊕ c∗0, v1 ⊕ c∗1, . . . , v` ⊕ c∗` , v
′
`+1 ⊕ c∗`+1, . . . , v

′
n−1 ⊕ c∗n−1),

and dH(v,0) ∈ HW

iff v ∈ T (m′, {0}).

Since v′ ∈ T (m, {c∗}) iff v ∈ T (m′, {0}), then we may consider minimization over

vectors in T (m′, {0}) instead of in T (m, {c∗}). Thus

h(m) = min
v∈T (m′,{0})





n−1∑

i=`+1

(
(−1)c∗i φ∗i − (−1)vi

)2



 .

2

Since the time complexity to find v′ and v′′ in Case 3 of Section B.2.1 is O(n),

we can conclude that the time complexity to calculate h(m) is O(n). Thus the time

complexity to calculate h(1)(m) is O(|SC∗| × n).

APPENDIX B. ALGORITHMS IN CHAPTER 3 78

B.3 Outline and Complexity Analysis of the De-

coding Algorithm in Chapter 3

In this section we give an outline of our decoding algorithm. Recall that we do not

check for repeated nodes, thus we do not have to store list CLOSED. We also give

the orders of time and space complexities of this algorithm.

Given φ:

1. Construct G* and φ*; store the permutation used to construct φ* from φ.

2. Calculate the initial SC∗ , RESULT f and RESULT c∗.

3. If RESULT c∗ satisfies Criterion 3.1, then go to Step 12.

4. f(ms) = h(ms) and construct P ms , which is the path the algorithm will follow.

5. Create OPEN, containing only ms and RESULT c∗.

6. LOOP: Select the first node on OPEN, remove it from OPEN. Call this node

m. (Note that whenever node m2 is inserted into OPEN in Step 10(b), then

this node can always be selected as node m.)

7. If the level of node m is k − 1, then go to Step 12.

8. Expand node m, generating nodes m1 and m2, the successors of node m.

9. If m is at level k − 2, then for i = 1 to 2.

(a) Construct the codeword c* whose information bits are given by the labels

of the path from the start node to node mi.

APPENDIX B. ALGORITHMS IN CHAPTER 3 79

(b) Calculate g(mi) and h(mi):

f(mi) ←− g(mi) + h(mi).

(c) If c* satisfies Criterion 3.1, then

RESULT c∗ ←− c∗;

go to Step 12.

(d) Update SC∗ .

(e) If f(mi) < RESULT f , then

RESULT c∗ ←− c*;

RESULT f ←− f(mi);

remove all nodes on OPEN

whose f values are equal to or

greater than RESULT f ;

insert mi into OPEN.

(f) If f(mi) ≥ RESULT f , then discard node mi.

10. If m is at level ` < k − 2, then

(a) Select the node that is not on P m,

call it m1;

calculate g(m1) and h(m1);

if ` < k − 3, then construct P m1 ;

f(m1) ←− g(m1) + h(m1);

if f(m1) < RESULT f then

insert node m1 into OPEN;

otherwise, discard node m1.

APPENDIX B. ALGORITHMS IN CHAPTER 3 80

(b) f(m2) ←− f(m);

if ` < k − 3, then construct P m2 by deleting node m from P m;

insert m2 into OPEN as first node.

11. Go LOOP.

12. Construct ĉ from RESULT c∗ by applying the inverse permutation that was

used to construct φ* from φ.

We now apply the algorithm to a numerical example in which |SC∗| = 1. In order

for this example to be more illustrative we do not use Criterion 3.1, so we do not

perform steps 3 and 9 (c) of the algorithm. Furthermore, the rule of updating SC∗ is

the same as that in Section 3.4.

Example B.1 Let C be the (8,4) binary extended Hamming code with w0 = 0, w1 =

4, and w2 = 8. C is transmitted over an AWGN channel with E = 1. The generator

matrix of C is

G =




1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1




.

Assume that the received vector is φ = (−3,−2,−2, 1, 4,−1, 0, 0). We identify a node

m at level `, 0 ≤ ` ≤ k− 1 in the tree by m(v0, v1, . . . , v`), where v0, v1, . . . , v` are the

labels associated with the path P ′
m from the start node to node m.

STEP 1:

φ′ = (4,−3,−2,−2, 1,−1, 0, 0),

APPENDIX B. ALGORITHMS IN CHAPTER 3 81

G′ =




1 1 0 0 0 1 1 0

1 0 1 0 0 1 0 1

1 0 0 1 0 0 1 1

0 0 0 0 1 1 1 1




,

G∗
1 =




1 1 0 0 0 1 1 0

1 0 1 0 0 1 0 1

1 0 0 0 1 0 1 1

0 0 0 1 0 1 1 1




,

G∗ =




1 0 0 0 1 0 1 1

0 1 0 0 1 1 0 1

0 0 1 0 1 1 1 0

0 0 0 1 0 1 1 1




,

φ∗ = (4,−3,−2, 1,−2,−1, 0, 0),

and π =
(

0

1

1

2

2

4

3

3

4

0

5

5

6

6

7

7

)
, where π is a permutation used to con-

struct φ* from φ.

STEP 2:

c∗ = (0, 1, 1, 0, 0, 0, 1, 1),

SC∗ = {(0, 1, 1, 0, 0, 0, 1, 1)},
RESULT f = 29,

RESULT c∗ = c∗.

STEP 4:

By Lemma B.4, we first modify φ* to (4, 3, 2, 1,−2,−1, 0, 0). By Case 3 in Ap-

pendix B.2.1,

v′ = (0, 0, 0, 0, 0, 0, 0, 0) and

v′′ = (0, 0, 0, 0, 1, 1, 1, 1).

APPENDIX B. ALGORITHMS IN CHAPTER 3 82

Thus,

7∑

i=0

(
φ∗i − (−1)v′i

)2
= (4− 1)2 + (3− 1)2 + (2− 1)2 + (1− 1)2 + (−2− 1)2

+(−1− 1)2 + (0− 1)2 + (0− 1)2 = 29,
7∑

i=0

(
φ∗i − (−1)v′′i

)2
= (4− 1)2 + (3− 1)2 + (2− 1)2 + (1− 1)2 + (−2 + 1)2

+(−1 + 1)2 + (0 + 1)2 + (0 + 1)2 = 17.

So h(ms) = f(ms) = 17, and we obtain the labels of P ms as <0, 1, 1>.

STEP 5:

OPEN = <ms,m(0, 1, 1, 0)>.

LOOP 1:

STEP 6: Consider node ms.

STEP 8: Expand node ms to obtain node m(0) and node m(1).

STEP 10(a):

m1 = m(1).

By Lemma B.4, we first modify φ* to (4, 3, 2, 1,−2,−1, 0, 0). By Case 3

in Appendix B.2.1,

v′′ = (1, 0, 0, 0, 1, 1, 1, 0).

Thus,

7∑

i=1

(
φ∗i − (−1)v′′i

)2
= (3− 1)2 + (2− 1)2 + (1− 1)2 + (−2 + 1)2

+(−1 + 1)2 + (0 + 1)2 + (0− 1)2 = 8.

g(m1) = (4 + 1)2 = 25. So f(m1) = 25 + 8 = 33. Since 33 > 29, we

discard node m1.

APPENDIX B. ALGORITHMS IN CHAPTER 3 83

STEP 10(b):

P m(0) = <1, 1> and f(m(0)) = 17.

OPEN = <m(0),m(0, 1, 1, 0)>.

LOOP 2:

STEP 6: Consider node m(0).

STEP 8: Expand node m(0) to obtain node m(0, 0) and node m(0, 1).

STEP 10(a):

m1 = m(0, 0).

By Lemma B.4, we first modify φ* to (4, 3, 2, 1,−2,−1, 0, 0). By Case 3

in Appendix B.2.1,

v′′ = (0, 1, 0, 0, 1, 1, 1, 0).

Thus,

7∑

i=2

(
φ∗i − (−1)v′′i

)2
= (2− 1)2 + (1− 1)2 + (−2 + 1)2

+(−1 + 1)2 + (0 + 1)2 + (0− 1)2 = 4.

g(m1) = (4−1)2 +(−3−1)2 = 25. So f(m1) = 25+4 = 29. Since 29 = 29

we discard node m1.

STEP 10(b):

P m(0,1) = <1> and f(m(0, 1)) = 17.

OPEN = <m(0, 1),m(0, 1, 1, 0)>.

LOOP 3:

STEP 6: Consider node m(0, 1).

STEP 8: Expand node m(0, 1) to obtain node m(0, 1, 0) and node m(0, 1, 1).

APPENDIX B. ALGORITHMS IN CHAPTER 3 84

STEP 10(a):

m1 = m(0, 1, 0).

By Lemma B.4, we first modify φ* to (4, 3, 2, 1,−2,−1, 0, 0). By Case 3

in Appendix B.2.1,

v′′ = (0, 0, 1, 0, 1, 1, 1, 0).

Thus,

7∑

i=3

(
φ∗i − (−1)v′′i

)2
= (1− 1)2 + (−2 + 1)2

+(−1 + 1)2 + (0 + 1)2 + (0− 1)2 = 3.

g(m1) = (4− 1)2 + (−3 + 1)2 + (−2− 1)2 = 22. So f(m1) = 22 + 3 = 25.

Since the level of m(0, 1) is 1, we do not need to calculate the labels of P m1.

Furthermore, since 25 < 29, then OPEN = <m(0, 1, 0),m(0, 1, 1, 0)>.

STEP 10(b):

f(m(0, 1, 1)) = 17.

OPEN = <m(0, 1, 1),m(0, 1, 0),m(0, 1, 1, 0)>.

LOOP 4:

STEP 6: Consider node m(0, 1, 1).

STEP 8: Expand node m(0, 1, 1) to obtain node m1 = m(0, 1, 1, 0) and

node m2 = m(0, 1, 1, 1).

STEP 9(a): Pick node m1,

c∗ = (0, 1, 1, 0, 0, 0, 1, 1).

APPENDIX B. ALGORITHMS IN CHAPTER 3 85

STEP 9(b):

f(m1) = (4− 1)2 + (−3 + 1)2 + (−2 + 1)2 + (1− 1)2 + (−2− 1)2

+(−1− 1)2 + (0 + 1)2 + (0 + 1)2 = 29.

STEP 9(d):

SC∗ = {(0, 1, 1, 0, 0, 0, 1, 1)}.
STEP 9(f):

Discard node m1.

STEP 9(a):Pick node m2,

c∗ = (0, 1, 1, 1, 0, 1, 0, 0).

STEP 9(b):

f(m2) = (4− 1)2 + (−3 + 1)2 + (−2 + 1)2 + (1 + 1)2

+(−2− 1)2 + (−1 + 1)2 + (0− 1)2 + (0− 1)2 = 29.

STEP 9(f):

Discard node m2.

LOOP 5:

STEP 6: Consider node m(0, 1, 0).

STEP 8: Expand node m(0, 1, 0) to obtain node m1 = m(0, 1, 0, 0) and

node m2 = m(0, 1, 0, 1).

STEP 9(a): Pick node m1,

c∗ = (0, 1, 0, 0, 1, 1, 0, 1).

APPENDIX B. ALGORITHMS IN CHAPTER 3 86

STEP 9(b):

f(m1) = (4− 1)2 + (−3 + 1)2 + (−2− 1)2 + (1− 1)2

+(−2 + 1)2 + (−1 + 1)2 + (0− 1)2 + (0 + 1)2 = 25.

STEP 9(d):

SC∗ = {(0, 1, 1, 0, 0, 0, 1, 1)}.
STEP 9(e):

RESULT c∗ = (0, 1, 0, 0, 1, 1, 0, 1).

RESULT f = 25.

OPEN = <m(0, 1, 0, 0)>.

STEP 9(a): Pick node m2,

c∗ = (0, 1, 0, 1, 1, 0, 1, 0).

STEP 9(b):

f(m2) = (4− 1)2 + (−3 + 1)2 + (−2− 1)2 + (1 + 1)2

+(−2 + 1)2 + (−1− 1)2 + (0 + 1)2 + (0− 1)2 = 33.

STEP 9(d):

SC∗ = {(0, 1, 1, 0, 0, 0, 1, 1)}.
STEP 9(f):

Discard node m2.

LOOP 6:

STEP 6: Consider node m(0, 1, 0, 0).

STEP 7: Go to STEP 12.

APPENDIX B. ALGORITHMS IN CHAPTER 3 87

STEP 12:

ĉ = (1, 0, 1, 0, 0, 1, 0, 1).

In Table B.1 we give the orders of time and space complexities for each step of

the algorithm. One way of implementing list OPEN is to use a B-tree [40]. The

time complexities of steps 6, 9(e), and 10(a) given in Table B.1 assume that this data

structure is used. These complexities are obtained by noticing that the maximum

number of nodes visited during decoding of φ are upperbounded by 2k+1 − 1, the

number of nodes in a complete binary tree of height k. Thus, the time complexities

of these steps are O(k).

We remark here that Step 9(a) is not performed for all the nodes visited (open)

during the decoding procedure. It is performed only for those nodes visited at level

k − 1. Furthermore, in this step some operations performed during the construction

of a codeword uG* can be done in parallel. So, the time complexity of this step

becomes O(n), which we will assume to be the case in the following analysis. In Step

2 we also assume that the time complexity of constructing a codeword is O(n).

In order to give the time and space complexities of our algorithm, we define the

following quantities:

Ot(h) = the time complexity of function h;

Os(h) = the space complexity of function h;

N(φ) = the number of nodes visited during the decoding of φ;

M(φ) = maximum |OPEN| that will occur during the decoding of φ, where

|OPEN| denotes the number of nodes on list OPEN.

Based on the information given in Table B.1, we have

(a) time complexity is O(k × n) + (Ot(h) + O(n))×N(φ);

(b) space complexity is O(k × n) + (Ot(h) + O(n))×M(φ).

APPENDIX B. ALGORITHMS IN CHAPTER 3 88

Complexities

Step Time Space

1 O(k × n) + O(n× log n) O(k × n)

2 O(|S∗C | × n) O(|S∗C | × n)

3 Ot(h) Os(h)

4 Ot(h) Os(h)

5 O(1) O(n)

6 O(k) O(n)

7 O(1) O(1)

8 O(k) O(n)

9(a) O(n) O(n)

9(b) O(n) O(1)

9(c) Ot(h) Os(h)

9(d) Ot(h) Os(h)

9(e) Ot(h) + O(k) Os(h)

9(f) O(1) O(1)

10(a) Ot(h) + O(k) Os(h)

10(b) O(1) O(1)

11 O(1) O(1)

12 O(n) O(1)

Table B.1: Order of complexities

APPENDIX B. ALGORITHMS IN CHAPTER 3 89

Since a lower bound for N(φ) and M(φ) is k if we do not use Criterion 3.1, then we

may write the time complexity as (Ot(h) + O(n))×N(φ) and the space complexity

as (Ot(h) + O(n))×M(φ).

Appendix C

Proof of Properties in Chapter 3

C.1 Proof of Property 3.1

Let node m2 at level ` be an immediate successor of node m1. Furthermore, let c∗` be

the label of the arc from node m1 to node m2 and c(m1,m2) =
(
φ∗` − (−1)c∗`

)2
. We

now prove that h(i)(m1) ≤ h(i)(m2) + c(m1,m2).

1. ` < k− 1. Let Yi ∈ Pi(SC∗). Furthermore, let v′ = (v′0, v
′
1, . . . , v

′
`, v

′
`+1, v

′
`+2, . . . ,

v′n−1) ∈ T (m2, Yi) such that

min
v∈T (m2,Yi)





n−1∑

i=`+1

(φ∗i − (−1)vi)2



 =

n−1∑

i=`+1

(
φ∗i − (−1)v′i

)2
.

Since v′ ∈ T (m2, Yi), then
(
v′0, v

′
1, . . . , v

′
`−1, c

∗
` , v

′
`+1, v

′
`+2, . . . , v

′
n−1

)
∈ T (m1, Yi).

Thus

min
v∈T (m2,Yi)





n−1∑

i=`+1

(φ∗i − (−1)vi)2



+c(m1,m2) ≥ min

v∈T (m1,Yi)

{
n−1∑

i=`

(φ∗i − (−1)vi)2

}
.

Thus, h(i)(m2) + c(m1, m2) ≥ h(i)(m1).

90

APPENDIX C. PROOF OF PROPERTIES IN CHAPTER 3 91

2. ` = k − 1. h(i)(m1) ≤ h∗(m1) and h(i)(m2) = h∗(m2). Since h∗(m1) −
c(m1,m2) ≤ h∗(m2), then h(i)(m1) ≤ h∗(m2)+c(m1,m2) = h(i)(m2)+c(m1,m2).

3. ` > k−1. h(i)(m1) = h∗(m1) and h(i)(m2) = h∗(m2). Since h∗(m1)−c(m1,m2) =

h∗(m2), then h(i)(m1) = h(i)(m2) + c(m1,m2).

C.2 Proof of Property 3.2

Consider node m` at level `, −1 ≤ ` < k − 2. Furthermore, let

h(i)(m`) =
n−1∑

i=`+1

(
φ∗i − (−1)v′i

)2
,

where (v′0, v
′
1, . . . , v

′
`, v

′
`+1, v

′
`+2, . . . , v

′
n−1) ∈ T (m`, Z) for some Z ∈ Pi(SC∗). Now

consider the path P m`
= (m`,m`+1, . . . , mk−2) from node m` to node mk−2 at level

k−2 whose labels are v′`+1, v
′
`+2, . . . , v

′
k−2. We now show that if m`+1 is a node in this

path at level ` + 1, then f(m`) = f(m`+1).

By definition

f(m`) = g(m`) + h(i)(m`)

= g(m`) +
(
φ∗`+1 − (−1)v′`+1

)2
+

n−1∑

i=`+2

(
φ∗i − (−1)v′i

)2

= g (m`+1) +
n−1∑

i=`+2

(
φ∗i − (−1)v′i

)
.

Since (v′0, v
′
1, . . . , v

′
`, v

′
`+1, v

′
`+2, v

′
`+3, . . . , v

′
n−1) ∈ T (m`+1, Z), then

n−1∑

i=`+2

(
φ∗i − (−1)v′i

)2
= min

v∈T (m`+1,Z)





n−1∑

i=`+2

(φ∗i − (−1)vi)2



 ,

otherwise

h(i)(m`) > min
v∈T (m`,Z)





n−1∑

i=`+1

(φ∗i − (−1)vi)2



 .

APPENDIX C. PROOF OF PROPERTIES IN CHAPTER 3 92

Analogously, we can conclude that

h(i)(m`+1) =
n−1∑

i=`+2

(
φ∗i − (−1)v′i

)2
.

Appendix D

Proof of Theorems in Chapter 4

In this appendix we give the proofs of theorems in Chapter 4.

D.1 Proof of Theorem 4.1

Let an (n, k) code C be transmitted over an AWGN channel. Thus,

Pr(ri|o) =
1√
πN0

e
− (ri−

√
E)2

N0

and

Pr(ri|1) =
1√
πN0

e
− (ri+

√
E)2

N0 .

Since

φi = ln
Pr(ri|0)

Pr(ri|1)
=

4
√

E

N0

ri,

then

φ =
4
√

E

N0

r.

Thus, for fixed SNR 4
√

E
N0

can be treated as a positive constant. Since any positive

constant multiplied to φ will not affect the decoding procedure, we can substitute r

93

APPENDIX D. PROOF OF THEOREMS IN CHAPTER 4 94

for φ in our decoding algorithm when C is transmitted over an AWGN channel [12].

Furthermore, without loss of generality we can assume that 0 is transmitted over an

AWGN channel.

Let P ′
0 be the path from start node ms to a goal node whose labels are all zero.

Let us define the cost of the path P ′
0 as g(P ′

0). That is

g(P ′
0) =

n−1∑

i=0

(ri − 1)2.

From the definition of f ∗(ms), we have

g(P ′
0) ≥ f ∗(ms).

Now let node m be a node at level ` in the code tree and the labels of path P ′
m,

the path from node ms to node m found so far by the algorithm, are v0, v1, . . . , v`.

Let S ′ = {i|vi = 1, 0 ≤ i ≤ `} and |S ′| = d. From the definition of function f

f(m) = g(m) + hs(m)

=
∑̀

i=0

(
ri − (−1)vi

)
+

n−1∑

i=`+1

(|ri| − 1|)2 .

Now we want to calculate the probability that node m is expanded by the algorithm.

From Theorem 2.2, this probability will be less than or equal to the probability that

f(m) ≤ f ∗(ms), i.e., Pr(f(m) ≤ f ∗(ms)). Since

g(P ′
0) ≥ f ∗(ms),

then

Pr(f(m) ≤ f ∗(ms)) ≤ Pr(f(m) ≤ g(P ′
0)).

Furthermore

f(m) ≤ g(P ′
0) iff

∑̀

i=0

(
ri − (−1)vi

)2
+

n−1∑

i=`+1

(|ri| − 1|)2 ≤
n−1∑

i=0

(ri − 1)2

APPENDIX D. PROOF OF THEOREMS IN CHAPTER 4 95

iff
∑

i∈S′
4ri +

n−1∑

i=`+1

2(ri − |ri|) ≤ 0

iff
∑

i∈S′
2ri +

n−1∑

i=`+1

(ri − |ri|) ≤ 0.

Now let us define two new random variables Zi and Z ′
i as

Zi = 2ri and Z ′
i = ri − |ri|.

Since 0 is transmitted,

Pr(ri) =
1√
πN0

e
− (ri−

√
E)2

N0 .

Let E(X) be the mean of random variable X and let V ar(X) be the variance of X.

Thus, E(ri) is
√

E and V ar(ri) is N0

2
. Then

E(Zi) = 2
√

E

and

V ar(Zi) = E(Z2
i)− E2(Zi)

= E(4r2
i)− 4E2(ri)

= 4[E(r2
i)− E2(ri)]

= 4V ar(ri)

= 2N0 [41].

Now let us calculate E(Z ′
i) and V ar(Z ′

i):

E(Z ′
i) =

1√
πN0

∫ 0

−∞
2te

− (t−
√

E)2

N0 dt.

Let x = t−
√

E√
N0
2

, then dx = dt√
N0
2

. Thus

E(Z ′
i) =

√
N0

2√
πN0

∫ −
√

E√
N0
2

−∞
2(

√
N0

2
x +

√
E)e−

x2

2 dx

APPENDIX D. PROOF OF THEOREMS IN CHAPTER 4 96

=
2
√

N0

2√
2π

∫ −
√

E√
N0
2

−∞
xe−

x2

2 dx +
2
√

E√
2π

∫ −
√

E√
N0
2

−∞
e−

x2

2 dx

=
2
√

N0

2√
2π

∫ −
√

E√
N0
2

−∞
xe−

x2

2 dx + 2
√

EG(−
√

E√
N0

2

),

where G is the standard normal distribution.

Let y = x2, then dy = 2xdx. Thus,

E(Z ′
i) =

√
N0

2√
2π

∫ E
N0
2

∞
e−

y
2 dy + 2

√
EG(−

√
E√
N0

2

)

= 2
√

EG(−
√

E√
N0

2

)−
√

N0

π
e
− E

N0 .

Similarly,

V ar(Z ′
i) = E(Z2

i)− E2(Zi)

=
1√
πN0

∫ 0

−∞
(2t)2e

− (t−
√

E)2

N0 dt− E2(Zi)

= 2(2E + N0)G(−
√

E√
N0

2

)− 2

√
EN0

π
e
− E

N0 − E2(Zi)

= 2(2E + N0)G(−
√

E√
N0

2

)− 2

√
EN0

π
e
− E

N0

−

2
√

EG(−
√

E√
N0

2

)−
√

N0

π
e
− E

N0




2

.

Now let us define a new random variable X as

X =
∑

i∈S′
2ri +

n−1∑

i=`+1

(ri − |ri|).

By the central limit theorem [41] , when n ≥ 10, the probability distribution of X is

approximately a normal distribution with mean µ(`, d) and variance σ2(`, d), where

µ(`, d) = dE(Zi) + (n− `− 1)E(Z ′
i)

APPENDIX D. PROOF OF THEOREMS IN CHAPTER 4 97

= 2d
√

E + (n− `− 1)



2
√

EG(−
√

E√
N0

2

)−
√

N0

π
e
− E

N0



 ,

σ2(`, d) = dV ar(Zi) + (n− `− 1)V ar(Z ′
i)

= 2dN0 + (n− `− 1)



2(2E + N0)G(−

√
E√
N0

2

)− 2

√
EN0

π
e
− E

N0

−

2
√

EG(−
√

E√
N0

2

)−
√

N0

π
e
− E

N0




2




.

Thus,

Pr(f(m) ≤ f ∗(ms)) ≤ Pr(X ≤ 0) = G(−µ(`, d)

σ(`, d)
).

Since f(m) ≤ g(P ′
0) for any node m on path P ′

0, we can assume that node m

will be expanded. We now consider those nodes that are not on this path. It is easy

to see that, for any node that is not on path P ′
0, the labels of the path from node

ms to it will contain at least one 1. Since the first k positions of any codeword are

information bits, the average number of nodes expanded by the algorithm is less than

or equal to 
k +

k−2∑

`=0

`+1∑

d=1




` + 1

d


 G

(
−µ(`, d)

σ(`, d)

)
 ,

where

µ(`, d) =
√

N0



2d

√
k

n
γb + (n− `− 1)


2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb






 ,

σ2(`, d) = N0



2d + (n− `− 1)


(4

k

n
γb + 2)G(−

√
2
k

n
γb)− 2

√
k
n
γb

π
e−

k
n

γb

−

2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb




2







,

and

γb =
Eb

N0

=
n

k

E

N0

.

APPENDIX D. PROOF OF THEOREMS IN CHAPTER 4 98

Since when a node is expanded by the algorithm, the algorithm will visit two nodes,

the average number of nodes visited is less than or equal to

2


k +

k−2∑

`=0

`+1∑

d=1




` + 1

d


 G

(
−µ(`, d)

σ(`, d)

)
 ,

where

µ(`, d) =
√

N0



2d

√
k

n
γb + (n− `− 1)


2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb






 ,

σ2(`, d) = N0



2d + (n− `− 1)


(4

k

n
γb + 2)G(−

√
2
k

n
γb)− 2

√
k
n
γb

π
e−

k
n

γb

−

2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb




2







,

and

γb =
Eb

N0

=
n

k

E

N0

.

D.2 Proof of Theorem 4.3

When a node at level k − 2 is expanded, the algorithm will generate two codewords.

Thus, to calculate the average number of codewords tried, we consider only those

nodes that are at level k − 2. From the argument in Appendix D.1, the average

number of codewords tried is less than or equal to

2


1 +

k−1∑

d=1




k − 1

d


 G

(
−µ(d)

σ(d)

)
 ,

where

µ(d) =
√

N0



2d

√
k

n
γb + (n− k + 1)


2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb






 ,

APPENDIX D. PROOF OF THEOREMS IN CHAPTER 4 99

σ2(d) = N0



2d + (n− k + 1)


(4

k

n
γb + 2)G(−

√
2
k

n
γb)− 2

√
k
n
γb

π
e−

k
n

γb

−

2

√
k

n
γbG(−

√
2
k

n
γb)− 1√

π
e−

k
n

γb




2







,

and

γb =
Eb

N0

.

Appendix E

Proof of Theorems in Chapter 5

In this appendix we give a proof of Theorem 5.1.

Let an (n, k) code C be transmitted over an AWGN channel. Since we assume

that no decoding error occurs, then

f ∗(ms) =
n−1∑

i=0

(
(−1)ci

√
E − (ei + (−1)ci

√
E)

)2

=
n−1∑

i=0

e2
i ,

where,

Pr(ei) =
1√
πN0

e
− e2

i
N0 .

Now we define a new random variable Zi as

Zi = e2
i .

Let E(X) be the mean of random variable X and V ar(X) be the variance of X.

Then,

E(Zi) =
1√
πN0

∫ ∞

−∞
x2e

− x2

N0 dx

100

APPENDIX E. PROOF OF THEOREMS IN CHAPTER 5 101

= −
√

N0

2
√

π
xe

− x2

N0

∣∣∣∣∣
∞

−∞
+

√
N0

2
√

π

∫ ∞

−∞
e
− x2

N0 dx

=
N0

2
.

V ar(Zi) = E(Z2
i)− E2(Zi)

=
1√
πN0

∫ ∞

−∞
x4e

− x2

N0 dx− N2
0

4

= −
√

N0

2
√

π
x3e

− x2

N0

∣∣∣∣∣
∞

−∞
+

3
√

N0

2
√

π

∫ ∞

−∞
x2e

− x2

N0 dx− N2
0

4

=
N2

0

2
.

By the central limit theorem [41], when n ≥ 10, the probability distribution of

f ∗(ms) is approximately a normal distribution with mean µ and variance σ2, where

µ = n
N0

2
, and

σ2 = n
N2

0

2
.

Bibliography

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear

Codes for Minimizing Symbol Error Rate,” IEEE Transactions on Information

Theory, pp. 284–287, March 1974.

[2] G. Battail, “Simplified Optimal Soft Decoding of Linear Block Codes,” IEEE

International Symposium on Information Theory, St Jovite, Québac, Canada,

1983.

[3] L. D. Baumert and R. J. McEliece, “Soft Decision Decoding of Block Codes,”

DSN Progress Report 42–47, Jet Propulsion Laboratory, California Institute of

Technology, Pasadena, CA, July and August 1978.

[4] L. D. Baumert and L. R. Welch, “Minimum-Weight Codewords in the (128,64)

BCH Code,” DSN Progress Report 42–42, Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, CA, September and October 1977.

[5] Y. Berger and Y. Be’ery, “Bound on the Trellis Size of Linear Block Codes,”

IEEE Transactions on Information Theory, pp. 203–209, January 1993.

[6] E. R. Berlekamp, Algebraic Coding Theory. New York, NY: McGraw-Hill Book

Co., 1968.

102

BIBLIOGRAPHY 103

[7] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the Inherent

Intractability of Certain coding Problems,” IEEE Transactions on Information

Theory, pp. 384–386, May 1978.

[8] R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA:

Addison-Wesley Publishing Co., 1983.

[9] G. Brassard and P. Bratley, Algorithmics Theory and Practice. Englewood Cliffs,

NJ: Prentice-Hall, Inc., 1988.

[10] J. Bruck and M. Naor, “The Hardness of Decoding Linear Codes with Pre-

processing,” IEEE Transactions on Information Theory, pp. 381–385, March

1990.

[11] D. Chase, “A Class of Algorithms for Decoding Block Codes with Channel

Measurement Information,” IEEE Transactions on Information Theory, pp.

170–181, January 1972.

[12] G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital Communi-

cations. New York, NY: Plenum Press, 1981.

[13] G. P. Cohen, P. J. Godlewski, and T. Y. Hwang, “Generating Codewords in

Real Space: Applications to Decoding,” Proceedings of the 3rd International

Colloquium on Coding Theory and Applications, pp. 114–122, 1988.

[14] J. H. Conway and N. J. A. Sloane, “Soft Decoding Techniques for Codes and

Lattices, Including the Golay Code and the Leech Lattice,” IEEE Transactions

on Information Theory, pp. 41–50, January 1986.

BIBLIOGRAPHY 104

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.

Cambridge, MA: The MIT Press, 1991.

[16] B. G. Dorsch, “A Decoding Algorithm for Binary Block Codes and J-ary Output

Channels,” IEEE Transactions on Information Theory, pp. 391–394, May 1974.

[17] J. Fang, G. Cohen, P. Godlewski, and G. Battail, “On the Inherent Intractability

of Soft Decision Decoding of Linear Codes,” Proceedings of the 2nd International

Colloquium on Coding Theory and Applications, pp. 141–149, 1986.

[18] W. Feller, An Introduction to Probability Theory and its Applications. New York,

NY: John Wiley and Sons, 1966.

[19] G. D. Forney, Jr., Concatenated Codes. Cambridge, MA: The M.I.T. Press, 1966.

[20] G. D. Forney, Jr., “Coset Codes–Part II: Binary Lattices and Related Codes,”

IEEE Transactions on Information Theory, pp. 1152–1187, September 1988.

[21] R. G. Gallager, Information Theory and Reliable Communication. New York,

NY: John Wiley and Sons, 1968.

[22] Y. S. Han, C. R. P. Hartmann, and C.-C. Chen, “Efficient Maximum-Likelihood

Soft-Decision Decoding of Linear Block Codes Using Algorithm A*,” Technical

Report SU-CIS-91-42, School of Computer and Information Science, Syracuse

University, Syracuse, NY 13244, December 1991.

[23] T.-Y. Hwang, “Decoding Linear Block Codes for Minimizing Word Error Rate,”

IEEE Transactions on Information Theory, pp. 733–737, November 1979.

BIBLIOGRAPHY 105

[24] T. Kancko, T. Nishijima, H. Inazumi, and S. Hirasawa, “An Efficient Maximum-

Likelihood-Decoding Algorithm for Linear Block Codes with Algebraic Decoder,”

submitted for publication to IEEE Transactions on Information Theory.

[25] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Appli-

cations. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

[26] N. J. C. Lous, P. A. H. Bours, and H. C. A. van Tilborg, “On Maximum

Likelihood Soft-Decision Decoding of Binary Linear Codes,” IEEE Transactions

on Information Theory, pp. 197–203, January 1993.

[27] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.

New York, NY: Elsevier Science Publishing Company, Inc., 1977.

[28] C. L. Mallows and N. J. A. Sloane, “An Upper Bound for Self-Dual Codes,”

Information and Control, vol. 22, pp. 188–200, 1973.

[29] R. J. McEliece, The Theory of Information and Coding. Advanced Book Program

Reading, MA: Addison-Wesley Publishing Company, 1982.

[30] D. J. Muder, “Minimal Trellises for Block Codes,” IEEE Transactions on In-

formation Theory, pp. 1049–1053, September 1988.

[31] N. J. Nilsson, Principle of Artificial Intelligence. Palo Alto, CA: Tioga Publishing

Co., 1980.

[32] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Reading, MA: Addison-Wesley Publishing Company, 1984.

BIBLIOGRAPHY 106

[33] I. S. Reed, T. K. Truong, X. Chen, and X. Yin, “The Algebraic Decoding of the

(41, 21, 9) Quadratic Residue Code,” IEEE Transactions on Information Theory,

pp. 974–986, May 1992.

[34] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Sys. Tech.

J., vol. 27, pp. 379–423, July 1948.

[35] J. Snyders, “Reduced Lists of Error Patterns for Maximum Likelihood Soft

Decoding,” IEEE Transactions on Information Theory, pp. 1194–1200, July

1991.

[36] J. Snyders and Y. Be’ery, “Maximum Likelihood Soft Decoding of Binary Block

Codes and Decoders for the Golay Codes,” IEEE Transactions on Information

Theory, pp. 963–975, September 1989.

[37] P. Sweeney, Error Control Coding: An Introduction. Hertfordshire: Prentice-Hall

International (UK) Ltd., 1991.

[38] D. J. Taipale and M. B. Pursley, “An Improvement to Generalized-Minimum-

Distance Decoding,” IEEE Transactions on Information Theory, pp. 167–172,

January 1991.

[39] N. N. Tendolkar and C. R. P. Hartmann, “Generalization of Chase Algorithm

for Soft Decision Decoding of Binary Linear Codes,” IEEE Transactions on

Information Theory, pp. 714–721, September 1984.

[40] A. M. Tenenbaum and M. J. Augenstein, Data Structures Using Pascal. Engle-

wood Cliffs, NJ: Prentice-Hall, Inc., second edition, 1986.

BIBLIOGRAPHY 107

[41] K. S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer

Science Applications. Englewood Cliffs, NJ: Prentice-Hall Inc., 1982.

[42] A. J. Viterbi, “Error Bound for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm,” IEEE Transactions on Information Theory,

pp. 260–269, April 1967.

[43] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding.

New York, NY: McGraw-Hill Book Company, 1979.

[44] J. K. Wolf, “Efficient Maximum Likelihood Decoding of Linear Block Codes

Using a Trellis,” IEEE Transactions on Information Theory, pp. 76–80, January

1978.

Biographical Data

Name: Yunghsiang Sam Han

Date and Place of Birth: April 24, 1962

Taipei, Taiwan

College: National Tsing Hua University

Shinchu,Taiwan

B.S., Electrical Engineering, 1984

M.S., Electrical Engineering, 1986

Graduate Work: Syracuse University

Syracuse, New York

Teaching Assistant: 1989-92

Research Assistant: 1992-93

108

