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Abstract—This paper describes a fast Reed–Solomon encoding algorithm with between four and seven parity symbols. First, we show
that the syndrome of Reed–Solomon codes can be computed via the Reed–Muller transform. Based on this result, the fast encoding
algorithm is then derived. Analysis shows that the proposed approach asymptotically requires 3 XORs per data bit, representing an
improvement over previous algorithms. The simulation demonstrates that the performance of the proposed approach improves with the
increase of code length and is superior to other methods. In particular, when the parity number is 5, the proposed approach is about 2

times faster than other cutting-edge methods.
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1 INTRODUCTION

DATA protection is an essential issue in storage systems.
To prevent data loss in the event of failures, the con-

ventional approach is to store multiple replicas on different
machines. With the dramatic increase in data volumes over
recent years, this method of data replication has become
very inefficient and expensive. Another approach for solv-
ing the problem of data loss is to use erasure codes, which
are derived from the field of coding theory [1]. Precisely,
an erasure code is a technique that converts the message
into a codeword with a longer length, such that the message
can be recovered from a subset of the codeword symbols.
Because of their obvious advantages in data protection,
erasure codes are now widely used in storage systems [2].
A (k, t) systematic erasure code converts a k-symbol data
array into a (k + t)-symbol array (codeword) by appending
t parity symbols to the data array. These parity symbols can
be used to correct erasures on the codeword.

Maximum distance separable (MDS) codes have the
important property that data can be reconstructed from
any k of the k + t codeword symbols. Reed–Solomon (RS)
codes are a well-known type of MDS code. Nowadays,
RS codes (and related technologies) are applied in several
storage systems, such as redundant arrays of independent
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disks (RAID) [3], Swift [4], and Ceph [5]. Further, a number
of products for large-scale storage systems already support
erasure codes. For example, the Google File System (GFS)
uses RS codes [6], Azure Cloud Storage System adopts
locally repairable codes (LRCs) [7], which can be regarded
as a variant of RS codes, and Facebook Hadoop Distributed
File System (HDFS) is equipped with Mirrored RAID-5
and RS coding to build the Blob Storage Cluster [8]. This
demonstrates that the complexity of erasure codes is of
widespread interest in (distributed) storage systems.

As RS codes are constructed over finite fields, finite field
arithmetic plays an important role in the performance of
the codes. The complexity of finite field arithmetic means
that native implementations of RS codes often cannot meet
the performance requirements of systems with real-time
applications. Thus, many fast algorithms have been pro-
posed in recent decades. For example, [9] used the par-
allel computing capabilities of hardware to accelerate the
arithmetic operation, [10] employed a variant called Cauchy
Reed–Solomon coding to improve the performance of RS
coding, and Trifonov [3] proposed a low-complexity imple-
mentation of fast Fourier transform (FFT)-based RS codes.
Furthermore, the density of generator matrices for MDS
codes has been explored [11], leading to the result that the
encoding requires at least t − t/k XORs per data bit if each
parity symbol is computed independently without sharing
any intermediate results. However, it is possible to further
reduce the computational complexity by sharing the inter-
mediate results. Such algorithms are known as scheduled
algorithms [12]. The optimal scheduled algorithm for a (k, t)
RS code remains an open problem. In [13], [14], Lin et al.
proposed RS encoding algorithms that attain the optimal
complexity bound of 2 XORs per data bit for t = 2, 3.
However, [13], [14] do not consider algorithms for t ≥ 4,
limiting the applicability of the algorithms. For example,
Facebook’s HDFS uses (10, 4) RS codes [15], the file system
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Fig. 1: A typical storage system with erasure coding

Btrfs supports up to six parity devices in RAID [16], and
GFS II encodes cold data using (9, 6) RS codes [6].

In this paper, we focus on the time complexity of RS
codes. To date, codes that tolerate at least four erasures
have been proposed, such as generally circulant Cauchy
codes [17], Rabin-like codes [18], Trifonov’s algorithm [3],
and an FFT algorithm for finite fields [19]. We present
a novel class of RS encoding algorithms based on Reed–
Muller transforms. In particular, we show that a Vander-
monde matrix can be decomposed into the product of a
sparse matrix and a Reed–Muller matrix. Based on this
result, the syndrome computations for RS codes can be
performed efficiently via the Reed–Muller transform. In this
formulation, the proposed encoding algorithm requires 3
XORs per data bit for t = 4, 5, 6, 7 parity symbols.

Currently, the RS code libraries used in storage sys-
tems are Intel’s ISA-L [20] and Jerasure [21], and these
operate on CPUs supporting the single instruction–multiple
data (SIMD) instruction set. We implement the proposed
approach over F28 using Intel’s Streaming SIMD Exten-
sions (SSE). The data distribution of the storage system is
shown in Fig. 1. We borrow the terminology from [22].
Each disk is split into multiple fixed-size strips, and a
total of k + t strips from each disk are called a stripe. We
investigate the proposed algorithm for t = 4, 5, 6, and 7
with a stripe unit size of λ = 4096 bytes. Further, the impact
of coding efficiency on performance in real applications is
briefly discussed. The main contributions of this paper can
be summarized as follows.

1) An improved syndrome computation for (k, t ≤ 7)
RS codes is proposed, where k is the number of data
symbols and t is the number of parity symbols.

2) Fast encoding/decoding algorithms for (k, t) RS codes
are presented for t = 4, 5, 6, 7.

3) The SIMD implementation of the proposed (k, t) RS
coding algorithm is given.

The remainder of this paper is organized as follows. In
Section 2, the construction of RS codes briefly introduced,
and the binary extended fields and the Reed-Muller trans-
form are defined. Section 3 presents the syndrome calcu-
lation algorithm for t ≤ 7 and the RS encoding/decoding
algorithms for t = 4, 5, 6, and 7. The complexity of the
proposed algorithms is analyzed in Section 4. In Section 5,
simulations and evaluations are presented. Section 6 con-
cludes this paper.

2 PRELIMINARIES

RS codes are a group of erasure codes with MDS property,
where the k original data symbols are encoded into n > k

symbols. The MDS property guarantees that all original data
can be reconstructed from any k symbols of n symbols. Let

Vandi(ω0, ω1, . . . , ωj−1) :=


1 1 · · · 1
ω0 ω1 · · · ωj−1
...

...
. . .

...
ωi−10 ωi−11 · · · ωi−1j−1


denote an i×j Vandermonde matrix. The codeword c of the
(k, t) RS code over Fq meets

0 = Hc, (1)

where H = Vandt(ω0, ω1, . . . , ωn−1) is the parity-check
matrix, and n = k + t < q. The coding rate is given by
k/n. The code distance is t + 1, as any t columns of H
forms a non-singular matrix. This leads that the RS code
can correct up to t erasures. Note that the codeword c can
also be generated by a generator matrix G of the code as
c = GTm, where m is the column vector of the k data
symbols and G = Vandk(ω′0, ω

′
1, . . . , ω

′
n−1).

2.1 Systematic Reed-Solomon codes

The codeword is denoted as cT = [pT mT], where p is
the column vector of t parity symbols and m is the column
vector of k data symbols. From (1), we have

0 =
[
Hen Ĥ

]
︸ ︷︷ ︸

H

[
p
m

]
, (2)

where the square matrix Hen consists of the first t column
of H and the remaining columns of H constitute Ĥ. As a
result, the parity symbols of the systematic RS code can be
obtained as

p = H−1en · Ĥm. (3)

Upon receiving a codeword with t erasures, the decoder
first calculates the syndrome s. We write

s = H · c′, (4)

where c′ denotes the received codeword with t erasures, and
the erased symbols have values of 0. Let e denote the vector
of t erased symbols; Hde denote the t×tmatrix consisting of
the columns corresponding to the positions of the erasures
in H. From (1) and (4), then

e = H−1de · s. (5)

For a block code, the encoding process can be viewed as
a special case of the decoding process. Let c′ be the code-
word whose erasures are on the parity part. By applying (4)
and (5) to it, one can calculate the erased symbols which
are the parity symbols. Note that, an efficient syndrome
computation can improve both the encoding and decoding
throughput.
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2.2 Finite fields
The finite field with size q = 2m is defined as

Fq := F2[x]/π(x),

with the primitive polynomial

π(x) =
m∑
i=0

πix
i

for each πi ∈ F2. Let α denote a primitive element of Fq
such that π(α) = 0. Let {υi ∈ Fq}m−1i=0 denote a basis of Fq .
The standard basis is defined as

υi = αi, i = 0, . . . ,m− 1. (6)

The 2m elements of Fq are denoted by ω0, ω1, . . . , ω2m−1,
where

ωi = i0 · υ0 + i1 · υ1 + · · ·+ im−1 · υm−1,∀ij ∈ F2, (7)

with

i = im−1 · 2m−1 + · · ·+ i1 · 2 + i0. (8)

Conventionally, we denote the multiplication inverse of ωi
as 1

ωi
or ω−1i . From (7), when N is a power of two,

ωi+N/2 = ωi + υr−1 (9)

for i < N/2 = 2r−1.

2.3 Reed-Muller transform
Given the input data x = [x0 x1 · · · xN−1]

T, the output
y = [y0 y1 · · · yN−1]

T of the Reed–Muller transform is
denoted by

y = BN · x, (10)

where N = 2r a power of two. Furthermore, B2r , r ≥ 1, is
defined as

B2r+1 =

[
B2r B2r

0 B2r

]
, B1 = [1] . (11)

Let IN denote the N × N identity matrix. The following is
a property of BN .

Theorem 1. B2
N = IN over F2 for any N ∈ {2r|r ∈ N}.

Proof. The proof uses mathematical induction. For the basis
case ` = 0, we have B1 = [1] = I1, and so B2

1 = I21 = I1.
Assume that the theorem holds for B2r . Then,

B2
2r+1 =

[
B2r B2r

0 B2r

]2
=

[
B2

2r 0
0 B2

2r

]
=

[
I2r 0
0 I2r

]
.

This completes the proof.

The Reed–Muller transform is a recursive algorithm for
calculating (10). Fig. 2 shows an example for N = 8. Let

x(i) :=
[
x0+iN/2 · · · xL/2−1+iN/2

]T
,

y(i) :=
[
y0+iN/2 · · · yL/2−1+iN/2

]T
for i = 0, 1. The following equalities are satisfied.

Lemma 1. y0 =
∑N−1
i=0 xi.

Proof. From (11), the first row of the matrix BN is filled with
ones. Hence, y0 is the summation of {xi}i=0,1,··· ,N−1.

Fig. 2: Transform graph of the input array with N = 8

TABLE 1: Definitions of notations in the proposed
algorithm

Symbol Definition
Common

k Number of data symbols in a codeword
t Number of parity symbols in a codeword
n n = k + t is the codeword length
H Parity-check matrix (13)
c c = [c0 · · · cn−1] denotes a codeword of size n
c′ c′ = [c′0 · · · c′n−1] denotes a codeword with t erasures
s s = [s0 · · · st−1] denotes the syndrome used in coding

Syndrome computation
N N is a power of two and N/2 < n− 1 ≤ N
r r is defined as r = lgN
x x = [x0 · · ·xN−1] constructed for fast computation
y y = [y0 · · · yN−1] is the value of x after RM transform

BN A matrix consists of 0 and 1, defined as (11)
P i
N (x) Output of fast computation (15)

Encoding/Decoding
m m = [m0 · · · mk−1] denotes a data vector of size k
p p = [p0 · · · pt−1] denotes a parity vector of size t

U The set of erased positions, defined as U = {ui}t−1
i=0

Hen A t× t matrix consists of the first t column of H
Ĥ A t× k matrix used for encoding, H = [ Hen Ĥ ]
Hde The matrix consisting of the i-th column of H, for i ∈ U

Lemma 2. yN/2 =
∑N/2−1
i=0 xN/2+i.

Proof. From (10) and (11), y(1) = BN/2 · x(1) can be
obtained. By Lemma 1, we have yN/2 =

∑N−1
i=N/2 xi =∑N/2−1

i=0 xN/2+i.

Lemma 3. y(0) = BN/2 · x′, where x′ = x(0) + x(1) = [x0 +
xN/2 · · · xN/2−1 + xN−1]T.

Proof. From (10) and (11), we have[
y(0)

y(1)

]
=

[
BN/2 BN/2

0 BN/2

]
·
[
x(0)

x(1)

]
. (12)

Hence, y(0) = BN/2(x(0) + x(1)).
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3 PROPOSED METHOD

The RS codes considered here are shortened versions of
doubly-extended RS codes. That is, the parity-check matrix
of the (k, t) RS code is defined by

H =


0
0
...
0
1

1 1 · · · 1
ω0 ω1 · · · ωn−2
...

...
. . .

...
ωt−20 ωt−21 · · · ωt−2n−2
ωt−10 ωt−11 · · · ωt−1n−2

 , (13)

which appends an extra column [0 0 . . . 0 1]T to the
Vandermonde matrix, and n = k + t. Table 1 lists the
notation used in RS coding, where lg denotes the binary
logarithm log2.

3.1 Syndrome computation
The proposed syndrome computation algorithm utilizes the
algebraic structure of the parity-check matrix H. Equations
(4) and (13) give s = [s0 s1 · · · st−1]T, where

si =



n−2∑
j=0

c′j+1ω
i
j i = 0, 1, · · · , t− 2,

(
n−2∑
j=0

c′j+1ω
i
j) + c′0 i = t− 1.

(14)

The input data can be denoted as x = [x0 x1 · · · xN−1]
T,

where N = 2r ≥ n− 1 is a power of two. Let

P iN := P iN (x0, . . . , xN−1) :=
N−1∑
j=0

xjω
i
j . (15)

From (14) and (15), it can be seen that

si =

{
P iN (c′1, . . . , c

′
n−1, 0, . . . , 0), i =0, 1, · · · , t− 2,

P iN (c′1, . . . , c
′
n−1, 0, . . . , 0) + c′0, i =t− 1,

where
N/2 < n− 1 ≤ N. (16)

The following gives a recursive expression for calculat-
ing P iN . Obviously, P iN can be expanded as

P iN (x0, · · · , xN−1) =

N/2−1∑
j=0

(xjω
i
j + xj+N/2ω

i
j+N/2). (17)

Furthermore, let

x′j := xj + xj+N/2, j = 0, 1, · · · , N/2− 1. (18)

Next, we show how to apply y = BN · x in (10) to calculate
P iN rapidly. The following reformulates (17) for i = 0, i =
2`, ` ∈ N, and i ∈ {`1 + `2|`1 = 2a, `2 = 2b, a < b, a, b ∈ N}.

1) Case i = 0: From (15) and Lemma 1,

P 0
N (x0, · · · , xN−1) =

N−1∑
j=0

xj = y0, (19)

where yi is the value converted by the Reed–Muller
transform.

2) Case i = 2`, ` ∈ N: From (9), we have

ωij+N/2 = (ωj + υr−1)i = ωij + υir−1. (20)

Then, from (17) and Lemma 2,

P iN (x0, · · · , xN−1)

=

N/2−1∑
j=0

(xjω
i
j + xj+N/2ω

i
j+N/2)

=

N/2−1∑
j=0

[(xj + xj+N/2)ωij + xj+N/2υ
i
r−1]

=

N/2−1∑
j=0

x′jω
i
j + υir−1

N/2−1∑
j=0

xj+N/2

=P iN/2(x′0, · · · , x′N/2−1) + υir−1 · yN/2,

(21)

where yN/2 is defined in Lemma 2 and x′i is defined
in (18). Notably, by applying the decomposition recur-
sively on (21), we have

P iN (x0, · · · , xN−1) =
r−1∑
j=0

υij · y2j . (22)

Note that y2j can be obtained using the Reed–Muller
transform given in (10).

3) Case i ∈ {`1 + `2|`1 = 2a, `2 = 2b, a < b, a, b ∈ N} :
Similar to (20), we have

ωij+N/2 = (ωj + υr−1)`1+`2

= (ω`1j + υ`1r−1) · (ω`2j + υ`2r−1)

= ωij + ω`1j · υ
`2
r−1 + ω`2j · υ

`1
r−1 + υir−1.

(23)

Then, we have

P iN (x0, · · · , xN−1)

=

N/2−1∑
j=0

(xjω
i
j + xj+N/2ω

i
j+N/2)

=

N/2−1∑
j=0

[(xj + xj+N/2)ωij + xj+N/2υ
i
r−1

+ xj+N/2ω
`1
j υ

`2
r−1 + xj+N/2ω

`2
j υ

`1
r−1]

=P iN/2(x′0, · · · , x′N/2−1) + υir−1 · yN/2
+ υ`2r−1 · P

`1
N/2(xN/2, · · · , xN−1)

+ υ`1r−1 · P
`2
N/2(xN/2, · · · , xN−1).

(24)

Substituting (22) into (24), we have

P iN (x0, · · · , xN−1)

=P iN/2(x′0, · · · , x′N/2−1) + υir−1 · yN/2

+
r−2∑
j=0

(υ`2r−1υ
`1
j + υ`1r−1υ

`2
j ) · yN/2+2j

=P iN/2(x′0, · · · , x′N/2−1)

+ υir−1[yN/2 +
r−2∑
j=0

(υ−`1r−1−j + υ−`2r−1−j) · yN/2+2j ].

(25)
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Similarly, by applying the decomposition recursively on
(25), we have

P iN (x0, · · · , xN−1)

=
r−1∑
j=0

υij · y2j +
r−1∑
j=1

j−1∑
ξ=0

υij(υ
−`1
j−ξ + υ−`2j−ξ) · y2j+2ξ .

(26)
In summary, the first case covers i = 0, the second case

covers i ∈ {1, 2, 4}, and the third case covers i ∈ {3, 5, 6}.
Hence, these three cases cover i ≤ 6. Thus, the algorithm
supports syndrome sizes of t ≤ 7. Moreover, it can be
observed that the algorithm only uses a portion of y in (10)
to compute the syndrome.

3.2 Coding for Reed–Solomon codes
In this section, we present the encoding/decoding algorithm
for RS codes with parity numbers of less than or equal to 7
based on the above fast syndrome computation.

3.2.1 Encoding
From the definition, p = [p0 p1 · · · pt−1]T is the vector of t
parity symbols and m = [m0 m1 · · · mk−1]T is the vector
of k data symbols. From (3) and (13), we have

p = H−1en · Ĥm, (27)

where

Hen =


0 1 · · · 1
0 ω0 · · · ωt−2
...

...
. . .

...
1 ωt−10 · · · ωt−1t−2

 , (28)

Ĥ = Vandt(ωt−1, · · · , ωn−2). (29)

Thus, the encoding consists of two processes. The first
calculates the syndrome s = Ĥm, and the second calculates
p = H−1en · s.

In the first process, the syndrome is denoted as s =
[s0 · · · st−1]T, and N ≥ n − 1 is a power of two. The
N -symbol x is then defined as

x = [0 · · · 0︸ ︷︷ ︸
t−1

m 0 · · · 0︸ ︷︷ ︸
N−n+1

]T, (30)

which consists of three parts. Precisely, the first part has t−1
zeros, the second part contains n − t data symbols, and the
last part has N − n+ 1 zeros. Then, we have

si =
n−2∑
j=t−1

xjω
i
j =

N−1∑
j=0

xjω
i
j = P iN (x)

for i = 0, 1, · · · , t− 1.
In the second process, we calculate

p = H−1en · s = H−1en · [P 0
N P 1

N · · · P t−1N ]T, (31)

where P iN is the abbreviation of P iN (x). Note that H−1en
exists, because it is an extended Vandermonde matrix (see
(28)). In (31), the matrix is given by

H−1en =


0 h0,1 · · · h0,t−2 1
1 h1,1 · · · h1,t−2 0
0 h2,1 · · · h2,t−2 0
...

...
. . .

...
...

0 ht−1,1 · · · ht−1,t−2 0

 . (32)

From (31) and (32), the parity symbols can be obtained via

pi =
t−2∑
j=1

hi,j · P jN +


P t−1N , i = 0,

P 0
N , i = 1,

0, i = 2, 3, · · · , t− 1.

(33)

In summary, the proposed (k, t) RS encoding algorithm
of length n = k + t has the following three steps.
(1) Given the data symbols m and the parity number t, the

matrix H−1en is determined and x is obtained from (30).
Let N = 2r , where r = dlog2(n− 1)e.

(2) Given x and t, calculate {P iN (x)}i=0,1,··· ,t−1 from (19),
(22), (26).

(3) The parity symbols p are calculated from (33).

3.2.2 Decoding
This subsection describes the decoding method for codes
with the parity-check matrix given in (13). Referring to the
above symbols, assume that c′ denotes the codeword with
t erasures located in U = {ui}t−1i=0 , and 0 ≤ u0 < u1 <
· · · < ut−1 ≤ n− 1. From (4), (5) and (13), the final result of
decoding is

[cu0 · · · cut−1 ]T = H−1de · s, (34)

where s = Hc′ and Hde is the submatrix consisting of the
ui-th column of H for ui ∈ U. Here, we construct the input
data x as

x = [c′1, . . . , c
′
n−1︸ ︷︷ ︸

n−1

, 0, . . . , 0︸ ︷︷ ︸
N−n+1

]. (35)

From (14), the fast syndrome computation is then used to
improve the decoding efficiency. The following results are
obtained from Section 3.1.

si =

{
P iN , i = 0, 1, · · · , t− 2,

P iN + c′0 i = t− 1.
(36)

Finally, the erased value can be calculated by substituting
(36) into (34).

3.3 Instance

We consider a (10, 4) RS code over F28 , in which the
primitive root is α. From Section 3.2.1, the encoding process
consists of three steps. We have N = 16 = 24 and the input
sequence x = [0 0 0 m 0 0 0]T from (16) and (30). The 4× 4
constant matrices used for encoding are given by

Hen =


0 1 1 1
0 0 1 α
0 0 1 α2

1 0 1 α3

 ,H−1en =


0 α 1 + α 1
1 1+α

α
1
α 0

0 α
1+α

1
1+α 0

0 1
α+α2

1
α+α2 0

 .
We first calculate {P i16}3i=0 from the input x. Specifically,

the yi required by the algorithm can be obtained from Fig. 3,
and the results are from (19), (22), (26).

P 0
16 = y0,

P 1
16 = y1 + α · y2 + α2 · y4 + α3 · y8,
P 2
16 = y1 + α2 · y2 + α4 · y4 + α6 · y8,
P 3
16 = y1 + α3 · y2 + α6 · y4 + α9 · y8 +

∑
06ξ<j63

ϕj,ξy2j+2ξ ,
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Fig. 3: The RM transform for N = 16

TABLE 2: Definition of notations for complexity analysis

Symbol Definition

Θ(N)
The additive complexity of calculating all required

yi from x

Θ′(N)
The additive complexity of calculating required yi

from the last half of x

Ai(N)
The additive complexity of coding with i + 3

parities, for i = 1, 2, 3, 4

Mi(N)
The multiplicative complexity of coding with i + 3

parities, for i = 1, 2, 3, 4

where ϕj,ξ = αξ+2j +α2ξ+j . Then, the constant matrix H−1en
is multiplied by [P 0

16 P
1
16 P

2
16 P

3
16]T to obtain the following

parity symbols:

p0 = αP 1
16 + (1 + α)P 2

16 + P 3
16, p2 =

αP 1
16 + P 2

16

1 + α
,

p1 = P 0
16 +

(1 + α)P 1
16 + P 2

16

α
, p3 =

P 1
16 + P 2

16

α+ α2
,

(37)

In decoding, we assume that the received codeword c′ =
[c′0 · · · c′13] has 4 erasures at ci, i ∈ {2, 3, 5, 7}. We define
x = [c′1 · · · c′13 0 0 0]T from (35) and set the erased value
to zero, then obtain {P i16}3i=0 in the same way as encoding.
We have [s0 s1 s2 s3] from (36). Finally, the erased symbols
can be calculated via (34). The matrix Hde is a submatrix
consisting of the corresponding columns of erasures in H.
Some optimization techniques and further extensions for the
proposed algorithm are provided in Appendix A.1.

4 THEORETICAL ANALYSIS

This section analyzes the complexity of the proposed algo-
rithm. We show that the proposed algorithm asymptotically
requires 3 XORs per data bit. Note that some of the notations
follow the definition in Table 1, and the new notations for
complexity analysis are defined in Table 2.

4.1 Complexity analysis
From Section 3.2, the encoding and decoding of the pro-
posed algorithm first require the syndrome to be calculated
through the Reed–Muller transform, and then the computed
syndrome is multiplied by an inverse matrix. As the matrix–
vector product requires O(1) operations for t ≤ 7, the

Fig. 4: The signal-flow diagram of (15) with N = 8

complexity of the proposed algorithm is dominated by the
syndrome computation. Nevertheless, at low coding rates,
the complexity caused by the fixed inverse matrix accounts
for a high proportion of the algorithm. Therefore, we an-
alyze the complexity of the algorithm from the above two
processes.

We first consider the syndrome computation for N =
2r = 2dlog2(n−1)e. From (19), (22), and (26), the proposed
algorithm only requires the result of the Reed–Muller trans-
form, where a portion of y is the output to the transform.
Specifically, the proposed algorithm requires y0, {y2i}0≤i<r,
and {y2i+2j}0≤i<j<r. Fig. 4 shows the signal-flow dia-
gram for the case {P iN}6i=0 with N = 8. Each node with
two incoming solid arrows denotes a field addition. If the
number of additions required to compute y0, {y2i}0≤i<r,
and {y2i+2j}0≤i<j<r is denoted as Θ(N). Then, we have
Θ(2) = 1 and

Θ(N) = Θ(N/2) + Θ′(N/2) +N/2, (38)

whereN/2 refers to the number of cross-additions (e.g., xi+
xi+4 for i = 0, · · · , 3), and Θ′(N/2) refers to the operations
on the latter half of the input data. Note that Θ′(•) has the
recurrence relation{

Θ′(2) = 1,

Θ′(N) = Θ′(N/2) +N − 1,
(39)

and we have
Θ′(N) = 2N − r − 2. (40)

Thus, (38) can be written as

Θ(N) = Θ(N/2) + 3N/2− r − 1

⇒ Θ(N) = 3N − r(r + 3)/2− 3.
(41)

Moreover, in Fig. 4, the dashed arrows denote that the value
will be multiplied by a constant factor prior to the addition.
Specifically, for i = 1, 2, 4, computing P iN from {y2i}0≤i<r
requires r−1 additions and r multiplications. For i = 3, 5, 6,
computing P iN from {y2i}0≤i<r and {y2i+2j}0≤i<j<r re-
quires (r2+r−2)/2 additions and (r2+r)/2 multiplications.

Then we consider the complexity of multiplying the
fixed inverse matrix by the syndrome. In the decoding stage,
calculating H−1de s requires t2 − t additions and t2 multi-
plications. In the encoding stage, computing (31) requires
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TABLE 3: The avg.XORs of MDS encoding algorithms,
for t = 4, 5, 6, 7

Encoding algorithms avg.XORs
Circulant Cauchy Codes [17] 3t

Rabin-like Codes [18] 2t
Trifonov’s alg. [3] t

FFT-based alg. [19], [23] 1 + lg t
Ours 3

t2 − 3t + 2 additions and multiplications. The details are
shown in Appendix A.1 and the zeros in H−1en .

Let {Ai(N)}4i=1 and {Mi(N)}4i=1 denote the number
of additions and multiplications in the computations of
parities for t = i + 3. From the above analysis, we then
have

Ai(N) = Θ(N) + t2 +O(r2/2− t),
⇒ Ai(N) = 3N + t2 +O(r2/2− t),

(42)

for i = 1, 2, 3, 4. Furthermore, the multiplicative complexity
is given by

Mi(N) = t2 +O(r2/2− t), i = 1, 2, 3, 4. (43)

4.2 Average number of Operations
Table 3 lists the number of XORs for each number of data
bits in various encoding methods. In particular, the average
number of XORs (avg.XORs) is defined as

avg.XORs =
Total number of XORs
Number of data bits

.

The proposed algorithm is analyzed as follows. When
the elements of F2m are represented by binary polynomials,
the field addition requires m XORs. However, the field
multiplication is much more complicated, and it requires
O(m2) XORs from direct implementation. In addition, the
multiplication can be implemented by using a logarithm
table and an exponential table. Table 4 lists the costs of field
multiplications with different implementations. In particu-
lar, [3] gives a C function to calculate 16 field multiplications
in F28 in parallel with SIMD instruction set. In this case, Ta-
ble 4 gives the number of instructions used in the C function.
Notably, In Table 3, the field multiplication is implemented
by pure XORs. From (16), the maximum codeword length is
n.max = N + 1. When m = O(r), the proposed algorithm
requires

avg.XORs =
Ai(N) ·m+ Mi(N) · O(m2)

(n.max− t) ·m

≈ 3 +
1

N
· O(r3/2 + r · t2),

(44)

which approaches 3 when N approaches infinity. Notably,
one can obtain different analysis results from (44) by con-
sidering different implementations of field multiplications
in Table 4.

In addition, the average number of additions and multi-
plications for certain cases (k, t) is shown in Table 5, where
k and t denote the number of data symbols and parity
symbols, respectively. From [19], the encoding algorithm
based on FFT requires a total of n lg t+ k− t field additions
and n

2 lg t field multiplications. The encoding algorithm [3]

TABLE 4: Cost of the field multiplication in F2m

Methods Costs
Pure XORs O(m2) XORs

Table lookup 1 integer addition and 2 table lookups

Method in [3] (F28 ) 1 shift-right ops, 2 bitwise AND ops,
1 bitwise XOR, and 2 table lookups.

TABLE 5: The complexities of RS encoding algorithms

Config. Number of additions/multiplications per symbol
k t Our alg. Trifonov’s alg. [3] FFT-based alg. in [19]
32 4 3.13/0.75 4.72/0.81 3.13/1.00
48 5 3.25/0.65 4.65/0.52 4.23/1.73
62 6 3.58/0.87 5.9/0.63 4.19/1.68
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Fig. 5: Encoding performance for t = 4, 5, 6, 7

requires around t additions and one multiplication per data
symbol. For the proposed algorithm with optimization, the
number of additions is close to 3 per symbol and the
multiplicative complexity is similar to that given in [3].

5 SIMULATIONS AND EVALUATION

To demonstrate the real performance of the proposed
method on general-purpose CPUs, simulations were per-
formed using an Intel Core i7-4500U with a 1.80 GHz CPU,
8 GB DDR3L, and disable Intel SpeedStep technology. We
implemented the proposed approaches over F28 with Intel’s
SSE Notably, the primitive polynomial was chosen to be
π(x) = x8 + x4 + x3 + x2 + 1. We conducted several
simulations that compared the proposed algorithm with the
FFT-based approaches [19], the erasure coding libraries ISA-
L [20] and Jerasure 2.0 [21]. Note that Jerasure 2.0 adopts the
Cauchy-RS scheme for coding, which uses the optimization
in [10], [24].

In the first simulation, we measured the throughput of
coding cache data with the various procedures. The size of
the cache was λ · k bytes, where λ = 4096 is the stripe unit
size. Fig. 5 and Fig. 6 depict the throughput of the proce-
dures with t = 4, 5, 6, 7, which improves with the length of
the code, and the proposed encoding at t = 5 is about twice
as fast as the other methods. Moreover, as shown in Fig. 6,
the proposed decoding method is better than other methods
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Fig. 6: Decoding performance for t = 4, 5, 6, 7

when k is above some threshold. Specifically, the proposed
decoding algorithm has two steps (see Section 3.2.2), namely
the syndrome computation s = Hc′ and the erasure calcula-
tion H−1de s. The first step is performed by the fast syndrome
computation presented in Section 3, and the second step is
performed by a conventional matrix–vector multiplication.
Thus, the complexity is O(3(k + t) + t2) (when t ≤ 7).
The RS decoding of ISA-L (and Jerasure) calculates H0c

′

using a conventional matrix–vector multiplication, where
H0 = (H−1de H). Thus, the complexity is O(kt). When
k is less than t, the O(kt) of ISA-L is faster than the
O(3(k+t)+t2) of the proposed algorithm. In addition, ISA-
L is written in assembly language and is highly optimized.
In contrast, the proposed approach is implemented in C.
Hence, the threshold in Fig. 6 is slightly larger than the
theoretical value. In the proposed procedure, the encoding
is faster than the decoding. This is due to the input x used
in encoding has more zeros than that used for decoding and
the complexity of calculating (31) can be reduced following
optimization.

From [22], the performance of field multiplication takes
about four times as long as field addition. Due to page
limits, the number of operations used in various procedures
is discussed in Appendix B, and the performance of different
methods to coding a 1-GB file in practical application is
tested.

6 CONCLUSION

In this paper, we have presented efficient RS encoding
algorithms for t = 4, 5, 6, and 7. The proposed algorithm
asymptotically requires 3 XORs per data bit, representing an
improvement over prior results (see Table 3). Furthermore,
an SIMD implementation was also demonstrated. The per-
formance of the proposed algorithm improves as the code
length increases, and is superior to that of other cutting-
edge methods. In particular, when the parity number is
5, the proposed algorithm is about 2 times faster than the
FFT algorithm for finite fields. In the future, the proposed
method will be implemented in a real system to verify its
performance.
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