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Abstract—In this paper, we consider the problem of distributed
detection in tree topologies in the presence of Byzantines.The
expression for minimum attacking power required by the Byzan-
tines to blind the fusion center (FC) is obtained. More specifically,
we show that when more than a certain fraction of individual
node decisions are falsified, the decision fusion scheme becomes
completely incapable. We obtain closed form expressions for the
optimal attacking strategies that minimize the detection error
exponent at the FC. We also look at the possible counter-measures
from the FC’s perspective to protect the network from these
Byzantines. We formulate the robust topology design problem as
a bi-level program and provide an efficient algorithm to solve it.
We also provide some numerical results to gain insights intothe
solution.

Index Terms—Distributed Detection, Byzantine Attacks,
Kullback-Leibler Divergence, Bounded Knapsack Problem, Bi-
level Programming

I. I NTRODUCTION

Distributed detection has been a well studied topic in the
detection theory literature [1] [2] [3] and has traditionally
focused on the parallel network topology. In distributed detec-
tion with parallel topology, nodes make their local decisions
regarding the underlying phenomenon and send them to the
fusion center (FC), where a global decision is made. Even
though the parallel topology has received significant attention,
there are many practical situations where parallel topology
cannot be implemented due to several factors, such as, the
FC being outside the communication range of the nodes and
limited energy budget of the nodes [4]. In such cases, a multi-
hop network is employed, where nodes are organized hierar-
chically into multiple levels (tree networks). With intelligent
use of resources across levels, tree networks have the potential
to provide a suitable balance between cost, coverage, func-
tionality, and reliability [5]. Some examples of tree networks
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include wireless sensor and military communication networks.
For instance, the IEEE 802.15.4 (Zigbee) specifications [6]and
IEEE 802.22b [7] can support tree-based topologies. Theses
nodes are often deployed in open and unattended environments
and are vulnerable to physical tampering.

In recent years, security issues of distributed inference
networks are increasingly being studied. One typical attack on
such networks is a Byzantine attack. While Byzantine attacks
(originally proposed by [8]) may, in general, refer to many
types of malicious behavior; our focus in this paper is on
data-falsification attacks [9]–[17]. In this type of attack, the
compromised node may send false (erroneous) local decisions
to the FC to degrade the detection performance. This attack
becomes more severe in tree topologies where malicious nodes
can alter local decisions of a large part of the network and
cause degradation of system performance and may even make
the decision fusion schemes to become completely incapable.
In this paper, we refer to such a data falsification attacker as
a Byzantine.

A. Related Work

Although distributed detection has been a very active field
of research in the past [1]–[3], security problems in distributed
detection networks gained attention only very recently. In[12],
the authors considered the problem of distributed detection
in the presence of Byzantines for a parallel topology and
determined the optimal attacking strategy which minimizesthe
detection error exponent. They assumed that the Byzantines
know the true hypothesis, which obviously is not satisfied
in practice but does provide a bound. In [13], the authors
analyzed the same problem in the context of collaborative
spectrum sensing. They relaxed the assumption of perfect
knowledge of the hypotheses by assuming that the Byzantines
obtain knowledge about the true hypotheses from their own
sensing observations.

The above work [12], [13] addresses the issue of Byzantines
from the attacker’s perspective. Schemes to mitigate the effect
of Byzantines have also been proposed in the literature.
In [13], the authors proposed a simple scheme to identify
the Byzantines. The idea was to maintain a reputation metric
for every node by comparing each node’s local decision to
the global decision made at the FC using the majority rule.
In [16], the authors proposed another scheme to mitigate
the effect of Byzantines in a parallel topology. The idea
behind the proposed identification scheme is to compare every
node’s observed behavior over time with the expected behavior
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of an honest node. The nodes whose observed behavior is
sufficiently far from the expected behavior are tagged as
Byzantines and this information is employed while making
a decision at the FC. In [17], the authors investigated the
problem of distributed detection in the presence of different
types of Byzantine nodes. Each Byzantine type corresponds
to a different operating point and, therefore, the problem
of identifying different Byzantine nodes along with their
operating points was considered. Once the Byzantine operating
points are estimated, this information was utilized by the FC
to improve global detection performance. The problem of de-
signing the optimal fusion rule and the local sensor thresholds
with Byzantines for a parallel topology was considered in [15].

B. Main Contributions

All the approaches discussed so far consider distributed
detection with Byzantines for parallel topologies. In contrast to
previous work, we study the problem of distributed detection
with Byzantines for tree topologies. More specifically, we
address the problem of distributed detection in perfecta-
ary tree networks in the presence of Byzantine attacks (data
falsification attacks). Well structured (or regular) topologies
such asa-ary tree topologies are commonly picked by network
designers for their simplicity and, therefore, easier network
management. For some practical examples of such networks,
one may refer to [18] (and references within). Perfecta-ary
tree topologies are widely used in peer to peer systems [19].
Also notice that, designing optimal tree topology for various
performance metrics is computationally not feasible [20].
In such scenarios, perfecta-ary topologies provide mathe-
matical tractability and valuable insights into the solution.
For previous works on perfecta-ary tree networks, please
see [21], [22], [23]. We assume that the cost of attacking nodes
at different levels is different and analyze the problem under
this assumption. In our preliminary work on this problem [14],
we analyzed the problem only from an attacker’s perspective
assuming that the honest and Byzantine nodes are identical
in terms of their detection performance. In our current work,
we significantly extend our previous work and investigate the
problem from both the attacker’s and the FC’s perspectives.
For the analysis of the optimal attack, we allow Byzantines to
have different detection performance than the honest nodes
and, therefore, provide a more general and comprehensive
analysis of the problem compared to our previous work [14].
The main contributions of this paper are as follows.

• We obtain a closed form expression for the minimum
attacking power required by the Byzantines to blind
the FC in a tree network and show that when more
than a certain fraction of individual node decisions are
falsified, the decision fusion scheme becomes completely
incapable.

• When the fraction of Byzantines is not sufficient to blind
the FC, we provide closed form expressions for the
optimal attacking strategies for the Byzantines that most
degrade the detection performance.

• We also look at the problem from the network designer’s
(FC) perspective. More specifically, we formulate the

Fusion Center (FC)

Level 3

Level 2

Level 1

Fig. 1. A distributed detection system organized as a perfect binary tree
T (3, 2) is shown as an example.

robust tree topology design problem as a bi-level program
and provide an efficient algorithm to solve it, which is
guaranteed to find an optimal solution, if one exists.

The rest of the paper is organized as follows. Section II
introduces our system model. In Section III, we study the
problem from Byzantine’s perspective and provide closed form
expressions for optimal attacking strategies. In Section IV,
we formulate the robust topology design problem as a bi-
level program and provide an efficient algorithm to solve it
in polynomial time. Finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider a distributed detection system with the topol-
ogy of a perfecta-treeT (K, a) rooted at the FC (See Fig. 1).
A perfecta-tree is ana-ary tree in which all the leaf nodes are
at the same depth and all the internal nodes have degree ‘a’.
T (K, a) has a setN = {Nk}

K
k=1 of transceiver nodes, where

|Nk| = Nk = ak is the total number of nodes at level (or
depth)k. We assume that the depth of the tree isK > 1 and
the number of children isa ≥ 2. The total number of nodes
in the network is denoted as

∑K

k=1 Nk = N . B = {Bk}Kk=1

denotes the set of Byzantine nodes with|Bk| = Bk, where
Bk is the set of Byzantines at levelk. The set containing the
number of Byzantines residing at levels1 ≤ k ≤ K is defined
as an attack configuration, i.e.,{Bk}

K
k=1 = {|Bk|}

K
k=1. Notice

that, for the attack configuration{Bk}Kk=1, the total number
of corrupted paths (or paths containing Byzantine nodes) from
Levelk to the FC are

∑k

i=1 Bi
Nk

Ni
, whereBi

Nk

Ni
gives the total

number of covered1 nodes at levelk by Bi Byzantines at level

i. If we denoteαk = Bk

Nk
, then,

∑k
i=1

Bi
Nk
Ni

Nk
=
∑k

i=1 αi is the
fraction of decisions coming from Levelk that encounter a
Byzantine. In practice, nodes operate with very limited energy
and, therefore, it is reasonable to assume that the packet IDs
(or source IDs) are not forwarded in the tree to save energy.
Moreover, even in cases where the packet IDs (or source
IDs) are forwarded, notice that the packet IDs (or source

1Node i at level k′ covers all its children at levelsk′ + 1 ≤ k ≤ K and
the nodei itself and, therefore, the total number of covered nodes byBk′ ,

Byzantine at levelk′, is
Bk′

Nk′

.
∑K

i=k′ Ni.
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IDs) can be tempered too, thereby preventing the FC to be
deterministically aware of the source of a message. Therefore,
we consider that the FC looks at messages coming from
nodes in a probabilistic manner and considers each received
bit to originate from nodes at levelk with certain probability
βk ∈ [0, 1]. This also implies that, from the FC’s perspective,
received bits are identically distributed. For aT (K, a),

βk =
ak

N
.

A. Distributed detection in a tree topology

We consider a binary hypothesis testing problem with the
two hypothesesH0 (signal is absent) andH1 (signal is
present). Each nodei at level k acts as a source in that it
makes a one-bit local decisionvk,i ∈ {0, 1} and sendsuk,i

to its parent node at levelk − 1, whereuk,i = vk,i if i is an
uncompromised (honest) node, but for a compromised (Byzan-
tine) nodei, uk,i need not be equal tovk,i. It also receives the
decisionsuk′,j of all successorsj at levelsk′ ∈ [k + 1,K],
which are forwarded toi by its immediate children. It for-
wards2 these received decisions along withuk,i to its parent
node at levelk−1. If nodei is a Byzantine, then it might alter
these received decisions before forwarding. We assume error-
free communication channels between children and the parent
nodes. We denote the probabilities of detection and false alarm
of a honest nodei at levelk byPH

d = P (vk,i = 1|H1, i /∈ Bk)
andPH

fa = P (vk,i = 1|H0, i /∈ Bk), respectively. Similarly,
the probabilities of detection and false alarm of a Byzantine
nodei at levelk are denoted byPB

d = P (vk,i = 1|H1, i ∈ Bk)
andPB

fa = P (vk,i = 1|H0, i ∈ Bk), respectively.

B. Byzantine attack model

Now a mathematical model for the Byzantine attack is
presented. If a node is honest, then it forwards its own decision
and received decisions without altering them. However, a
Byzantine node, in order to undermine the network perfor-
mance, may alter its decision as well as received decisions
from its children prior to transmission. We define the following
strategiesPH

j,1, PH
j,0 andPB

j,1, PB
j,0 (j ∈ {0, 1}) for the honest

and Byzantine nodes, respectively:
Honest nodes:

PH
1,1 = 1− PH

0,1 = PH(x = 1|y = 1) = 1 (1)

PH
1,0 = 1− PH

0,0 = PH(x = 1|y = 0) = 0 (2)

Byzantine nodes:

PB
1,1 = 1− PB

0,1 = PB(x = 1|y = 1) (3)

PB
1,0 = 1− PB

0,0 = PB(x = 1|y = 0) (4)

whereP (x = a|y = b) is the probability that a node sends
a to its parent when it receivesb from its child or its actual
decision isb. Furthermore, we assume that if a node (at any
level) is a Byzantine then none of its ancestors are Byzantines;
otherwise, the effect of a Byzantine due to other Byzantines

2For example, IEEE 802.16j mandates tree forwarding and IEEE802.11s
standardizes a tree-based routing protocol.

on the same path may be nullified (e.g., Byzantine ancestor
re-flipping the already flipped decisions of its successor).This
means that any path from a leaf node to the FC will have at
most one Byzantine. Thus, we have,

∑K

k=1 αk ≤ 1 since the
average number of Byzantines along any path from a leaf to
the root cannot be greater than1.

C. Performance metric

The Byzantine attacker always wants to degrade the detec-
tion performance at the FC as much as possible; in contrast, the
FC wants to maximize the detection performance. In this work,
we employ the Kullback-Leibler divergence (KLD) [24] to be
the network performance metric that characterizes detection
performance. The KLD is a frequently used information-
theoretic distance measure to characterize detection perfor-
mance. By Stein’s lemma, we know that in the Neyman-
Pearson setup for a fixed missed detection probability, the false
alarm probability obeys the asymptotics

lim
N→∞

lnPF

N
= −D, for a fixedPM , (5)

wherePM , PF are missed detection and false alarm prob-
abilities, respectively. The KLD between the distributions
πj,0 = P (z = j|H0) and πj,1 = P (z = j|H1) can be
expressed as

D(πj,1||πj,0) =
∑

j∈{0,1}

P (z = j|H1) log
P (z = j|H1)

P (z = j|H0)
. (6)

P (zi = j|H0) =

[

K
∑

k=1

βk

(

k
∑

i=1

αi

)]

[PB
j,0(1 − PB

fa) + PB
j,1P

B
fa] (7)

+

[

K
∑

k=1

βk

(

1−
k
∑

i=1

αi

)]

[PH
j,0(1− PH

fa) + PH
j,1P

H
fa]

P (zi = j|H1) =

[

K
∑

k=1

βk

(

k
∑

i=1

αi

)]

[PB
j,0(1 − PB

d ) + PB
j,1P

B
d ] (8)

+

[

K
∑

k=1

βk

(

1−
k
∑

i=1

αi

)]

[PH
j,0(1− PH

d ) + PH
j,1P

H
d ]

For aK-level network, distributions of received decisions at
the FCzi, i = 1, .., N , underH0 andH1 are given by (7) and
(8), respectively. In order to make the analysis tractable,we
assume that the network designer attempts to maximize the
KLD of each node as seen by the FC. On the other hand, the
attacker attempts to minimize the KLD of each node as seen
by the FC.

Next, we explore the optimal attacking strategies for the
Byzantines that most degrade the detection performance by
minimizing KLD.

III. O PTIMAL BYZANTINE ATTACK

As discussed earlier, the Byzantine nodes attempt to make
their KL divergence as small as possible. Since the KLD is
always non-negative, Byzantines attempt to chooseP (z =
j|H0) andP (z = j|H1) such that KLD is zero. In this case,
an adversary can make the data that the FC receives from the
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nodes such that no information is conveyed. This is possible
when

P (z = j|H0) = P (z = j|H1) ∀j ∈ {0, 1}. (9)

Substituting (7) and (8) in (9) and after simplification, the
condition to make theKLD = 0 for a K-level network can
be expressed as

P
B
j,1 − P

B
j,0 =

∑K

k=1[βk(1−
∑k

i=1 αi)]
∑K

k=1[βk(
∑k

i=1 αi)]]

PH
d − PH

fa

PB
d − PB

fa

(PH
j,0 − P

H
j,1).

(10)
From (1) to (4), we have

P
B
0,1−P

B
0,0 =

∑K

k=1[βk(1−
∑k

i=1 αi)]
∑K

k=1[βk(
∑k

i=1 αi)]]

PH
d − PH

fa

PB
d − PB

fa

= −(PB
1,1−P

B
1,0).

(11)
Hence, the attacker can degrade detection performance by

intelligently choosing(PB
0,1, P

B
1,0), which are dependent onαk,

for k = 1, · · · ,K. Observe that,

0 ≤ PB
0,1 − PB

0,0

since
∑k

i=1 αi ≤ 1 for k ≤ K. To makeKLD = 0, we must
have

PB
0,1 − PB

0,0 ≤ 1

such that(PB
j,1, P

B
j,0) becomes a valid probability mass func-

tion. Notice that, whenPB
0,1−P

B
0,0 > 1 there does not exist any

attacking probability distribution(PB
j,1, P

B
j,0) that can make

KLD = 0. In the case ofPB
0,1 − PB

0,0 = 1, there exists a
unique solution(PB

1,1, P
B
1,0) = (0, 1) that can makeKLD = 0.

For thePB
0,1−PB

0,0 < 1 case, there exist an infinite number of
attacking probability distributions(PB

j,1, P
B
j,0) which can make

KLD = 0.
By further assuming that the honest and Byzantine nodes are

identical in terms of their detection performance, i.e.,PH
d =

PB
d and PH

fa = PB
fa, the above condition to blind the FC

reduces to
∑K

k=1[βk(1 −
∑k

i=1 αi)]
∑K

k=1[βk(
∑k

i=1 αi)]]
≤ 1

which is equivalent to

K
∑

k=1

[βk(1− 2(
k
∑

i=1

αi))] ≤ 0. (12)

Recall thatαk = Bk

Nk
and βk = Nk∑

K
i=1

Ni
. Substituting

αk andβk into (12) and simplifying the result, we have the
following proposition.

Proposition 1. In a tree network withK levels, there exists
an attacking probability distribution(PB

0,1, P
B
1,0) that can make

KLD = 0, and thereby blind the FC, if and only if{Bk}
K
k=1

satisfy
K
∑

k=1

(

Bk

Nk

K
∑

i=k

Ni

)

≥
N

2
. (13)

Dividing both sides of (13) byN , the above condition can
be written as

∑K

k=1 βk

∑k

i=1 αi ≥ 0.5. This implies that to
make the FC blind,50% or more nodes in the network need to
be covered by the Byzantines. Observe that, Proposition 1 sug-
gests that there exist multiple attack configurations{Bk}Kk=1

that can blind the FC. Also notice that, some of these attacking
sets require Byzantines to compromise less than50% of the
nodes in the network. For example, attacking half of the nodes
at Level 1 (i.e.,B1 = N1

2 << N
2 ) cover50% of the nodes in

the network and, therefore, the FC becomes blind. This implies
that in the tree topology Byzantines have more degrees of
freedom to blind the FC as compared to the parallel topology.

Next, to explore the optimal attacking probability distribu-
tion (PB

0,1, P
B
1,0) that minimizesKLD when (12) does not

hold, we explore the properties of KLD.

First, we show that attacking with symmetric flipping
probabilities is the optimal strategy in the region where the
attacker cannot blind the FC. In other words, attacking with
P1,0 = P0,1 is the optimal strategy for the Byzantines. For
analytical tractability, we assumePH

d = PB
d = Pd and

PH
fa = PB

fa = Pfa in further analysis.

Lemma 1. In the region where the attacker cannot blind the
FC, the optimal attacking strategy comprises of symmetric
flipping probabilities. More specifically, any non zero deviation
εi ∈ (0, p] in flipping probabilities(PB

0,1, P
B
1,0) = (p− ε1, p−

ε2), whereε1 6= ε2, will result in increase in the KLD.

Proof: Let us denote,P (z = 1|H1) = π1,1, P (z =

1|H0) = π1,0 and t =
∑K

k=1 βk

∑k

i=1 αi. Notice that,
in the region where the attacker cannot blind the FC, the
parametert < 0.5. To prove the lemma, we first show that
any positive deviationε ∈ (0, p] in flipping probabilities
(PB

1,0, P
B
0,1) = (p, p− ε) will result in an increase in the KLD.

After plugging in (PB
1,0, P

B
0,1) = (p, p− ε) in (7) and (8), we

get

π1,1 = t(p− Pd(2p− ε)) + Pd (14)

π1,0 = t(p− Pfa(2p− ε)) + Pfa. (15)

Now we show that the KLD,D, as give in (6) is a monotoni-
cally increasing function of the parameterε or in other words,
dD

dε
> 0.

dD

dε
= π1,1

(

π′

1,1

π1,1
−

π′

1,0

π1,0

)

+ π′

1,1 log
π1,1

π1,0
(16)

+ (1 − π1,1)

(

π′

1,0

1− π1,0
−

π′

1,1

1− π1,1

)

− π′

1,1 log
1− π1,1

1− π1,0

where
dπ1,1

dε
= π′

1,1 = tPd and
dπ1,0

dε
= π′

1,0 = tPfa and
t is the fraction of covered nodes by the Byzantines. After
rearranging the terms in the above equation, the condition
dD

dε
> 0 becomes

1− π1,1

1− π1,0
+

Pd

Pfa

log
π1,1

π1,0
>

π1,1

π1,0
+

Pd

Pfa

log
1− π1,1

1− π1,0
. (17)

SincePd > Pfa and t < 0.5, π1,1 > π1,0. It can also be
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proved that
Pfa

Pd

π1,1

π1,0
< 1. Hence, we have

1 + (π1,1 − π1,0) >
Pfa

Pd

π1,1

π1,0

⇔ (π1,1 − π1,0)

[
1 + (π1,1 − π1,0)

π1,1(1 − π1,0)

]

>
Pfa

Pd

π1,1

π1,0

[
π1,1 − π1,0

π1,1(1 − π1,0)

]

⇔

[
1 − π1,0 − (1 − π1,1)

1 − π1,0

+
(π1,1 − π1,0)

π1,1

]

>
Pfa

Pd

[
π1,1

π1,0

−
1 − π1,1

1 − π1,0

]

⇔
1 − π1,1

1 − π1,0

+
Pd

Pfa

(

1 −
π1,0

π1,1

)

>
π1,1

π1,0

+
Pd

Pfa

(
1 − π1,1

1 − π1,0

− 1

)

. (18)

To prove that (17) is true, we apply the logarithm inequality

(x − 1) ≥ log x ≥
x− 1

x
, for x > 0 to (18). First, let us

assume thatx =
π1,1

π1,0
. Now, using the logarithm inequality we

can show thatlog
π1,1

π1,0
≥ 1 −

π1,0

π1,1
. Next, let us assume that

x =
1− π1,1

1− π1,0
. Again, using the logarithm inequality it can

be shown that

[

1− π1,1

1− π1,0
− 1

]

≥ log
1− π1,1

1− π1,0
. Using these

results and (18), one can prove that condition (17) is true.
Similarly, we can show that any non zero deviationε ∈ (0, p]
in flipping probabilities(PB

1,0, P
B
0,1) = (p− ε, p) will result in

an increase in the KLD, i.e.,
dD

dε
> 0, or

π1,1

π1,0
+

1− Pd

1− Pfa

log
1− π1,1

1− π1,0
>

1− π1,1

1− π1,0
+

1− Pd

1− Pfa

log
π1,1

π1,0
. (19)

SincePd > Pfa and t < 0.5, π1,1 > π1,0. It can also be

proved that
1− π1,1

1− π1,0
>

1− Pd

1− Pfa

. Hence, we have

1 − π1,1

1 − π1,0

>
1 − Pd

1 − Pfa

[1 − (π1,1 − π1,0)] (20)

⇔
1 − π1,1

π1,0(1 − π1,0)
>

1 − Pd

1 − Pfa

[
1 − (π1,1 − π1,0)

π1,0

]

⇔
1

π1,0(1 − π1,0)
>

1 − Pd

1 − Pfa

[
1 − (π1,1 − π1,0)

π1,0(1 − π1,1)

]

⇔
1

π1,1 − π1,0

[
π1,1

π1,0

−
1 − π1,1

1 − π1,0

]

>
1 − Pd

1 − Pfa

[
1

π1,0

+
1

1 − π1,1

]

(21)

⇔
π1,1

π1,0

−
1 − π1,1

1 − π1,0

>
1 − Pd

1 − Pfa

[
π1,1 − π1,0

π1,0

+
π1,1 − π1,0

1 − π1,1

]

(22)

⇔
π1,1

π1,0

+
1 − Pd

1 − Pfa

[

1 −
1 − π1,0

1 − π1,1

]

>

1 − π1,1

1 − π1,0

+
1 − Pd

1 − Pfa

[
π1,1

π1,0

− 1

]

. (23)

To prove that (19) is true, we apply the logarithm inequality

(x−1) ≥ log x ≥
x− 1

x
, for x > 0 to (23). First, let us assume

thatx =
1− π1,1

1− π1,0
. Now, using the logarithm inequality we can

show thatlog
1− π1,1

1− π1,0
≥ 1 −

1− π1,0

1− π1,1
. Next, let us assume

that x =
π1,1

π1,0
. Again, using the logarithm inequality it can

be shown that

[

π1,1

π1,0
− 1

]

≥ log
π1,1

π1,0
. Using these results

and (23), one can prove that condition (19) is true. Condition
(17) and (19) imply that any non zero deviationεi ∈ (0, p] in
flipping probabilities(PB

0,1, P
B
1,0) = (p− ε1, p− ε2) will result

in an increase in the KLD.
In the next theorem, we present a closed form expression

for the optimal attacking probability distribution(PB
j,1, P

B
j,0)

that minimizesKLD in the region where the attacker cannot
blind the FC.

Theorem 1. In the region where the attacker cannot blind the
FC, the optimal attacking strategy is given by(PB

0,1, P
B
1,0) =

(1, 1).

Proof: Observe that, in the region where the attacker
cannot blind the FC, the optimal strategy comprises of sym-
metric flipping probabilities(PB

0,1 = PB
1,0 = p). The proof

is complete if we show that KLD,D, is a monotonically
decreasing function of the flipping probabilityp.

Let us denote,P (z = 1|H1) = π1,1 andP (z = 1|H0) =
π1,0. After plugging in(PB

0,1, P
B
1,0) = (p, p) in (7) and (8), we

get

π1,1 = t(p− Pd(2p)) + Pd (24)

π1,0 = t(p− Pfa(2p)) + Pfa. (25)

Now we show that the KLD,D, as given in (6) is a mono-
tonically decreasing function of the parameterp or in other

words,
dD

dp
< 0. After plugging in π′

1,1 = t(1 − 2Pd) and

π′
1,0 = t(1− 2Pfa) in the expression of

dD

dp
and rearranging

the terms, the condition
dD

dp
< 0 becomes

(1−2Pfa)

(

1−π1,1

1− π1,0
−

π1,1

π1,0

)

+(1−2Pd) log

(

1− π1,0

1− π1,1

π1,1

π1,0

)

<0 (26)

SincePd > Pfa and t < 0.5, we haveπ1,1 > π1,0. Now,

using the fact that
1− Pd

1− Pfa

>
1− 2Pd

1− 2Pfa

and (21), we have

1

π1,1 − π1,0

[

π1,1

π1,0
−

1− π1,1

1− π1,0

]

>
1− 2Pd

1− 2Pfa

[

1

π1,0
+

1

1− π1,1

]

⇔
π1,1

π1,0
+

1− 2Pd

1− 2Pfa

[

1−
1− π1,0

1− π1,1

]

>

1− π1,1

1− π1,0
+

1− 2Pd

1− 2Pfa

[

π1,1

π1,0
− 1

]

. (27)

Applying the logarithm inequality(x− 1) ≥ log x ≥
x− 1

x
,

for x > 0 to (27), one can prove that (26) is true.
Next, to gain insights into the solution, we present some

numerical results in Figure 2 that corroborate our theoretical
results. We plot KLD as a function of the flipping probabilities
(PB

1,0, PB
0,1). We assume that the probability of detection is

Pd = 0.8, the probability of false alarm isPfa = 0.2 and
the fraction of covered nodes by the Byzantines ist = 0.4. It
can be seen that the optimal attacking strategy comprises of
symmetric flipping probabilities and is given by(PB

0,1, P
B
1,0) =

(1, 1), which corroborate our theoretical result presented in
Lemma 1 and Theorem 1.

Next, we explore some properties of the KLD with respect
to the fraction of covered nodest in the region where the
attacker cannot blind the FC, i.e.,t < 0.5.

Lemma 2. D∗ = min
(PB

j,1
,PB

j,0
)
D(πj,1||πj,0) is a continuous, de-

creasing and convex function of fraction of covered nodes by
the Byzantinest =

∑K

k=1[βk(
∑k

i=1 αi)] in the region where
the attacker cannot blind the FC (t < 0.5).
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Fig. 2. KL distance vs Flipping Probabilities whenPd = 0.8, Pfa = 0.2,
and the fraction of covered nodes by the Byzantines ist = 0.4

Proof: The continuity ofD(πj,1||πj,0) with respect to the
involved distributions implies the continuity ofD∗. To show
that D∗ is a decreasing function oft, we use the fact that
argmin

(PB
0,1,P

B
1,0)

D(πj,1||πj,0) is equal to(1, 1) for t < 0.5 (as shown

in Theorem 1). After plugging(PB
0,1, P

B
1,0) = (1, 1) in the

KLD expression, it can be shown that the expression for the

derivative ofD with respect tot,
dD

dt
, is the same as (26).

Using the results of Theorem 1, it follows that
dD

dt
< 0 and,

therefore,D∗ is a monotonically decreasing function oft in the
region wheret < 0.5. The convexity ofD∗ follows from the
fact thatD∗(πj,1||πj,0) is convex inπj,1 andπj,0, which are
affine transformations oft (Note that, convexity holds under
affine transformation).

It is worth noting that Lemma 2 suggests that by mini-
mizing/maximizing the fraction of covered nodest, the FC
can maximize/minimize the KLD. Using this fact, from now
onwards we will consider fraction of covered nodest in lieu
of the KLD in further analysis in the paper.

Next, to gain insights into the solution, we present some
numerical results in Figure 3 that corroborate our theoretical
results. We plot min

(PB
j,1

,PB
j,0

)
KLD as a function of the fraction of

covered nodes. We assume that the probabilities of detection
and false alarm arePd = 0.8 and Pfa = 0.2, respectively.
Notice that, when50% of the nodes in the network are cov-
ered, KLD between the two probability distributions becomes
zero and FC becomes blind. It can be seen thatD∗ is a
continuous, decreasing and convex function of the fractionof
covered nodest in the regiont < 0.5, which corroborate our
theoretical result presented in Lemma 2.

Until now, we have explored the problem from the attacker’s
perspective. In the rest of the paper we look into the problem
from a network designer’s perspective and propose a technique
to mitigate the effect of the Byzantines. More specifically,
we explore the problem of designing a robust tree topology
considering the Byzantine to incur a cost for attacking the
network and the FC to incur a cost for deploying (including
the cost of protection, etc.) the network. The FC (network
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Fig. 3. min
(PB

j,1
,PB

j,0
)

KL distance vs Fraction of nodes covered whenPd = 0.8

andPfa = 0.2

designer) tries to design a perfecta-ary tree topology under
its cost budget constraint such that the system performance
metric, i.e., KLD is maximized. Byzantines, on the other
hand, are interested in attacking or capturing nodes to cause
maximal possible degradation in system performance, with
the cost of attacking or capturing nodes not to exceed the
attacker’s budget. This problem can be formulated as a bi-
level programming problem where the upper and the lower
level problems with conflicting objectives belong to the leader
(FC) and the follower (Byzantines), respectively.

IV. ROBUST TOPOLOGYDESIGN

In this problem setting, it is assumed that there is a cost
associated with attacking each node in the tree (which may
represent resources required for capturing a node or cloning
a node in some cases). We also assume that the costs for
attacking nodes at different levels are different. Specifically,
let ck be the cost of attacking any one node at levelk. Also,
we assumeck > ck+1 for k = 1, · · · ,K − 1, i.e., it is more
costly to attack nodes that are closer to the FC. Observe that, a
nodei at levelk covers (in other words, can alter the decisions
of) all its successors and nodei itself. It is assumed that the
network designer or the FC has a cost budgetCnetwork

budget and the
attacker has a cost budgetCattacker

budget . LetPk denote the number
of nodes covered by a node at levelk. We refer toPk as the

“profit” of a node at levelk. Notice that,Pk =
∑K

i=k+1
Ni

Nk
+1.

Notice that, in a tree topology,Pk can be written as

Pk = ak × Pk+1 + 1 for k = 1, ...,K − 1, (28)

wherePk is the profit of attacking a node at levelk, Pk+1

is the profit of attacking a node at levelk + 1 andak is the
number of immediate children of a node at levelk. For a
perfecta-ary treeak = a, ∀k andPk = aK−k+1−1

a−1 . The FC
designs the network, such that, given the attacker’s budget,
the fraction of covered nodes is minimized, and consequently a
more robust perfecta-ary tree in terms of KLD (See Lemma 2)
is generated. Next, we formulate our robust topology design
problem.
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A. Robust Perfecta-ary Tree Topology Design

Since the attacker aims to maximize the fraction of covered
nodes by attacking/capturing{Bk}Kk=1 nodes within the cost
budgetCattacker

budget , the FC’s objective is to minimize the fraction
of covered nodes by choosing the parameters(K, a) optimally
in a perfect a-ary tree topologyT (K, a) under its cost
budgetCnetwork

budget . This situation can be interpreted as a Bi-
level optimization problem, where the first decision maker
(the so-called leader) has the first choice, and the second
one (the so-called follower) reacts optimally to the leader’s
selection. It is the leader’s aim to find such a decision which,
together with the optimal response of the follower, optimizes
the objective function of the leader. For our problem, the upper
level problem (ULP) corresponds to the FC who is the leader
of the game, while the lower level problem (LLP) belongs to
the attacker who is the follower. We assume that the FC has
complete information about the attacker’s problem, i.e., the
objective function and the constraints of the LLP. Similarly,
the attacker is assumed to be aware about the FC’s resources,
i.e., cost of deploying the nodes{ck}Kk=1. Next, we formalize
our robust perfecta-ary tree topology problem as follows:

minimize
(K, a)∈Z+

∑K

k=1(a
K−k+1 − 1)Bk

a(aK − 1)

subject to amin ≤ a ≤ amax

K ≥ Kmin

K
∑

k=1

ak ≥ Nmin

K
∑

k=1

cka
k ≤ Cnetwork

budget

maximize
Bk∈Z+

∑K

k=1(a
K−k+1 − 1)Bk

a(aK − 1)

subject to
K
∑

k=1

ckBk ≤ Cattacker
budget

Bk ≤ ak, ∀ k = 1, 2, . . . ,K

(29)

where Z
+ is the set of non-negative integers,amin ≥ 2

and Kmin ≥ 2. The objective function in ULP is the frac-

tion of covered nodes by the Byzantines
∑K

k=1
PkBk

∑
K
k=1

Nk
, where

Pk = aK−k+1−1
a−1 and

∑K

k=1 Nk = a(aK−1)
a−1 . In the constraint

amin ≤ a ≤ amax, amax represents the hardware constraint
imposed by the Medium Access Control (MAC) scheme used
and amin represents the design constraint enforced by the
FC. The constraint on the number of nodes in the network
∑K

k=1 a
k ≥ Nmin ensures that the network satisfies pre-

specified detection performance guarantees. In other words,
Nmin is the minimum number of nodes needed to guarantee
a certain detection performance. The constraint on the cost
expenditure

∑K

k=1 cka
k ≤ Cnetwork

budget ensures that the total
expenditure of the network designer does not exceed the
available budget.

In the LLP, the objective function is the same as that
of the FC, but the sense of optimization is opposite, i.e.,

maximization of the fraction of covered nodes. The constraint
∑K

k=1 ckBk ≤ Cattacker
budget ensures that the total expenditure

of the attacker does not exceed the available budget. The
constraintsBk ≤ ak, ∀k are logical conditions, which prevent
the attacker from attacking non-existing resources.

Notice that, the bi-level optimization problem, in general,
is an NP-hard problem [25]. In fact, the optimization prob-
lem corresponding to LLP is the packing formulation of
the Bounded Knapsack Problem (BKP) [26], which itself,
in general, is NP-hard. Next, we discuss some properties of
our objective function that enable our robust topology design
problem to have a polynomial time solution.

Lemma 3. In a perfecta-ary tree topology, the fraction of

covered nodes
∑

K
k=1

PkBk
∑

K
k=1

Nk
by the attacker with the cost budget

Cattacker
budget for an optimal attack is a non-decreasing function

of the number of levelsK in the tree.

Proof: Let us denote the optimal attack configuration for
a K level perfecta-ary tree topologyT (K, a) by {B1

k}
K
k=1

and the optimal attack configuration for aperfecta-ary tree
topology withK+1 levels by{B2

k}
K+1
k=1 given the cost budget

Cattacker
budget . To prove the lemma, it is sufficient to show that

∑K+1
k=1 P 2

kB
2
k

∑K+1
k=1 Nk

≥

∑K

k=1 P
2
kB

1
k

∑K+1
k=1 Nk

≥

∑K

k=1 P
1
kB

1
k

∑K

k=1 Nk

(30)

whereP 1
k is the profit of attacking a node at levelk in a

K level perfecta-ary tree topology andP 2
k is the profit of

attacking a node at levelk in a K +1 level perfecta-ary tree
topology.

First inequality in (30) follows due to the fact that{B1
k}

K
k=1

may not be the optimal attack configuration for topology
T (K + 1, a). To prove the second inequality observe that, an
increase in the value of parameterK results in an increase in
both the denominator (number of nodes in the network) and
the numerator (fraction of covered nodes). Using this fact,let
us denote

∑K

k=1 P
2
kB

1
k

∑K+1
k=1 Nk

=
x+ x1

y + y1
(31)

with x =
∑K

k=1 P
1
kB

1
k with P 1

k =
aK−k+1 − 1

a− 1
, y =

∑K

k=1 Nk =
a(aK − 1)

a− 1
, x1 =

∑K

k=1(B
1
ka

K−k+1) is the

increase in the profit by adding one more level to the topology
andy1 = aK+1 is the increase in the number of nodes in the
network by adding one more level to the topology .

Note that
x+ x1

y + y1
>

x

y
if and only if

x

y
<

x1

y1
, (32)

wherex, y, x1, and y1 are positive values. Hence, it is suffi-
cient to prove that

aK+1
∑K

k=1

(

B1
k

ak

)

−
∑K

k=1 B
1
k

a(aK − 1)
≤

∑K

k=1(B
1
ka

K−k+1)

aK+1
.
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Fig. 4. Fraction of nodes covered vs ParameterK whena = 2, K is varied
from 2 to 9, [c1, · · · , c9] = [52, 48, 24, 16, 12, 8, 10, 6, 4], and
Cattacker

budget
= 50

The above equation can be further simplified to

K
∑

k=1

(

B1
k

ak

)

≤
K
∑

k=1

(

B1
k

a

)

which is true for allK ≥ 1.
Next, to gain insights into the solution, we present some

numerical results in Figure 4 that corroborate our theoretical
results. We plot the fraction of covered nodes by the Byzan-
tines as a function of the total number of levels in the tree.
We assume thata = 2 and varyK from 2 to 9. We also
assume that the cost to attack nodes at different levels are
given by [c1, · · · , c9] = [52, 48, 24, 16, 12, 8, 10, 6, 4]
and the cost budget of the attacker isCattacker

budget = 50. For each
T (K, 2), we find the optimal attack configuration{Bk}Kk=1

by an exhaustive search. It can be seen that the fraction of
covered nodes is a non-decreasing function of the number of
levelsK, which corroborate our theoretical result presented in
Lemma 3.

Next, we explore some properties of the fraction of covered
nodes with parametera for a perfect a-ary tree topology.
Before discussing our result, we define the parameteramin as
follows. For a fixedK and attacker’s cost budgetCattacker

budget ,
amin is defined as the minimum value ofa for which the
attacker cannot blind the network or cover50% or more
nodes. So we can restrict our analysis toamin ≤ a ≤ amax.
Notice that, the attacker cannot blind all the treesT (K, a)
for which a ≥ amin and can blind all the treesT (K, a) for
which a < amin.

Lemma 4. In a perfecta-ary tree topology, the fraction of

covered nodes
∑

K
k=1

PkBk
∑

K
k=1

Nk
by an attacker with cost budget

Cattacker
budget in an optimal attack is a decreasing function of pa-

rametera for a perfecta-ary tree topology fora ≥ amin ≥ 2.

Proof: As before, let us denote the optimal attack con-
figuration for aK level perfecta-ary tree topologyT (K, a)
by {B1

k}
K
k=1 and the optimal attack configuration for aperfect

(a+1)-ary tree topologyT (K, a + 1) by {B2
k}

K
k=1 given the

cost budgetCattacker
budget . To prove the lemma, it is sufficient to

show that

∑K

k=1 P
2
kB

2
k

∑K

k=1 N
2
k

<

∑K

k=1 P
1
kB

2
k

∑K

k=1 N
1
k

≤

∑K

k=1 P
1
kB

1
k

∑K

k=1 N
1
k

(33)

whereN1
k is the number of nodes at levelk in T (K, a), N2

k

is the number of nodes at levelk in T (K, a + 1), P 1
k is the

profit of attacking a node at levelk in T (K, a) andP 2
k is the

profit of attacking a node at levelk in T (K, a+ 1). Observe
that, an interpretation of (33) is that the attacker is usingthe
attack configuration{B2

k}
K
k=1 to attackT (K, a). However,

one might suspect that the set{B2
k}

k=K
k=1 is not a valid solution.

More specifically, the set{B2
k}

k=K
k=1 is not a valid solution in

the following two cases:
1.min(B2

k, N
1
k ) = N1

k for anyk: For example, ifN1
1 = 4 for

T (K, 4) andB2
1 = 5 for T (K, 5) then it will not be possible

for the attacker to attack5 nodes at level1 in T (K, 4) because
the total number of nodes at level1 is 4. In this case,{B2

k}
K
k=1

might not be a valid attack configuration for the treeT (K, a).
2. {B2

k}
k=K
k=1 is an overlapping set3 for T (K, a): For example,

for T (2, 3) if B2
1 = 2 and B2

2 = 4, then,B2
1 and B2

2 are
overlapping. In this case,{B2

k}
K
k=1 might not be a valid attack

configuration for the treeT (K, a).
However, both of the above conditions imply that the attacker
can blind the network withCattacker

budget (See Appendix A), which
cannot be true fora ≥ amin, and, therefore,{B2

k}
K
k=1 will

indeed be a valid solution. Therefore, (33) is sufficient to prove
the lemma.

Notice that, the second inequality in (33) follows due to the
fact that{B2

k}
K
k=1 may not be the optimal attack configuration

for topologyT (K, a). To prove the first inequality in (33), we
first consider the case where attack configuration{B2

k}
k=K
k=1

contains only one node, i.e.,B2
k = 1 for somek, and show

that P 2
k∑

K
k=1

N2
k

<
P 1

k∑
K
k=1

N1
k

. SubstitutingP 1
k =

aK−k+1 − 1

a− 1
for

somek and
∑K

k=1 N
1
k =

a(aK − 1)

a− 1
in the left side inequality

of (33), we have

(a)K−k+1 − 1

(a)((a)K − 1)
>

(a+ 1)K−k+1 − 1

(a+ 1)((a+ 1)K − 1)
.

After some simplification, the above condition becomes

(a+ 1)K+1[(a)K−k+1 − 1]− (a)K+1[(a+ 1)K−k+1 − 1]

+a[(a+ 1)K−k+1 − 1]− (a+ 1)[(a)K−k+1 − 1] > 0. (34)

In Appendix B, we show that

(a)[(a+ 1)K−k+1 − 1]− (a+ 1)[(a)K−k+1 − 1] > 0 (35)

and

(a+1)K+1[aK−k+1−1]−aK+1[(a+1)K−k+1−1] ≥ 0. (36)

3We call Bk andBk+x are overlapping, if the summation ofBk+x
k

and
Bk+x is greater thanNk+x, whereBk+x

k
is the number of nodes covered

by the attack configurationBk at level k + x. In a non-overlapping case,
the attacker can always arrange nodes{Bk}

K
k=1 such that each path in the

network has at most one Byzantine.
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Fig. 5. Fraction of nodes covered vs Parametera whenK = 6, parametera
is varied from 3 to 11,[c1, · · · , c9] = [52, 48, 24, 16, 12, 8, 10, 6, 4],
andCattacker

budget
= 50

From (36) and (35), condition (34) holds.
Since we have proved that

P 2
k

∑K

k=1 N
2
k

<
P 1
k

∑K

k=1 N
1
k

for all 1 ≤ k ≤ K,

to generalize the proof for any arbitrary attack configuration
{B2

k}
K
k=1 we multiply both sides of the above inequality with

B2
k and sum it over all1 ≤ k ≤ K inequalities. Now, we have

∑K

k=1 P
2
kB

2
k

∑K

k=1 N
2
k

<

∑K

k=1 P
1
kB

2
k

∑K

k=1 N
1
k

.

Next, to gain insights into the solution, we present some
numerical results in Figure 5 that corroborate our theoretical
results. We plot the fraction of covered nodes by the Byzan-
tines as a function of the parametera in the tree. We assume
that the parameterK = 6 and varya from 3 to 11. We also
assume that the cost to attack nodes at different levels are
given by [c1, · · · , c9] = [52, 48, 24, 16, 12, 8, 10, 6, 4]
and the cost budget of the attacker isCattacker

budget = 50. For each
T (6, a) we find the optimal attack configuration{Bk}Kk=1

by an exhaustive search. It can be seen that the fraction of
covered nodes is a decreasing function of the parametera,
which corroborate our theoretical result presented in Lemma 4.
Note that, while deriving the results in Lemma 3 and Lemma 4
we have made no additional assumptions on how the attack
configuration{Bk}Kk=1 is obtained, so that the two lemmas
would still hold even if the cost of deploying a node (cnetwork

k )
is different from the cost of attacking (cattackerk ) it. Further, as
noted in the paper, Lemma 3 and Lemma 4 suggest that the
solution of the upper level problem, i.e.,(K, a), is independent
of the solution of lower level problem, i.e.,{Bk}Kk=1. In other
words, even ifcnetwork

k 6= cattackerk , the proposed solution
approach would still hold.

Next, based on the above Lemmas we present an algorithm
which can solve our robust perfecta-ary tree topology design
problem (bi-level programming problem) efficiently.

B. Algorithm for solving Robust Perfecta-ary Tree Topology
Design Problem

Algorithm 1 Robust Perfecta-ary Tree Topology Design
Require: ck > ck+1 for k = 1, ..., K − 1

1: K ← Kmin; a← amax

2: if
(

∑K

k=1 cka
k > Cnetwork

budget

)

then

3: Find the largest integera− `, ` ≥ 0, such that
∑K

k=1 ck(a−
`)k ≤ Cnetwork

budget

4: if (a− ` < amin) then
5: return (φ, φ)
6: else
7: a← a− `
8: end if
9: end if

10: if
(

∑K

k=1 a
k
≥ Nmin

)

then
11: return (K, a)
12: else
13: K ← K + 1
14: return to Step 2
15: end if

Based on Lemma 3 and Lemma 4, we present a polynomial
time algorithm for solving the robust perfecta-ary tree topol-
ogy design problem. Observe that, the robust network design
problem is equivalent to designing perfecta-ary tree topology
with minimum K and maximuma that satisfy network de-
signer’s constraints. In Algorithm 1, we start with the solution
candidate(Kmin, amax). First, the algorithm finds the largest
integer(amax − l), l ≥ 0 that satisfies the cost expenditure
constraint. If this value violates the hardware constraint, i.e.,
(amax − l) < amin, we will not have any feasible solution
which satisfies the network designer’s constraints. Next, the
algorithm checks if(Kmin, (amax − l)) satisfies the total
number of nodes constraint. If it does, this will be the solution
for the problem, otherwise, we increaseKmin by one, i.e.,
Kmin ← Kmin + 1. Now, we have a new solution candidate
(Kmin+1, (amax− l)) and the algorithm solves the problem
recursively in this manner.

This procedure greatly reduces the complexity because we
do not need to solve the lower level problem in this case. Next,
we prove that Algorithm 1 indeed yields an optimal solution.

Lemma 5. Robust Perfecta-ary Tree Topology Design algo-
rithm (Algorithm 1) yields an optimal solution(K∗, a∗), if
one exists.

Proof: Assume that the optimal solution exists. Let us de-
note by(K∗, a∗), the optimal solution given by Algorithm 1.
The main idea behind our proof is that any solution(K, a) with
K ≥ K∗ anda ≤ a∗ cannot perform better than(K∗, a∗) as
suggested by Lemma 3 and Lemma 4. This property implies
that the search should start with the smallest possibleK and
simultaneously the largesta, i.e., (Kmin, amax).

Notice that, our algorithm searches for the feasible solution
with the smallestK and the largesta. Any feasible solution
(K, a) satisfies the following two conditions:

1)
∑K

k=1 cka
k ≤ Cnetwork

budget ;

2)
∑K

k=1 a
k ≥ Nmin.
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By Lemma 4, if(K, a) is a feasible solution, then(K, a′)
with a′ < a will not be a better solution than(K, a). Hence,
for a givenK, Step 3 only locates the solution with largesta
for a givenK. Furthermore, if both(K, a) and(K ′, a′) satisfy
Condition 1 andK < K ′, then a ≥ a′. Hence, for a given
K, the largesta in the current iteration satisfying Condition 1
cannot be larger than thea found in the previous iteration.
This verifies that̀ ≥ 0 is a sufficient condition to find the
largesta in Step 3.

Next, we prove that Algorithm 1 stops when the first
feasible solution has been found. That is, the first feasible
solution found by the algorithm is(K∗, a∗). Let (K1, a1)
be the first feasible solution found by Algorithm 1. It can
be observed from the algorithm thatK∗ ≥ K1 since the
algorithm increasesK from its smallest possible value and
has not found a feasible solution untilK = K1. It is clear
that the next feasible solution(K, a) must haveK > K1

anda ≤ a1, since, the algorithm increasesK and it satisfies
Condition 1. As suggested by Lemma 3 and Lemma 4,(K, a)
cannot be a better solution than(K1, a1). Hence,K∗ = K1

and (K1, a1) is equal to(K∗, a∗).
It can be seen that if there is no solution, then the algorithm

will return (∅, ∅). This is due to the fact that ifa− ` < amin,
then no a can satisfy Condition 1 for current and further
iterations. Hence, the algorithm terminates and returns(∅, ∅).

Next, to gain insights into the solution, we present some
numerical results in Figure 6 that corroborate our theoretical
results. We plot the min

P1,0,P0,1

KLD for all the combinations

of parameterK and a in the tree. We vary the parameter
K from 2 to 10 and a from 3 to 11. We also assume that
the costs to attack nodes at different levels are given by
[c1, · · · , c10] = [52, 50, 25, 24, 16, 10, 8, 6, 5, 4], and
cost budgets of the network and the attacker are given by
Cnetwork

budget = 400000, Cattacker
budget = 50, respectively. The node

budget constraint is assumed to beNmin = 1400. For each
T (K, a), we find the optimal attack configuration{Bk}Kk=1

by an exhaustive search. All the feasible solutions are plotted
in red and unfeasible solutions are plotted in blue. Notice

that, T (Kmin, amax) which is T (2, 11) is not a feasible
solution and, therefore, if we use Algorithm 1 it will try
to find the feasible solution which has minimum possible
deviation from T (Kmin, amax). It can be seen that the
optimal solutionT (3, 11) has minimum possible deviation
from theT (Kmin, amax), which corroborate our algorithm.

V. CONCLUSION

In this paper, we have considered distributed detection in
perfecta-ary tree topologies in the presence of Byzantines,
and characterized the power of attack analytically. We pro-
vided closed-form expressions for minimum attacking power
required by the Byzantines to blind the FC. We obtained
closed form expressions for the optimal attacking strategies
that minimize the detection error exponent at the FC. We
also looked at the possible counter-measures from the FC’s
perspective to protect the network from these Byzantines. We
formulated the robust topology design problem as a bi-level
program and provided an efficient algorithm to solve it. There
are still many interesting questions that remain to be explored
in the future work such as an analysis of the problem for
arbitrary topologies. Note that, some analytical methodologies
used in this paper are certainly exploitable for studying the
attacks in different topologies. Other questions such as the
case where Byzantines collude in several groups (collaborate)
to degrade the detection performance can also be investigated.

APPENDIX A

We want to show that the set{Bk}Kk=1 can blind the FC if
any of following two cases is true.
1. min(Bk, Nk) = Nk for any k,
2. {Bk}k=K

k=1 is an overlapping set
In other words, set{Bk}Kk=1 covers50% or more nodes. Let
us denote bỹk, the k for which min(Bk, Nk) = Nk (there
can be multiple suchk). Then{Bk}Kk=1 satisfies

∑K

k=1 PkBk
∑K

k=1 Nk

≥
Pk̃Bk̃

∑K

k=1 Nk

≥
Pk̃Nk̃

∑K

k=1 Nk

≥
PKNK
∑K

k=1 Nk

. (37)

Similarly, let us assumeBk′ andBk̃ are overlapping with̃k =
k′ + x (there can be multiple overlappingk). Then{Bk}Kk=1

satisfies

∑K

k=1 PkBk
∑K

k=1 Nk

≥
Pk̃Bk̃ + Pk′Bk′

∑K

k=1 Nk

≥
Pk̃Nk̃

∑K

k=1 Nk

≥
PKNK
∑K

k=1 Nk

.

(38)

Observe that, to prove our claim it is sufficient to show that

PKNK
∑K

k=1 Nk

≥ 0.5⇔ PKNK ≥
N

2
. (39)

Using the fact that for a Perfecta-ary treePK = 1, NK = aK

andN = a(aK−1)
a−1 the condition (39) becomes

2× aK ≥
a(aK − 1)

a− 1
. (40)
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Whena ≥ 2, we have

a× aK ≥ 2× aK

⇔ a+ aK+1 ≥ 2× aK

⇔ 2× aK+1 − 2× aK ≥ aK+1 − a

⇔ 2× aK ≥
a(aK − 1)

a− 1
.

Hence, (39) holds and this completes our proof.

APPENDIX B
We skip the proof of (35) and only focus on the proof of

(36). To show

(a + 1)K+1[(a)K−k+1 − 1] − (a)K+1[(a + 1)K−k+1 − 1] ≥ 0 for a ≥ 2

is equivalent to show

a
K+1[(a − 1)K−k+1 − 1] − (a − 1)K+1[aK−k+1 − 1] ≥ 0 for a ≥ 3

which can be simplified to

(a(a−1))K−k+1[ak−(a−1)k] ≥ [aK+1−(a−1)K+1]. (41)

Using binomial expansion, (41) becomes

(a(a − 1))K−k+1[ak−1 + (a − 1)ak−2 + · · · + (a − 1)k−1] ≥

[aK + (a − 1)aK−1 + · · · + (a − 1)K−1
a + (a − 1)K ]

⇔ (a − 1)K−k+1[aK + (a − 1)aK−1 + · · · + (a − 1)k−1
a
K−k+1]

︸ ︷︷ ︸

k terms

≥

[aK + (a − 1)aK−1 + · · · + (a − 1)k−1
a
K−k+1]

︸ ︷︷ ︸

k terms

+

[(a − 1)kaK−k + · · · + (a − 1)K−1
a + (a − 1)K ]

︸ ︷︷ ︸

K-k+1 terms

⇔ ((a − 1)K−k+1 − 1)[aK + · · · + (a − 1)k−1
a
K−k+1] ≥

[(a − 1)kaK−k + · · · + (a − 1)K−1
a + (a − 1)K ]. (42)

Sincea ≥ 3, we have((a−1)K−k+1−1) ≥ (K−k+1) ≥ 1.
Hence,

((a − 1)K−k+1 − 1)[aK + · · · + (a − 1)k−1
a
K−k+1] ≥

((a − 1)K−k+1 − 1)aK ≥ [(a − 1)kaK−k + · · · + (a − 1)K ]
︸ ︷︷ ︸

K-k+1 terms

(43)

and (42) holds.
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