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Abstract—The problem of distributed inference with M-ary
quantized data at the sensors is investigated in the presence of
Byzantine attacks. We assume that the Byzantine nodes attack
the inference network by modifying the symbol corresponding to
the quantized data to one of the other symbols in the quantization
alphabet-set and transmitting falsified symbol to the fusion center
(FC). In this paper, we find the optimal Byzantine attack that
blinds any distributed inference network. As the quantization al-
phabet size increases, a tremendous improvement in the security
performance of the distributed inference network is observed.
In addition to the perfect channel case, in Appendix A, we also
analyze the optimal Byzantine attack when the channel between
the nodes and the FC is noisy and is modelled as a discrete
M-ary channel. We also investigate the optimal attack within
the restricted space of highly-symmetric attack strategies, that
maximally degrades the performance of the inference network
in the presence of resource-constrained Byzantine attacks. A
reputation-based scheme for identifying malicious nodes is also
presented as the network’s strategy to mitigate the impact of
Byzantine threats on the inference performance of the distributed
sensor network. We also provide asymptotic analysis to find the
optimal reputation-based scheme as a function of the fraction of
compromised nodes in the network.

Index Terms—Distributed Inference, Network-Security, Sen-
sor Networks, Byzantine Attacks, Kullback-Leibler Divergence,
Fisher Information.

I. INTRODUCTION

Distributed inference in sensor networks has been widely
studied by several scholars in the past three decades (See [1]-
[11] and references therein). The distributed inference frame-
work comprises of a group of spatially distributed sensors
which acquire observations about a phenomenon of interest
(POI) and send processed data to a fusion center (FC) where
a global inference is made. Due to resource-constraints in
sensor networks, this data is processed at the sensors in such
a way that the observations are mapped to symbols from
an alphabet set of size M, prior to transmission to the FC.
When M = 2, we employ binary quantization to generate
processed data. When M > 2, we send an M-ary symbol
that is assumed to be generated via fine quantization. A
sensor decision rule is assumed to be characterized by a set
of quantization thresholds. In this paper, we use the phrases
‘mapped to one of the M-ary symbols’ and ‘quantized to an
M-ary symbol’ interchangeably. A lot of work in the past has

V. Sriram Siddhardh (Sid) Nadendla and Pramod K. Varshney are with the
Department of Electrical Engineering and Computer Science, Syracuse Uni-
versity, Syracuse, NY 13201, USA. E-mail: {vnadendl, varshney} @syr.edu.

Yunghsiang S. Han is with the Department of Electrical Engineering,
National Taiwan University of Science and Technology, Taipei, Taiwan. E-
mail: yshan@mail.ntust.edu.tw.

focussed on the binary quantization case, i.e., M = 2. In
this paper, we consider the case of more general M, M = 2
being a special case. The framework of distributed inference
networks has been extensively studied for different types of
inference problems such as detection (e.g., [1], [3], [S]-[8],
[12]), estimation (e.g., [3], [9], [10]), and tracking (e.g., [3],
[11]) in the presence of both ideal and non-ideal channels. In
this paper, we focus our attention on two distributed inference
problems, namely defection and estimation in the framework
of distributed inference, where sensors quantize their data to
M-ary symbols.

Although the area of sensor networks has been a very
active field of research in the past, security problems in sensor
networks have gained attention only in the last decade [13]-
[15]. As the security threats have evolved more specifically
directed towards inference networks, attempts have been made
at the system-level to either prevent or mitigate these threats
from deteriorating the network performance. While there are
many types of security threats, in this paper, we address the
problem of one such attack, called the Byzantine attack, in
the context of distributed inference networks (see a recent
survey [16] by Vempaty et al.). Byzantine attacks (proposed
by Lamport et al. in [17]) in general, are arbitrary and may
refer to many types of malicious behavior. In this paper, we
focus only on the data-falsification aspect of the Byzantine
attack wherein one or more compromised nodes of the network
send false information to the FC in order to deteriorate the
inference performance of the network. A well known example
of this attack is the man-in-the-middle attack [18] where,
on one hand, the attacker collects data from the sensors
whose authentication process is compromised by the attacker
emulating as the FC, while, on the other hand, the attacker
sends false information to the FC using the compromised
sensors’ identity. In summary, if the i*” sensor’s authentication
is compromised, the attacker remains invisible to the network,
accepts the true decision u; from the it sensor and sends v;
to the FC in order to deteriorate the inference performance.

Marano et al., in [19], analyzed the Byzantine attack on
a network of sensors carrying out the task of distributed
detection, where the attacker is assumed to have complete
knowledge about the hypotheses. This represents the extreme
case of Byzantine nodes having an extra power of knowing
the true hypothesis. In their model, they assumed that the
sensors quantized their respective observations into M-ary
symbols, which are later fused at the FC. The Byzantine
nodes pick symbols using an optimal probability distribution
that are conditioned on the true hypotheses, and transmit
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them to the FC in order to maximally degrade the detection
performance. Rawat et al., in [20], also considered the problem
of distributed detection in the presence of Byzantine attacks
with binary quantizers at the sensors in their analysis. Unlike
the authors in [19], Rawat et al. did not assume complete
knowledge of the true hypotheses at the Byzantine attacker.
Instead, they assumed that the Byzantine nodes derive the
knowledge about the true hypotheses from their own sensing
observations. In other words, a Byzantine node potentially
flips the local decision made at the node. It does not modify
the thresholds at the sensor quantizers. Rawat et al. also
analyzed the performance of the network in the presence of
independent and collaborative Byzantine attacks and modeled
the problem as a zero-sum game between the sensor network
and the Byzantine attacker. In addition to the analysis of
distributed detection in the presence of Byzantine attacks, a
reputation-based scheme was proposed by Rawat et al. in
[20] for identifying the Byzantine nodes by accumulating
the deviations between each sensor’s decision and the FC’s
decision over a time window of duration 7T'. If the accumulated
number of deviations is greater than a prescribed threshold
for a given node, then the FC tags it as a Byzantine node.
In order to mitigate the attack, the FC removes nodes which
are tagged Byzantine node from the fusion rule. Another
mitigation scheme was proposed by Vempaty et al. [21], where
each sensor’s behavior is learnt over time and compared to the
known behavior of the honest nodes. Any significant deviation
in the learnt behavior from the expected honest behavior is
labelled Byzantine node. Having learnt their parameters, the
authors also proposed the use of this information to adapt their
fusion rule so as to maximize the performance of the FC. In
contrast to the parallel topology in sensor networks, Kailkhura
et al. in [22] investigated the problem of Byzantine attacks on
distributed detection in a hierarchical sensor network. They
presented the optimal Byzantine strategy when the sensors
communicate their decisions to the FC in multiple hops of
a balanced tree. They assumed that the cost of compromising
sensors at different levels of the tree varies, and found the
optimal Byzantine strategy that minimizes the cost of attacking
a given hierarchical network.

Soltanmohammadi et al. in [23] investigated the problem
of distributed detection in the presence of different types
of Byzantine nodes. Each Byzantine node type corresponds
to a different operating point, and, therefore, the authors
considered the problem of identifying different Byzantine
nodes, along with their operating points. The problem of
maximum-likelihood (ML) estimation of the operating points
was formulated and solved using the expectation-maximization
(EM) algorithm. Once the Byzantine node operating points are
estimated, this information was utilized at the FC to mitigate
the malicious activity in the network, and also to improve
global detection performance.

Distributed target localization in the presence of Byzantine
attacks was addressed by Vempaty et al. in [24], where
the sensors quantize their observations into binary decisions,
which are transmitted to the FC. Similar to Rawat et al.’s
approach in [20], the authors in [24] investigated the problem
of distributed target localization from both the network’s

and Byzantine attacker’s perspectives, first by identifying the
optimal Byzantine attack and second, mitigating the impact
of the attack with the use of non-identical quantizers at the
Sensors.

In this paper, we extend the framework of Byzantine attacks
when Byzantine nodes do not have complete knowledge about
the true state of the phenomenon-of-interest (POI), and when
the sensors generate M-ary symbols instead of binary symbols.
We also assume that the Byzantine attacker is ignorant about
the quantization thresholds used at the sensors to generate the
M-ary symbols.! Under these assumptions, we address two
inference problems: binary hypotheses-testing and parameter
estimation.

The main contributions of the paper are three-fold. First,
we define a Byzantine attack model for a sensor network with
individual sensors quantizing their observations into one of
the M-ary symbols, when the attacker does not have complete
knowledge about the true state of the POI and thresholds
employed by the sensors. We model the attack strategy as
a flipping probability matrix, where (i,7)*" entry represents
the probability with which the i*” symbol is flipped into the
4t symbol. Second, we show that quantization into M-ary
symbols at the sensors, as opposed to binary quantization,
improves both inference as well as security performance
simultaneously. As a function of the number of Byzantine
nodes in the network, we derive the optimal flipping matrix.
Finally, we extend the mitigation scheme presented by Rawat
et al. in [20] to the more general case where sensors generate
M-ary symbols. We present simulation results to illustrate the
performance of the reputation-based scheme for the identifi-
cation of Byzantine nodes in the network.

The remainder of the paper is organized as follows. In
Section II, we describe our system model and present the
Byzantine attack model for the case where sensors generate
M-ary symbols when the attacker has no knowledge about
the true state of the phenomenon of interest and quantization
thresholds employed by the sensors. Next, we determine the
most powerful attack strategy that the Byzantine nodes can
adopt in Section IIl. In the case of resource-constrained
Byzantine attacks, where the attacker cannot compromise
enough number of nodes in the network to blind it (to be
defined in Section II), we find the optimal Byzantine attack
for a fixed fraction of Byzantine nodes in the network in
the context of distributed detection and estimation in Sections
IV and V respectively. From the network’s perspective, we
present a mitigation scheme in Section VI that identifies the
Byzantine nodes using reputation-tags. Finally, we present our
concluding remarks in Section VIIL

II. SYSTEM MODEL

Consider an inference (sensor) network with N sensors,
where « fraction of the nodes in the network are assumed
to be compromised (Refer to Figure 1a). These compromised
sensors transmit false data to the fusion center (FC) in order
to deteriorate the inference performance of the network. We
assume that the network is designed to infer about a particular

The well-known attacker-in-the-middle is one such example.
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Fig. 1: Distributed Inference Network in the Presence of Byzantine Attacks

phenomenon, regarding which sensors acquire conditionally-
independent observations. We denote the observation of the
it" sensor as r;. This observation r; is mapped to one of the
M symbols, u; € {1,---,M}. In a compromised inference
network, since the Byzantine sensors do not transmit their true
quantized data, we denote the transmitted symbol as v; at the
it" sensor. If the node 7 is honest, then v; = w;. Otherwise, we
assume that the Byzantine sensor modifies u; = [ to v; = m
with a probability p;,,, as shown in Figure 1b. For the sake of
compactness, we denote the transition probabilities depicted
in the graph in Figure 1b using a row-stochastic matrix P, as
follows:

P11 P12 Pim
P21 P22 Pamr

P= . ) ) (D
Pm1 Pm2 Pmm

Since the attacker has no knowledge of quantization thresh-
olds employed at each sensor, we assume that P is in-
dependent of the sensor observations. The messages v =
{v1,v2, - ,un} are transmitted to the fusion center (FC)
where a global inference is made about the phenomenon of
interest based on v.

In order to consider the general inference problem, we
assume that § € O is the parameter that denotes the phe-
nomenon of interest in the received signal r; at the i** sensor.
If we are considering a detection/classification problem, 6 is
discrete (finite or countably infinite). In the case of param-
eter estimation, © is a continuous set. Without any loss of
generality, we assume © = {0,1,--- , K — 1} if the problem
of interest is classification. Hence, detection is a special case
of classification with ' = 2. In the case of estimation, we
assume that © = R.

Note that the performance of the FC is determined by the
probability distribution (mass function) P(v|¢). Therefore, in
Section III, we analyze the behavior of P(v|f) in the presence
of different attacks and identify the one with the greatest
impact on the network.

III. OPTIMAL BYZANTINE ATTACKS

Given the conditional distribution of r;, p(r;|6), and the
sensor quantization thresholds, A; for 0 < 7 < M, the
conditional distribution of u; can be found as

Plus = mlo) = [

Am—1

Am
p(r;|0)dr; 2

foralm=1,2,--- , M.

If the true quantized symbol at the i*" node is u; = m, a
compromised node will modify it into v; = [ as depicted in
Figure 1b, and transmit it to the FC. Since the FC is not aware
of the type of the node (honest or Byzantine), it is natural to
assume that node 7 is compromised with probability «, where
« is the fraction of nodes in the network that are compromised.
Therefore, we find the conditional distribution of v; at the FC
as follows.

P(v; =ml|f) = aP(v; = ml|i = Byzantine,0)
+(1 — «)P(v; = m|i = Honest, )
M
= aZP(ui =1|0) - P(v; = m|u; =1,6)

=1
+(1 — a)P(u; =m|0)
M
=ad pmP(u; =1]0) + (1 — @) P(u; = m|0)
=1
=« Zplmp(ui = l|9) + [(1 - O‘) + ap'rnm]P(ui = mw)
l#m
= [(1 — @) + apmm]
+ > {apim — [(1 = @) + appm]} P(u; = 1]6).
l#m
(3)

The goal of a Byzantine attack is to blind the FC with the
least amount of effort (minimum «). To totally blind the
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FC is equivalent to making P(v; = m|f) = 1/M for all
0 < m < M — 1. In Equation (3), the RHS consists of
two terms. The first one is based on prior knowledge and the
second term conveys information based on the observations.
In order to blind the FC, the attacker should make the second
term equal to zero. Since the attacker does not have any
knowledge regarding P(u; = [|@), it can make the second
term of Equation (3) equal to zero by setting

V14 m. @)

Then the conditional probability P(v; = m|f) = (1 — «) +
QPmm becomes independent of the observations r; (or its
quantized version u;), resulting in equiprobable symbols at the
FC. In other words, the received vector v = {vy,vq, -+ ,un}
does not carry any information about 6 and, therefore, results
in the most degraded performance at the FC. So, the FC now
has to solely depend on its prior information about 6 in making
an inference.

Having identified the condition in Equation (4) under which
the Byzantine attack makes the greatest impact on the perfor-
mance of the network, we identify the strategy that the attacker
should employ in order to achieve this condition as follows.
Since we need

P(v; = ml0) = (1 - @) + apyum = 1/M,

APim = (1 - a) + APmmy

. M-1 P _
O = G, — 5 To minimize «, one needs to make p,,, = 0.

In this paper, we denote the o corresponding to this optimal
strategy that minimizes the Byzantine attacker’s resources
required to blind the FC as a4;,4. Hence,

M-1

-

Rearranging Equation (4), we have

Ablind =

1
E:1+(plm_pmm):1+plm Vl;«ém o)

By setting « to upjing, we have py, = 1/ (M — 1), V I #
m. That is, the transition probability P is a highly-symmetric
matrix. We summarize the result as a theorem as follows.

Theorem 1. If the Byzantine attacker has no knowledge of
the quantization thresholds employed at each sensor, then the
optimal Byzantine attack is given as

- fl
P v fl#m
0 ; otherwise ©)
M—-1
Qplind = IV

We term Equation (6) as the optimal Byzantine attack, since
the FC does not get any information from the data v it receives
from the sensors to perform an inference task. Therefore, the
FC has to rely on prior information about the parameter 6, if
available.

Theorem 1 can be extended to the case where the channels
between sensors (attackers) are not perfect. The result is given
in Appendix A.

In Figure 2, we show how «p;n,q scales with increasing
quantization alphabet size, M. Since the quantized symbols

[ Quantization bits [ oprind |
1 0.5

0.75

0.875
0.9375
0.9688
0.9844
0.9922
0.9961

00| I OV | A W o

TABLE I: Improvement in ap;;,q With increasing number of
quantization bits, logy M

are encoded into bits, we also show an exponential increase
in Qping as the number of bits needed to encode the M
symbols, i.e., log, M, increases. This is also shown in Table I.
Note that, if the sensors use one additional quantization-bit (2-
bit quantization) in their quantization scheme instead of 1-bit
quantization (binary quantization), then the ap;,q increases
from 0.5 to 0.75. This trend is observed with increasing
number of quantization bits, and when the sensors employ
an 8-bit quantizer, then the attacker needs to compromise at
least 99.6% of the sensors in the network to blind the FC.
Obviously, the improvement in security performance is not free
as the sensors incur a communication cost in terms of energy
and bandwidth as the number of quantization bits increases.
Therefore, in a practical world, the network designer faces
a trade-off between the communication cost and the security
guarantees.

Also, note that, when M = 2 (1-bit quantization), our
results coincide with those of Rawat et al. in [20], where
the focus was on the problem of binary hypotheses testing
in a distributed sensor network. On the other hand, our results
are more general as they address any inference problem -
detection, estimation or classification in a distributed sensor
network. Another extreme case to note is when M — oo,
in which case, apiing — 1. This means that the Byzantine
attacker cannot blind the FC unless all the sensors are com-
promised.

In the following sections, we consider distributed detection
and estimation problems in sensor networks and analyze the
impact of the optimal Byzantine attack on these systems.
For the sake of tractability, we consider a noiseless channel
(Q = 1) at the FC in the framework of resource-constrained
Byzantine attack. Therefore, according to Theorem 1, we
restrict our attention to the set of highly-symmetric P for the
sake of tractability. In other words, we assume that

P ifl #m

7
1— (M —1)p otherwise. @

Pim =

IV. DISTRIBUTED DETECTION IN THE PRESENCE OF
RESOURCE-CONSTRAINED BYZANTINE ATTACKS

In this section, we consider a resource-constrained Byzan-
tine attack on binary hypotheses testing in a distributed sensor
network where the phenomenon of interest is denoted as 6 and
is modeled as follows:

- if H,
g0 o ®)
1 if H,
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Fig. 2: Improvement in apy,¢ With increasing number of quantization levels

In order to characterize the performance of the FC, we
consider Kullback-Leibler Divergence (KLD) as the perfor-
mance metric. Note that KLD can be interpreted as the error
exponent in the Neyman-Pearson detection framework [25],
which means that the probability of missed detection goes to
zero exponentially with the number of sensors at a rate equal
to KLD computed at the FC. We denote KLD at the FC by
Dpe and define it as follows:

)

P(v|Hy)
P(v= m|H0))
= P(v=m|Hy) -1 Sl 4
me{l;M}N (V m‘ 0) o8 (P(V = m|H1)
9

Since we have assumed that the sensor observations are
conditionally independent,” KLD can be expressed as

Drc = NDpc, (10)

where

Dpc = Z P(v =m|Hy) - log (m> -

m=1
Note that the optimal Byzantine attack, as given in Equation
(6), results in equiprobable symbols at the FC irrespective of
the hypotheses. Therefore, Drc = 0 under optimal Byzantine
attack, resulting in the blinding of the FC.

On the other hand, if the attacker does not have enough
resources to compromise ;g fraction of sensors in the net-
work (i.e. @ < apring), an optimal strategy for the Byzantine
node is to use an appropriate [P matrix that deteriorates the
performance of the sensor network to the maximal extent.

2For notational convenience, sensor index i is ignored in the rest of the
paper.

As mentioned earlier in Section III, we restrict our search
to finding the optimal PP within a space of highly symmetric
row-stochastic matrices, as given in Equation (7). Thus, we
formulate the problem as follows.

Problem 1. Given the value of a < auwiing, find the optimal
P within a space of highly symmetric row-stochastic matrices,
as given in Equation (7), such that

minimize Dpc

P
subject to 0 <p <

M-1

Theorem 2 presents the optimal flipping probability that
provides the solution to Problem 1. Note that this result is
independent of the design of the sensor network and, therefore,
can be employed when the Byzantine has no knowledge about
the network.

Theorem 2. Given a fixed a < , the probability p
that optimizes P within a space of%ghly symmetric row-
stochastic matrices, as given in Equation (7), such that Dpc
is minimized, is given by

P = (11

Proof. See Appendix B. O

Note that this solution is of particular interest to the Byzan-
tine attacker since the solution does not require any knowledge
about the sensor network design. Also, the attacker’s strategy
is very simple to implement.

Numerical Results

For illustration purposes, let us consider the following
example, where the inference network is deployed to aid the
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opportunistic spectrum access for a cognitive radio network
(CRN). In other words, the CRs are sensing a licensed
spectrum band to find the vacant band for the operation of
the CRN.
Let the observation model at the i*" sensor be defined as
follows.
r; = s(0) + ny,

where 0 € {0,1}, s(0) = p- (—1)**? is a BPSK-modulated
symbol transmitted by the licensed (or the primary) user
transmitter, and the noise n; is the AWGN at the i*" sensor
with probability distribution N(0, o2).

Therefore, the conditional distribution of r; under Hy and
H; can be given as N'(—u, 0%) and N (i1, 02) respectively. The
range of 7; spans the entire real line (R). However, we assume
that the quantizer restricts the support by limiting the range of
output values to a smaller range, say [—A, A]. This parameter
A is called the overloading parameter [26] because the choice
of A dictates the amount of overloading distortion caused
by the quantizer. Within this restricted range of observations,
we assume a uniform quantizer with a step size (called the
granularity parameter) given by A = ﬁ, which dictates
the granularity distortion of the quantizer. In other words, the
observation r; is quantized using the following quantizer:

12)

0; if*OO<7’i§)\1
1; if Ay <r; < XAy
w =1 NG5
M-—1;, if \pyo1<r; <o0
where oli 1
I G S
M -2

Note that, Ay = —A and \p;_1 = A represent the restricted
range of the quantizer, as discussed earlier. The i*" sensor
transmits a symbol v; to the FC, where v; = wu; if it is honest.
In the case of the i!" sensor being a Byzantine node, the
decision u; is modified into v; using the flipping probability
matrix P as given in Equation (6).

Although the performance of a given sensor network is
quantified by the probability of error at the FC, we use
a surrogate metric, as described earlier, called the KLD at
the FC (Refer to Equation (9)) for the sake of tractability.
In an asymptotic sense, Stein’s Lemma [25] states that the
KLD is the rate at which the probability of missed detection
converges to zero under a constrained probability of false
alarm. Therefore, in our numerical results, we present how
KLD at the FC varies with the fraction of Byzantine nodes «,
in the network.

For the above sensor network, we assume that y = 1, o2 =
1 and A = 2. In Figure 3, we plot the contribution of each
sensor in terms of KLD at the FC as a function of «, for
1-bit, 2-bit, 3-bit and 4-bit quantizations, i.e., M = 2, 4, 8
and 16 respectively, at the sensors. As per our intuition, we
observe an improvement in both the detection performance
(KLD) as well as security performance (c;inq). Therefore, for
a given «, the Byzantine attack can be mitigated by employing
finer quantization at the sensors. Of course, the best that the

Fig. 3: Contribution of a sensor to the overall KLD at the
fusion center as a function of «, for different number of
quantization levels. The pentagrams on the x-axis correspond
to the apyng for 1-bit, 2-bit, 3-bit and 4-bit quantizations
respectively from left to right.

designer can do is to let the sensors transmit unquantized data
to the FC, whether in the form of observation samples or their
sufficient statistic (likelihood ratio). In this case, we can see

that apjing = 1, since lim ——— = 1.
M —o0

V. DISTRIBUTED ESTIMATION IN THE PRESENCE OF
RESOURCE-CONSTRAINED BYZANTINE ATTACKS

In this section, we consider the problem of estimating a
scalar parameter of interest, denoted by 6 € R, in a distributed
sensor network. As described in the system model, we assume
that the *"* sensor quantizes its observation r; into an M-
ary symbol u;, and transmits v; to the FC. If the i*" node is
honest, then v; = u;. Otherwise, we assume that the sensor is
compromised and flips u; into v; using a flipping probability
matrix P. Under the assumption that the FC receives the
symbols v over an ideal channel, the estimation performance
at the FC depends on the probability mass function P(v|6).

The performance of a distributed estimation network can
be expressed in terms of the mean-squared error, defined as
E [(é - 9)2]. In the case of unbiased estimators, this mean-
squared error is lower bounded by the Cramer-Rao lower
bound (CRLB) [27], which provides a benchmark for the
design of an estimator at the FC. We present this result in
Equation (14):

A 1
E|[(O(v)—0)?] > — 14
(0 =07°] = 7, (14)
where
dlog P(v,0)\ >
Irc =E (Og(?o(V’)) 1 . (15)
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The term Ipc is well known as the Fisher information (FI),
and is, therefore, a performance metric that captures the
performance of the optimal estimator at the FC. Note that,
as shown in Equation (16), Irc can be further decomposed
into two parts, one corresponding to the prior knowledge about
0 at the FC, and the other (denoted as Jg¢) representing the
information about 6, in the sensor transmissions v:

(alogg(o))“'] |

dlog P(v]6)\?
(5 ) |

In most cases, a closed form expression for the mean-
squared error is intractable and, therefore, conditional Fisher
information (FI) is used as a surrogate metric to quantify
the performance of a distributed estimation network. In this
paper, we also use conditional FI of the received data v
as the performance metric. Since the sensor observations
are conditionally independent resulting in independent v, we
denote the conditional FI as Jr¢c and is defined as follows:

Irc = Jrc +E (16)

where

Jrc =E a7

Jrc = NJrpc, (18)

where

2 2
Jrc =E [860 log P(v|6‘)} =—-E [;wlog P(v|9)] . (19)

Following the same approach as in Section IV, we con-
sider the problem of finding an optimal resource-constrained
Byzantine attack when o < apjing, by finding the symmetric
transition matrix [P that minimizes the conditional FI at the
FC. This can be formulated as follows.

Problem 2. Given the value of o, determine the optimal P
within a space of highly symmetric row-stochastic matrices,
as given in Equation (7), such that

minimize
P

subjectto 0 <p<

Jrc

M-1

Theorem 3 presents the optimal flipping probability that
provides a solution to Problem 2. Note that this result is
independent of the design of the sensor network and, therefore,
can be employed when the Byzantine has no knowledge about
the network.

M-1

Theorem 3. Given a fixed o <
ity p that optimizes P over a space of highly symmetric row-
stochastic matrices, as given in Equation (7), by minimizing
Jrc is given by

, the flipping probabil-

Proof. See Appendix C. O

Numerical Results

As an illustrative example, we consider the problem of
estimating # = 1 at the FC based on all the sensors’
transmitted messages. Let the observation model at the i*"
sensor be defined as follows:

r; =0 +n;, (20

where the noise n; is the AWGN at the i*" sensor with
probability distribution A(0,02). The sensors employ the
same quantizer as the one presented in Equation (13). The
quantized symbol, denoted as w; at the ith sensor, is then
modified into v; using the flipping probability matrix P, as
given in Equation (6).

Figure 4 plots the conditional FI corresponding to one
sensor, for different values of o« and M, when the uniform
quantizer is centered around the true value of 6. Note that as
SNR increases (o — 0), we observe that it is better for the
network to perform as much finer quantization as possible to
mitigate the Byzantine attackers. On the other hand, if SNR
is low, coarse quantization performs better for lower values
of a. This phenomenon of coarse quantization performing
better under low SNR scenarios, can be attributed to the fact
that more noise gets filtered as the quantization gets coarser
(decreasing M) than the signal itself. On the other hand, in
the case of high SNR, since the signal level is high, coarse
quantization cancels out the signal component significantly,
thereby resulting in a degradation in performance.

VI. MITIGATION OF BYZANTINE ATTACKS IN A
BANDWIDTH-CONSTRAINED INFERENCE NETWORK

Given that the distributed inference network is under Byzan-
tine attack, we showed that the performance of the network can
be improved by increasing the quantization alphabet size of
the sensors. Obviously, in a bandwidth-constrained distributed
inference network, the sensors can only transmit with the
maximum possible M, which is finite. In this section, we as-
sume that the network cannot further increase the quantization
alphabet size due to this bandwidth constraint. Therefore, we
present a reputation-based Byzantine identification/mitigation
scheme, which is an extension of the one proposed by Rawat
et al. in [20], in order to improve the inference performance
of the network.

A. Reputation-Tagging at the Sensors

As proposed by Rawat et al. in [20], the FC identifies
the Byzantine nodes by iteratively updating a reputation-tag
for each node as time progresses. We extend the scheme to
include fine quantization scenarios, i.e., M > 2, and analyze
its performance through simulation results.

As mentioned earlier in the paper, the FC receives a vector
v of received symbols from the sensors and fuses them to
yield a global decision, denoted as 6. We assume that the
observation model is known to the network designer, and is
given as follows:

ri = fi(0) + ng,

where f;(-) denotes the known observation model. We denote
the quantization rule employed at the sensor as ~y. Therefore,

2L
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(a) Low SNR case: 0 = 1
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(b) High SNR case: o = 0.01

Fig. 4: Contribution of a sensor to the overall conditional FI at the FC as a function of «, for different number of quantization
levels when § = 0 and A = 2. The pentagrams on the x-axis correspond to the «y;,q for 1-bit, 2-bit, 3-bit and 4-bit

quantizations respectively from left to right.

the quantized message at the sensor is given by u; = y(r;). As
discussed earlier, the i*" sensor flips u; into v; using a flipping
probability matrix IP. Since the FC makes a global inference
é, it can calculate the squared-deviation d; of each sensor
from the expected message that it is to nominally transmit
as follows:

4= (77w - £0)

where v~ 1(v;) is the inverse of the sensor quantizer y(v;) and
it is assumed to be the centroid of the corresponding decision
region of the quantizer v;.

Note that v; is the received symbol which characterizes the
behavior (honest or Byzantine) of the i*" sensor, while fl(é)
is the signal that the FC expects the sensor to observe. If the
ith sensor is honest, we expect the mean of d; to be small.
On the other hand, if the i*" sensor is a compromised node,
then the mean of d; is expected to be large. Therefore, we
accumulate the squared-deviations d; = {d;(1),--- ,d;(T)}
over T' time intervals and compute a reputation tag A;(d;), as
a time-average for the i*" node as follows:

1 T
A= tzzldi(t).

The i*" sensor is declared honest/Byzantine using the follow-
ing threshold-based tagging rule

(22)

(23)

Byzantine
A; z

Honest

(24)

The performance of the above tagging rule depends strongly
on the choice of 7. Note that the threshold 7 should be chosen
based on two factors. Firstly, n should be chosen in such a way
that the probability with which a malicious node is tagged

Byzantine is high. Higher the value of 7, lower is the chance
of tagging a node to be Byzantine and vice-versa. This results
in a tradeoff between the probability of detecting a Byzantine
vs. the probability of falsely tagging an honest node as a
Byzantine. Secondly, the value of M also plays a role in the
choice of 7, and therefore, the performance of the tagging rule.
We illustrate this phenomenon in our simulation results.

B. Optimal Choice of the Tagging Threshold as T — oo

In this paper, we denote the true type of the i node as .7,
where .7; = H corresponds to honest behavior, while .7; = B
corresponds to Byzantine behavior, for all ¢ = 1,.--,N.
Earlier, in this section, we presented Equation (24) which
allows us to make inferences about the true type. But, the
performance of the Byzantine tagging scheme corresponding
the *" sensor is quantified by the conditional probabilities
P(A; > |9, = ), for both 7 = H, B. In order to find the
optimal choice of 7 in Equation (24), we continue with the
Neyman-Pearson framework even in the context of Byzantine
identification, where the goal is to maximize P(A; > n|.7; =
B), subject to the condition that P(A; > n|.7; = H) <&.

To find these two conditional probabilities P(A; > n|.7; =
H) and P(A; > n|9; = B), we need a closed form
expression of the conditional distributions, P(A;|Z; = H) and
P(A;|9; = B) respectively. In practice, where T is finite,
it is intractable to determine the conditional distribution of
A;, which is necessary to come up with the optimal choice
of 7. Therefore, in this paper, we assume that 7" — oo and
present an asymptotic choice of the tagging threshold n used
in Equation (24).

As T — oo, since d;(t) is independent across t = 1,--- | T,
due to central-limit theorem, (A;|.7; = 7)) ~ N (i, 7, 0i,7),
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(25)

5 .
= v | (7wt - 00) | 7 = 7|
(26)
In this paper, we do not present the final form of u; &
and 0; 7 in order to preserve generality. Assuming that v;(¢)
is independent across sensors as well as time, the moments
of d; can be computed for any given FC’s inference é(t) at
time ¢ about a given phenomenon. Although the final form of
ii,z and o; 7 is not presented, since d;(t) is a function of
v, we present the conditional probability of (v;|.7; = .7) in
Equation (27), which is necessary for the computation of ;o
and o; 7.

P(0,|7 = 7) = [ P10, 7= Z)pi0)as, @1
where P(v;|0, 7; = .77) can be calculated as follows:
P(vj=m|0,7, =H) =
P(uj; = ml0), ifj=1
(28)
(1—7mgu)P(u; =m|f) +
M
Tpu Y PemP(u; = k|0), if j #i
k=1
and
P(UJ:T)”L|97<%:B):
M
> pemP(u; = k|6), it j =i
k=1 (29)
(1—7TBB)P(UJ‘ :m|9) + ’
M
TBB Zpka(Uj = k‘g), lf_] 7é 7
k=1

where 1py = P(J; = B|.J;, = H) and ngp = P(J; =
B|Z; = B) are conditional probabilities of the j** node’s
type, given the type of the i*" node. Since there are o fraction
of nodes in the network, given that the FC knows the type

of i*" node as H, the conditional probability of the j** node

belonging to a type .7 is given by gy = N
Na -1
N-1"

Given the conditional distributions P(A;|.7; = H) and

P(A;|9; = B), we find the performance of the Byzantine

[0}
1 andeB:

identification scheme as follows:

P\ >nZi=H) = Q (710%;11>

1 — Wi,B
o7 5)
0i,B

Under the NP framework, the optimal n can be chosen by
letting P(A; > n|i = H) = /3, when A; is normally distributed
conditioned on the true type of a given node. In other words,

n—Hig\
Q (UH ) =¢

(30)
PN >n|T=B) =

3D

or equivalently,

noptimal = ,Ufi,H + O—i,HQ_l(é-)' (32)

Note that, since P(v;|.7; = H) is a function of «, it follows
that both y; 7 and o; p are functions of «. Although we do
not provide a closed-form expression for 7 as a function of
«, we provide the following example to portray how 7 varies
with different values of o

1) Example: Variation of n as a function of a: Consider a
distributed estimation network with N = 5 identical nodes. Let
the prior distribution of the true phenomenon 6 be the uniform
distribution ¢/(0, 1). We assume that the sensing channel is an
AWGN channel where the sensor observations is given by r; =
0 + n;. Therefore, the conditional distribution of the sensor
observations is A/ (6, 0?), when conditioned on 6. We assume
that the sensors employ the quantizer rule shown in Equation
(13) on their observations 7;. At the FC, we let v~ 1(-) be
Aic1t A

defined as the centroid function that returns ¢; = 5

N
s 1
Let 6 = i Z 7~ (vs(t)) be the fusion rule employed at the

FC to estimé(ele.

Since the network comprises of identical nodes, without any
loss of generality, we henceforth focus our attention on the
reputation-based identification rule at sensor-1. Substituting
the above mentioned fusion rule in the squared-deviation d;
corresponding to sensor-1 in Equation (22), we have

dy =
i=1

(33)

M1 1 g ’

B ( M 71(v1>—M§vl(v7(t))>
Let us denote ¢;; = E (771(%_))]‘ |7 :H} =

M .

Z {(’y_l(vi))]P(vi\ﬂl :H)], for all ¢ = 1,---,5 and

v;=1

j=1,2,--- 00. Here, P (v;|. 71 = H) can be computed using
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Equation (28) as follows:
P(v;=m|% = H)

[

1
:/ P (v; = m|0, 7 = H)do
0

i =m0, 71 = H)p(0)do

(34)
a1,m ifi=1
= L+
(N-1)(M-1)
1-— % ; otherwise
N-D-1)) 4 '
1
where a; ., = P (u; =m|0)dl, for all ¢ = 1,--- N.

Note that, since (2)111 the nodes in the network are identical,
P(u;|0) is independent of the node-index i, and therefore,
(bij = ¢2j’ for all ¢ 75 1.

Thus, the conditional mean and variance, p1 7 and a% 7, are
given as follows for the special case of N = 5:

H1H

[
-
[\

&=
—
S
\
=

=2

=

\
]

=2
=
=
~
o [\

8

[

=

= W [(M - 1)292512 + 4¢22 + 12¢’§1 - 8(M - 1)¢11¢21]
(35)
and
2 1 Ao 2
oty = Var (7 ) - 0) | 7 - 1
(36)
= T {A - ,U'%H}
where
A

= (M — D)*p1s — 16(M — 1)3¢13¢0:1
+6(M — 1)2pra{ddan + 1263, }
—4(M — 1)¢11(dpog + 36paod21 + 24¢5,) + Ados
+12¢03021 + 36(d23da1 + P35 + 202203,)
+24(¢3; + 3022631)] -
(37
Thus, for £ = 0.01, we compute the tagging threshold 7
numerically as shown in Equation (32), and plot the variation

of n as a function of « in Figure 5. Note that, in our numerical
results, we observe that the optimal choice of 7 is a convex
function of «, where the curvature of the convexity decreases
with increasing M. This can be clearly seen from Figure 5b,
where we only plot the case of M = 7. We observe a similar
behavior for all the other values of M, and therefore, present
the case of M = 7 to illustrate the convex behavior of 7.
In other words, for very large values of M, the choice of n
becomes independent of «, for any fixed a < ayying-

C. Simulation Results

In order to illustrate the performance of the proposed
reputation-based scheme, we consider a sensor network with
a total of 100 sensors in the network, out of which 20 are
Byzantine sensors. Let the sensor quantizers be given by
Equation (13) and the fusion rule at the FC be the MAP rule,
given as follows:

G

Figure 6 plots the rate of identification of the number of
Byzantine nodes in the network for the proposed reputation-
based scheme for different sizes of the quantization alphabet
set. Note that the convergence rate deteriorates as M increases.
This is due to the fact that the Byzantine nodes have increasing
number of symbol options to flip to, because of which a
greater number of time-samples are needed to identify the
malicious behavior. In addition, we also simulate the evolution
of mislabelling an honest node as a Byzantine node in time,
and plot the probability of the occurrence of this event in
Figure 7. Just as the convergence deteriorates with increasing
M, we observe a similar behavior in the evolution of the
probability of mislabelling honest nodes. Another important
observation in Figure 7 is that the probability of mislabelling
a node always converges to zero in time. Similarly, we simulate
the evolution of mislabelling a Byzantine node as an honest
one in time in Figure 8. We observe similar convergence
of the probability of mislabelling a Byzantine node as an
honest node to zero, with a rate that decreases with increasing
number of quantization levels, M. Therefore, Figures 6, 7
and 8 demonstrate that, after a sufficient amount of time, the
reputation-based scheme always identifies the true behavior
of a node within the network, with negligible number of
mislabels.

“Z|H1)> S (38)
0 P

UleQ)

A

=0

VII. CONCLUDING REMARKS

In summary, we modelled the problem of distributed infer-
ence with M-ary quantized data in the presence of Byzantine
attacks, under the assumption that the attacker does not have
knowledge about either the true hypotheses or the quantization
thresholds at the sensors. We found the optimal Byzantine
attack that blinds the FC in the case of any inference task
for both noiseless and noisy FC channels. We also consid-
ered the problem of resource-constrained Byzantine attack
(a0 < apring) for distributed detection and estimation in
the presence of resource-constrained Byzantine attacker for
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Fig. 6: Rate of identification of the number of Byzantine nodes
in time for different number of quantization levels

the special case of highly symmetric attack strategies in the
presence of noiseless channels at the FC. From the inference
network’s perspective, we presented a mitigation scheme that
identifies the Byzantine nodes through reputation-tagging. We
also showed how the optimal tagging threshold can be found
when the time-window 1" — oo. Finally, we also investigated
the performance of our reputation-based scheme in our simu-
lation results and show 