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Abstract—The problem of distributed inference with M-ary
quantized data at the sensors is investigated in the presence of
Byzantine attacks. We assume that the Byzantine nodes attack
the inference network by modifying the symbol corresponding to
the quantized data to one of the other symbols in the quantization
alphabet-set and transmitting falsified symbol to the fusion center
(FC). In this paper, we find the optimal Byzantine attack that
blinds any distributed inference network. As the quantization al-
phabet size increases, a tremendous improvement in the security
performance of the distributed inference network is observed.
In addition to the perfect channel case, in Appendix A, we also
analyze the optimal Byzantine attack when the channel between
the nodes and the FC is noisy and is modelled as a discrete
M-ary channel. We also investigate the optimal attack within
the restricted space of highly-symmetric attack strategies, that
maximally degrades the performance of the inference network
in the presence of resource-constrained Byzantine attacks. A
reputation-based scheme for identifying malicious nodes is also
presented as the network’s strategy to mitigate the impact of
Byzantine threats on the inference performance of the distributed
sensor network. We also provide asymptotic analysis to find the
optimal reputation-based scheme as a function of the fraction of
compromised nodes in the network.

Index Terms—Distributed Inference, Network-Security, Sen-
sor Networks, Byzantine Attacks, Kullback-Leibler Divergence,
Fisher Information.

I. INTRODUCTION

Distributed inference in sensor networks has been widely
studied by several scholars in the past three decades (See [1]–
[11] and references therein). The distributed inference frame-
work comprises of a group of spatially distributed sensors
which acquire observations about a phenomenon of interest
(POI) and send processed data to a fusion center (FC) where
a global inference is made. Due to resource-constraints in
sensor networks, this data is processed at the sensors in such
a way that the observations are mapped to symbols from
an alphabet set of size M, prior to transmission to the FC.
When M = 2, we employ binary quantization to generate
processed data. When M > 2, we send an M-ary symbol
that is assumed to be generated via fine quantization. A
sensor decision rule is assumed to be characterized by a set
of quantization thresholds. In this paper, we use the phrases
‘mapped to one of the M-ary symbols’ and ‘quantized to an
M-ary symbol’ interchangeably. A lot of work in the past has
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focussed on the binary quantization case, i.e., M = 2. In
this paper, we consider the case of more general M , M = 2
being a special case. The framework of distributed inference
networks has been extensively studied for different types of
inference problems such as detection (e.g., [1], [3], [5]–[8],
[12]), estimation (e.g., [3], [9], [10]), and tracking (e.g., [3],
[11]) in the presence of both ideal and non-ideal channels. In
this paper, we focus our attention on two distributed inference
problems, namely detection and estimation in the framework
of distributed inference, where sensors quantize their data to
M-ary symbols.

Although the area of sensor networks has been a very
active field of research in the past, security problems in sensor
networks have gained attention only in the last decade [13]–
[15]. As the security threats have evolved more specifically
directed towards inference networks, attempts have been made
at the system-level to either prevent or mitigate these threats
from deteriorating the network performance. While there are
many types of security threats, in this paper, we address the
problem of one such attack, called the Byzantine attack, in
the context of distributed inference networks (see a recent
survey [16] by Vempaty et al.). Byzantine attacks (proposed
by Lamport et al. in [17]) in general, are arbitrary and may
refer to many types of malicious behavior. In this paper, we
focus only on the data-falsification aspect of the Byzantine
attack wherein one or more compromised nodes of the network
send false information to the FC in order to deteriorate the
inference performance of the network. A well known example
of this attack is the man-in-the-middle attack [18] where,
on one hand, the attacker collects data from the sensors
whose authentication process is compromised by the attacker
emulating as the FC, while, on the other hand, the attacker
sends false information to the FC using the compromised
sensors’ identity. In summary, if the ith sensor’s authentication
is compromised, the attacker remains invisible to the network,
accepts the true decision ui from the ith sensor and sends vi
to the FC in order to deteriorate the inference performance.

Marano et al., in [19], analyzed the Byzantine attack on
a network of sensors carrying out the task of distributed
detection, where the attacker is assumed to have complete
knowledge about the hypotheses. This represents the extreme
case of Byzantine nodes having an extra power of knowing
the true hypothesis. In their model, they assumed that the
sensors quantized their respective observations into M-ary
symbols, which are later fused at the FC. The Byzantine
nodes pick symbols using an optimal probability distribution
that are conditioned on the true hypotheses, and transmit
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them to the FC in order to maximally degrade the detection
performance. Rawat et al., in [20], also considered the problem
of distributed detection in the presence of Byzantine attacks
with binary quantizers at the sensors in their analysis. Unlike
the authors in [19], Rawat et al. did not assume complete
knowledge of the true hypotheses at the Byzantine attacker.
Instead, they assumed that the Byzantine nodes derive the
knowledge about the true hypotheses from their own sensing
observations. In other words, a Byzantine node potentially
flips the local decision made at the node. It does not modify
the thresholds at the sensor quantizers. Rawat et al. also
analyzed the performance of the network in the presence of
independent and collaborative Byzantine attacks and modeled
the problem as a zero-sum game between the sensor network
and the Byzantine attacker. In addition to the analysis of
distributed detection in the presence of Byzantine attacks, a
reputation-based scheme was proposed by Rawat et al. in
[20] for identifying the Byzantine nodes by accumulating
the deviations between each sensor’s decision and the FC’s
decision over a time window of duration T . If the accumulated
number of deviations is greater than a prescribed threshold
for a given node, then the FC tags it as a Byzantine node.
In order to mitigate the attack, the FC removes nodes which
are tagged Byzantine node from the fusion rule. Another
mitigation scheme was proposed by Vempaty et al. [21], where
each sensor’s behavior is learnt over time and compared to the
known behavior of the honest nodes. Any significant deviation
in the learnt behavior from the expected honest behavior is
labelled Byzantine node. Having learnt their parameters, the
authors also proposed the use of this information to adapt their
fusion rule so as to maximize the performance of the FC. In
contrast to the parallel topology in sensor networks, Kailkhura
et al. in [22] investigated the problem of Byzantine attacks on
distributed detection in a hierarchical sensor network. They
presented the optimal Byzantine strategy when the sensors
communicate their decisions to the FC in multiple hops of
a balanced tree. They assumed that the cost of compromising
sensors at different levels of the tree varies, and found the
optimal Byzantine strategy that minimizes the cost of attacking
a given hierarchical network.

Soltanmohammadi et al. in [23] investigated the problem
of distributed detection in the presence of different types
of Byzantine nodes. Each Byzantine node type corresponds
to a different operating point, and, therefore, the authors
considered the problem of identifying different Byzantine
nodes, along with their operating points. The problem of
maximum-likelihood (ML) estimation of the operating points
was formulated and solved using the expectation-maximization
(EM) algorithm. Once the Byzantine node operating points are
estimated, this information was utilized at the FC to mitigate
the malicious activity in the network, and also to improve
global detection performance.

Distributed target localization in the presence of Byzantine
attacks was addressed by Vempaty et al. in [24], where
the sensors quantize their observations into binary decisions,
which are transmitted to the FC. Similar to Rawat et al.’s
approach in [20], the authors in [24] investigated the problem
of distributed target localization from both the network’s

and Byzantine attacker’s perspectives, first by identifying the
optimal Byzantine attack and second, mitigating the impact
of the attack with the use of non-identical quantizers at the
sensors.

In this paper, we extend the framework of Byzantine attacks
when Byzantine nodes do not have complete knowledge about
the true state of the phenomenon-of-interest (POI), and when
the sensors generate M-ary symbols instead of binary symbols.
We also assume that the Byzantine attacker is ignorant about
the quantization thresholds used at the sensors to generate the
M-ary symbols.1 Under these assumptions, we address two
inference problems: binary hypotheses-testing and parameter
estimation.

The main contributions of the paper are three-fold. First,
we define a Byzantine attack model for a sensor network with
individual sensors quantizing their observations into one of
the M-ary symbols, when the attacker does not have complete
knowledge about the true state of the POI and thresholds
employed by the sensors. We model the attack strategy as
a flipping probability matrix, where (i, j)th entry represents
the probability with which the ith symbol is flipped into the
jth symbol. Second, we show that quantization into M-ary
symbols at the sensors, as opposed to binary quantization,
improves both inference as well as security performance
simultaneously. As a function of the number of Byzantine
nodes in the network, we derive the optimal flipping matrix.
Finally, we extend the mitigation scheme presented by Rawat
et al. in [20] to the more general case where sensors generate
M-ary symbols. We present simulation results to illustrate the
performance of the reputation-based scheme for the identifi-
cation of Byzantine nodes in the network.

The remainder of the paper is organized as follows. In
Section II, we describe our system model and present the
Byzantine attack model for the case where sensors generate
M-ary symbols when the attacker has no knowledge about
the true state of the phenomenon of interest and quantization
thresholds employed by the sensors. Next, we determine the
most powerful attack strategy that the Byzantine nodes can
adopt in Section III. In the case of resource-constrained
Byzantine attacks, where the attacker cannot compromise
enough number of nodes in the network to blind it (to be
defined in Section II), we find the optimal Byzantine attack
for a fixed fraction of Byzantine nodes in the network in
the context of distributed detection and estimation in Sections
IV and V respectively. From the network’s perspective, we
present a mitigation scheme in Section VI that identifies the
Byzantine nodes using reputation-tags. Finally, we present our
concluding remarks in Section VII.

II. SYSTEM MODEL

Consider an inference (sensor) network with N sensors,
where α fraction of the nodes in the network are assumed
to be compromised (Refer to Figure 1a). These compromised
sensors transmit false data to the fusion center (FC) in order
to deteriorate the inference performance of the network. We
assume that the network is designed to infer about a particular

1The well-known attacker-in-the-middle is one such example.
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Fig. 1: Distributed Inference Network in the Presence of Byzantine Attacks

phenomenon, regarding which sensors acquire conditionally-
independent observations. We denote the observation of the
ith sensor as ri. This observation ri is mapped to one of the
M symbols, ui ∈ {1, · · · ,M}. In a compromised inference
network, since the Byzantine sensors do not transmit their true
quantized data, we denote the transmitted symbol as vi at the
ith sensor. If the node i is honest, then vi = ui. Otherwise, we
assume that the Byzantine sensor modifies ui = l to vi = m
with a probability plm, as shown in Figure 1b. For the sake of
compactness, we denote the transition probabilities depicted
in the graph in Figure 1b using a row-stochastic matrix P, as
follows:

P =


p11 p12 . . . p1M
p21 p22 . . . p2M

...
...

. . .
...

pM1 pM2 . . . pMM

 . (1)

Since the attacker has no knowledge of quantization thresh-
olds employed at each sensor, we assume that P is in-
dependent of the sensor observations. The messages v =
{v1, v2, · · · , vN} are transmitted to the fusion center (FC)
where a global inference is made about the phenomenon of
interest based on v.

In order to consider the general inference problem, we
assume that θ ∈ Θ is the parameter that denotes the phe-
nomenon of interest in the received signal ri at the ith sensor.
If we are considering a detection/classification problem, θ is
discrete (finite or countably infinite). In the case of param-
eter estimation, Θ is a continuous set. Without any loss of
generality, we assume Θ = {0, 1, · · · ,K − 1} if the problem
of interest is classification. Hence, detection is a special case
of classification with K = 2. In the case of estimation, we
assume that Θ = R.

Note that the performance of the FC is determined by the
probability distribution (mass function) P (v|θ). Therefore, in
Section III, we analyze the behavior of P (v|θ) in the presence
of different attacks and identify the one with the greatest
impact on the network.

III. OPTIMAL BYZANTINE ATTACKS

Given the conditional distribution of ri, p(ri|θ), and the
sensor quantization thresholds, λj for 0 ≤ j ≤ M , the
conditional distribution of ui can be found as

P (ui = m|θ) =
∫ λm

λm−1

p(ri|θ)dri (2)

for all m = 1, 2, · · · ,M .
If the true quantized symbol at the ith node is ui = m, a

compromised node will modify it into vi = l as depicted in
Figure 1b, and transmit it to the FC. Since the FC is not aware
of the type of the node (honest or Byzantine), it is natural to
assume that node i is compromised with probability α, where
α is the fraction of nodes in the network that are compromised.
Therefore, we find the conditional distribution of vi at the FC
as follows.

P (vi = m|θ) = αP (vi = m|i = Byzantine, θ)

+(1− α)P (vi = m|i = Honest, θ)

= α
M∑
l=1

P (ui = l|θ) · P (vi = m|ui = l, θ)

+(1− α)P (ui = m|θ)

= α
M∑
l=1

plmP (ui = l|θ) + (1− α)P (ui = m|θ)

= α
∑
l ̸=m

plmP (ui = l|θ) + [(1− α) + αpmm]P (ui = m|θ)

= [(1− α) + αpmm]

+
∑
l ̸=m

{αplm − [(1− α) + αpmm]}P (ui = l|θ).

(3)
The goal of a Byzantine attack is to blind the FC with the
least amount of effort (minimum α). To totally blind the
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FC is equivalent to making P (vi = m|θ) = 1/M for all
0 ≤ m ≤ M − 1. In Equation (3), the RHS consists of
two terms. The first one is based on prior knowledge and the
second term conveys information based on the observations.
In order to blind the FC, the attacker should make the second
term equal to zero. Since the attacker does not have any
knowledge regarding P (ui = l|θ), it can make the second
term of Equation (3) equal to zero by setting

αplm = (1− α) + αpmm, ∀ l ̸= m. (4)

Then the conditional probability P (vi = m|θ) = (1 − α) +
αpmm becomes independent of the observations ri (or its
quantized version ui), resulting in equiprobable symbols at the
FC. In other words, the received vector v = {v1, v2, · · · , vN}
does not carry any information about θ and, therefore, results
in the most degraded performance at the FC. So, the FC now
has to solely depend on its prior information about θ in making
an inference.

Having identified the condition in Equation (4) under which
the Byzantine attack makes the greatest impact on the perfor-
mance of the network, we identify the strategy that the attacker
should employ in order to achieve this condition as follows.
Since we need

P (vi = m|θ) = (1− α) + αpmm = 1/M,

α = M−1
(1−pmm)M . To minimize α, one needs to make pmm = 0.

In this paper, we denote the α corresponding to this optimal
strategy that minimizes the Byzantine attacker’s resources
required to blind the FC as αblind. Hence,

αblind =
M − 1

M
.

Rearranging Equation (4), we have
1

α
= 1 + (plm − pmm) = 1 + plm ∀ l ̸= m. (5)

By setting α to αblind, we have plm = 1/(M − 1), ∀ l ̸=
m. That is, the transition probability P is a highly-symmetric
matrix. We summarize the result as a theorem as follows.

Theorem 1. If the Byzantine attacker has no knowledge of
the quantization thresholds employed at each sensor, then the
optimal Byzantine attack is given as

plm =


1

M − 1
; if l ̸= m

0 ; otherwise

αblind =
M − 1

M
.

(6)

We term Equation (6) as the optimal Byzantine attack, since
the FC does not get any information from the data v it receives
from the sensors to perform an inference task. Therefore, the
FC has to rely on prior information about the parameter θ, if
available.

Theorem 1 can be extended to the case where the channels
between sensors (attackers) are not perfect. The result is given
in Appendix A.

In Figure 2, we show how αblind scales with increasing
quantization alphabet size, M . Since the quantized symbols

Quantization bits αblind

1 0.5
2 0.75
3 0.875
4 0.9375
5 0.9688
6 0.9844
7 0.9922
8 0.9961

TABLE I: Improvement in αblind with increasing number of
quantization bits, log2 M

are encoded into bits, we also show an exponential increase
in αblind as the number of bits needed to encode the M
symbols, i.e., log2 M , increases. This is also shown in Table I.
Note that, if the sensors use one additional quantization-bit (2-
bit quantization) in their quantization scheme instead of 1-bit
quantization (binary quantization), then the αblind increases
from 0.5 to 0.75. This trend is observed with increasing
number of quantization bits, and when the sensors employ
an 8-bit quantizer, then the attacker needs to compromise at
least 99.6% of the sensors in the network to blind the FC.
Obviously, the improvement in security performance is not free
as the sensors incur a communication cost in terms of energy
and bandwidth as the number of quantization bits increases.
Therefore, in a practical world, the network designer faces
a trade-off between the communication cost and the security
guarantees.

Also, note that, when M = 2 (1-bit quantization), our
results coincide with those of Rawat et al. in [20], where
the focus was on the problem of binary hypotheses testing
in a distributed sensor network. On the other hand, our results
are more general as they address any inference problem -
detection, estimation or classification in a distributed sensor
network. Another extreme case to note is when M → ∞,
in which case, αblind → 1. This means that the Byzantine
attacker cannot blind the FC unless all the sensors are com-
promised.

In the following sections, we consider distributed detection
and estimation problems in sensor networks and analyze the
impact of the optimal Byzantine attack on these systems.
For the sake of tractability, we consider a noiseless channel
(Q = I) at the FC in the framework of resource-constrained
Byzantine attack. Therefore, according to Theorem 1, we
restrict our attention to the set of highly-symmetric P for the
sake of tractability. In other words, we assume that

plm =

{
p if l ̸= m

1− (M − 1)p otherwise.
(7)

IV. DISTRIBUTED DETECTION IN THE PRESENCE OF
RESOURCE-CONSTRAINED BYZANTINE ATTACKS

In this section, we consider a resource-constrained Byzan-
tine attack on binary hypotheses testing in a distributed sensor
network where the phenomenon of interest is denoted as θ and
is modeled as follows:

θ =

{
0; if H0

1; if H1

. (8)
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Fig. 2: Improvement in αblind with increasing number of quantization levels

In order to characterize the performance of the FC, we
consider Kullback-Leibler Divergence (KLD) as the perfor-
mance metric. Note that KLD can be interpreted as the error
exponent in the Neyman-Pearson detection framework [25],
which means that the probability of missed detection goes to
zero exponentially with the number of sensors at a rate equal
to KLD computed at the FC. We denote KLD at the FC by
DFC and define it as follows:

DFC = EH0

[
log

(
P (v|H0)

P (v|H1)

)]

=
∑

m∈{1,··· ,M}N

P (v = m|H0) · log
(
P (v = m|H0)

P (v = m|H1)

)
(9)

Since we have assumed that the sensor observations are
conditionally independent,2 KLD can be expressed as

DFC = NDFC , (10)

where

DFC =
M∑

m=1

P (v = m|H0) · log
(
P (v = m|H0)

P (v = m|H1)

)
.

Note that the optimal Byzantine attack, as given in Equation
(6), results in equiprobable symbols at the FC irrespective of
the hypotheses. Therefore, DFC = 0 under optimal Byzantine
attack, resulting in the blinding of the FC.

On the other hand, if the attacker does not have enough
resources to compromise αblind fraction of sensors in the net-
work (i.e. α < αblind), an optimal strategy for the Byzantine
node is to use an appropriate P matrix that deteriorates the
performance of the sensor network to the maximal extent.

2For notational convenience, sensor index i is ignored in the rest of the
paper.

As mentioned earlier in Section III, we restrict our search
to finding the optimal P within a space of highly symmetric
row-stochastic matrices, as given in Equation (7). Thus, we
formulate the problem as follows.

Problem 1. Given the value of α < αblind, find the optimal
P within a space of highly symmetric row-stochastic matrices,
as given in Equation (7), such that

minimize
p

DFC

subject to 0 ≤ p ≤ 1

M − 1

Theorem 2 presents the optimal flipping probability that
provides the solution to Problem 1. Note that this result is
independent of the design of the sensor network and, therefore,
can be employed when the Byzantine has no knowledge about
the network.

Theorem 2. Given a fixed α <
M − 1

M
, the probability p

that optimizes P within a space of highly symmetric row-
stochastic matrices, as given in Equation (7), such that DFC

is minimized, is given by

p∗ =
1

M − 1
. (11)

Proof. See Appendix B.

Note that this solution is of particular interest to the Byzan-
tine attacker since the solution does not require any knowledge
about the sensor network design. Also, the attacker’s strategy
is very simple to implement.

Numerical Results

For illustration purposes, let us consider the following
example, where the inference network is deployed to aid the
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opportunistic spectrum access for a cognitive radio network
(CRN). In other words, the CRs are sensing a licensed
spectrum band to find the vacant band for the operation of
the CRN.

Let the observation model at the ith sensor be defined as
follows.

ri = s(θ) + ni, (12)

where θ ∈ {0, 1}, s(θ) = µ · (−1)1+θ is a BPSK-modulated
symbol transmitted by the licensed (or the primary) user
transmitter, and the noise ni is the AWGN at the ith sensor
with probability distribution N (0, σ2).

Therefore, the conditional distribution of ri under H0 and
H1 can be given as N (−µ, σ2) and N (µ, σ2) respectively. The
range of ri spans the entire real line (R). However, we assume
that the quantizer restricts the support by limiting the range of
output values to a smaller range, say [−A,A]. This parameter
A is called the overloading parameter [26] because the choice
of A dictates the amount of overloading distortion caused
by the quantizer. Within this restricted range of observations,
we assume a uniform quantizer with a step size (called the
granularity parameter) given by ∆ = 2

M−2 , which dictates
the granularity distortion of the quantizer. In other words, the
observation ri is quantized using the following quantizer:

ui =


0; if −∞ < ri ≤ λ1

1; if λ1 < ri ≤ λ2

...
M − 1; if λM−1 < ri ≤ ∞

, (13)

where
λi = A ·

[
2(i− 1)

M − 2
− 1

]
.

Note that, λ1 = −A and λM−1 = A represent the restricted
range of the quantizer, as discussed earlier. The ith sensor
transmits a symbol vi to the FC, where vi = ui if it is honest.
In the case of the ith sensor being a Byzantine node, the
decision ui is modified into vi using the flipping probability
matrix P as given in Equation (6).

Although the performance of a given sensor network is
quantified by the probability of error at the FC, we use
a surrogate metric, as described earlier, called the KLD at
the FC (Refer to Equation (9)) for the sake of tractability.
In an asymptotic sense, Stein’s Lemma [25] states that the
KLD is the rate at which the probability of missed detection
converges to zero under a constrained probability of false
alarm. Therefore, in our numerical results, we present how
KLD at the FC varies with the fraction of Byzantine nodes α,
in the network.

For the above sensor network, we assume that µ = 1, σ2 =
1 and A = 2. In Figure 3, we plot the contribution of each
sensor in terms of KLD at the FC as a function of α, for
1-bit, 2-bit, 3-bit and 4-bit quantizations, i.e., M = 2, 4, 8
and 16 respectively, at the sensors. As per our intuition, we
observe an improvement in both the detection performance
(KLD) as well as security performance (αblind). Therefore, for
a given α, the Byzantine attack can be mitigated by employing
finer quantization at the sensors. Of course, the best that the
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Fig. 3: Contribution of a sensor to the overall KLD at the
fusion center as a function of α, for different number of
quantization levels. The pentagrams on the x-axis correspond
to the αblind for 1-bit, 2-bit, 3-bit and 4-bit quantizations
respectively from left to right.

designer can do is to let the sensors transmit unquantized data
to the FC, whether in the form of observation samples or their
sufficient statistic (likelihood ratio). In this case, we can see

that αblind = 1, since lim
M→∞

M − 1

M
= 1.

V. DISTRIBUTED ESTIMATION IN THE PRESENCE OF
RESOURCE-CONSTRAINED BYZANTINE ATTACKS

In this section, we consider the problem of estimating a
scalar parameter of interest, denoted by θ ∈ R, in a distributed
sensor network. As described in the system model, we assume
that the ith sensor quantizes its observation ri into an M-
ary symbol ui, and transmits vi to the FC. If the ith node is
honest, then vi = ui. Otherwise, we assume that the sensor is
compromised and flips ui into vi using a flipping probability
matrix P. Under the assumption that the FC receives the
symbols v over an ideal channel, the estimation performance
at the FC depends on the probability mass function P (v|θ).

The performance of a distributed estimation network can
be expressed in terms of the mean-squared error, defined as
E
[
(θ̂ − θ)2

]
. In the case of unbiased estimators, this mean-

squared error is lower bounded by the Cramer-Rao lower
bound (CRLB) [27], which provides a benchmark for the
design of an estimator at the FC. We present this result in
Equation (14):

E
[
(θ̂(v)− θ)2

]
≥ 1

IFC
, (14)

where

IFC = E

[(
∂ logP (v, θ)

∂θ

)2
]
. (15)
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The term IFC is well known as the Fisher information (FI),
and is, therefore, a performance metric that captures the
performance of the optimal estimator at the FC. Note that,
as shown in Equation (16), IFC can be further decomposed
into two parts, one corresponding to the prior knowledge about
θ at the FC, and the other (denoted as JFC) representing the
information about θ, in the sensor transmissions v:

IFC = JFC + E

[(
∂ log p(θ)

∂θ

)2
]
, (16)

where

JFC = E

[(
∂ logP (v|θ)

∂θ

)2
]
. (17)

In most cases, a closed form expression for the mean-
squared error is intractable and, therefore, conditional Fisher
information (FI) is used as a surrogate metric to quantify
the performance of a distributed estimation network. In this
paper, we also use conditional FI of the received data v
as the performance metric. Since the sensor observations
are conditionally independent resulting in independent v, we
denote the conditional FI as JFC and is defined as follows:

JFC = NJFC , (18)

where

JFC = E
[
∂

∂θ
logP (v|θ)

]2
= −E

[
∂2

∂θ2
logP (v|θ)

]
. (19)

Following the same approach as in Section IV, we con-
sider the problem of finding an optimal resource-constrained
Byzantine attack when α < αblind, by finding the symmetric
transition matrix P that minimizes the conditional FI at the
FC. This can be formulated as follows.

Problem 2. Given the value of α, determine the optimal P
within a space of highly symmetric row-stochastic matrices,
as given in Equation (7), such that

minimize
p

JFC

subject to 0 ≤ p ≤ 1

M − 1

.

Theorem 3 presents the optimal flipping probability that
provides a solution to Problem 2. Note that this result is
independent of the design of the sensor network and, therefore,
can be employed when the Byzantine has no knowledge about
the network.

Theorem 3. Given a fixed α <
M − 1

M
, the flipping probabil-

ity p that optimizes P over a space of highly symmetric row-
stochastic matrices, as given in Equation (7), by minimizing
JFC is given by

p∗ =
1

M − 1
.

Proof. See Appendix C.

Numerical Results

As an illustrative example, we consider the problem of
estimating θ = 1 at the FC based on all the sensors’
transmitted messages. Let the observation model at the ith

sensor be defined as follows:

ri = θ + ni, (20)

where the noise ni is the AWGN at the ith sensor with
probability distribution N (0, σ2). The sensors employ the
same quantizer as the one presented in Equation (13). The
quantized symbol, denoted as ui at the ith sensor, is then
modified into vi using the flipping probability matrix P, as
given in Equation (6).

Figure 4 plots the conditional FI corresponding to one
sensor, for different values of α and M , when the uniform
quantizer is centered around the true value of θ. Note that as
SNR increases (σ → 0), we observe that it is better for the
network to perform as much finer quantization as possible to
mitigate the Byzantine attackers. On the other hand, if SNR
is low, coarse quantization performs better for lower values
of α. This phenomenon of coarse quantization performing
better under low SNR scenarios, can be attributed to the fact
that more noise gets filtered as the quantization gets coarser
(decreasing M ) than the signal itself. On the other hand, in
the case of high SNR, since the signal level is high, coarse
quantization cancels out the signal component significantly,
thereby resulting in a degradation in performance.

VI. MITIGATION OF BYZANTINE ATTACKS IN A
BANDWIDTH-CONSTRAINED INFERENCE NETWORK

Given that the distributed inference network is under Byzan-
tine attack, we showed that the performance of the network can
be improved by increasing the quantization alphabet size of
the sensors. Obviously, in a bandwidth-constrained distributed
inference network, the sensors can only transmit with the
maximum possible M , which is finite. In this section, we as-
sume that the network cannot further increase the quantization
alphabet size due to this bandwidth constraint. Therefore, we
present a reputation-based Byzantine identification/mitigation
scheme, which is an extension of the one proposed by Rawat
et al. in [20], in order to improve the inference performance
of the network.

A. Reputation-Tagging at the Sensors

As proposed by Rawat et al. in [20], the FC identifies
the Byzantine nodes by iteratively updating a reputation-tag
for each node as time progresses. We extend the scheme to
include fine quantization scenarios, i.e., M > 2, and analyze
its performance through simulation results.

As mentioned earlier in the paper, the FC receives a vector
v of received symbols from the sensors and fuses them to
yield a global decision, denoted as θ̂. We assume that the
observation model is known to the network designer, and is
given as follows:

ri = fi(θ) + ni, (21)

where fi(·) denotes the known observation model. We denote
the quantization rule employed at the sensor as γ. Therefore,
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(a) Low SNR case: σ = 1
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Fig. 4: Contribution of a sensor to the overall conditional FI at the FC as a function of α, for different number of quantization
levels when θ = 0 and A = 2. The pentagrams on the x-axis correspond to the αblind for 1-bit, 2-bit, 3-bit and 4-bit
quantizations respectively from left to right.

the quantized message at the sensor is given by ui = γ(ri). As
discussed earlier, the ith sensor flips ui into vi using a flipping
probability matrix P. Since the FC makes a global inference
θ̂, it can calculate the squared-deviation di of each sensor
from the expected message that it is to nominally transmit
as follows:

di =
(
γ−1(vi)− fi(θ̂)

)2
, (22)

where γ−1(vi) is the inverse of the sensor quantizer γ(vi) and
it is assumed to be the centroid of the corresponding decision
region of the quantizer vi.

Note that vi is the received symbol which characterizes the
behavior (honest or Byzantine) of the ith sensor, while fi(θ̂)
is the signal that the FC expects the sensor to observe. If the
ith sensor is honest, we expect the mean of di to be small.
On the other hand, if the ith sensor is a compromised node,
then the mean of di is expected to be large. Therefore, we
accumulate the squared-deviations di = {di(1), · · · , di(T )}
over T time intervals and compute a reputation tag Λi(di), as
a time-average for the ith node as follows:

Λi =
1

T

T∑
t=1

di(t). (23)

The ith sensor is declared honest/Byzantine using the follow-
ing threshold-based tagging rule

Λi

Byzantine
≷

Honest
η. (24)

The performance of the above tagging rule depends strongly
on the choice of η. Note that the threshold η should be chosen
based on two factors. Firstly, η should be chosen in such a way
that the probability with which a malicious node is tagged

Byzantine is high. Higher the value of η, lower is the chance
of tagging a node to be Byzantine and vice-versa. This results
in a tradeoff between the probability of detecting a Byzantine
vs. the probability of falsely tagging an honest node as a
Byzantine. Secondly, the value of M also plays a role in the
choice of η, and therefore, the performance of the tagging rule.
We illustrate this phenomenon in our simulation results.

B. Optimal Choice of the Tagging Threshold as T → ∞
In this paper, we denote the true type of the ith node as Ti,

where Ti = H corresponds to honest behavior, while Ti = B
corresponds to Byzantine behavior, for all i = 1, · · · , N .
Earlier, in this section, we presented Equation (24) which
allows us to make inferences about the true type. But, the
performance of the Byzantine tagging scheme corresponding
the ith sensor is quantified by the conditional probabilities
P (Λi ≥ η|Ti = T ), for both T = H,B. In order to find the
optimal choice of η in Equation (24), we continue with the
Neyman-Pearson framework even in the context of Byzantine
identification, where the goal is to maximize P (Λi ≥ η|Ti =
B), subject to the condition that P (Λi ≥ η|Ti = H) ≤ ξ.

To find these two conditional probabilities P (Λi ≥ η|Ti =
H) and P (Λi ≥ η|Ti = B), we need a closed form
expression of the conditional distributions, P (Λi|Ti = H) and
P (Λi|Ti = B) respectively. In practice, where T is finite,
it is intractable to determine the conditional distribution of
Λi, which is necessary to come up with the optimal choice
of η. Therefore, in this paper, we assume that T → ∞ and
present an asymptotic choice of the tagging threshold η used
in Equation (24).

As T → ∞, since di(t) is independent across t = 1, · · · , T ,
due to central-limit theorem, (Λi|Ti = T ) ∼ N (µi,T , σi,T ),
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where

µi,T = E(Λi | Ti = T )

= E
[(

γ−1(vi(t))− θ̂(t)
)2

| Ti = T

] (25)

and

σ2
i,T = Var(Λi | Ti = T )

=
1

T
Var

[(
γ−1(vi(t))− θ̂(t)

)2
| Ti = T

] .

(26)
In this paper, we do not present the final form of µi,T

and σi,T in order to preserve generality. Assuming that vi(t)
is independent across sensors as well as time, the moments
of di can be computed for any given FC’s inference θ̂(t) at
time t about a given phenomenon. Although the final form of
µi,T and σi,T is not presented, since di(t) is a function of
v, we present the conditional probability of (vj |Ti = T ) in
Equation (27), which is necessary for the computation of µi,T

and σi,T .

P (vj |Ti = T ) =

∫
P (vj |θ,Ti = T )p(θ)dθ, (27)

where P (vj |θ,Ti = T ) can be calculated as follows:

P (vj = m|θ,Ti = H) =

P (uj = m|θ), if j = i

(1− πBH)P (uj = m|θ) +

πBH

M∑
k=1

pkmP (uj = k|θ), if j ̸= i

(28)

and

P (vj = m|θ,Ti = B) =

M∑
k=1

pkmP (uj = k|θ), if j = i

(1− πBB)P (uj = m|θ) +

πBB

M∑
k=1

pkmP (uj = k|θ), if j ̸= i

,
(29)

where πBH = P (Tj = B|Ti = H) and πBB = P (Tj =
B|Ti = B) are conditional probabilities of the jth node’s
type, given the type of the ith node. Since there are α fraction
of nodes in the network, given that the FC knows the type
of ith node as H , the conditional probability of the jth node

belonging to a type T is given by πBH =
Nα

N − 1
and πBB =

Nα− 1

N − 1
.

Given the conditional distributions P (Λi|Ti = H) and
P (Λi|Ti = B), we find the performance of the Byzantine

identification scheme as follows:

P (Λi ≥ η|Ti = H) = Q

(
η − µi,H

σi,H

)

P (Λi ≥ η|Ti = B) = Q

(
η − µi,B

σi,B

) . (30)

Under the NP framework, the optimal η can be chosen by
letting P (Λi ≥ η|i = H) = β, when Λi is normally distributed
conditioned on the true type of a given node. In other words,

Q

(
η − µi,H

σi,H

)
= ξ (31)

or equivalently,

ηoptimal = µi,H + σi,HQ−1(ξ). (32)

Note that, since P (vi|Ti = H) is a function of α, it follows
that both µi,H and σi,H are functions of α. Although we do
not provide a closed-form expression for η as a function of
α, we provide the following example to portray how η varies
with different values of α.

1) Example: Variation of η as a function of α: Consider a
distributed estimation network with N = 5 identical nodes. Let
the prior distribution of the true phenomenon θ be the uniform
distribution U(0, 1). We assume that the sensing channel is an
AWGN channel where the sensor observations is given by ri =
θ + ni. Therefore, the conditional distribution of the sensor
observations is N (θ, σ2), when conditioned on θ. We assume
that the sensors employ the quantizer rule shown in Equation
(13) on their observations ri. At the FC, we let γ−1(·) be

defined as the centroid function that returns ci =
λi−1 + λi

2
.

Let θ̂ =
1

M

N∑
i=1

γ−1(vi(t)) be the fusion rule employed at the

FC to estimate θ.
Since the network comprises of identical nodes, without any

loss of generality, we henceforth focus our attention on the
reputation-based identification rule at sensor-1. Substituting
the above mentioned fusion rule in the squared-deviation d1
corresponding to sensor-1 in Equation (22), we have

d1 =

(
γ−1(v1)−

1

M

5∑
i=1

γ−1(vi(t))

)2

=

(
M − 1

M
γ−1(v1)−

1

M

5∑
i=2

γ−1(vi(t))

)2

.

(33)

Let us denote ϕij = E
{(

γ−1(vi)
)j |T1 = H

}
=

M∑
vi=1

[(
γ−1(vi)

)j
P (vi|T1 = H)

]
, for all i = 1, · · · , 5 and

j = 1, 2, · · · ,∞. Here, P (vi|T1 = H) can be computed using
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Equation (28) as follows:

P (vi = m|T1 = H)

=

∫ ∞

−∞
P (vi = m|θ,T1 = H) p(θ)dθ

=

∫ 1

0

P (vi = m|θ,T1 = H) dθ

=



a1,m if i = 1

Nα

(N − 1)(M − 1)
+(

1− MNα

(N − 1)(M − 1)

)
ai,m otherwise.

(34)

where ai,m =

∫ 1

0

P (ui = m|θ) dθ, for all i = 1, · · · , N .

Note that, since all the nodes in the network are identical,
P (ui|θ) is independent of the node-index i, and therefore,
ϕij = ϕ2j , for all i ̸= 1.

Thus, the conditional mean and variance, µ1H and σ2
1H , are

given as follows for the special case of N = 5:

µ1H

= E

(M − 1

M
γ−1(v1)−

1

M

5∑
i=2

γ−1(vi(t))

)2

| Ti = H



=
1

M2
E

((M − 1)γ−1(v1)−
5∑

i=2

γ−1(vi(t))

)2

| Ti = H


=

1

M2

[
(M − 1)2ϕ12 + 4ϕ22 + 12ϕ2

21 − 8(M − 1)ϕ11ϕ21

]
(35)

and

σ2
1H =

1

T
Var

[(
γ−1(vi(t))− θ̂(t)

)2
| Ti = H

]

=
1

T

{
∆− µ2

1H

}
,

(36)

where
∆

= E

(M − 1

M
γ−1(v1)−

1

M

5∑
i=2

γ−1(vi(t))

)4

| Ti = H


=

1

M4

[
(M − 1)4ϕ14 − 16(M − 1)3ϕ13ϕ21

+6(M − 1)2ϕ12{4ϕ22 + 12ϕ2
21}

−4(M − 1)ϕ11(4ϕ23 + 36ϕ22ϕ21 + 24ϕ3
21) + 4ϕ24

+12ϕ23ϕ21 + 36(ϕ23ϕ21 + ϕ2
22 + 2ϕ22ϕ

2
21)

+24(ϕ4
21 + 3ϕ22ϕ

2
21)
]
.

(37)
Thus, for ξ = 0.01, we compute the tagging threshold η

numerically as shown in Equation (32), and plot the variation

of η as a function of α in Figure 5. Note that, in our numerical
results, we observe that the optimal choice of η is a convex
function of α, where the curvature of the convexity decreases
with increasing M . This can be clearly seen from Figure 5b,
where we only plot the case of M = 7. We observe a similar
behavior for all the other values of M , and therefore, present
the case of M = 7 to illustrate the convex behavior of η.
In other words, for very large values of M , the choice of η
becomes independent of α, for any fixed α ≤ αblind.

C. Simulation Results

In order to illustrate the performance of the proposed
reputation-based scheme, we consider a sensor network with
a total of 100 sensors in the network, out of which 20 are
Byzantine sensors. Let the sensor quantizers be given by
Equation (13) and the fusion rule at the FC be the MAP rule,
given as follows:

N∑
i=1

log

(
P (vi|H1)

P (vi|H0)

)
θ̂=1

≷
θ̂=0

log
p0
p1

. (38)

Figure 6 plots the rate of identification of the number of
Byzantine nodes in the network for the proposed reputation-
based scheme for different sizes of the quantization alphabet
set. Note that the convergence rate deteriorates as M increases.
This is due to the fact that the Byzantine nodes have increasing
number of symbol options to flip to, because of which a
greater number of time-samples are needed to identify the
malicious behavior. In addition, we also simulate the evolution
of mislabelling an honest node as a Byzantine node in time,
and plot the probability of the occurrence of this event in
Figure 7. Just as the convergence deteriorates with increasing
M , we observe a similar behavior in the evolution of the
probability of mislabelling honest nodes. Another important
observation in Figure 7 is that the probability of mislabelling
a node always converges to zero in time. Similarly, we simulate
the evolution of mislabelling a Byzantine node as an honest
one in time in Figure 8. We observe similar convergence
of the probability of mislabelling a Byzantine node as an
honest node to zero, with a rate that decreases with increasing
number of quantization levels, M . Therefore, Figures 6, 7
and 8 demonstrate that, after a sufficient amount of time, the
reputation-based scheme always identifies the true behavior
of a node within the network, with negligible number of
mislabels.

VII. CONCLUDING REMARKS

In summary, we modelled the problem of distributed infer-
ence with M-ary quantized data in the presence of Byzantine
attacks, under the assumption that the attacker does not have
knowledge about either the true hypotheses or the quantization
thresholds at the sensors. We found the optimal Byzantine
attack that blinds the FC in the case of any inference task
for both noiseless and noisy FC channels. We also consid-
ered the problem of resource-constrained Byzantine attack
(α < αblind) for distributed detection and estimation in
the presence of resource-constrained Byzantine attacker for
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Fig. 5: Variation of the optimal tagging threshold η (in the asymptotic sense, where T → ∞) as a function of α
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Fig. 6: Rate of identification of the number of Byzantine nodes
in time for different number of quantization levels

the special case of highly symmetric attack strategies in the
presence of noiseless channels at the FC. From the inference
network’s perspective, we presented a mitigation scheme that
identifies the Byzantine nodes through reputation-tagging. We
also showed how the optimal tagging threshold can be found
when the time-window T → ∞. Finally, we also investigated
the performance of our reputation-based scheme in our simu-
lation results and show that our scheme always converges to
finding all the compromised nodes, given sufficient amount
of time. In our future work, we will investigate the optimal
resource-constrained Byzantine attack in the space of all row-
stochastic flipping probability matrices, and if possible, find
schemes that mitigate the Byzantine attack more effectively.
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Fig. 7: Evolution of the probability of mislabelling an honest
node as a Byzantine in time for different number of quantiza-
tion levels

APPENDIX A
OPTIMAL BYZANTINE ATTACK IN THE PRESENCE OF A

DISCRETE NOISY CHANNEL AT THE FC

Given that the messages v = {v1, v2, · · · , vN} are trans-
mitted to the fusion center (FC), we assume a discrete noise
channel Q = [qmn] between the sensors and the FC, where
qmn is the probability with which vi = m is transformed to
symbol zi = n at the ith sensor. Based on the received z
at the FC, a global inference is made about the phenomenon
of interest. In this paper, we assume that the row-stochastic
channel matrix Q is invertible for the sake of tractability.

Given the transition probability matrix Q for the channel
between the sensors and the FC, we assume that the FC
receives zi = n when the the ith sensor transmits vi = m,
with a probability qmn. The conditional distribution of zi = n
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Fig. 8: Evolution of the probability of mislabelling a Byzantine
node as an honest node in time for different number of
quantization levels

under a given phenomenon θ, is given as

P (zi = n|θ) =
M∑

m=1

qmnP (vi = m|θ). (39)

Note that if Q is a doubly stochastic matrix, since
M∑

m=1

qmn =

1, it is sufficient for the Byzantine attacker to ensure P (vi =
m|θ) = 1

M . Thus, by Theorem 1, we have the following
theorem when Q is a doubly stochastic matrix.

Theorem 4. If the channel matrix Q is doubly-stochastic, and
if the Byzantine attacker has no knowledge about the sensors’
quantization thresholds, then the optimal Byzantine attack is
given as

plm =


1

M − 1
; if l ̸= m

0 ; otherwise

αblind =
M − 1

M
.

(40)

Therefore, we focus our attention to any general row-

stochastic channel matrix Q, where
M∑

m=1

qmn need not nec-

essarily sum to unity for all n = 1, · · · ,M . In other words,
the Byzantine attacker has to find an alternative strategy to
blind the FC, where P (zi = n|θ) = 1

M . Substituting Equation
(3) in Equation (39) and rearranging the terms, we have the

following.

P (zi = n|θ) =
M∑

m=1

qmnP (vi = m|θ)

=
M∑

m=1

qmn[(1− α) + αpmm]

+
M∑

m=1

qmn

∑
l ̸=m

{αplm − [(1− α) + αpmm]}P (ui = l|θ)


=

M∑
m=1

qmn[(1− α) + αpmm]

+
M∑
l=1

∑
m ̸=l

qmn{αplm − [(1− α) + αpmm]}

P (ui = l|θ).

(41)
The goal of a Byzantine attack is to blind the FC with

the least amount of effort (minimum α). To totally blind the
FC is equivalent to making P (zi = n|θ) = 1/M for all
0 ≤ n ≤ M − 1. In Equation (41), the RHS consists of
two terms. The first one is based on prior knowledge and the
second term conveys information based on the observations.
In order to blind the FC, the attacker should make the second
term equal to zero. Since the attacker does not have any
knowledge regarding P (ui = l|θ), it can make the second
term of Equation (41) equal to zero by setting∑
m ̸=l

qmn{αplm−[(1−α)+αpmm]} = 0 for all 1 ≤ n, l ≤ M.

(42)

Then the conditional probability P (zi = n|θ) =
M∑

m=1

qmn[(1−

α)+αpmm] becomes independent of the observations ri (or its
quantized version ui), resulting in equiprobable symbols at the
FC. In other words, the received vector z = {z1, z2, · · · , zN}
does not carry any information about u = {u1, u2, · · · , uN},
thus making FC solely dependent on its prior information
about θ in making an inference.

In order to identify the strategy that the attacker should
employ to achieve the condition in Equation (42), for all n =
1, · · · ,M , we need

P (zi = n|θ) =
1

M
,

or,
M∑

m=1

qmn {(1− α) + αpmm} =
1

M
.

(43)

In matrix form, we can rewrite Equation (43) as

(1− α)1TQ+ αpTQ =
1

M
1T ,

where 1 is an all-one column-vector and p =
[p11, · · · , pMM ]

T is the column-vector of all diagonal
elements of P. In other words,

α(1− p) = 1− 1

M

(
QT
)−1

1 (44)
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Note that every element in the LHS of Equation (44)
always lies between 0 and 1. Therefore, the existence of the
Byzantine’s optimal strategy relies on the following condition.
In other words,

0 ≤
(
QT
)−1

1 ≤ M 1. (45)

If (45) does not hold, there does not exist an optimal strategy.
Given that the condition in Equation (45) holds, the minimum
α can be found as follows.

αblind = min

{
1− 1

M

(
QT
)−1

1

}

= 1− 1

M
max

{(
QT
)−1

1
}
.

(46)

Therefore, p can be calculated as

p = 1− 1

αblind

(
1− 1

M

(
QT
)−1

1

)

=
1

αblindM

(
QT
)−1

1− 1− αblind

αblind
1.

(47)

Next, in order to find the rest of the P matrix, let us consider
Equation (42). Adding qln {αpll − [1− α+ αpll]} on both
sides to Equation (42), we have

M∑
m=1

qmn{αplm − [(1− α) + αpmm]} = −qln(1− α)

for all 1 ≤ n, l ≤ M.

or, α
M∑

m=1

qmnplm =
1

M
− qln(1− α)

for all 1 ≤ n, l ≤ M.
(48)

In matrix form, we have

αPQ =
1

M
1 − (1− α)Q, (49)

where 1 is an all-one matrix. Equivalently, we have

P =
1

αM
1Q−1 − 1− α

α
I, (50)

where I is the identity matrix. Note that the vector p (com-
prising the diagonal elements of P) obtained from Equation
(50) is verified to be same as that from Equation (47).

In summary, we have the following theorem that provides
the optimal Byzantine strategy in the presence of noisy FC
channels:

Theorem 5. Let the Byzantine attacker have no knowledge
about the sensors’ quantization thresholds, and, the FC’s
channel matrix be Q. If Q is non-singular, and, if 0 ≤(
QT
)−1

1 ≤ M1, then the optimal Byzantine attack is given
as

αblind = 1− 1

M
max

{(
QT
)−1

1
}

P =
1

αblindM
1Q−1 − 1− αblind

αblind
I.

(51)

Note that, if the channel matrix Q is doubly-stochastic, we
have Q1 = 1 and QT1 = 1. Substituting these conditions in
Equation (51), Theorem 5 reduces to Theorem 4.

Having identified the optimal Byzantine attack, one can
observe that the attacker needs to compromise a huge number

of sensors (αblind = 1− 1

M
max

{(
QT
)−1

1
}

) in the network
to blind the FC. Therefore, it is obvious that, in the case
of a resource-constrained attacker, the attacker compromises
a fixed fraction of nodes α ≤ αblind in such a way that
the performance degradation at the FC is maximized. In
our future work, we will investigate the problem of finding
the optimal strategy in the context of resource-constrained
Byzantine attacks in the presence of noisy FC channels.

APPENDIX B
PROOF FOR THEOREM 2

For the sake of notational simplicity, let us denote xm =
P (u = m|H0) and ym = P (u = m|H1). Similarly, x̃m =
P (v = m|H0) and ỹm = P (v = m|H1).

Rewriting Equation (3) in our new notation, we have

x̃m = α
∑
l ̸=m

pxl+(1−α(M −1)p)xm = αp+(1−Mαp)xm

(52)
and

ỹm = α
∑
l ̸=m

pyl+(1−α(M −1)p)ym = αp+(1−Mαp)ym.

(53)
Therefore, the KLD at the FC can be rewritten as

DFC =
M∑

m=1

x̃m log

(
x̃m

ỹm

)
. (54)

On partially differentiating DFC with respect to p, we have

∂DFC

∂p
=

∂

∂p

M∑
m=1

x̃m log

(
x̃m

ỹm

)

= α
M∑

m=1

[
(1−Mxm)

(
1 + log

x̃m

ỹm

)
− (1−Mym)

x̃m

ỹm

]

= α
M∑

m=1

(1−Mxm) + α
M∑

m=1

(1−Mxm) log
x̃m

ỹm

−α

M∑
m=1

(1−Mym)
x̃m

ỹm
.

(55)
Consider the first term in the RHS of Equation (55). Note

that, since x = {x1, · · · , xM} is a probability mass function,
we have

M∑
m=1

(1−Mxm) = M −M

M∑
m=1

xm = M −M = 0.
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Therefore, Equation (55) reduces to

∂DFC

∂p
= α

M∑
m=1

(1−Mxm) log
x̃m

ỹm
− α

M∑
m=1

(1−Mym)
x̃m

ỹm
.

(56)
Rearranging the terms in Equation (56), we have

∂DFC

∂p
= α

M∑
m=1

[
log

x̃m

ỹm
− x̃m

ỹm

]
− αM

M∑
m=1

xm log
x̃m

ỹm

+αM
M∑

m=1

ym
x̃m

ỹm
.

(57)
Let us denote the first term as T1. In other words,

T1 = α
M∑

m=1

[
log

x̃m

ỹm
− x̃m

ỹm

]
.

Let us now focus our attention on the other terms in the
RHS of Equation (57). Substituting Equations (52) and (53)
in the second and third terms of the RHS of Equation (57),
we have

∂DFC

∂p
= T1 −

Mα

1−Mαp

M∑
m=1

(x̃m − αp) log
x̃m

ỹm

+
Mα

1−Mαp

M∑
m=1

(ỹm − αp)
x̃m

ỹm

= T1 −
Mα

1−Mαp
D(x̃||ỹ)

+
Mα

1−Mαp

{
M∑

m=1

αp log
x̃m

ỹm
−

M∑
m=1

αp
x̃m

ỹm
+

M∑
m=1

x̃m

}
,

(58)
where D(x̃||ỹ) is the KLD between x̃ and ỹ and is, therefore,
non-negative. Also, note that in Equation (58), since x̃ =

{x̃1, · · · , x̃M} is a probability mass function,
M∑

m=1

x̂m = 1.

Therefore, Equation (58) reduces to

∂DFC

∂p
= T1 −

Mα

1−Mαp
D(x̃||ỹ) + Mα

1−Mαp

+
Mα2p

1−Mαp

M∑
m=1

[
log

x̃m

ỹm
− x̃m

ỹm

]
.

(59)

Note that the last term in the RHS of Equation (59),

Mα2p

1−Mαp

M∑
m=1

[
log

x̃m

ỹm
− x̃m

ỹm

]
=

Mαp

1−Mαp
T1.

In other words,

∂DFC

∂p
=

(
1 +

Mαp

1−Mαp

)
T1 −

Mα

1−Mαp
D(x̃||ỹ)

+
Mα

1−Mαp

=
1

1−Mαp
T1 −

Mα

1−Mαp
D(x̃||ỹ) + Mα

1−Mαp
.

(60)
Rearranging the terms in Equation (60) and expanding T1,

we have

∂DFC

∂p
= − Mα

1−Mαp
D(x̃||ỹ) + Mα

1−Mαp

+
α

1−Mαp

M∑
m=1

[
log

x̃m

ỹm
− x̃m

ỹm

]

= − Mα

1−Mαp
D(x̃||ỹ)

+
α

1−Mαp

M∑
m=1

[
log

x̃m

ỹm
−
(
x̃m

ỹm
− 1

)]
.

(61)
Since log x ≤ x− 1 for all x, we find that the second term

in the RHS of Equation (56) is negative. Therefore, we have

∂DFC

∂p
≤ 0. (62)

Since DFC is a non-increasing function of p, the optimal p,
p∗, takes the maximum value 1/(M − 1).

APPENDIX C
PROOF FOR THEOREM 3

For the sake of notational simplicity, we let zm = P (u =
m|θ). Similarly, z̃m = P (v = m|θ). Using this notation in
Equation (19), we have

JFC =
M∑

m=1

P (v = m|θ)
(
∂ logP (v = m|θ)

∂θ

)2

=
M∑

m=1

z̃m

(
∂ log z̃m

∂θ

)2

= (1−Mαp)2
M∑

m=1

1

z̃m

(
∂zm
∂θ

)2

.

(63)
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Partially differentiating JFC with respect to p, we have

∂JFC

∂p
= 2(1−Mαp)(−Mα)

M∑
m=1

1

z̃m

(
∂zm
∂θ

)2

+(1−Mαp)2
M∑

m=1

(
− 1

z̃2m

)
(α−Mαzm)

(
∂zm
∂θ

)2

= −(1−Mαp)

[
2Mα

M∑
m=1

z̃m

(
1

z̃m

∂zm
∂θ

)2

+(1−Mαp)
M∑

m=1

α

(
1

z̃m

∂zm
∂θ

)2

−(1−Mαp)
M∑

m=1

Mαzm

(
1

z̃m

∂zm
∂θ

)2
]

= −(1−Mαp)

[
α(1−Mαp)

M∑
m=1

(
1

z̃m

∂zm
∂θ

)2

+Mα(1 +Mαp)
M∑

m=1

zm

(
1

z̃m

∂zm
∂θ

)2
]
.

(64)
In Equation (64), we have a negative term multiplied by a
non-negative term, and hence we have

∂JFC

∂p
≤ 0. (65)

Since JFC is a non-increasing function of p, p∗ =
1

M − 1
,

being the maximum value, is the optimal solution to Problem
2.
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