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Abstract—In this paper, we consider the problem of distributed
Bayesian detection in the presence of Byzantines in the network.
It is assumed that a fraction of the nodes in the network are
compromised and reprogrammed by an adversary to transmit
false information to the fusion center (FC) to degrade detection
performance. The problem of distributed detection is formulated
as a binary hypothesis test at the FC based on 1-bit data
sent by the sensors. The expression for minimum attacking
power required by the Byzantines to blind the FC is obtained.
More specifically, we show that above a certain fraction of
Byzantine attackers in the network, the detection scheme becomes
completely incapable of utilizing the sensor data for detection.
We analyze the problem under different attacking scenarios and
derive results for different non-asymptotic cases. It is found that
existing asymptotics-based results do not hold under several non-
asymptotic scenarios. When the fraction of Byzantines is not
sufficient to blind the FC, we also provide closed form expressions
for the optimal attacking strategies for the Byzantines that most
degrade the detection performance.

Index Terms—Bayesian detection, Data falsification, Byzantine
Data, Probability of error, Distributed detection

I. INTRODUCTION

Distributed detection is a well studied topic in the detection
theory literature [1]–[3]. In distributed detection systems, due
to bandwidth and energy constraints, the nodes often make a
1-bit local decision regarding the presence of a phenomenon
before sending it to the fusion center (FC). Based on the local
decisions transmitted by the nodes, the FC makes a global
decision about the presence of the phenomenon of interest.
Distributed detection was originally motivated by its applica-
tions in military surveillance but is now being employed in
a wide variety of applications such as distributed spectrum
sensing (DSS) using cognitive radio networks (CRNs) and
traffic and environment monitoring.

In many applications, a large number of inexpensive and
less reliable nodes that can provide dense coverage are used
to provide a balance between cost and functionality. The per-
formance of such systems strongly depends on the reliability
of the nodes in the network. The robustness of distributed
detection systems against attacks is of utmost importance. The
distributed nature of such systems makes them quite vulner-
able to different types of attacks. In recent years, security
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issues of such distributed networks are increasingly being
studied within the networking [4], signal processing [5] and
information theory communities [6]. One typical attack on
such networks is a Byzantine attack. While Byzantine attacks
(originally proposed by [7]) may, in general, refer to many
types of malicious behavior, our focus in this paper is on data-
falsification attacks [8]–[15]. In this type of attack, an attacker
may send false (erroneous) data to the FC to degrade detection
performance. In this paper, we refer to such a data falsification
attacker as a Byzantine and the data thus generated is referred
to as Byzantine data.

We formulate the signal detection problem as a binary
hypothesis testing problem with the two hypotheses H0 (signal
is absent) and H1 (signal is present). We make the conditional
i.i.d. assumption under which observations at the nodes are
conditionally independent and identically distributed given the
hypothesis. We assume that the FC is not compromised, and
is able to collect data from all the nodes in the network
via error free communication channels.1 We also assume
that the FC does not know which node is Byzantine, but
it knows the fraction of Byzantines in the network.2 We
consider the problem of distributed Bayesian detection with
prior probabilities of hypotheses known to both the FC and
the attacker. The FC aims to minimize the probability of error
by choosing the optimal fusion rule.

A. Related Work

Although distributed detection has been a very active field of
research in the past, security problems in distributed detection
networks gained attention only very recently. In [11], the
authors considered the problem of distributed detection in
the presence of Byzantines under the Neyman-Pearson (NP)
setup and determined the optimal attacking strategy which
minimizes the detection error exponent. This approach based
on Kullback-Leibler divergence (KLD) is analytically tractable
and yields approximate results in non-asymptotic cases. They
also assumed that the Byzantines know the true hypothesis,
which obviously is not satisfied in practice but does provide
a bound. In [12], the authors analyzed the same problem in
the context of collaborative spectrum sensing under Byzantine
Attacks. They relaxed the assumption of perfect knowledge of

1In this work, we do not consider how individual nodes deliver their data
to the fusion center except that the Byzantines are not able to alter the
transmissions of honest nodes.

2In practice, the fraction of Byzantines in the network can be learned by
observing the data sent by the nodes at the FC over a time window; however,
this study is beyond the scope of this work.
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TABLE I
DIFFERENT SCENARIOS BASED ON THE KNOWLEDGE OF THE OPPONENT’S

STRATEGIES

Cases Attacker has the knowledge of the FC’s strategies FC has the knowledge of Attacker’s strategies

Case 1 No No

Case 2 Yes No

Case 3 Yes Yes

Case 4 No Yes

the hypotheses by assuming that the Byzantines determine the
knowledge about the true hypotheses from their own sensing
observations. A variant of the above formulation was explored
in [13], [16], where the authors addressed the problem of
optimal Byzantine attacks (data falsification) on distributed
detection for a tree-based topology and extended the results
of [12] for tree topologies. By assuming that the cost of
compromising nodes at different levels of the tree is different,
they found the optimal Byzantine strategy that minimizes
the cost of attacking a given tree. Schemes for Byzantine
node identification have been proposed in [12], [15], [17],
[18]. Our focus is considerably different from Byzantine node
identification schemes in that we do not try to authenticate
the data; we consider most effective attacking strategies and
distributed detection schemes that are robust against attacks.
Note that, the Byzantine attack model is similar to the scenario
where local decisions are transmitted over a Binary Symmetric
Channel (BSC) with a certain cross over probability. There
are several papers that address the impact of transmission
channels or faults on the distributed detection system and
related problems [19]–[22]. However, Byzantine attacks are
philosophically different from the BSC or the faulty sensor
case. Byzantine attacks are intentional and, therefore, the
attacker can optimize over the attack parameters. Thus, in
contrast to channel aware detection, both the FC and the
Byzantines can optimize their utility by choosing their actions
based on the knowledge of their opponent’s behavior. Study
of these practically motivated scenarios in the presence of
Byzantines is missing from the channel aware detection and
fault tolerant detection literature because of the philosophical
difference between these approaches.

B. Main Contributions

All the approaches discussed so far consider distributed
detection under the Neyman-Pearson (NP) setup. In this paper,
we consider the distributed Bayesian detection problems with
known prior probabilities of hypotheses. We assume that the
Byzantines do not have perfect knowledge about the true state
of the phenomenon of interest. In addition, we also assume that
the Byzantines neither have the knowledge nor control over the
thresholds used to make local decisions at the nodes. Also, the
probability of detection and the probability of false alarm of a
node are assumed to be the same for every node irrespective
of whether they are honest or Byzantines. In this paper, we
focus on a non-asymptotic analysis for the Byzantine attacks
on distributed Bayesian detection. First, we show that above a
certain fraction of Byzantines in the network, the data fusion

scheme becomes completely incapable (blind) and it is not
possible to design a decision rule at the FC that can perform
better than the decision rule based just on prior information.
We find the minimum fraction of Byzantines that can blind the
FC and refer to it as the critical power. Next, we explore the
optimal attacking strategies for the Byzantines under different
scenarios. In practice, the FC and the Byzantines will optimize
their utility by choosing their actions based on the knowledge
of their opponent’s behavior. This motivates us to address
the question: what are the optimal attacking/defense strategies
given the knowledge of the opponent’s strategies? Study of
these practically motivated questions requires non asymptotic
analysis, which is systematically studied in this work. By
assuming the error probability to be our performance metric,
we analyze the problem in the non asymptotic regime. Observe
that, the probability of error is a function of the fusion rule,
which is under the control of the FC. This gives us an addi-
tional degree of freedom to analyze the Byzantine attack under
different practical scenarios where the FC and the Byzantines
may or may not have knowledge of their opponent’s strategies
(For a description of different scenarios see Table I). It is
found that results based on asymptotics do not hold under
several non-asymptotic scenarios. More specifically, when the
FC does not have knowledge of attacker’s strategies, results
for the non-asymptotic case are different from those for the
asymptotic case. However, if the FC has complete knowledge
of the attacker’s strategies and uses the optimal fusion rule
to make the global decision, results obtained for this case
are the same as those for the asymptotic case. Knowledge
of the behavior of the attacker in the non-asymptotic regime
enables the analysis of many related questions, such as the
design of the optimal detector (fusion rule) and effects of
strategic interaction between the FC and the attacker. In the
process of analyzing the scenario where the FC has complete
knowledge of its opponent’s strategies, we obtain a closed
form expression of the optimal fusion rule. To summarize,
our main contributions are threefold.

• In contrast to previous works, we carry out the non-
asymptotic performance analysis of distributed Bayesian
detection with Byzantines.

• We analyze the problem under different attacking sce-
narios and derive closed form expressions for optimal
attacking strategies for different non-asymptotic cases.

• In the process of analyzing the scenario where the FC
has complete knowledge of its opponent’s strategies, we
obtain a closed form expression for the optimal fusion
rule.

The signal processing problem considered in this paper is
closest to [12]. The approach in [12], based on Kullback-
Leibler divergence (KLD), is analytically tractable and yields
approximate results in non-asymptotic cases. Our results,
however, are not a direct application of those of [12]. While as
in [12] we are also interested in the optimal attack strategies,
our objective function and, therefore, techniques of finding
them are different. In contrast to [12], where only optimal
strategies to blind the FC were obtained, we also provide
closed form expressions for the optimal attacking strategies for
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Fig. 1. System Model

the Byzantines that most degrade the detection performance
when the fraction of Byzantines is not sufficient to blind the
FC. In fact, finding the optimal Byzantine attacking strategies
is only the first step toward designing a robust distributed
detection system. Knowledge of these attacking strategies
can be used to implement the optimal detector at the FC
or to implement an efficient reputation based identification
scheme [12], [23] ( thresholds in these schemes are generally
a function of attack strategies). Also, the optimal attacking
distributions in certain cases have the minimax property and,
therefore, the knowledge of these optimal attack strategies can
be used to implement the robust detector.

The rest of the paper is organized as follows. Section II
introduces our system model, including the Byzantine attack
model. In Section III, we provide the closed form expression
for the critical power above which the FC becomes blind. Next,
we discuss our results based on non-asymptotic analysis of the
distributed Bayesian detection system with Byzantine data for
different scenarios. In Section IV, we analyze the problem
when Byzantines do not have any knowledge about the fusion
rule used at the FC. Section V discusses the scenario where
Byzantines have the knowledge about the fusion rule used at
the FC, but the FC does not know the attacker’s strategies.
Next in Section VI, we extend our analysis to the scenario
where both the FC and the attacker have the knowledge of
their opponent’s strategies and act strategically to optimize
their utilities. Finally, Section VII concludes the paper.

II. DISTRIBUTED DETECTION IN THE PRESENCE OF
BYZANTINES

Consider two hypotheses H0 (signal is absent) and H1

(signal is present). Also, consider a parallel network (see
Figure 1), comprised of a central entity (known as the Fusion
Center (FC)) and a set of N sensors (nodes), which faces the
task of determining which of the two hypotheses is true. Prior
probabilities of the two hypotheses H0 and H1 are denoted by
P0 and P1, respectively. The sensors observe the phenomenon,
carry out local computations to decide the presence or absence
of the phenomenon, and then send their local decisions to

the FC that yields a final decision after processing the lo-
cal decisions. Observations at the nodes are assumed to be
conditionally independent and identically distributed given the
hypothesis. A Byzantine attack on such a system compromises
some of the nodes which may then intentionally send falsified
local decisions to the FC to make the final decision incorrect.
We assume that a fraction α of the N nodes which observe the
phenomenon have been compromised by an attacker. In this
paper, we consider the Clairvoyant case and assume that, the
fusion center knows the values of α and (P0, P1). In appendix
A we discuss some practical issues related to our assumptions
regarding the knowledge of these parameters in the detection
system. We consider the communication channels to be error-
free. Next, we describe the modus operandi of the sensors and
the FC in detail.

A. Modus Operandi of the Nodes

Based on the observations, each node i makes a one-bit
local decision vi ∈ {0, 1} regarding the absence or presence
of the phenomenon using the likelihood ratio test

p
(1)
Y i (yi)

p
(0)
Y i (yi)

vi=1

≷
vi=0

λ, (1)

where λ is the identical threshold3 used at all the sensors and
p
(k)
Y i (yi) is the conditional probability density function (PDF)

of observation yi under the hypothesis Hk. Each node i, after
making its one-bit local decision vi, sends ui ∈ {0, 1} to the
FC, where ui = vi if i is an uncompromised (honest) node,
but for a compromised (Byzantine) node i, ui need not be
equal to vi. We denote the probabilities of detection and false
alarm of each node i in the network by Pd = P (vi = 1|H1)
and Pf = P (vi = 1|H0), respectively, which hold for both
uncompromised nodes as well as compromised nodes. In
this paper, we assume that each Byzantine decides to attack
independently relying on its own observation and decision
regarding the presence of the phenomenon. Specifically, we
define the following strategies PHj,1, PHj,0 and PBj,1, PBj,0 (j ∈
{0, 1}) for the honest and Byzantine nodes, respectively:
Honest nodes:

PH1,1 = 1− PH0,1 = PH(x = 1|y = 1) = 1 (2)

PH1,0 = 1− PH0,0 = PH(x = 1|y = 0) = 0 (3)

Byzantine nodes:

PB1,1 = 1− PB0,1 = PB(x = 1|y = 1) (4)

PB1,0 = 1− PB0,0 = PB(x = 1|y = 0) (5)

PH(x = a|y = b) (PB(x = a|y = b)) is the probability
that an honest (Byzantine) node sends a to the FC when its
actual local decision is b. From now onwards, we will refer
to Byzantine flipping probabilities simply by (P1,0, P0,1). We
also assume that the FC is not aware of the exact set of
Byzantine nodes and considers each node i to be Byzantine
with a certain probability α.

3It has been shown that the use of identical thresholds is asymptotically
optimal [24].
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B. Binary Hypothesis Testing at the Fusion Center

We consider a Bayesian detection problem where the per-
formance criterion at the FC is the probability of error. The
FC receives decision vector, u = [u1, · · · , uN ], from the
nodes and makes the global decision about the phenomenon
by considering the maximum a posteriori probability (MAP)
rule which is given by

P (H1|u)
H1

≷
H0

P (H0|u)

or equivalently,

P (u|H1)

P (u|H0)

H1

≷
H0

P0

P1
.

Since the uis are independent of each other, the MAP rule
simplifies to a K-out-of-N fusion rule [1]. The global false
alarm probability QF and detection probability QD are then
given by4

QF =

N∑
i=K

(
N
i

)
(π1,0)

i(1− π1,0)N−i (6)

and

QD =

N∑
i=K

(
N
i

)
(π1,1)

i(1− π1,1)N−i, (7)

where πj0 and πj1 are the conditional probabilities of ui = j
given H0 and H1, respectively. Specifically, π1,0 and π1,1 can
be calculated as

π1,0 = α(P1,0(1− Pf ) + (1− P0,1)Pf ) + (1− α)Pf (8)

and

π1,1 = α(P1,0(1− Pd) + (1− P0,1)Pd) + (1− α)Pd, (9)

where α is the fraction of Byzantine nodes.5

The local probability of error as seen by the FC is defined
as

Pe = P0π1,0 + P1 (1− π1,1) (10)

and the system wide probability of error at the FC is given by

PE = P0QF + P1 (1−QD) . (11)

In our earlier work [25] on this problem, we analyzed
the problem in the asymptotic regime. Adopting Chernoff
information as our performance metric, we studied the per-
formance of a distributed detection system with Byzantines
in the asymptotic regime. We summarize our results in the
following theorem.

4These expressions are valid under the assumption that α < 0.5. Later in
Section VI, we will generalize our result for any arbitrary α.

5The proposed analysis can be easily extended to the noisy channel case.
For example, let us consider the Binary Symmetry Channel with crossover
probabilities given by ( ˆP1,0, ˆP0,1). Now, the conditional probability π1,1 as
given in (9) changes to:

π1,1 = α(1− ˆP0,1)[(1− P0,1)Pd + P1,0(1− Pd)] + α ˆP1,0[P0,1Pd + (1− P1,0)(1− Pd)]

+(1− α)[(1− ˆP0,1)Pd + ˆ1, 0(1− Pd)]

and similarly the expression for π1,0 can be obtained. Using theses expres-
sions the proposed analysis can be extended to the noisy case (BSC).

Theorem 1 ( [25]). Optimal attacking strategies, (P ∗1,0, P
∗
0,1),

which minimize the Chernoff information are

(P ∗1,0, P
∗
0,1)

{
(p1,0, p0,1) if α ≥ 0.5

(1, 1) if α < 0.5
,

where, (p1,0, p0,1) satisfy α(p1,0 + p0,1) = 1.

Notice that, the system wide probability of error PE is a
function of the parameter K, which is under the control of the
FC, and the parameters (α, Pj,0, Pj,1) are under the control of
the attacker. The FC and the Byzantines may or may not have
knowledge of their opponent’s strategy. In this paper, we will
analyze the problem of detection with Byzantine data under
several different scenarios in the following sections. First, we
will determine the minimum fraction of Byzantines needed to
blind the decision fusion scheme.

III. CRITICAL POWER TO BLIND THE FUSION CENTER

In this section, we determine the minimum fraction of
Byzantine nodes needed to make the FC “blind” and denote it
by αblind. We say that the FC is blind if an adversary can
make the data that the FC receives from the sensors such
that no information is conveyed. In other words, the optimal
detector at the FC cannot perform better than simply making
the decision based on priors.

Lemma 1. In Bayesian distributed detection, the minimum
fraction of Byzantines needed to make the FC blind is αblind =
0.5.

Proof: In the Bayesian framework, we say that the
FC is “blind”, if the received data u does not provide any
information about the hypotheses to the FC. That is, the
condition to make the FC blind can be stated as

P (Hi|u) = P (Hi) for i = 0, 1. (12)

Applying Bayes’ theorem, it can be seen that (12) is equivalent
to P (u|Hi) = P (u). Thus, the FC becomes blind if the
probability of receiving a given vector u is independent of the
hypothesis present. In such a scenario, the best that the FC can
do is to make decisions solely based on the priors, resulting
in the most degraded performance at the FC. Now, using the
conditional i.i.d. assumption, under which observations at the
nodes are conditionally independent and identically distributed
given the hypothesis, condition (12) to make the FC blind
becomes π1,1 = π1,0. This is true only when

α[P1,0(Pf−Pd)+(1−P0,1)(Pd−Pf )]+(1−α)(Pd−Pf ) = 0.

Hence, the FC becomes blind if

α =
1

(P1,0 + P0,1)
. (13)

α in (13) is minimized when P1,0 and P0,1 both take their
largest values, i.e., P1,0 = P0,1 = 1. Hence, αblind = 0.5.

Next, we investigate how the Byzantines can launch an
attack optimally considering that the parameter (K) is under
the control of the FC. By assuming error probability to be our
performance metric, we analyze the non-asymptotic regime.
Observe that the probability of error is dependent on the fusion
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TABLE II
SOULTION OF MAXIMIZING LOCAL ERROR Pe PROBLEM

P1,0 P0,1 Condition

0 0 Pd

Pf
< P0

P1
< 1−Pd

1−Pf

0 1 Pd

Pf
> P0

P1
< 1−Pd

1−Pf

1 0 Pd

Pf
< P0

P1
> 1−Pd

1−Pf

1 1 Pd

Pf
> P0

P1
> 1−Pd

1−Pf

rule. This gives us an additional degree of freedom to analyze
the Byzantine attack under different scenarios where the FC
and the Byzantines may or may not have knowledge of their
opponent’s strategies.

IV. OPTIMAL ATTACKING STRATEGIES WITHOUT THE
KNOWLEDGE OF FUSION RULE

In practice, the Byzantine attacker may not have the knowl-
edge about the fusion rule, i.e., the value of K, used by the
FC. In such scenarios, we obtain the optimal attacking strategy
for Byzantines by maximizing the local probability of error as
seen by the FC, which is independent of the fusion rule K.
We formally state the problem as

maximize
P1,0,P0,1

P0π1,0 + P1(1− π1,1)

subject to 0 ≤ P1,0 ≤ 1

0 ≤ P0,1 ≤ 1

(P1)

To solve the problem, we analyze the properties of the ob-
jective function, Pe = P0π1,0 + P1(1− π1,1), with respect to
(P1,0, P0,1). Notice that

dPe
P1,0

= P0α(1− Pf )− P1α(1− Pd) (14)

and
dPe
P0,1

= −P0αPf + P1αPd. (15)

By utilizing monotonicity properties of the objective function
with respect to P1,0 and P0,1 ((14) and (15)), we present
the solution of the Problem P1 in Table II. Notice that,
when Pd

Pf
< P0

P1
< 1−Pd

1−Pf
, both (14) and (15) are less

than zero. Pe then becomes a strictly decreasing function of
P1,0 as well as P0,1. Hence, to maximize Pe, the attacker
needs to choose (P1,0, P0,1) = (0, 0). However, the condition
Pd

Pf
< P0

P1
< 1−Pd

1−Pf
holds iff Pd < Pf and, therefore, is not

admissible. Similar arguments lead to the rest of results given
in Table II. Note that, if there is an equality in the conditions
mentioned in Table II, then the solution will not be unique.

For example,
(
dPe
P0,1

= 0

)
⇔
(
P0

P1
=

1− Pd
1− Pf

)
implies that

the Pe is constant as a function of P0,1. In other words, the
attacker will be indifferent in choosing the parameter P0,1

because any value of P0,1 will result in the same probability
of error.

Next, to gain insight into the solution, we present illustrative
examples that corroborate our results.

A. Illustrative Examples

In Figure 2(a), we plot the local probability of error Pe as
a function of (P1,0, P0,1) when (P0 = P1 = 0.5). We assume
that the local probability of detection is Pd = 0.8 and the
local probability of false alarm is Pf = 0.1 such that Pd

Pf
= 8,

1−Pd

1−Pf
= .2222, and P0

P1
= 1. Clearly, Pd

Pf
> P0

P1
> 1−Pd

1−Pf
and

it implies that the optimal attacking strategy is (P1,0, P0,1) =
(1, 1), which can be verified from Figure 2(a).

In Figure 2(b), we study the local probability of error
Pe as a function of the attacking strategy (P1,0, P0,1) when
(P0 = 0.1, P1 = 0.9). We assume that the local probability of
detection is Pd = 0.8 and the local probability of false alarm is
Pf = 0.1 such that Pd

Pf
= 8, 1−Pd

1−Pf
= .2222, and P0

P1
= .1111.

Clearly, Pd

Pf
> P0

P1
< 1−Pd

1−Pf
implies that the optimal attacking

strategy is (P1,0, P0,1) = (0, 1), which can be verified from the
Figure 2(b). These results corroborate our theoretical results
presented in Table II.

In the next section, we investigate the scenario where
Byzantines are aware of the fusion rule K used at the FC and
can use this knowledge to provide false information in an op-
timal manner to blind the FC. However, the FC does not have
knowledge of Byzantine’s attacking strategies (α, Pj,0, Pj,1)
and does not optimize against Byzantine’s behavior. Since
majority rule is a widely used fusion rule [14], [26], [27],
we assume that the FC uses the majority rule to make the
global decision.

V. OPTIMAL BYZANTINE ATTACKING STRATEGIES WITH
KNOWLEDGE OF MAJORITY FUSION RULE

In this section, we investigate optimal Byzantine attacking
strategies in a distributed detection system, with the attacker
having knowledge about the fusion rule used at the FC.
However, we assume that the FC is not strategic in nature,
and uses a majority rule, without trying to optimize against
the Byzantine’s behavior. We consider both the FC and the
Byzantine to be strategic in Section VI. The performance
criterion at the FC is assumed to be the probability of error
PE .

For a fixed fusion rule (K∗), which, as mentioned before,
is assumed to be the majority rule K∗ = dN+1

2 e, PE varies
with the parameters (α, Pj,0, Pj,1) which are under the control
of the attacker. The Byzantine attack problem can be formally
stated as follows:

maximize
Pj,0,Pj,1

PE(α, Pj,0, Pj,1)

subject to 0 ≤ Pj,0 ≤ 1

0 ≤ Pj,1 ≤ 1.

(P2)

For a fixed fraction of Byzantines α, the attacker wants to
maximize the probability of error PE by choosing its attacking
strategy (Pj,0, Pj,1) optimally. We assume that the attacker is
aware of the fact that the FC is using the majority rule for
making the global decision. Before presenting our main results
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Fig. 2. (a) Pe as a function of (P1,0, P0,1) when P0 = P1 = 0.5. (b) Pe as a function of (P1,0, P0,1) when P0 = 0.1, P1 = 0.9.

for Problem P2, we make an assumption that will be used in
the theorem.

Assumption 1. We assume that α < min{(0.5 − Pf ), (1 −
(m/Pd))},6 where m = N

2N−2 .

A consequence of this assumption is π1,1 > m, which can
be shown as follows. By (9), we have

π1,1 = α(P1,0(1− Pd) + (1− P0,1)Pd) + (1− α)Pd
= αP1,0(1− Pd)− αPdP0,1 + Pd

≥ −αPdP0,1 + Pd ≥ Pd(1− α) > m. (16)

Eq. (16) is true because α < min{(0.5−Pf ), (1−(m/Pd))} ≤
(1 − (m/Pd)). Another consequence of this assumption is
π1,0 < 0.5, which can be shown as follows. From (8), we
have

π1,0 = α(P1,0(1− Pf ) + (1− P0,1)Pf ) + (1− α)Pf
= αP1,0 − αPf (P1,0 + P0,1) + Pf

≤ α+ Pf < 0.5. (17)

Eq. (17) is true because α < min{(0.5−Pf ), (1−(m/Pd))} ≤
(0.5− Pf ).

Next, we analyze the properties of PE with respect to
(P1,0, P0,1) under our assumption that enable us to find the
optimal attacking strategies.

Lemma 2. Assume that the FC employs the majority fusion
rule K∗ and α < min{(0.5−Pf ), (1−(m/Pd))}, where m =
N

2N−2 . Then, for any fixed value of P0,1, the error probability
PE at the FC is a quasi-convex function of P1,0.

Proof: A function f(P1,0) is quasi-convex if, for some
P ∗1,0, f(P1,0) is non-increasing for P1,0 ≤ P ∗1,0 and f(P1,0)
is non-decreasing for P1,0 ≥ P ∗1,0. In other words, the lemma

is proved if
dPE
dP1,0

≤ 0 (or
dPE
dP1,0

≥ 0) for all P1,0, or if for

6Condition α < min{(0.5−Pf ), (1− (m/Pd))}, where m = N
2N−2

>

0.5, suggests that as N tends to infinity, m =
N

2N − 2
tends to 0.5. When

Pd tends to 1 and Pf tends to 0, the above condition becomes α < 0.5.

some P ∗1,0,
dPE
dP1,0

≤ 0 when P1,0 ≤ P ∗1,0 and dPE

dP1,0
≥ 0 when

P1,0 ≥ P ∗1,0. First, we calculate the partial derivative of PE
with respect to P1,0 for an arbitrary K as follows:

dPE
dP1,0

= P0
dQF
dP1,0

− P1
dQD
dP1,0

. (18)

The detailed derivation of
dPE
dP1,0

is given in Appendix C and

we present a summary of the main results below.

dQF
dP1,0

= α(1−Pf )N
(
N − 1
K − 1

)
(π1,0)

K−1
(1− π1,0)N−K ,

(19)
dQD
dP1,0

= α(1−Pd)N
(
N − 1
K − 1

)
(π1,1)

K−1
(1− π1,1)N−K ,

(20)
and
dPE
dP1,0

= −P1α(1−Pd)N
(
N − 1
K − 1

)
(π1,1)

K−1
(1− π1,1)N−K

+P0α(1− Pf )N
(
N − 1
K − 1

)
(π1,0)

K−1
(1− π1,0)N−K .

(21)
dPE
dP1,0

given in (21) can be reformulated as follows:

dPE
dP1,0

= g (P1,0,K, α)
(
er(P1,0,K,α) − 1

)
, (22)

where

g (P1,0,K, α) = N

(
N − 1
K − 1

)
P1α(1−Pd)(π1,1)K−1(1−π1,1)N−K

(23)
and

r (P1,0,K, α) = ln

(
P0

P1

1− Pf
1− Pd

(
π1,0
π1,1

)(K−1)(
1− π1,0
1− π1,1

)(N−K)
)

= ln

(
P0

P1

1− Pf
1− Pd

)
+ (K − 1) ln

π1,0
π1,1

+ (N −K) ln
1− π1,0
1− π1,1

.

(24)
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It can be seen that g (P1,0,K, α) ≥ 0 so that the sign of dPE

dP1,0

depends only on the value of r (P1,0,K, α). To prove that PE
is a quasi-convex function of P1,0 when the majority rule K∗

is used at the FC, it is sufficient to show that r (P1,0,K
∗, α) is

a non-decreasing function. Differentiating r (P1,0,K
∗, α) with

respect to P1,0, we get
dr (P1,0,K

∗, α)

dP1,0
=

(K∗ − 1)

(
α(1− Pf )

π1,0
− α(1− Pd)

π1,1

)
+(N −K∗)

(
α(1− Pd)

1− π1,1
− α(1− Pf )

1− π1,0

)
= (K∗ − 1)α

(
1− Pf

π1,0
− 1− Pd

π1,1

)
−(N −K∗)α

(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
.

It can be shown that
dr (P1,0,K

∗, α)

dP1,0
> 0 (see Appendix B)

and this completes the proof.
Quasi-convexity of PE over P1,0 implies that the maximum

of the function occurs on the corners, i.e., P1,0 = 0 or 1 (may
not be unique). Next, we analyze the properties of PE with
respect to P0,1.

Lemma 3. Assume that the FC employs the majority fusion
rule K∗ and α < min{(0.5 − Pf ), (1 − (m/Pd))}, where
m = N

2N−2 . Then, the probability of error PE at the FC is a
quasi-convex function of P0,1 for a fixed P1,0.

Proof: For a fixed P1,0, we have

(π1,0)
′ = dπ1,0/dP0,1 = α(−Pf ). (25)

By a similar argument as given in Appendix C, for an arbitrary
K we have
dPE
dP0,1

= P1αPdN

(
N − 1
K − 1

)
(π1,1)

K−1
(1− π1,1)N−K

−P0αPfN

(
N − 1
K − 1

)
(π1,0)

K−1
(1− π1,0)N−K . (26)

dPE
dP0,1

given in (26) can be reformulated as follows:

dPE
dP0,1

= g (P0,1,K, α)
(
er(P0,1,K,α) − 1

)
, (27)

where

g (P0,1,K, α) = N

(
N − 1
K − 1

)
P0αPf (π1,0)

K−1(1− π1,0)
N−K

(28)
and

r (P0,1,K, α) = ln

(
P1

P0

Pd

Pf

(
π1,1

π1,0

)(K−1)(
1− π1,1

1− π1,0

)(N−K)
)

= ln
P1

P0

Pd

Pf
+ (K − 1) ln

π1,1

π1,0
+ (N −K) ln

1− π1,1

1− π1,0
.

(29)

It can be seen that g (P0,1,K, α) ≥ 0 such that the sign of
dPE
dP0,1

depends on the value of r (P0,1,K, α). To prove that PE

is a quasi-convex function of P1,0 when the majority rule K∗

is used at the FC, it is sufficient to show that r (P0,1,K
∗, α) is

a non-decreasing function. Differentiating r (P0,1,K
∗, α) with

respect to P0,1, we get

dr (P0,1,K
∗, α)

dP0,1
=

(K∗ − 1)

(
αPf

π1,0
− αPd

π1,1

)
+ (N −K∗)

(
αPd

1− π1,1
− αPf

1− π1,0

)
(30)

= (N−K∗)α
(

Pd

1− π1,1
− Pf

1− π1,0

)
−(K∗−1)α

(
Pd

π1,1
− Pf

π1,0

)
.

(31)
In the following, we show that

dr (P0,1,K
∗, α)

dP0,1
> 0, (32)

i.e., r (P0,1,K
∗, α) is non-decreasing. It is sufficient to show

that

(N −K∗)
(

Pd

1− π1,1
− Pf

1− π1,0

)
> (K∗ − 1)

(
Pd

π1,1
− Pf

π1,0

)
.

(33)
First, we consider the case when there are an even number

of nodes in the network and majority fusion rule is given by

K∗ =
N

2
+ 1. Since 0 ≤ π1,0 < π1,1 ≤ 1 and N ≥ 2, we

have (
1− 2

N

)
π1,1π1,0

(1− π1,1)(1− π1,0)
> −1

⇔
(
1− 2

N

)[
1

1− π1,1
− 1

1− π1,0

]
>

[
1

π1,1
− 1

π1,0

]
⇔

(
1− 2

N

)
1

1− π1,1
− 1

π1,1
>

(
1− 2

N

)
1

1− π1,0
− 1

π1,0
.(34)

Using the fact that
Pd
Pf

> 1, π1,1 > N
2N−2 , and K∗ =

N

2
+1,

(34) becomes

Pd

Pf

[(
1− 2

N

)
1

1− π1,1
− 1

π1,1

]
> (35)[(

1− 2

N

)
1

1− π1,0
− 1

π1,0

]
⇔

(
1− 2

N

)
Pd

1− π1,1
− Pd

π1,1
>

(
1− 2

N

)
Pf

1− π1,0
− Pf

π1,0

⇔(N −K∗)
(

Pd

1− π1,1
− Pf

1− π1,0

)
> (K∗−1)

(
Pd

π1,1
− Pf

π1,0

)
.(36)

Next, we consider the case when there are odd number of
nodes in the network and majority fusion rule is given by

K∗ =
N + 1

2
. By using the fact that π1,0

π1,1
>

Pf

Pd
, it can be

seen that the right-hand side of (36) is nonnegative. Hence,
from (36), we have(

N

2
− 1

)(
Pd

1− π1,1
− Pf

1− π1,0

)
>
N

2

(
Pd

π1,1
− Pf

π1,0

)
⇔
(
N − 1

2

)(
Pd

1− π1,1
− Pf

1− π1,0

)
> (37)(

N − 1

2

)(
Pd

1− π1,1
− Pf

1− π1,0

)
⇔ (N −K∗)

(
Pd

1− π1,1
− Pf

1− π1,0

)
> (K∗ − 1)

(
Pd

π1,1
− Pf

π1,0

)
.

This completes our proof.
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Theorem 2. (1, 0), (0, 1), or (1, 1) are the optimal attacking
strategies (P1,0, P0,1) that maximize the probability of error
PE , when the majority fusion rule is employed at the FC and
α < min{(0.5− Pf ), (1− (m/Pd))}, where m = N

2N−2 .

Proof: Lemma 2 and Lemma 3 suggest that one of the
corners is the maximum of PE because of quasi-convexity.
Note that (0, 0) cannot be the solution of the maximization
problem since the attacker does not flip any results. Hence,
we end up with three possibilities: (1, 0), (0, 1), or (1, 1).

Next, to gain insights into Theorem 2, we present illustrative
examples that corroborate our results.

A. Illustrative Examples

In Figure 3(a), we plot the probability of error PE as a
function of the attacking strategy (P1,0, P0,1) for even number
of nodes, N = 10, in the network. We assume that the prob-
ability of detection is Pd = 0.8, the probability of false alarm
is Pf = 0.1, prior probabilities are (P0 = 0.4, P1 = 0.6), and
α = 0.37. Since α < min{(0.5− Pf ), (1− (m/Pd))}, where
m = N

2N−2 , quasi-convexity can be observed in Figure 3(a).
Figure 3(b) shows the probability of error PE as a function
of attacking strategy (P1,0, P0,1) for odd number of nodes,
N = 11, in the network. Similarly, quasi-convexity can be
observed in Figure 3(b).

It is evident from Figures 3(a) and 3(b) that the optimal
attacking strategy (P1,0, P0,1) is either of the following three
possibilities: (1, 0), (0, 1), or (1, 1). These results corroborate
our theoretical results presented in Theorem 2.

Observe that the results obtained for this case are not the
same as the results obtained for the asymptotic case (Please
see Theorem 1). This is because the asymptotic performance
measure (i.e., Chernoff information) is the exponential decay
rate of the error probability of the “optimal detector”. In
other words, while optimizing over Chernoff information, one
implicitly assumed that the optimal fusion rule is used at the
FC.

Next, we investigate the case where the FC has the knowl-
edge of attacker’s strategies and uses the optimal fusion rule
K∗ to make the global decision. Here, the attacker tries
to maximize its worst case probability of error min

K
PE by

choosing (P1,0, P0,1) optimally.

VI. OPTIMAL BYZANTINE ATTACKING STRATEGIES WITH
STRATEGY-AWARE FC

In this section, we analyze the scenario where the FC has
the knowledge of attacker’s strategies and uses the optimal
fusion rule K∗ to make the global decision. The Byzantine
attack problem can be formally stated as follows:

maximize
Pj,0,Pj,1

PE(K
∗, α, Pj,0, Pj,1)

subject to 0 ≤ Pj,0 ≤ 1

0 ≤ Pj,1 ≤ 1,

(P3)

where K∗ is the optimal fusion rule. In other words, K∗ is the
best response of the FC to the Byzantine attacking strategies.
Next, we find the expression for the optimal fusion rule K∗

used at the FC.

A. Optimal Fusion Rule

First, we design the optimal fusion rule assuming that the
local sensor threshold λ and the Byzantine attacking strategy
(α, P1,0, P0,1) are fixed and known to the FC.

Lemma 4. For a fixed local sensor threshold λ and α <
1

P0,1 + P1,0
, the optimal fusion rule is given by

K∗
H1

≷
H0

ln
[
(P0/P1) {(1− π1,0)/(1− π1,1)}N

]
ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]

. (38)

Proof: Consider the maximum a posteriori probability
(MAP) rule

P (u|H1)

P (u|H0)

H1

≷
H0

P0

P1
.

Since the uis are independent of each other, the MAP rule
simplifies to

N∏
i=1

P (ui|H1)

P (ui|H0)

H1

≷
H0

P0

P1
.

Let us assume that K∗ out of N nodes send ui = 1. Now, the
above equation can be written as

πK
∗

1,1 (1− π1,1)N−K
∗

πK
∗

1,0 (1− π1,0)N−K
∗

H1

≷
H0

P0

P1
.

Taking logarithms on both sides of the above equation, we
have

K∗ lnπ1,1 + (N −K∗) ln(1− π1,1)−K∗ lnπ1,0

−(N −K∗) ln(1− π1,0)
H1

≷
H0

ln
P0

P1

⇔ K∗[ln(π1,1/π1,0)

+ ln((1− π1,0)/(1− π1,1))]
H1

≷
H0

ln
P0

P1
+N ln

1− π1,0
1− π1,1

⇔ K∗
H1

≷
H0

ln
P0

P1
+N ln((1− π1,0)/(1− π1,1))

[ln(π1,1/π1,0) + ln((1− π1,0)/(1− π1,1))]
(39)

⇔ K∗
H1

≷
H0

ln
[
(P0/P1) {(1− π1,0)/(1− π1,1)}N

]
ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]

,

where (39) follows from the fact that, for π1,1 > π1,0

or equivalently, α <
1

P0,1 + P1,0
, [ln(π1,1/π1,0) + ln((1 −

π1,0)/(1− π1,1))] > 0.
The probability of false alarm QF and the probability of

detection QD for this case are as given in (6) and (7) with
K = dK∗e. Next, we present our results for the case when

the fraction of Byzantines α >
1

P0,1 + P1,0
.

Lemma 5. For a fixed local sensor threshold λ and α >
1

P0,1 + P1,0
, the optimal fusion rule is given by

K∗
H0

≷
H1

ln
[
(P1/P0) {(1− π1,1)/(1− π1,0)}N

]
[ln(π1,0/π1,1) + ln((1− π1,1)/(1− π1,0))]

.

(40)
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Fig. 3. (a) PE as a function of (P1,0, P0,1) for N = 10. (b) PE as a function of (P1,0, P0,1) for N = 11.

Proof: This can be proved similarly as Lemma 4 and
using the fact that, for π1,1 < π1,0 or equivalently, α >

1

P0,1 + P1,0
, [ln(π1,0/π1,1) + ln((1− π1,1)/(1− π1,0))] > 0.

The probability of false alarm QF and the probability of
detection QD for this case can be calculated to be

QF =

bK∗c∑
i=0

(
N
i

)
(π1,0)

i(1− π1,0)N−i (41)

and

QD =

bK∗c∑
i=0

(
N
i

)
(π1,1)

i(1− π1,1)N−i. (42)

Next, we analyze the property of PE with respect to
Byzantine attacking strategy (P1,0, P0,1) that enables us to
find the optimal attacking strategies.

Lemma 6. For a fixed local sensor threshold λ, assume that
the FC employs the optimal fusion rule dK∗e, 7 as given in
(38). Then, for α ≤ 0.5, the error probability PE at the FC is a
monotonically increasing function of P1,0 while P0,1 remains
fixed. Conversely, the error probability PE at the FC is a
monotonically increasing function of P0,1 while P1,0 remains
fixed.

Proof: Observe that, for a fixed λ, PE(dK∗e) is a
continuous but not a differentiable function. However, the
function is non differentiable only at a finite number (or
infinitely countable number) of points because of the nature
of dK∗e. Now observe that, for a fixed fusion rule K, PE(K)
is differentiable. Utilizing this fact, to show that the lemma is
true, we first find the condition that a fusion rule K should
satisfy so that PE is a monotonically increasing function of
P1,0 while keeping P0,1 fixed (and vice versa) and later show
that dK∗e satisfies this condition. From (22), finding those K

7Notice that, K∗ might not be an integer.

that satisfy
dPE
dP1,0

> 08 is equivalent to finding those value of

K that make

r (P1,0,K, α) > 0

⇔ ln
P0

P1

1− Pf
1− Pd

+ (K − 1) ln
π1,0
π1,1

+ (N −K) ln
1− π1,0
1− π1,1

> 0

⇔ K <

ln
P0

P1
+N ln

(1− π1,0)
(1− π1,1)

+ ln
1− Pf
1− Pd

− ln
π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
. (43)

Similarly, we can find the condition that a fusion rule K should
satisfy so that PE is a monotonically increasing function of
P0,1 while keeping P1,0 fixed. From (27), finding those K that

satisfy
dPE
dP0,1

> 0 is equivalent to finding those K that make

r (P0,1,K, α) > 0

⇔ ln
P1

P0

Pd
Pf

+ (K − 1) ln
π1,1
π1,0

+ (N −K) ln
1− π1,1
1− π1,0

> 0

⇔ K >

ln
P0

P1
+N ln

(1− π1,0)
(1− π1,1)

+ ln
Pf
Pd
− ln

π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
. (44)

From (43) and (44), we have

A > K > B (45)

where

A =

ln
P0

P1
+N ln

(1− π1,0)
(1− π1,1)

+ ln
1− Pf
1− Pd

− ln
π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
and

B =

ln
P0

P1
+N ln

(1− π1,0)
(1− π1,1)

+ ln
Pf
Pd
− ln

π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
.

Next, we show that the optimal fusion rule dK∗e given in (38)

8Observe that, for α < 0.5, the function g (P1,0,K∗, α) = 0 (as given in
(23)) only under extreme conditions (i.e., P1 = 0 or Pd = 0 or Pd = 1).
Ignoring these extreme conditions, we have g (P1,0,K∗, α) > 0.
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is within the region (A,B). First we prove that dK∗e > B
by showing K∗ > B. Comparing K∗ given in (38) with B,
K∗ > B iff

0 > ln
Pf
Pd
− ln

π1,0
π1,1

. (46)

Since Pd > Pf , to prove (46) we start from the inequality

(1− Pd)

Pd
<

(1− Pf )

Pf

⇔ αP1,0(1− Pd) + Pd(1− P0,1α)

Pd
<

αP1,0(1− Pf ) + Pf (1− P0,1α)

Pf

⇔ π1,1

Pd
<
π1,0

Pf

⇔ 0 > ln
Pf

Pd
− ln

π1,0

π1,1
.

Now, we show that A > dK∗e. Observe that,

A > dK∗e

⇔
ln

1− Pf
1− Pd

− ln
π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
> dK∗e −K∗.

Hence, it is sufficient to show that

ln
1− Pf
1− Pd

− ln
π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
> 1 > dK∗e −K∗.

1 > dK∗e − K∗ is true from the property of the ceiling
function. By (56), we have

1− Pf

1− Pd
>

1− π1,0

1− π1,1

⇔ ln
1− Pf

1− Pd
> ln

1− π1,0

1− π1,1

⇔ ln
1− Pf

1− Pd
− ln

π1,0

π1,1
> ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]

⇔
ln

1− Pf

1− Pd
− ln

π1,0

π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
> 1

which completes the proof.

Based on Lemma 6, we present the optimal attacking strate-
gies for the case when the FC has the knowledge regarding
the strategies used by the Byzantines.

Theorem 3. The optimal attacking strategies, (P ∗1,0, P
∗
0,1),

which maximize the probability of error, PE(dK∗e), are given
by

(P ∗1,0, P
∗
0,1)

{
(p1,0, p0,1) if α > 0.5

(1, 1) if α ≤ 0.5

where (p1,0, p0,1) satisfies α(p1,0 + p0,1) = 1.

Proof: Note that, the maximum probability of error oc-
curs when the posterior probabilities are equal to the prior
probabilities of the hypotheses. That is,

P (Hi|u) = P (Hi) for i = 0, 1. (47)

Now using the result from (13), the condition can be simplified

to
α(P1,0 + P0,1) = 1. (48)

Eq. (48) suggests that when α ≥ 0.5, the attacker can find
flipping probabilities that make PE = min{P0, P1}. When
α = 0.5, P1,0 = P0,1 = 1 is the optimal attacking strategy

and when α > 0.5, any pair which satisfies P1,0 + P0,1 =
1

α
is optimal. However, when α < 0.5, (48) cannot be satisfied.
In this case, by Lemma 6, for α < 0.5, (1, 1) is an optimal
attacking strategy, (P1,0, P0,1), which maximizes probability
of error, PE(dK∗e).

Next, to gain insight into Theorem 3, we present illustrative
examples that corroborate our results.

B. Illustrative Examples

In Figure 4, we plot the minimum probability of error
as a function of attacker’s strategy (P1,0, P0,1), where PE
is minimized over all possible fusion rules K. We consider
a N = 11 node network, with the nodes’ detection and
false alarm probabilities being 0.6 and 0.4, respectively. Prior
probabilities are assumed to be P0 = 0.4 and P1 = 0.6.
Observe that, the optimal fusion rule as given in (38) changes
with attacker’s strategy (P1,0, P0,1). Thus, the minimum prob-
ability of error minK PE is a non-differentiable function. It is
evident from Figure 4(a) that (P1,0, P0,1) = (1, 1) maximizes
the probability of error, PE(dK∗e). This corroborates our
theoretical results presented in Theorem 3, that for α < 0.5,
the optimal attacking strategy, (P1,0, P0,1), that maximizes the
probability of error, PE(dK∗e), is (1, 1).

In Figure 4(b) we consider the scenario where α = 0.8 (i.e.,
α > 0.5). It can be seen that the attacking strategy (P1,0, P0,1),
that maximizes minK PE is not unique in this case. It can
be verified that any attacking strategy which satisfies P1,0 +
P0,1 = 1

0.8 will make minK PE = min{P0, P1} = 0.4. This
corroborates our theoretical results presented in Theorem 3.
Observe that the results obtained for this case are consistent
with the results obtained for the asymptotic case. This is
because the optimal fusion rule is used at the FC and the
asymptotic performance measure (i.e., Chernoff information)
is the exponential decay rate of error probability of the “op-
timal detector”, and thus, implicitly assumes that the optimal
fusion rule is used at the FC.

When the attacker does not have the knowledge of the fusion
rule K used at the FC, from an attacker’s perspective, maxi-
mizing its local probability of error Pe is the optimal attacking
strategy. The optimal attacking strategy in this case is either of
the three possibilities: (P1,0, P0,1) = (0, 1) or (1, 0) or (1, 1)
(see Table II). However, the FC has knowledge of the attacking
strategy (α, P1,0, P0,1) and thus, uses the optimal fusion rule
as given in (38) and (40).

VII. CONCLUSION AND FUTURE WORK

We considered the problem of distributed Bayesian de-
tection with Byzantine data, and characterized the power
of attack analytically. For distributed detection for a binary
hypothesis testing problem, the expression for the minimum
attacking power above which the ability to detect is completely
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Fig. 4. Minimum probability of error (minK PE ) analysis. (a) minK PE as a function of (P1,0, P0,1) for α = 0.4. (b) minK PE as a function of
(P1,0, P0,1) for α = 0.8.

destroyed was obtained. We showed that when there are more
than 50% of Byzantines in the network, the data fusion scheme
becomes blind and no detector can achieve any performance
gain over the one based just on priors. The optimal attacking
strategies for Byzantines that degrade the performance at the
FC were obtained. It was shown that the results obtained
for the non-asymptotic case are consistent with the results
obtained for the asymptotic case only when the FC has the
knowledge of the attacker’s strategies, and thus, uses the
optimal fusion rule. However, results obtained for the non-
asymptotic case, when the FC does not have knowledge of
attacker’s strategies, are not the same as the results obtained for
the asymptotic case. There are still many interesting questions
that remain to be explored in the future work such as an
analysis of the scenario where Byzantines can also control
sensor thresholds used for making local decisions. Other
questions such as the case where Byzantines collude in several
groups (collaborate) to degrade the detection performance can
also be investigated.
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APPENDIX A
SENSITIVITY TO IMPERFECT KNOWLEDGE

In this section, we discuss the sensitivity of system per-
formance to imperfect knowledge regarding the fraction of
Byzantines α in the network and the prior probability of
hypotheses, i.e., (P0, P1). We limit the analysis to a couple
of illustrative examples.

In many practical scenarios, the value of the fraction of
Byzantines α in the network might not be known a-priori. In
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Fig. 5. Estimation of the fraction of Byzantines as a function of N = 10n

when the true value of α = 0.2.

such scenarios, α may be estimated (learned) by observing
decisions at the FC over a fixed duration. Next, we present a
rather simple estimation procedure and some numerical results
to corroborate our claim.

We assume that Pd = 0.8, Pf = 0.2 and the fraction of
Byzantines is α = 0.2 with (P1,0, P0,1) = (1, 1). Based on the
received decisions under hypothesis H1, the FC can estimate
α̂ as follows:

α̂ =
Pd − π1,1
2Pd − 1

,

where π1,1 is the fraction of 1’s received at the FC. In Figure 5,
we plot the value of estimated α at the FC as a function of
the number of decisions at the FC, i.e., N = 10n.

It can be seen from Figure 5 that the estimated α approaches
the true value of α as the number of decisions N at the FC
increases.

Next, we look at the sensitivity of the performance of the
detection scheme to the uncertainty regarding the fraction of
Byzantines α and the prior probability of hypotheses, i.e.,



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2450191, IEEE Transactions on Signal Processing

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

α̂

P
E

Fig. 6. Error probability in the presence of imperfect knowledge of α.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

P0

P
E
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(P0, P1). Sensitivity of the performance of the scheme to the
uncertainty of parameter values is a model mismatch problem.
In general, finding the analytical expressions for performance
degradation due to model mismatch is a difficult problem, thus,
we limit our analysis to numerical results. However, one can
expect that the performance of the scheme will improve as the
estimated parameter values approach their true value.

In Figure 6, we plot the probability of error as the estimated
α, α̂, at the FC is varied from 0 to 1 when the actual value of α
is 0.4, N = 10 and (Pd, Pf ) = (0.8, 0.1) with (P1,0, P0,1) =
(1, 1). Note that, the error probability is minimum when α̂ is
equal to the actual α.

In Figure 7, we plot the probability of error as the value
of P0 at the FC is varied from 0.1 to 0.9 when the actual
value of P0 is 0.4, N = 10 and (Pd, Pf ) = (0.8, 0.1)
with (P1,0, P0,1) = (1, 1). Note that, the error probability is
minimum when the estimated P0 is equal to the actual P0.

APPENDIX B
PROOF OF

dr (P1,0,K
∗, α)

dP1,0
> 0

Differentiating both sides of r (P1,0,K
∗, α) with respect to

P1,0, we get

dr (P1,0,K
∗, α)

dP1,0
= (K∗ − 1)α

(
1− Pf
π1,0

− 1− Pd
π1,1

)
−(N −K∗)α

(
1− Pf
1− π1,0

− 1− Pd
1− π1,1

)
.

In the following we show that

dr (P1,0,K
∗, α)

dP1,0
> 0 (49)

i.e., r (P1,0,K
∗, α) is non-decreasing. Observe that in the

above equation,

(1− Pf )
π1,0

>
(1− Pd)
π1,1

. (50)

To show that the above condition is true, we start from the
inequality

Pd > Pf (51)

⇔ Pd

1− Pd
>

Pf

1− Pf
(52)

⇔ αP1,0 + (1− P0,1α)
Pd

1− Pd
>

αP1,0 + (1− P0,1α)
Pf

1− Pf
(53)

⇔ αP1,0(1− Pd) + Pd(1− P0,1α)

(1− Pd)
>

αP1,0(1−Pf )+Pf (1− P0,1α)

(1− Pf )
(54)

⇔ π1,1

(1− Pd)
>

π1,0

(1− Pf )
(55)

⇔ (1− Pf )

π1,0
>

(1− Pd)

π1,1
(56)

Similarly, it can be shown that

1− π1,1
1− Pd

>
1− π1,0
1− Pf

(57)

Now from (50) and (57), to show that
dr (P1,0,K

∗, α)

dP1,0
> 0

is equivalent to show that

(K∗ − 1)

(
1− Pf
π1,0

− 1− Pd
π1,1

)
> (58)

(N −K∗)
(

1− Pf
1− π1,0

− 1− Pd
1− π1,1

)
Next, we consider two different cases, first when there are odd
number of nodes in the network and second when there are
even number of nodes in the network.
Odd Number of Nodes: When there are odd number of nodes
in the network, the majority fusion rule is K∗ = (N + 1)/2.
In this case (58) is equivalent to show that

N − 1

2

(
1− Pf
π1,0

− 1− Pd
π1,1

)
>
N − 1

2

(
1− Pf
1− π1,0

− 1− Pd
1− π1,1

)
.

(59)
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To show that the above condition is true, we start from the
following inequality

(1− π1,0)(1− π1,1)
π1,0π1,1

> −1

⇔
[

1

π1,0
− 1

π1,1

]
>

[
1

1− π1,0
− 1

1− π1,1

]
⇔

[
1

π1,0
− 1

1− π1,0

]
>

[
1

π1,1
− 1

1− π1,1

]
Since

1− Pf
1− Pd

> 1, π1,0 < 0.5 (consequence of our assump-

tion) and N ≥ 2, the above condition is equivalent to

1− Pf

1− Pd

[
1

π1,0
− 1

1− π1,0

]
>

[
1

π1,1
− 1

1− π1,1

]
⇔

(
1− Pf

π1,0
− 1− Pd

π1,1

)
>

(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
⇔ N − 1

2

(
1− Pf

π1,0
− 1− Pd

π1,1

)
>

N − 1

2

(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
(60)

which implies that
dr (P1,0,K

∗, α)

dP1,0
> 0 for odd number of

nodes case. Next, we consider the even number of nodes case.
Even Number of Nodes: Now, we consider the case when
there are even number of nodes in the network and majority

fusion rule is given by K∗ =
N

2
+ 1. Condition (58) is

equivalent to show that(
N

2

)(
1− Pf

π1,0
− 1− Pd

π1,1

)
>

(
N

2
− 1

)(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
.

Which follows from the fact that(
N

2

)(
1− Pf

π1,0
− 1− Pd

π1,1

)
>

(
N

2
− 1

)(
1− Pf

π1,0
− 1− Pd

π1,1

)
and the result given in (59). This completes our proof.

APPENDIX C
CALCULATING PARTIAL DERIVATIVE OF PE W.R.T. P1,0

First, we calculate the partial derivative of QF with respect
to P1,0. Notice that,

QF =

N∑
i=K∗

(
N
i

)
(π1,0)

i(1− π1,0)N−i (61)

where

π1,0 = α(P1,0(1− Pf ) + (1− P0,1)Pf ) + (1− α)Pf(62)
(π1,0)

′ = dπ1,0/dP1,0 = α(1− Pf ). (63)

Differentiating both sides of (61) with respect to P1,0, we get

dQF

dP1,0
=(

N
K∗

)
(K∗(π1,0)

K∗−1(π1,0)
′(1− π1,0)

N−K∗

−(π1,0)
K∗(N −K∗)(1− π1,0)

N−K∗−1(π1,0)
′)

+

(
N

K∗ + 1

)
((K∗ + 1)(π1,0)

K∗(π1,0)
′(1− π1,0)

N−K∗−1

−(π1,0)
K∗+1(N −K∗ − 1)(1− π1,0)

N−K∗−2(π1,0)
′)

+ · · ·+
(
N
N

)
(N(π1,0)

N−1(π1,0)
′ − 0)

= (π1,0)
′(π1,0)

K∗−1(1− π1,0)
N−K∗[(
N
K∗

)(
K∗ − π1,0

1− π1,0
(N −K∗)

)

+

(
N

K∗ + 1

)(
(K∗ + 1)

π1,0

1− π1,0
− (N −K∗ − 1)

π2
1,0

(1− π1,0)2

)
+ · · ·

]
= (π1,0)

′(π1,0)
K∗−1(1− π1,0)

N−K∗[(
N
K∗

)
(K∗ − π1,0

1− π1,0
(N −K∗)) + π1,0

1− π1,0

(
N

K∗ + 1

)
(
(K∗ + 1)− (N −K∗ − 1)

π1,0

1− π1,0

)
+ · · ·

]

= (π1,0)
′(π1,0)

K∗−1(1− π1,0)
N−K∗

[(
N
K∗

)
K∗ +

[
− π1,0

1− π1,0(
N
K∗

)
(N −K∗) + π1,0

1− π1,0

(
N

K∗ + 1

)
(K∗ + 1)

]
+ · · ·

]

Since,
(

N
K∗

)
K∗

N
=

(
N − 1
K∗ − 1

)
, the above equation can

be written as
dQF

dP1,0

= (π1,0)
′
(π1,0)

K∗−1
(1− π1,0)

N−K∗
[(

N − 1
K∗ − 1

)
N

+
π1,0

1− π1,0

{(
N

K∗ + 1

)
(K
∗
+ 1)−

(
N
K∗

)
(N −K∗)

}
+ · · ·

]
.

(64)

Notice that, for any positive integer t(
π1,0

1− π1,0

)t [(
N

K∗ + t

)
(K
∗
+ t)−

(
N

K∗ + t− 1

)
(N −K∗ − t+ 1)

]
= 0.

(65)
Using the result from (65), (64) can be written as

dQF

dP1,0

= (π1,0)
′
(π1,0)

K∗−1
(1− π1,0)

N−K∗
[(

N − 1
K∗ − 1

)
N +

π1,0

1− π1,0

[0]

]
⇔

dQF

dP1,0

= α(1− Pf )N

(
N − 1
K∗ − 1

)
(π1,0)

K∗−1
(1− π1,0)

N−K∗
.

Similarly, the partial derivative of QD w.r.t. P1,0 can calcu-
lated to be
dQD
dP1,0

= α(1−Pd)N
(

N − 1
K∗ − 1

)
(π1,1)

K∗−1
(1− π1,1)N−K

∗
.
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