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Abstract—The ordered transmission based (OT-based) schemes
reduce the number of transmissions needed in a distributed
detection network without any loss in the probability of error
performance. In this paper, we investigate the performance of
a conventional OT-based system in the presence of additive
Byzantine attacks in Gaussian shift in mean problems. In this
work, by launching additive Byzantine attacks, attackers are able
to alter the order as well as the data for the binary hypothesis
testing problem. We also determine the optimal attack strategy
for the Byzantine sensors. Furthermore, we analyze a communi-
cation efficient OT-based (CEOT-based) scheme in the presence
of additive Byzantine attacks. We obtain the probabilities of error
for both the OT-based system and the CEOT-based system under
attack and evaluate the number of transmissions they save. We
also derive analytical bounds for the number of transmissions
saved in both systems under attack. Simulation results show that
the additive Byzantine attacks have significant impact on the
number of transmissions saved even when the signal strength
is sufficiently large. A comparison of detection performance
between the conventional OT-based system and the CEOT-based
system reveals that the CEOT-based system is more robust to
additive Byzantine attacks.

Index Terms—Ordered transmissions, Byzantine attacks, wire-
less sensor networks, distributed detection.

I. INTRODUCTION

ENERGY-EFFICIENCY is an important aspect to consider
while designing a wireless sensor network (WSN) with

prolonged lifetime [1]. Several notable schemes have been
proposed to improve energy efficiency by reducing the number
of transmissions in the networks [2]–[5]. In this paper, we
consider one such scheme called the ordered transmission
based (OT-based) scheme [5] in the distributed setup. In the
conventional OT-based scheme, all the sensors in the network
transmit in decreasing order of their respective absolute values
of the log-likelihood ratios (LLRs). Specifically, the starting
time of transmission at each sensor is proportional to the
inverse of the absolute value of its LLR. Hence, the more
informative sensors (sensors with larger magnitudes of the
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value of LLR) transmit earlier than the less informative ones
(sensors with smaller magnitudes of the value of LLR). When
the fusion center (FC) has received enough observations to
make the final decision of desired quality, the FC broadcasts a
stop signal to stop the sensors from further transmitting. The
sensors that have not yet transmitted their observations reset
their timers for the next decision interval after they receive the
stop signal. For simplicity, in the rest of the paper, the OT-
based scheme refers to the conventional OT-based scheme.

The OT-based scheme for distributed networks was first
proposed in [5], where only informative sensors in the network
transmitted their LLRs to the FC instead of sending raw data.
The concept was extended to an ordering approach for a class
of noncoherent signal detection problems where the LLRs at
each sensor could only take nonnegative values in [6]. The
authors in [7] demonstrated that a single observation was
sufficient to make a final decision for an OT-based system with
a large number of sensors. In [8], sequential detection along
with OT was considered for cooperative spectrum sensing
to obtain fast and reliable decisions regarding primary user
activities over the spectrum. The sequential test was run at
the FC with a constraint on the maximum number of sensors
that reported their LLRs. This constraint was incorporated
using the OT-based scheme. Furthermore, the authors in [9]
considered the quickest change detection problem to detect
the change in the distribution of independent observations by
proposing a new approach where the transmissions from the
sensors were ordered and stopped when sufficient information
was accumulated at the FC. The authors showed that the
proposed approach achieved the optimal performance equiv-
alent to the centralized cumulative sum (CUSUM) algorithm
with less sensor transmissions. In [10], the OT-based scheme
is employed in the quickest change detection problem with
dependent observations to reduce communications without
increasing detection delays. The dependence among sensor
observations is characterized using a decomposable graph-
ical model (DGM). The authors showed that the proposed
algorithm is able to achieve identical performance to the
non-OT based scheme in terms of the worst-case average
detection delay. In order to eliminate some sensor-to-FC uplink
communications, the authors in [11] considered an ordered
gradient approach where the timer at each sensor was set
inversely proportional to the magnitude of the gradient of the
loss function. This resultant gradient-based approach achieved
the same order of convergence rate as the gradient descent
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approach for nonconvex smooth loss functions. Also, the work
in [12] considered an OT-based algorithm for the discretized
estimation problem with a latency constraint. The authors
showed that the proposed algorithm can greatly reduce latency
without loss of estimation accuracy. In [13], the OT-based
scheme was incorporated along with energy harvesting in the
WSNs in order to improve energy efficiency of the sensors.
A correlation-aware OT-based scheme was proposed in [14]
where spatial correlation between the sensors was considered.
The OT-based framework was applied to determine a shift in
the mean and covariance, and the decision rule was proposed
accordingly. In the CEOT-based scheme, informative sensors
transmit binary decisions to the FC, improving communication
efficiency in the distributed setup, rather than sending raw LLR
values.In [15], the authors proposed a communication-efficient
OT based (CEOT-based) scheme in which informative sensors
send binary decisions, rather than sending raw LLR values, to
the FC in order to improve the communication efficiency. The
above works show that the OT-based schemes in the Gaussian
shift in mean problem are capable of efficiently reducing the
number of transmissions needed for decision-making while
maintaining the same inference performance.

However, due to the large number of low-cost sensors and
the vulnerability of WSNs to failures and adversarial attacks,
the robustness of the OT-based and CEOT-based systems
under attack is an important aspect to consider. Typically,
when the WSNs are under adversarial attacks, one or more
sensors may get compromised and may send falsified data to
the FC to degrade the detection performance of the system
[16], [17]. This Byzantine threat model has been extensively
studied in [17]–[23]. Unlike the previous OT-based systems
that only considered honest sensors in the networks [5]–[15],
[24], we aim to evaluate the performance of the OT-based
system via both the detection performance and the number
of transmissions saved in the presence of Byzantine sensors.
In our previous work [25], we have investigated the effect of
data falsification attacks, where the local decisions are altered
by Byzantine sensors, on the detection performance and the
number of transmissions saved for the CEOT-based system.
In this paper, we consider additive Byzantine attack models.
Under the OT-based framework, the Byzantine sensors can
alter not only their decisions but also the order in which deci-
sions are transmitted by altering their LLRs. Furthermore, we
investigate the effect of different additive Byzantine attacks on
the performance of both OT-based and CEOT-based systems.
The following are our major contributions:

• We investigate the performance of the OT-based dis-
tributed detection system in the presence of two kinds of
additive Byzantine attacks. The first type involves shifting
the mean of the actual observations, which is referred to
as the mean-shift attack model. The second type involves
shifting both the mean and the variance of the actual
observations, known as the mean-variance-shift attack
model. We also determine the optimal attack strategy for
such Byzantine sensors. The attack strategy is determined
by utilizing the deflection coefficient (DC) as a surrogate
for the probability of error. Also, we evaluate the perfor-

mance of CEOT-based distributed detection systems in
the presence of such additive Byzantine attacks.

• We show that the detection performance of the two
systems remains the same whether ordering is considered
or not in the presence of additive Byzantine attacks.

• We derive the probabilities of error for the OT-based and
CEOT-based systems under additive Byzantine attacks.
We also derive an upper bound (UB) and a lower bound
(LB) on the number of transmissions saved in the network
for both systems.

• We evaluate the number of transmissions saved in the OT-
based system numerically via the Monte Carlo approach
in the presence of Byzantine sensors. Our simulation
results show that the optimal attack strategy that maxi-
mizes the probability of error, also maximizes the number
of transmissions needed when utilizing the OT-based
scheme. Furthermore, a comparison between the OT-
based system and the CEOT-based system is made. We
observe that the CEOT-based system is more robust to
additive Byzantine attacks since the impact of additive
Byzantine attacks on the CEOT-based system is reduced
by the quantization of data.

The paper is organized as follows. We present our system
model in Section II. We evaluate the performance of the OT-
based system under additive Byzantine attacks and derive the
bounds for the number of transmissions saved in the OT-based
system in Section III. The performance of the CEOT-based
system under additive Byzantine attacks is investigated and
the bounds for the number of transmissions saved are derived
in Section IV. We present our numerical results in Section V
and conclude in Section VI.

II. SYSTEM MODEL

In this section, we consider a binary hypothesis testing
problem where hypothesis H1 indicates the presence of the
signal and H0 indicates the absence of the signal. We consider
a distributed network consisting of N sensors and one FC.
Furthermore, the OT-based scheme is considered to reduce the
number of transmissions in the network. Let yi be the received
observation at sensor i ∈ {1, 2, . . . , N}. We assume that all the
observations are independent and identically distributed (i.i.d)
conditioned on the hypotheses. For sensor i, the observation
yi is modeled as

yi =

{
ni under H0

s+ ni under H1,
(1)

where s is non-negative and it is the signal strength at each
sensor, and ni is the Gaussian noise with zero mean and
variance σ2. We assume that s and ni are independent. Note
that yi is Gaussian with mean s and variance σ2 under
hypothesis H1, and is Gaussian with mean 0 and variance
σ2 under hypothesis H0.

Next, we review two OT-based schemes where all the
sensors are assumed to be honest. One is the OT-based scheme
proposed in [5] where the local sensors send their LLRs to the
FC. The other is the CEOT-based scheme proposed in [15]
where the local sensors transmit binary decisions to the FC.



3

A. Network with OT-based Scheme

Let Li denote the LLR for sensor i given by Li =

log
(
fYi (yi|H1)

fYi (yi|H0)

)
, where fYi(yi|Hh) is the probability density

function (PDF) of yi given hypothesis Hh, for h = 0, 1.
The prior probabilities of hypotheses Hh are P (Hh) = πh,
for h ∈ {0, 1}. Recall that the LLR-based optimal Bayesian
hypothesis test at the FC for an unordered system is given

by
∑N
i=1 Li

H1

≷
H0

λ = log
(
π0

π1

)
, where λ is the threshold used

by the FC. In the OT-based system, the sensor transmissions
are ordered based on the magnitude of their respective LLRs.
We denote the magnitude of the ordered transmissions as
|L[1]| > |L[2]| > . . . > |L[N ]|, where |L[i]| indicates the ith

largest LLR. Hence, the sensor with LLR L[1] transmits first,
the sensor with LLR L[2] transmits second, and so on. The
optimal decision rule of the FC [5] becomes{ ∑k

i=1 L[i] > λ+ nUT |L[k]| decide H1∑k
i=1 L[i] < λ− nUT |L[k]| decide H0,

(2)

for an OT-based system, where nUT is the number of sensors
that have not yet transmitted at time k. The FC waits for the
next transmission if it can not make the decision with desired
accuracy. In this work, we assume that both the sensors and
the FC are aware of the relationship between the transmission
time t of the sensors and the corresponding magnitude of their
LLRs, i.e, t ∝ 1/|Li|,∀i ∈ 1, 2 . . . , N . Note that the following
assumption was also made in [5] for their analysis.

Assumption 1: Pr(Li > 0|H1)→ 1 and Pr(Li < 0|H0)→
1 when s is sufficiently large.

Intuitively, the assumption states that the true hypothesis can
be decided easily based on Li for any sensor i if the distance
(dependent on s) between the distributions of the observations
of sensor i occurring under the two hypotheses becomes large.

B. Network with CEOT-based Scheme

Based on the local observations {yi}Ni=1, each sensor i ∈
{1, . . . , N} makes a binary decision ui ∈ {0, 1} regarding

the true hypothesis using the LLR test Li
ui=1

≷
ui=0

log
(
π0

π1

)
[26] and ui is the local decision of sensor i. We assume
that the sensor transmissions are still ordered based on the
magnitude of their LLRs. Recall that the magnitudes of the
LLRs are ordered as |L[1]| > |L[2]| > . . . > |L[N ]|. Then, the
sensors transmit their local decisions to the FC in the order
determined by their magnitude-ordered LLRs, i.e., in the order
of u[1], u[2], . . . , u[N ], where u[k] is the local decision of the
sensor with kth largest LLR.1

The optimal decision rule [15] is given by{ ∑k
i=1 u[i] ≥ T decide H1∑k
i=1 u[i] < T − (N − k) decide H0,

(3)

which follows the T out of N counting rule. Here, we
consider the majority rule where T = N/2+1. The following

1Note that the magnitude-ordered LLRs do not imply that local decisions
are also magnitude-ordered, i.e., |L[1]| > |L[2]| > . . . > |L[N ]| does not
imply u[1] > u[2] > . . . > u[N ].

assumption is made in [15] for the CEOT-based scheme similar
to the OT-based scheme made in [5].

Assumption 2: Pr(ui = 1|H1)→ 1 and Pr(ui = 0|H0)→
1 when s is sufficiently large.
Remark. Note that large s is key to proving the result that
the average number of transmissions saved by utilizing both
the OT-based scheme and the CEOT-based scheme is lower
bounded by N/2 (see [5, Theorem 2] and [15]). However,
when s is small or when there are Byzantine sensors in the
system, Assumptions 1 and 2 are no longer valid.

C. Mean-shift Attack Model

Next, we discuss the mean-shift attack model adopted by
Byzantine sensors. We assume that the Byzantine sensors
falsify data by controlling the attack strength in both the OT-
based system and the CEOT-based system. In this work, only
passive systems are considered, i.e. the system is unaware
of the presence of attackers. We assume that the Byzantine
sensors have perfect knowledge of the underlying true hy-
pothesis. Admittedly, it is hard to realize in practice but it
is useful to consider this case as it provides the impact of
Byzantines in the worst case. Note that we want to analyze
the ability of the Byzantine sensors to affect the decision at
the FC. Specifically, we want to analyze from the attacker’s
perspective by determining the most effective attack strategy
for the Byzantine sensors. We also assume that each sensor can
be a Byzantine with probability α. Furthermore, the falsified
observation ỹi for Byzantine node i is given by

ỹi =

{
s+ ni −D under H1

ni +D under H0,
(4)

where D is the attack strength and it is a non-negative constant
value. The above attack strategy adopted by Byzantine nodes
is equivalent to launching attacks by generating falsified
observations from another distribution, and it is commonly
used in the literature [17], [27]–[30]. Here, the distribution
used by Byzantine nodes to generate falsified observations is
obtained by shifting the mean of the actual distribution with a
constant value. This attack strategy can easily be extended to
a more general case, i.e, mean-variance-shift attack strategy,
where the the attack strength is a random variable. Details will
be discussed in the following section. Note that for an honest
node, the observation is yi as given in (1). Hence in our setup,
a sensor i can be honest (H) or Byzantine (B). However,
Assumptions 1 and 2 made in [5] and [15], respectively, are
no longer valid.
Remark. Note that both the sensors and the FC are aware
of the relationship between the transmission time t of the
sensors and the corresponding magnitude of their LLRs, i.e,
t ∝ 1/|Li|,∀i ∈ 1, 2 . . . , N . If an attacker deviates from
the ordered-transmission protocol, they introduce an additional
dimension of adversarial behavior. This non-compliance makes
their malicious actions more conspicuous and susceptible to
identification by the FC. In other words, it increases the
possibility of being easily detected by the system as being
malicious. Here, we assume that the Byzantines follow the
ordered-transmission protocol. By making this assumption, we
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are assuming a more challenging situation where attackers
attempt to hide their malicious actions within the prescribed
protocol.

In the following sections, we analyze the detection perfor-
mance of the OT-based system and the CEOT-based system
when confronted with Byzantine sensors employing two attack
strategies. The first strategy involves the sensors adopting
a mean-shift attack, while the second strategy involves the
sensors employing a more general attack.

III. OT-BASED SYSTEM WITH BYZANTINES

In this section, we first present an important Lemma that
enables us to evaluate the detection performance of the OT-
based scheme in the presence of Byzantine sensors adopting
mean-shift attack strategy. Next, we obtain the expression for
the number of transmissions saved in the network which is
significantly impacted by the presence of Byzantine sensors.
Furthermore, we also determine the optimal attack strategy
for Byzantine sensors by using Deflection Coefficient (DC).
Finally, we discuss the performance of the OT-based scheme
under mean-variance-shift attacks.

A. Detection Performance under Mean-shift Attack

We begin our analysis of the detection performance of the
OT-based scheme in the presence of Byzantine sensors by first
presenting the following Lemma which states that the OT-
based system can achieve the same detection performance as
the one without ordering.2

Lemma III.1. 3 Under the optimum Bayesian decision rule,
the detection performance remains the same whether or not the
system uses the OT-based scheme in the presence of Byzantine
sensors.

Proof: The proof is relegated to Appendix A.
Thus, based on above Lemma, we can obtain the detec-

tion performance of the OT-based system by evaluating the
detection performance of the system without ordering. For the
system without ordering, we have Li = 2yis−s2

2σ2 when sensor
i is honest (i = H). When sensor i is Byzantine (i = B), the
LLR is given as

Li =

{
2(yi−D)s−s2

2σ2 under H1
2(yi+D)s−s2

2σ2 under H0

(5)

Hence, if sensor i = H , the PDF of Li conditioned on
hypothesis Hh follows Gaussian distribution with mean µh
and variance σ2

h for h = 0, 1, where µ1 = s2

2σ2 , µ0 = −s2
2σ2 ,

σ2
1 = σ2

0 = s2

σ2

4
= β. Furthermore, if sensor i = B, the

PDF of Li conditioned on hypothesis Hh follows Gaussian
distribution with mean ηh and variance ν2h for h = 0, 1, where

2Note that both the OT-based and unordered systems have the same
probability of error in the presence of Byzantine sensors. However, the number
of transmissions saved is significantly impacted by the presence of Byzantine
sensors for the OT-based system as discussed later.

3Note that this paper presents analytical proofs for Lemma III.1 and Lemma
IV.1 in the presence of Byzantines, which have not been presented in previous
works on OT-based frameworks.

η0 = s2−2Ds
2σ2 , η1 = 2Ds−s2

2σ2 , ν20 = ν21 = s2

σ2

4
= β. Therefore,

the PDF of Li given hypothesis Hh is expressed as

fL(li|Hh) = αfL(li|Hh, i = B)+(1− α)fL(li|Hh, i = H)

= αN (ηh, ν
2
h)+(1− α)N (µh, σ

2
h), (6)

for h = 0, 1. Here, α denotes the probability of a node being
Byzantine. Let K = {A1, . . . At, . . . , A2N } denote the power
set that contains all possible subsets of set {1, . . . , N} and
At be the tth subset of the combination of honest sensors.
Also, |At| is the cardinality of set At. Let Z =

∑N
i=1 L[i]

denote the global test statistic and f(Z|Hh) denote the Gaus-
sian mixture with PDF given by f(Z|Hh) =

∑2N

t=1(1 −
α)mtαN−mtN ((µh)At , Nβ) for h = 0, 1, where (µh)At =
µh|At|+ ηh(N − |At|) and mt denotes the cardinality of set
At, i.e., mt = |At|.

Therefore, the detection performance can be evaluated in
terms of the probability of detection PFCd and the prob-
ability of false alarm PFCf of the FC given as PFCd =∑2N

t=1(1−α)N−mtαmtQ
(
λ−(µ1)At√

Nβ

)
and PFCf =

∑2N

t=1(1−

α)N−mtαmtQ
(
λ−(µ0)At√

Nβ

)
by following steps that are similar

to those outlined in [29], where Q(.) is the tail distribution
function of the standard normal distribution.

B. Average Number of Transmissions Saved for the OT-based
System under Mean-shift Attack

We consider the effect of Byzantine sensors on the number
of transmissions saved for the OT-based scheme. When the
system is under attack, we derive an expression for the average
number of transmissions N̄t in the following theorem. Let k∗

denote the minimum number of transmissions needed to make
a final decision with desired accuracy. Let F|L|(li|Hh) be the
cumulative distribution function (CDF) of |Li| for h = 0, 1
provided as

F|L|(li|Hh) =α

(
Q

(
−li − ηh

νh

)
−Q

(
li − ηh
νh

))
+(1−α)

(
Q

(
−li − µh

σh

)
−Q

(
li − µh
σh

))
. (7)

Theorem III.2. The average number of transmissions N̄t is
given as

N̄t =

N∑
k=1

π1Pr(k
∗ ≥ k|H1) + π0Pr(k

∗ ≥ k|H0) (8)

where

Pr(k∗ ≥ k|Hh)

=ELk−1

[
F|L|(Lk−1|Hh)N−k+11{J}

N !

(N − k + 1)!

]
, (9)

for h = 0, 1. The indicator function 1{J} is 1 when Lk−1 =
{L1, L2 . . . , Lk−1} is in the region J , and 0 otherwise. Here,
J is a hyperplane with k − 1 dimensions formed by the
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N̄s
U

=

N−1∑
k=1

1∑
h=0

πh

[
Pr

(
|L[k]|≤

gU − λ
N − k |Hh

)
+Pr

(
|L[k]| ≤

λ− gL
N − k |Hh

)
−Pr

(
|L[k]|≤min

(
gU − λ
N − k ,

λ− gL
N − k

)
|Hh

)]
(13)

N̄s
L

=

N−1∑
k=1

1∑
h=0

πh

[
Pr

(
|L[k]| <

gL − λ
(N − k)

|Hh

)
+ Pr

(
|L[k]| <

λ− gU
(N − k)

|Hh

)]
(14)

intersection of three hyperplanes, J = L
⋂
U
⋂
D, which are

given below

L =

{
Lk−1 :

k−1∑
i=1

Li ≤ λ+ (N − k + 1)|Lk−1|

}
(10)

U =

{
Lk−1 :

k−1∑
i=1

Li ≥ λ− (N − k + 1)|Lk−1|

}
(11)

D = {Lk−1 : |L1| > |L2| > · · · > |Lk−1|} . (12)

Proof: Please see Appendix B.
Note that the set L is the set of Lk−1 such that the FC can

not decide hypothesis H1. Also, the set U is the set of Lk−1
such that the FC can not decide hypothesis H0. Furthermore,
the set D is the set of Lk−1 such that L1, L2, . . . , Lk−1
are ordered in magnitude. For a given k, we evaluate (9)
numerically using the Monte Carlo approach as the following.
We generate M i.i.d. realizations of L1, L2, . . . , Lk−1, where
the PDF of Li is given in (6) for ∀i ∈ {1, 2, . . . , k − 1}.
From our experiments, we observe that when N increases, the
number of samples M needed to get an accurate evaluation of
(9) significantly increases.

Next, we derive the upper bound (UB) and the lower
bound (LB) for the number of the transmissions saved by
the OT-based scheme under Byzantine attack in the following
Theorem. Let N̄s

U and N̄s
L denote the UB and the LB of the

average number of transmissions saved.

Theorem III.3. When N is sufficiently large, the aver-
age number of transmissions saved N̄s can be bounded
as N̄s

L ≤ N̄s ≤ N̄s
U , where N̄s

U and N̄s
L are

given in (13) and (14), respectively. Furthermore, we
have Pr

(
|L[k]| < W |Hh

)
=
∫W
−W f|L[k]|(l[k]|Hh)dl[k] for

W ∈ { gU−λN−k ,
λ−gL
N−k ,min( gU−λN−k ,

λ−gL
N−k ), gL−λN−k ,

λ−gU
N−k } and

f|L[k]|(|l[k]||Hh) is shown in (49). We have gL = −[
∑

(ci −
c̄)2Nζ2h]

1
2 + kδh and gU = [

∑
(ci − c̄)2Nζ2h]

1
2 + kδh, where

δh and ζ2h are shown in (46). Here, c̄ =
∑N
i=1 ci
N where ci = 1

if i ≤ k and ci = 0 if i > k.

Proof: Please see Appendix C.
Next, we discuss the optimal attack strategy for Byzantine

sensors and later (see Section V) show the effect of Byzantine
sensors that utilize the optimal attack strategy on the OT-based
system.

C. Optimal Mean-shift Attack Strategy

From the analysis in Sec. III-A, we can obtain the error
probability of the system which is given by Pe = π1(1 −
PFCd ) + π0P

FC
f . However, |K| grows exponentially as N

increases. Therefore, it is intractable to evaluate the system
performance using Pe. Hence, we utilize the DC [31] as a
surrogate to determine the best attack strategy. By minimizing
DC, Pe is maximized.

The DC is defined as D(Z̃) = (E(Z̃|H1)−E(Z̃|H0))
2

V ar(Z̃|H0)
. For

the system without ordering, let Z̃ =
∑N
i=1 Li denote the

global statistic. Therefore, we have E(Z̃|H1) = −E(Z̃|H0) =

N s2−2Dsα
2σ2 . From Lemma III.1 and the above discussion, to

maximize the probability of error of the system with ordering,
we can minimize the DC of the system without ordering. For
a specific value of α, the value of D which minimizes DC
is the optimal attack strength D∗. Since the DC is always
non-negative, the optimal strategy for the Byzantine sensors
is to make D(Z̃) = 0. From the definition of DC, when
E(Z̃|H1) = E(Z̃|H0), we have D(Z̃) = 0. Hence, for a given
α, the optimal attack strength D∗ is given by

D∗ =
s

2α
, (15)

which is the minimum attack strength to blind the FC, i.e., to
make the probability of error equal to 1/2.

D. Mean-variance-shift Attack Model

The mean-shift attack strategy can be easily extended to
a more general case, i.e., mean-variance-shift attack strategy,
where the signal is perturbed by random noise. For the sake of
simplicity in performance analysis, we consider the scenario
where the actual data is perturbed by Gaussian noise.

Recall that the mean-shift attack strategy assumes that
Byzantines falsify their observations with constant values D
and −D as shown in (4). Consequently, the LLR for Byzantine
sensor i can be expressed as

Li =

{
2(yi−D)s−s2

2σ2 = Li,true + f1(D) under H1
2(yi+D)s−s2

2σ2 = Li,true + f0(D) under H0,
(16)

where f1(D) = −Dsσ2 , f0(D) = Ds
σ2 and Li,true = 2yis−s2

2σ2 is
the actual value of sensor i’s LLR. We can easily observe
that Byzantines falsify their actual observations y with D
and −D, which can be equivalently viewed as falsifying their
actual LLRs with constant values f1(D) and f0(D). In this
case, the falsified LLRs are generated from another Gaussian
distribution with a different mean and the same variance. If
we assume a more general attack strategy, where the actual
observations are perturbed by Gaussian noise, both the mean
and variance of the Byzantines’ LLRs will be altered.

Assuming that the actual LLR of compromised sensor i ∈
{1, 2, . . . , N} is perturbed by a random noise component that
follows a Gaussian distribution, the perturbed LLR is given
by:

Li =

{
Li,true + n1,i,w under H1

Li,true + n0,i,w under H0,
(17)

where n1,i,w represents the perturbation noise under hypothe-
sis H1 that follows a Gaussian distribution with mean f1(D)
and variance σ2

w, and n0,i,w represents the perturbation noise
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under hypothesis H0 that follows a Gaussian distribution with
mean f0(D) and variance σ2

w. It is easy to obtain that the
falsified Li of sensor i follows a Gaussian distribution with
its mean given by

E[Li|Hh] = µh + fh(D), (18)

where µ1 = s2

2σ2 and µ0 = −s2
2σ2 , and the variance given by

V ar[Li|Hh] =
s2

σ2
+ σ2

w
4
= ν2h,w (19)

for h = 0, 1. To evaluate the performance of the system under
such general attacks, we only need to replace ν20 and ν21 with
ν20,w and ν21,w, respectively, in all the above discussions.

IV. CEOT-BASED SYSTEM WITH BYZANTINES

In this section, we evaluate the performance of the CEOT-
based system in the presence of Byzantine sensors by analyz-
ing the detection performance and the number of transmissions
saved in the network. Similar to the previous section, we show
that the detection performance is the same whether we use
ordering or not in the presence of Byzantine sensors for the
CEOT-based scheme. Note that the performance analysis of the
CEOT-based system with Gaussian noise perturbed signals can
be obtained by following a similar approach as in the previous
section. For the sake of brevity, the detailed discussion and
analysis are omitted in this section.

A. Detection Performance

We begin our analysis of the detection performance of the
CEOT-based system in the presence of Byzantine sensors by
first presenting the following Lemma which states that the
CEOT-based system can achieve the same detection perfor-
mance as the one without ordering.

Lemma IV.1. Under the optimum Bayesian decision rule, the
detection performance of the CEOT-based system with and
without ordering is the same in the presence of Byzantines.

Proof: The proof follows similar procedure as the proof
of Lemma III.1. Hence, due to space constraints, the proof of
Lemma IV.1 is omitted.

Hence, based on the above Lemma, we can obtain the de-
tection performance of the CEOT-based system by evaluating
the detection performance of the distributed system without
ordering. For the system without ordering, if the sensor is
honest i = H , the probabilities of ui = 1 and ui = 0
given Hh are expressed as πH1,h = P (ui = 1|Hh, i = H) =

Q
(
λ−µh
σh

)
and πH0,h = P (ui = 0|Hh, i = H) = 1 − πH1,h,

respectively, for h = 0, 1. If the sensor is Byzantine i = B,
the probabilities of ui = 1 and ui = 0 given Hh are
expressed as πB1,h = P (ui = 1|Hh, i = B) = Q

(
λ−ηh
νh

)
and πB0,h = P (ui = 0|Hh, i = B) = 1−πB1,h, respectively, for
h = 0, 1. 4 Therefore, the probabilities of ui = 1 and ui = 0
given Hh are expressed as

π1,h = P (ui = 1|Hh) = απB1,h + (1− α)πH1,h,

4When we consider Gaussian noise perturbed signals, we only need to
replace ν2h with ν2h,w for h = 0, 1.

and π0,h = P (ui = 0|Hh) = απB0,h+(1−α)πH0,h, respectively,
for h = 0, 1.

The fusion rule of the distributed system without ordering is

given as
∑N
i=1 ui

H1

R
H0

T , by noting that we can consider the un-

ordered scheme and taking k = N in (3). Based on the fusion
rule of unordered system, the detection performance can be
evaluated in terms of the probability of detection PFCd,CEOT and
the probability of false alarm PFCf,CEOT given as PFCd,CEOT =∑N
i=T

(
N
i

)
πi1,1π

N−i
0,1 and PFCf,CEOT =

∑N
i=T

(
N
i

)
πi1,0π

N−i
0,0 .

B. Average Number of Transmissions Saved for the CEOT-
based System under Attack

Next, we consider the effect of additive Byzantine attacks
on the number of transmissions saved for the CEOT-based
scheme. When the system is under attack, we derive the UB
and the LB for the average number of transmissions saved for
the CEOT-based scheme in the theorem later in this section.
Let N̄s,CEOT denote the average number of transmissions
saved in the CEOT-based scheme given as

N̄s,CEOT =E(N − k∗)=

N∑
k=1

(N − k)Pr(k∗ = k)=

N−1∑
k=1

Pr(k∗≤k),

(20)

where k∗ denotes the minimum number of transmissions
needed to make a final decision with desired accuracy. How-
ever, the computation of Pr(k∗ ≤ k) is intractable. Hence,
we derive the UB and LB of N̄s,CEOT by considering
the best case and the worst case scenarios for the number
of transmissions saved in the network in the presence of
Byzantines, respectively. The information of global statistic
of the distributed system without ordering, which is given as
Γ =

∑N
i=1 ui, is utilized to derive both LB and UB. It is easy

to conclude that Γ < T means that there exists a k∗ such that∑k∗

i=1 u[i] < T − (N − k∗) and Γ ≥ T means that there exists
a k∗ such that

∑k∗

i=1 u[i] ≥ T according to Lemma IV.1. In
order to find the LB and UB of N̄s,CEOT , we consider the
worst and best cases as follows.

When we consider the worst case, we try to find the
maximum k∗ needed to make a final decision for a given set
of local decisions {ui}Ni=1. Therefore, the worst case given
Γ < T would be that the magnitude of local decisions are
ordered in descending order expressed as

|z[1]| ≥ |z[2]| · · · ≥ |z[N ]|, (21)

where z[k] ∈ {0, 1}, for ∀k ∈ {1, 2, . . . , N} is the kth largest
local decision.5 This is due to the fact that Γ < T implies that
the unordered system (i.e., the system where the FC receives
all local decisions) has more ‘0’ decisions than ‘1’ decisions6,
and the detection performance of the unordered system is
the same as the ordered system, as stated in Lemma IV.1.
The worst case scenario would occur if the magnitudes of
local decisions are ordered in descending order. Similarly, the

5Note that z[k] is not the same as u[k]. The values u[1], u[2], . . . , u[N ] are
ordered based on the magnitude of their LLRs, while z[1], z[2], . . . , z[N ] are
ordered based on the magnitude of local decisions {ui}Ni=1.

6More specifically, the number of ‘1’s should be smaller than T .
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N̄U
s,CEOT =

1∑
h=0

N−1∑
k=1

πh [P (k∗0 ≤ k|Γ ≥ T,Hh)P (Γ ≥ T |Hh) + P (k∗1 ≤ k|Γ < T,Hh)P (Γ < T |Hh)] , (23)

N̄L
s,CEOT =

1∑
h=0

N−1∑
k=1

πh [P (k∗1 ≤ k|Γ ≥ T,Hh)P (Γ ≥ T |Hh) + P (k∗0 ≤ k|Γ < T,Hh)P (Γ < T |Hh)] , (24)

worst case given Γ ≥ T would be that the magnitude of local
decisions are ordered in ascending order expressed as

|z(1)| ≤ |z(2)| · · · ≤ |z(N)|, (22)

where z(k) ∈ {0, 1} for ∀k ∈ {1, 2, . . . , N} is the kth smallest
local decision.

Similar to the above discussion, for the best case, we try
to find the minimum k∗ needed to make a final decision for
a given set of local decisions {ui}Ni=1. The best case given
Γ < T would be that the magnitude of local decisions are
ordered in ascending order as shown in (22), The best case
given Γ ≥ T would be that the magnitude of local decisions
are ordered in descending order as shown in (21). Based on
the above analysis, we have the following theorem.

Theorem IV.2. The average number of transmissions saved
N̄s,CEOT can be bounded as N̄L

s,CEOT ≤ N̄s,CEOT ≤
N̄U
s,CEOT . Here, the upper bound N̄U

s,CEOT and the lower
bound N̄L

s,CEOT are given in (23) and (24), respectively, where
P (Γ ≥ T |Hh) =

∑N
i=T

(
N
i

)
πi1,hπ

N−i
0,h , P (Γ < T |Hh) =

1− P (Γ ≥ T |Hh), and

P (k∗0≤k|Γ≥T,Hh) =

N−T∑
i=0

(
N

i

)
πi0,hπ

N−i
1,h , (25)

P (k∗1≤k|Γ≥T,Hh) =

min(N−T,k−T )∑
i=0

(
N

i

)
πi0,hπ

N−i
1,h , (26)

when k ≥ T , and

P (k∗1 ≤ k|Γ < T,Hh) =

T−1∑
i=0

(
N

i

)
πi1,hπ

N−i
0,h , (27)

P (k∗0 ≤ k|Γ < T,Hh)=

min(T−1,k−(N−T+1))∑
i=0

(
N

i

)
πi1,hπ

N−i
0,h ,

(28)

when k > N − T . Otherwise, P (k∗1≤k|Γ<T,Hh),
P (k∗1≤k|Γ≥T,Hh), P (k∗0≤k|Γ≥T,Hh) and
P (k∗0≤k|Γ<T,Hh) are equal to 0. Here, k∗0 and k∗1
denote the minimum number of transmissions needed to make
a final decision for descending and ascending ordered local
decisions, respectively.

Proof: Please see Appendix D.

V. SIMULATION RESULTS

In this section, we present the numerical results. We set
the channel noise variance σ2 = 1 and the prior probabilities
π1 = π0 = 0.5. The detection performance in Fig. 1 and
the actual average number of transmissions saved in Figs. 3,
5, 7, 8 are obtained via Monte Carlo method with 104 trials
and the average number of transmissions saved in Figs. 2 and
4 are obtained via Monte Carlo method with 107 trials. In

order to obtain an accurate evaluation of the average number
of transmissions saved in the network as shown in Figs.
2 and 4, we need to significantly increase the number of
trials as the number of sensors increases. Note that the other
parameters like the perturbation noise variance σ2

w, signal
strength s, attack strength D, total number of sensors N , and
the probability of each sensor being Byzantine α required for
the simulations are included in the respective captions of the
figures.

Comparison of OT-based and CEOT-based systems: Fig. 1
shows the effect of additive Byzantine attacks on the detection
performance of the OT-based system and the CEOT-based
system. In Fig. 1, we compare the probability of error of
the CEOT-based system to the OT-based system and we
observe that the CEOT-based system is more robust to additive
Byzantine attacks with the same attack parameters. This is due
to the fact that the global statistic of an OT-based system is
a summation of LLRs, and some of these could be falsified
to very large values when D/s is large. In this case, a large
deviation is generated from the actual summation of LLRs.
However, the global statistic of the CEOT-based system is
the summation of quantized LLRs. Although some Byzantine
nodes may falsify data, it is unlikely to lead to a significant
deviation in the sum of quantized LLR values, even if D/s is
large. Hence, D has less negative impact on the probability of
error of the CEOT-based system than the OT-based system.

Fig. 1: Pe as a function of D/s in the CEOT-based system
and the OT-based system when s = 3 and N = 300.

Effect of additive Byzantine attacks on N̄s/N in the OT-
based system: Figs. 2 and 3 show the effect of additive
Byzantine attacks on the average percentage of savings for
the OT-based system. Fig. 2 presents the average percentage
of saving N̄s/N in an OT-based system as a function of D/s
for different values of α. Initially, N̄s/N decreases when D/s
increases. However, when D/s increases further, the FC starts
to make wrong decisions and the number of transmissions
needed to make the final decision starts to decrease and the
savings start to increase. We compare the results obtained via
simulation using the Monte Carlo method with our analysis
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using (8), and observe a good match. In Fig. 3, we observe

Fig. 2: Comparison of N̄s/N as a function of D/s for different
values of α when s = 4 and N = 10 in the OT-based system.

Fig. 3: Benchmarking UB and LB for N̄s/N as a function of
D/s for α = 0.5 when s = 4 and N = 300 in the OT-based
system.

that the attack strength D∗ obtained in (15) for the OT-based
system is near the point where the average percentage of
savings is minimum. Compared with the OT-based system
when no Byzantines are present, i.e., D=0, the system in the
presence of attacks needs more transmissions to make a final
decision. Therefore, the attack strength D∗ from (15) not only
blinds the FC but also leads to a smaller average percentage
of savings. Fig. 3 also shows the UB and LB for the average
percentage of savings as a function of D/s in an OT-based
system. We observe that both the LB obtained in (14) and the
UB obtained in (13) show a similar trend as that of the average
percentage of saving, i.e., the UB and LB track the change in
actual average number of transmissions that have been saved.
Compared to the UB, the LB performs better in tracking the
changes, which enables us to infer what the optimal attack
strategy for the attacker is, i.e., what is the value of D that
the attacker will employ to cause the greatest damage to the
system. As for the UB, it provides more information regarding
the maximum number of average transmissions saved in the
network as well as alerts about the existence of outliers. For
example, if the average number of transmissions saved is larger
than the maximum value of UB, we can determine that there
are potential outliers and they deviate far from the actual data,
i.e., the attackers use an extremely large value of D.

Figs. 4 and 5 illustrate the impact of mean-variance-shift
attacks on the average percentage of savings for the OT-

(a)

(b)

Fig. 4: (a) N̄s/N as a function of D/s for σ2
w = 6; and (b)

N̄s/N as a function of σ2
w when α = 0.5, s = 4, and N = 10

in the OT-based system under mean-variance-shift attacks.

based system. Fig. 4 shows that the error probability obtained
via simulation using the Monte Carlo method and our error
probability analysis have a good match. Fig. 5 shows the
UB and LB we obtained that show a similar trend as that
of the average percentage of saving. As we can observe,
Figs. 4 (a) and 5 (a) demonstrate very similar trends as Figs.
2 and 3 when the mean of perturbation noise changes. In
Figs. 4 (b) and 5 (b), we can observe that the values of the
variance of the perturbation noise do not significantly affect
the average number of transmissions saved. This phenomenon
may arise from the fact that the change in variance value only
affects the extent to which the noise samples deviate from
the mean. Consequently, samples of perturbation noise might
fall below or exceed the mean perturbation noise value. Given
that the FC’s global statistic is the summation of received
LLRs, the overall perturbation to this statistic corresponds to
the accumulation of perturbation noise from malicious nodes.
The average perturbation for each malicious node will tend to
the mean of the perturbation noise as the perturbation noise
samples below the mean value will balance out the samples
above the mean value. Therefore, the change in variance does
not have as significant an effect as the change in mean on the
number of transmissions saved in the network.

When we consider the case where the sensor observations
follow an exponential distribution f(y) = 1

λe
− yλ (a non-

Gaussian distribution) with λ = 2 under hypothesis H0 and
λ = 8 under hypothesis H1, we can observe a trend in Fig.
6 similar to that shown in Fig. 2 regarding the fraction of the
number of transmissions saved as a function of D/s.

Effect of additive Byzantine attacks on N̄s/N in the CEOT-
based system: Figs. 7, and 8 show the effect of additive
Byzantine attacks on the average percentage of savings for
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(a)

(b)

Fig. 5: Benchmarking UBs and LBs for (a) N̄s/N as a function
of D/s; and (b) N̄s/N as a function of σ2

w when α = 0.5,
s = 4 and N = 300 in the OT-based system under the mean-
variance-shift attacks.

Fig. 6: N̄s/N as a function of D/s in the OT-based system for
different values α when λ = 2 under hypothesis H0, λ = 8
under hypothesisH1 for exponentially distributed observations
and N = 50.

the CEOT-based system. Fig. 7 shows the UBs obtained in
(23) and LBs obtained in (24) for the average percentage of
saving N̄s,CEOT /N as a function of D/s for different values
of α. We observe that Byzantine sensors have more negative
impact on the final decision making process with an increasing
D/s. However, the additive Byzantine attacks have limited
negative impact on the number of transmissions saved in the
CEOT-based system compared to the OT-based system. When
D/s is large enough, the first several local decisions received
by the FC are most likely from Byzantine sensors which is
the worst case scenario in terms of the performance for the
system. With further increase of D/s, the impact of Byzantines
on the number of transmissions saved in the network does not
further increase since the LLRs are quantized, which limits the
negative impact of Byzantine sensors on the system. In Fig.

8(a), the average percentage of saving, the UB and the LB
are shown for a system with a relatively weak signal s = 3.
Furthermore, Fig. 8(b) shows the the plots for a system with a
relatively strong signal s = 6. By comparing Fig. 8(a) and Fig.
8(b), we observe that the LB gets tighter when we increase
the signal strength s. This is reasonable due to the facts that
i) Assumption 2 always works for honest sensors when s is
sufficiently large; ii) the first several local decisions received
by the FC are most likely from Byzantine sensors when D/s
is sufficiently large. The above two reasons make the error
probability of the CEOT-based system with a sufficiently large
D/s approach the LB of the error probability we obtained in
Theorem IV.2.

Fig. 7: Benchmarking UBs and LBs for N̄s,CEOT /N as a
function of D/s with different values of α when s = 6 and
N = 300 in the CEOT-based system.

Fig. 8: Benchmarking UBs and LBs for N̄s,CEOT /N as a
function of D/s (a) when s = 3 and N = 300; (b) when
s = 6 and N = 300 in the CEOT-based system.

VI. CONCLUSION

In this paper, we investigated the effect of additive Byzan-
tine attacks on the performance of both the OT-based system
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and the CEOT-based system for a binary hypothesis testing
problem in distributed networks. We derived the error prob-
abilities for both systems under attack and the number of
transmissions saved. We also obtained the upper and the lower
bounds on the number of transmissions saved for both systems
under attack. The optimal attack strategy was investigated
based on the deflection coefficient for the OT-based system.
The simulation results showed that the Byzantine sensors
can both maximize the probability of error and significantly
increase the number of transmissions needed to make the
final decision when they adopt the optimal attack strategy. A
comparison of detection performance between the OT-based
system and the CEOT-based system showed that the CEOT-
based system is more robust, irrespective of the attacker’s
strategy. In the future, we intend to consider a more general
assumption that Byzantines do not have the true information
about the state of nature and they act based on their decisions.

APPENDIX A
PROOF OF LEMMA III.1

According to the fusion rule given in (2), we can infer that
when inequality

∑k
i=1 L[i] − (N − k)|L[k]| > λ holds, the

FC can decide H1 based on the first k received transmissions.
Similarly, when inequality

∑k
i=1 L[i] + (N − k)|L[k]| < λ

holds, the FC can decide H0 based on the first k received
transmissions. The minimum value of k that satisfies either of
the inequalities in (2), i.e., the minimum number of transmis-
sions required to make a decision, is denoted as

kmin =

{
k∗U when the FC decides H0

k∗L when the FC decides H1,
(29)

where k∗U = arg min
1≤k≤N

{∑k
i=1 L[i] + (N − k)|L[k]| < λ

}
and

k∗L = arg min
1≤k≤N

{∑k
i=1 L[i] − (N − k)|L[k]| > λ

}
7 denote the

minimum number of transmissions required to decide H0 and
H1, respectively. Under H0 (kmin = k∗U ), we have

ZU =

kmin∑
i=1

L[i] + (N − kmin)|L[kmin]| ≥
N∑
i=1

L[i] = Z, (30)

and under H1 (kmin = k∗L), we have

ZL =

kmin∑
i=1

L[i] − (N − kmin)|L[kmin]| ≤
N∑
i=1

L[i] = Z. (31)

This is because of the fact that |L[1]| > |L[2]| > · · · > |L[N ]|).
Note that kmin = k∗U is equivalent to ZU < λ, and kmin = k∗L
is equivalent to ZL > λ. Based on (30) and (31), we can easily

7Please note that if there is no k ∈ {1, 2, . . . , N} that satisfies the condition∑k
i=1 L[i] + (N − k)|L[k]| < λ (or if there is no k ∈ {1, 2, . . . , N} that

satisfies
∑k

i=1 L[i] − (N − k)|L[k]| > λ), we define k∗U = argmin ∅ = 0
(or k∗L = argmin ∅ = 0).

infer that Pr(Z < λ|ZU < λ) = 1 and Pr(Z > λ|ZL > λ) =
1, respectively. On the other hand, since

Z>λ⇔
k∑
i=1

L[i]+

N∑
i=k+1

L[i]>λ (32a)

=⇒
k∑
i=1

L[i]>λ−
N∑

i=k+1

L[i]≥λ−(N−k)|L[k]| (32b)

=⇒
k∑
i=1

L[i]>λ− (N − k)|L[k]| (32c)

holds ∀k, from the definition of k∗U , it becomes evident that
the FC is unable to make a decision H0 for any value of k.
So if Z > λ, we have Pr(kmin = k∗U ) = 0 and Pr(kmin =
k∗L) = 1, i.e., Pr(ZU < λ) = 0 and Pr(ZL > λ) = 1. It can
be concluded that Pr(ZL > λ|Z > λ,Hj) = 1. Following
a similar procedure, we can also obtain Pr(ZU < λ|Z <
λ,Hj) = 1.

Based on the above analysis, we can calculate Pr(ZL >
λ|Hj) according to Bayesian rule given as

Pr(ZL > λ|Hj) =
Pr(ZL>λ|Z>λ,Hj)Pr(Z>λ|Hj)

Pr(Z > λ|ZL > λ,Hj)
= Pr(Z > λ|Hj). (33)

Similarly, we obtain Pr(ZU < λ|Hj) = Pr(Z < λ|Hj).
Hence, the probability of error of the the OT-based system is
given as

P (OT )
e =π0Pr(ZL>λ|H0)+π1Pr(ZU < λ|H1)

=π0Pr(Z>λ|H0)+π1Pr(Z<λ|H1)=P (opt)
e , (34)

where P (opt)
e is the error probability of the unordered system.

APPENDIX B
PROOF OF THEOREM III.2

Let N̄t denote the average number of transmissions in the
network. N̄t is given as

N̄t = E(k∗) =

N∑
k=1

kPr(k∗ = k) =

N∑
k=1

Pr(k∗ ≥ k) (35a)

=

N∑
k=1

Pr(k∗ ≥ k|H0)π0 + Pr(k∗ ≥ k|H1)π1, (35b)

where Pr(k∗ ≥ k) is the probability that at least k trans-
missions in the network are needed to make the final de-
cision. Note that k∗ is the minimum number of observa-
tions/transmissions required to make a decision. k can be
considered as the number of observations that have already
been received by the FC. The global statistic at the FC is given
by
∑k
i=1 L[i], where

∑k
i=1 L[i] represents the accumulated

LLRs up to the kth transmission at the FC. Next Lemma
helps us to obtain the probability of the event that at least
k transmissions are required to make the final decision.

Lemma B.1. The FC can not decide H1 or H0 until the FC
has received at least k transmissions if

∑k−1
i=1 L[i] satisfies
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both
∑k−1
i=1 L[i] ≤ λ+ (N − k + 1)|L[k−1]| and

∑k−1
i=1 L[i] ≥

λ− (N − k + 1)|L[k−1]|.

Proof: When the FC received the first (k− 1) LLRs, i.e,
[L[1], L[2], . . . , L[k−1]], we discuss the cases that the FC can
not decide H1 and the FC can not decide H0.

Recall that |L[1]| ≥ |L[2]| · · · ≥ |L[N ]|, we have Z ≤∑k−1
i=1 L[i]+(N−k+1)|L[k−1]| = ηU . Obviously, the FC is not

able to decide H0 when ηU > λ. Moreover, (36) shows that if
the FC doesn’t decideH0 after receiving the first (k−1) LLRs,
it can’t decide H0 after receiving the first (k−2) observations.

ηU =

k−1∑
i=1

L[i] + (N − k + 1)|L[k−1]| (36a)

=

k−2∑
i=1

L[i] + (N − k + 2)|L[k−2]|+ (N − k + 1)

× (|L[k−1]| − |L[k−2]|) + (L[k−1] − |L[k−2]|). (36b)

As |L[k−1]| ≤ |L[k−2]| and L[k−1] ≤ |L[k−1]| ≤ |L[k−2]|, we
have |L[k−1]|−|L[k−2]| ≤ 0 and L[k−1]−|L[k−2]| ≤ 0 in (36b).
Hence, we can obtain that (36b)> λ implies

∑k−2
i=1 L[i]+(N−

k+ 2)|L[k−2]| > λ. Following the similar procedure as shown
in (36), we are able to conclude that if the FC can’t decide
H0 after receiving the first (k − 1) LLRs, it can’t decide H0

after receiving 0 or 1 or . . . , or (k − 2) observations.
we can obtain that ηL =

∑k−1
i=1 L[i]−(N−k+1)|L[k−1]| ≤

Z after the FC has received the first (k−1) LLRs. Obviously,
the FC can not decide H1 when ηL < λ. Following the similar
procedure as shown in (36), we can prove that if the FC can’t
decide H1 after receiving the first (k−1) largest LLRs, it can’t
decideH1 after receiving 0 or 1 or . . . , or (k−2) observations.
The proof for this is similar as above and is skipped.

To evaluate Pr(k∗ ≥ k|Hh), we have

Pr(k∗ ≥ k|Hh)

=

∫
lk−1∈J

fL[k−1]
(l[1], . . . , l[k−1]|Hh)dl1 . . . dlk−1, (37)

where fL[k−1]
(l[1], . . . , l[k−1]|Hh) is the joint pdf of

l[1], l[2], . . . , l[k−1] given Hh for h = 0, 1. According to [32],
the joint pdf of l[1], l[2], . . . , l[k−1] given Hh is given as

fL[k−1]
(l[1], . . . , l[k−1]|Hh)

=
N !

(N − k + 1)!

[
k−1∏
i=1

fL(li|Hh)

][
F|L|(lk−1|Hh)

]N−k+1
1{J}

(38)

where J = L
⋂
U
⋂
D is the intersection of hyperplanes L,

U and D, and F|Lk|(lk|Hh) is the cdf of |Lk| for h = 0, 1.
By substituting (38) in (37) and utilizing the law of total
expectation, (37) can be rewritten as

Pr(k∗ ≥ k|Hh)

=ELk−1

[
N !

(N − k + 1)!

[
F|L|(lk−1|Hh))

]N−k+1
1{J}

]
(39)

for h = 0, 1, where F|L|(lk−1|Hh)) is given in (7). Note that
the Byzantines affect the average number of transmissions by
affecting attack parameters (α,D) in F|L|(Lk−1|Hh).8

APPENDIX C
PROOF OF THEOREM III.3

Let N̄s denote the average number of transmissions saved
in the network given as

N̄s =

N∑
k=1

(N − k)Pr(k∗ = k) =

N−1∑
k=1

Pr(k∗ ≤ k) (40a)

=

N−1∑
k=1

Pr(k∗ ≤ k|H0)π0 + Pr(k∗ ≤ k|H1)π1. (40b)

Next, we use the following lemma from [32, Chapter 5] to
prove Theorem 2.

Lemma C.1. According to Cauchy-Schwarz inequality, we
have

|
∑

ci(L[i] − L̄)| ≤ [
∑

(ci − c̄)2(N − 1)v]
1
2 (41)

in terms of empirical mean L̄ and empirical variance v for any
constants {ci}Ni=1. If ci is non-increasing when i increases, the
bound is sharp.

From Lemma C.1, we have |
∑k
i=1 L[i] − kL̄| ≤ [

∑
(ci −

c̄)2(N − 1)v]
1
2 if we let c1 = c2 = · · · = ck = 1 and ck+1 =

· · · = cN = 0. Hence, the LB and the UB of
∑k
i=1 L[i] are

given by gL ≤
∑k
i=1 L[i] ≤ gU , where gL = −[

∑
(ci −

c̄)2(N − 1)v]
1
2 + kL̄ and gU = [

∑
(ci− c̄)2(N − 1)v]

1
2 + kL̄.

a) LB of N̄s: When the FC decides H1 in at most k
transmissions given hypothesis Hh, we have

Pr(k∗ ≤ k|Hh)=Pr(

k∑
i=1

L[k]>λ+(N−k)|L[k]||Hh). (42)

for h = 0, 1. It is easy to show that gL > λ + (N − k)|L[k]|
implies

∑k
i=1 L[i] > λ+ (N − k)|L[k]|. Hence, from (42), we

get

Pr(k∗ ≤ k|Hh) ≥ Pr(gL > λ+ (N − k)|L[k]||Hh) (43)

Similarly, when the FC decides H0 in at most k transmis-
sions given hypothesis Hh, we get

Pr(k∗ ≤ k|Hh) ≥ Pr(gU < λ− (N − k)|L[k]||Hh) (44)

The inequality in (44) is true due to the fact that gU < λ−(N−
k)|L[k]| implies

∑k
i=1 L[i] < λ − (N − k)|L[k]|. Substituting

Pr(k∗ ≤ k|H0) and Pr(k∗ ≤ k|H1) in (40) with their LBs
Pr(gL > λ + (N − k)|L[k]||Hh) and Pr(gU < λ − (N −
k)|L[k]||Hh), respectively, we get

N̄s≥
N−1∑
k=1

1∑
h=0

πh
[
Pr(gL>λ+nUT |L[k]||Hh)

+Pr(gU <λ−nUT |L[k]||Hh)
]

(45)

8D affects η1 and η0 in F|L|(Lk−1|Hh).
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where nUT = N − k. A Monte Carlo approach can be
utilized to evaluate Pr(gL > λ + (N − k)|L[k]||Hh) and
Pr(gU > λ−(N−k)|L[k]||Hh). We generate M2 realizations
of L[1], L[2], . . . , L[N ] so that the empirical mean L̄ and
the empirical variance v can be calculated. When M2 is
sufficiently large, L̄ approaches the population mean. The
population mean and the population variance under Hh are,
respectively, expressed as

δh=E[Li|Hh]=αηh+(1−α)µh, ζ2h=E[L2
i |Hh]−δ2h, (46)

where E[L2
i |Hh] = αE[L2

i |Hh, i = B]+(1−α)E[L2
i |Hh, i =

H] = β + αη2h + (1 − α)µ2
h for h = 0, 1. Substituting the

parameters (L̄, v) in (45) with parameters (δh,
N
N−1ζ

2
h) under

Hh for h = 0, 1 yields

N̄s≥
N−1∑
k=1

1∑
h=0

πh

[
Pr

(
|L[k]|<

gL−λ
(N−k)

|Hh
)

+Pr

(
|L[k]|<

λ−gU
(N − k)

|Hh
)]
, (47)

where Pr
(
|L[k]|<r|Hh

)
=
∫ r
0
f|L[k]|(l[k]|Hh)dl[k] for r ∈

{ gL−λ(N−k) ,
λ−gU
(N−k)}. It is given in closed form as [32]

fL[k]
(l[k]|Hh)=NfL(l[k]|Hh)

(
N − 1

k − 1

)
× FL(l[k]|Hh)(N−k)(1− FL(l[k]|Hh))(k−1). (48)

Hence, the pdf of f|L[k]|(l[k]|Hh) is given by

f|L[k]|(l[k]|Hh) =
dPr(|L[k]| ≤ l[k])

dl[k]

=

{
fL[k]

(l[k]|Hh)− fL[k]
(−l[k]|Hh) if l[k] ≥ 0

0 if l[k] < 0
(49)

Substituting (49) in (47), we are able to obtain the lower
bound of the number of transmissions saved.

b) UB of N̄s: It is easy to show that
∑k
i=1 L[k] > λ +

(N − k)|L[k]| implies gU > λ + (N − k)|L[k]|. Hence, from
(42), we get

Pr(gU > λ+ (N − k)|L[k]||Hh) ≥ Pr(k∗ ≤ k|Hh) (50)

Similarly, due to the fact that
∑k
i=1 L[i] < λ−(N−k)|L[k]|

implies gL < λ− (N − k)|L[k]|, we can also get

Pr(gL < λ− (N − k)|L[k]||Hh) ≥ Pr(k∗ ≤ k|Hh). (51)

Hence, we have

N̄s≤
N−1∑
k=1

1∑
h=0

Pr
(
gU >λ+nUT |L[k]| or gL<λ−nUT |L[k]||Hh

)
πh,

(52)

where nUT = N − k and

Pr(gU > λ+ nUT |L[k]| or gL < λ− nUT |L[k]||Hh)

=Pr(gU>λ+nUT |L[k]||Hh)+Pr(gL<λ−nUT |L[k]||Hh)

− Pr(gU >λ+nUT |L[k]| and gL<λ−nUT |L[k]||Hh)

=Pr

(
|L[k]| ≤

gU − λ
N − k |Hh

)
+ Pr

(
|L[k]| ≤

λ− gL
N − k |Hh

)
− Pr

(
|L[k]| ≤ min

(
gU − λ
N − k ,

λ− gL
N − k

)
|Hh

)
.

(53)

Following the similar procedure when we obtain the LB of
N̄s, we can get the UB of N̄s. Then, we can obtain the UB
and the LB in Theorem III.2.

APPENDIX D
PROOF OF THEOREM IV.2

According to Equation (20), N̄s,CEOT is given as

N̄s,CEOT =

N−1∑
k=1

Pr(k∗ ≤ k)

=

N−1∑
k=1

Pr(k∗ ≤ k|Γ < T )Pr(Γ < T )

+ Pr(k∗ ≤ k|Γ ≥ T )Pr(Γ ≥ T ). (54)

a) LB of N̄s,CEOT : Recall that k∗0 and k∗1 denote the
minimum number of transmissions needed to make a final
decision for descending and ascending ordered local decisions,
respectively. It is easy to show that k∗1 ≤ k implies k∗ ≤ k
given Γ ≥ T and k∗0 ≤ k implies k∗ ≤ k given Γ < T . Hence,
we have

Pr(k∗ ≤ k|Γ ≥ T ) ≥ Pr(k∗1 ≤ k|Γ ≥ T ), (55)
Pr(k∗ ≤ k|Γ < T ) ≥ Pr(k∗0 ≤ k|Γ < T ). (56)

Substituting Pr(k∗ ≤ k|Γ < T ) and Pr(k∗ ≤ k|Γ ≥ T ) in
(54) with their LBs Pr(k∗0 ≤ k|Γ < T ) and Pr(k∗1 ≤ k|Γ ≥
T ), respectively, we get

N̄s,CEOT ≥
1∑

h=0

N−1∑
k=1

P (k∗1≤k|Γ≥T,Hh)P (Γ≥T |Hh)πh

+

N−1∑
k=1

P (k∗0≤k|Γ<T,Hh)P (Γ<T |Hh)πh. (57)

Since z(i) and z[i] for ∀i ∈ {1, 2, . . . , N} are non-negative,
we have 0 ≤

∑k∗1
i=1 z(i) ≤ k∗1 and 0 ≤

∑k∗0
i=1 z[i] ≤ k∗0 . For

the fusion rule of equivalent worst case given Γ ≥ T , which
is given as

k∗1∑
i=1

z(i) ≥ T decides H1, (58)

where k∗1 ≥ T is needed to make a decision H1.
For the fusion rule of equivalent worst case given Γ < T

given as
k∗0∑
i=1

z[i] < T − (N − k∗0) decides H0, (59)

where k∗0 > N−T is needed to make a decision H0. Hence, it
is obvious that the FC can not make decision H0 given Γ < T
when k∗0 ≤ N−T and the FC can not make decision H1 given
Γ ≥ T when k < T . Hence, we have
T−1∑
k=1

P (k∗1 ≤ k|Γ ≥ T,Hh)=

N−T∑
k=1

P (k∗0 ≤ k|Γ<T,Hh)=0.

(60)
As shown in (22), the magnitude of local decisions are ordered
in an ascending order, i.e., |z(1)| ≤ |z(2)|, . . . ,≤ |z(N)|, when
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we consider the equivalent worst case given Γ ≥ T . It is
apparent that Γ ≥ T implies that the distributed system
without ordering would make a decision of H1. According
to Lemma IV.1, the detection performance of the CEOT-
based system is the same as that of the distributed system
without ordering. We can easily conclude that k∗ ≤ k∗1 is
always satisfied, which indicates that the minimum number
of transmissions required to make a decision for equivalent
worst case given Γ ≥ T is always greater than or equal to
the actual minimum number of transmissions required. Since
at most min(N − T, k − T ) 0s are required when Γ ≥ T for
the unordered distributed system, we have

P (k∗1 ≤ k|Γ ≥ T,Hh) =

min(N−T,k−T )∑
i=0

(
N

i

)
πi0,hπ

N−i
1,h , (61)

when k ≥ T .
Similarly, as shown in (21), the magnitude of local decisions

are ordered in a descending order, i.e., z[1] ≥ z[2], . . . ,≥ z[N ],
when we consider the equivalent worst case given Γ < T .
Here, Γ < T implies that the distributed system without
ordering would make a decision of H0. According to Lemma
IV.1, we can also easily conclude that k∗ ≤ k∗0 is always
satisfied, which means that the minimum number of transmis-
sions required to make a decision for equivalent worst case
given Γ < T is always greater than or equal to the true
minimum number of transmissions required. Since at most
min(T − 1, k − (N − T + 1)) 1s are required when Γ < T
for the unordered distributed system, we have

P (k∗0 ≤ k|Γ < T,Hh) =

min(T−1,k−(N−T+1))∑
i=0

(
N

i

)
πi1,hπ

N−i
0,h

(62)
if k > N − T .

b) UB of N̄s,CEOT : By substituting k∗1 in (58) with k∗0 ,
we can obtain the fusion rule of equivalent best case given
Γ ≥ T where k∗0 ≥ T is needed to make a decision H1.
Similarly, by substituting k∗0 in (59) with k∗1 , we can obtain
the fusion rule of equivalent best case given Γ < T where
k∗1 > N − T is needed to make a decision H0. It is easy to
show that k∗ ≤ k implies k∗1 ≤ k given Γ < T and k∗ ≤ k
implies k∗0 ≤ k given Γ ≥ T . Hence, we get

Pr(k∗1 ≤ k|Γ < T ) ≥ Pr(k∗ ≤ k|Γ < T ), (63)
Pr(k∗0 ≤ k|Γ ≥ T ) ≥ Pr(k∗ ≤ k|Γ ≥ T ). (64)

Substituting Pr(k∗ ≤ k|Γ < T ) and Pr(k∗ ≤ k|Γ ≥ T ) in
(54) with their UBs Pr(k∗1 ≤ k|Γ < T ) and Pr(k∗0 ≤ k|Γ ≥
T ), respectively, we get

N̄s,CEOT ≤
1∑

h=0

N−1∑
k=1

P (k∗1≤k|Γ<T,Hh)P (Γ<T |Hh)πh

+

N−1∑
k=1

P (k∗0 ≤ k|Γ≥T,Hh)P (Γ ≥ T |Hh)πh.

(65)

Following the similar procedure, we have
N−T∑
k=1

P (k∗1≤k|Γ<T,Hh)=

T−1∑
k=1

P (k∗0≤k|Γ ≥ T,Hh)=0.

(66)
According to Lemma IV.1, it is apparent that k∗1 ≤ k∗ is
always satisfied if Γ ≥ T , i.e., the minimum number of
transmissions required to make a decision for equivalent best
case given Γ ≥ T is always less than or equal to the actual
minimum number of transmissions required. Similarly, we can
also conclude that k∗0 ≤ k∗ is always satisfied if Γ < T .
Following a similar procedure to derive the LB, we obtain

P (k∗1 ≤ k|Γ < T,Hh) =

T−1∑
i=0

(
N

i

)
πi1,hπ

N−i
0,h , (67)

when k > N − T and

P (k∗0 ≤ k|Γ ≥ T,Hh) =

N−T∑
i=0

(
N

i

)
πi0,hπ

N−i
1,h , (68)

when k ≥ T . Then, we obtain the UB, which is given
by substituting (66), (67) and (68) in (65), and the LB,
which is given by substituting (60), (61) and (62) in (57),
in Theorem IV.2.
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