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Abstract— Strong impulse noise is widely known to adversely
affect conventional receivers designed only to consider back-
ground noise. Although sophisticated receivers offer substantial
performance improvements, fully exploiting the impulse statistics,
which are generally not time invariant and are difficult to model
accurately, can be unrealistic. Alternatively, without making
assumptions regarding the underlying impulse channel model,
the authors’ previously developed robust decoding schemes can
achieve performance equivalent to that of their optimal coun-
terparts in impulse noise channels. In this paper a robust turbo
decoding metric is proposed to address the inherent memory in
an impulse channel: a two-dimensional trellis is used to adapt for
channel state transitions when statistics on the memory impulse
channel model are lacking. The simulation results verified the
robustness of the proposed decoder in harsh environments.

Index Terms— Impulse noise, Markov Gaussian channel, turbo
decoder, two-dimensional trellis.

I. INTRODUCTION

A generic communication system is prone to substantial
performance degradation in environments characterized by
strong impulse noise, which is generally not time invariant and
is difficult to model accurately [1], [2], causing system design
to be considerably challenging. To overcome that barrier, nu-
merous studies have used channel codes by assuming that the
impulse noise can be modeled by the Class-A model [3]. In [4]
a convolutional code was used and its performance bound was
derived; the low density parity check code (LDPC) was em-
ployed in [5], whereas a turbo code was used and a simplified
turbo decoder was suggested in [6]. Recently, studies that forgo
any assumed (underlying) impulse noise model (to realistically
reflect the limitations imposed on modeling) have gained sub-
stantial attention. Given a properly set clipping threshold, [7]-
[10] revealed that the clipping-featured single carrier coded
systems were on par with their optimal counterparts which
assumed impulse noise statistics. Moreover, [11] developed a
denoising method using compressive sensing in multi-carrier
systems, and [12] went on to incorporate channel coding into
a factor graph based algorithm, yielding a performance level
near that of the optimal receiver.

Nevertheless, a memoryless impulse channel may not be
adequately justified, especially when communication systems
are limited by the data packet size. A first-order Markov
process, the Gilbert-Elliot model [13] effectively serves as
a memory impulse channel by simplistically describing the

The authors are with the Department of Electrical Engineering, National
Taiwan University of Science and Technology, Taipei, Taiwan. (e-mail:
dtseng @mail.ntust.edu.tw.) This work was supported in part by the Ministry

of Science and Technology (MOST) of Taiwan under grant no. MOST 103-
2221-E-011-034- and NSC 101-2221-E-011-069-MY3.

transition of two channel states. The vulnerability of decision
feedback decoders [14], [15] to excessive impulse noise mo-
tivated the authors of [16] to propose a turbo coding mech-
anism in a binary-input binary-output Gilbert-Elliot channel:
a supertrellis, comprising the encoder and channel states, was
incorporated into the Bahl-Cocke-Jelinek-Raviv (BCJR) algo-
rithm [17], and was analyzed by examining its convergence
behavior, expressed as the bit error rate (BER) versus the
number of iterations. A joint model-based channel parameter
estimation and turbo decoding scheme that involved exploiting
an underlying hidden Markov model was proposed in [18].
The Markov Gaussian channel was introduced in [19] to
accommodate the bursty nature of impulse noise, and an iter-
ative algorithm was tested in LDPC-coded system. In contrast
to [19] using the Markov Gaussian channel statistics, [20]
examined the BER performance of an alpha-penalty function
decoder (alpha-PFD) in a convolutionally coded transmis-
sion; further, an enhanced scheme (c.f., [21]) overcame the
persistent error floor typically encountered when using the
alpha-PFD. The supertrellis structure justified in [16], [21]
was adopted here to devise a robust and efficient turbo
decoding scheme in a Markov Gaussian channel. To achieve
the performance level reported in [16], the computationally
intensive model-based parameter estimation [18] was requisite
before the BCJR algorithm was invoked. Despite lacking chan-
nel impulse statistics, the proposed decoder induced a BER
performance level markedly close to that of its sub-optimal
counterpart requiring impulse channel statistics, evidencing the
robustness and efficiency of the proposed decoder.

II. SYSTEM FRAMEWORK

For illustrative purposes, a punctured rate—% parallel con-
catenated turbo encoder composed of two recursive systematic
convolutional (RSC) codes is considered. Extension to any
other rate is straightforward. Denote the codeword transmitted
by v as (vg,v1,...,v2p—1), Where M is the turbo interleaver
size. Assuming that the binary phase shift keying (BPSK)
modulation format is used (the symbol energy is assumed Ej),
the modulated symbol is expressed as &; = (—1)%/E, (0 <
j < 2M — 1); consequently, the transmitted symbol corre-
sponding to the [-th information bit (i.e., m; (0 <1 < M —1))
is &9;. To disperse burst errors, the transmitted symbol se-
quence {&;}2" ! is passed through a channel interleaver.The
received symbol sequence (after passing through a channel
deinterleaver) is expressed as y = (—1)"+/E, + n, where
each noise sample n; (0 < j < 2M — 1) is defined by the
channel state s;, which can be either good (s; = G) or bad
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(s; = B). As widely assumed in relevant literature, the power
of noise in the bad channel state is several times greater than
that of additive white Gaussian noise (AWGN), which governs
the good channel state. The single-sided power spectral density
of the AWGN is assumed to be Ny. The probability density
functions (PDFs), when conditioned on good and bad channel
states, are respectively expressed as follows:

Pr(yJ"Ujasj:G) yj7 \/ saZVO/2 (1)
Pr(yj|vj7sj:B) y]7 UJ V SvR]\/YO/2 (2)

where N (x; p,0?) = 6_2072/\/ 2702 is the Gaussian PDF
of a random variable x with mean y and variance o?; R, an
index of the strength of impulse noise power, indicates the
average noise power ratio between the bad and good channel
states. In consideration of the memory property inherent to
impulse noises, the noise state sequence is modeled based
on a first-order two-state Markov process [19], where the
transformation of noise sample n; in a noise PDF is driven
by four transition probabilities, namely Pga, Peg, Pop, and
Ppp, where P, ., = Pr(sjyis;) (sj,5;41 € {G,B})
denotes the probability that a transition from channel state
5; to state sj1 occurs. Moreover, channel state probabilities,
i.e., P and Pp, are incorporated to complete the modeling of
the Markov process. By accommodating the interleaver depth
1, the transition probability matrix for the two-state stationary
and irreducible Markov chain, is approximated as (c.f., [20])

Peg Pep |_| Pa Pp 4 Pgp  —Pp 3)
Pgg Pgp Pz Psp -Pc Pg |’
where 77] ~1-—-1 IE—G and Pg/Ppg reflects the channel

memory. This work considers a persistent memory (! > 0).

III. ROBUST TURBO DECODING METRIC

To accommodate the inherent impulse channel memory, the
soft-in soft-out (SISO) decoder incorporates a supertrellis [16]
into the BCJR algorithm.! First, integrate the impulse channel
state with the encoder state to yield a superstate; for the infor-
mation bit time instant [, denote Sl 1 and Sl as the starting and
ending states, respectively. In the illustrative example plotted
in Fig. 1, superstate S;_1 2 (x;_1,52-1),] € {0,..., M} is
composed of the encoder state ;1 € {0,1,...,2™ — 1} and
channel state sy;—1 € {G, B}. The SISO decoder measures
the log-likelihood ratio of m; as follows:

L(my) = log 2ot AGi-1)PE)Y 511, &) @)
>on- (Si-1)B(S)Y(Si-1, 1)

where x* denotes the set of all allowable (two-dimensional)
state transitions from the starting state Si_1 to ending state
5‘[ that correspond to m; = 1; similarly, x~ is the set of
the remaining state transitions (associated with m; = 0). The
forward and backward recursions, denoted by «a(-) and f(-),
respectively, are yielded according to the following:

oS) = Vs, dS-)v(S-S) )
B(Si—1) = Yg BE)VSI—1.8) - (6)

IThe trellis of the mother code of the punctured code is implemented
in the decoder, which also uses the punctured information in the decoding
process. To simplify notation, the proposed decoding algorithm is applied to
the equivalent trellis of the punctured code.

The appendix first details the derivation of ~(S;_1,S))
(c.f., (8)) when the impulse channel model is used in the sub-
optimal decoder. By contrast, unknown to any impulse channel
model, the proposed decoder is subjected to estimate (2) to
yield a robust metric (9). To do so, the proposed decoder
opts to neutralize the excessive Euclidean bit metric (i.e.,
—(y; — (=1)%/E,)?) whenever y; is deemed to be cor-
rupted by an impulse; as exemplified in Fig. 1, the Euclidean
bit metrics associated with those dash-dot lines terminated
at blank circles are untrustworthy. Noteworthily, the prod-
uct Py, , s,=p Pr(y;|vj, s; = B)-a byproduct for calculating
those metrics—is small for a small ij 1s;=B as well as

large R, and can thus be approximated by ignoring the term
Pr(y;|vj,s; = B), facilitating erasure marking, as detailed
in [7], to overcome the negative effect from the strong impulse.
Furthermore, the derived Chernoff bound in [7] reveals that
the BER performance level is crucially improved by including
an offset provider (an estimate of Pr(y;|v;,s; = B)), which
happens to be vastly smaller than one (used by erasure
marking). From this perspective, [21] estimates the noise PDF
in a bad channel state in the memory channel model using

1/V/7R@N, . 7)

Given a signal-to-noise ratio (SNR £ F, /No, where E}, is the
information bit energy) region of interest, the offset remains
markedly smaller than one when the decoder voluntarily sets
the estimate R(?) to be large to reflect a context where strong
impulses likely occur; simulation results attest the robustness
of the decoder against a wide range of large R(*) values.

Pr(yjlv;,s; = B) =

Superstate 5‘, =(x,,5,,,)

Superstate S/ L= .8)

I-th information time instant

Fig. 1. Example of an expanded trellis diagram for a rate % RSC code.

Other than invoking the estimation for the noise PDF (2)
to yield (9), obtaining the estimates of impulse channel pa-
rameters P(d)(P(d)), and Ps(d2]+1 (sj,sj+1 € {G,B}) (the
superscript “(d)” represents the proposed decoder) seems to
be indispensable. Notably, the transition matrix (3) can be
properly approximated when only estimates P](B,d) and Pg?;,
and an interleaver depth [ are available. As performed in [21],
conducting a person-by-person optimization search [22] —
testing the proposed decoder in various Ppg values — leads to
a selective estimate ng, given a SNR and a depth I; further,
Section IV reveals that the BER level remains nearly identical
when a variety of plausible estimates Pl(zd) are tested.

To activate (5) ((6)), the superstates S_, = (z_,,s_,) and
Sy, = (Tr—1, S2r—1) must be identified, and a(g,l) e
a((m—lvs—l)) and ﬁ(SM—l) £ B((xlw—IMSQJVI—l)) must be
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set beforehand. Because state zero of the first trellis level
is the initial encoder state (x_, = 0), set «(0,s_,) = 1
and a(x,s_,) = 0 for all z € {1,...,2™ — 1}. Moreover,
the transition probability is initialized at P{?,, = P.
When these parameters have been initialized and the a priori
probability of m; is available, «((S,)) can be yielded after (9)
and (5) have been solved. In regard to initializing 3 (3 A1) @
subtle difference between the two SISO decoders (attributable
to whether the information bit stream is passed through the
turbo interleaver) is identified as follows. Set 5((0, sy_1)) =
1 and B((x,$y_1)) = 0 for all z € {1,...,2m — 1} if
Z,_, = 0 holds; otherwise, ﬂ(S’M_l) is set as 1/2™ if the
final encoder state does not return to zero. Furthermore, the
time symmetry property of this underlying Markov process en-
ables P§§M_152M_2 = PSsz_Q, successively yielding 3(S,,_,)
after (9) and (6) have been invoked.

IV. SIMULATION RESULTS

This section presents simulation results regarding the BER
versus SNR for the turbo-coded system in a Markov Gaussian
channel and the ratio between E, and the code rate. The
transmission framework comprised a punctured rate % parallel
concatenated encoder composed of two identical RSC codes,
of which the generator matrix is [23 35]; a random interleaver
with size M = 16384; the BPSK modulation format; and
a channel interleaver with I = 20. The transition probability
Pp¢ for the Markov Gaussian channel was 0.025, while its es-
timate ng was yielded at 0.035 (refer to Section III). Despite
the lack of complete statistical information on the memory
impulse channel, the proposed decoder was compared with
the sub-optimal decoder (developed in [16]), which however
assumed the impulse channel, in terms of the BER, and all of
the regarding curves were derived after eight iterations.

The effect of the impulse occurrence probability Pp on
the BER performance of both the sub-optimal and proposed
decoders was investigated and the results are shown in Fig. 2.
The power ratio of the noise between the bad and good
channel states R was set as 100 in all contexts (regarding
a wide range of Pp values: 0.01, 0.02, 0.05, 0.1), and the
proposed decoder assumed R = 200, and Péd) = Pgp
but ng # Ppg. The greater the probability Pp was, the
less favorable the BER performance was. The sub-optimal
decoder exhibited a performance gap of 1.3 dB SNR when
the performance level at Pp = 0.1 (see the dash-dot line
marked with “o”) was compared with that at Pp = 0.01
(see the dash-dot line marked “(J) when the BER was 1075,
and the proposed decoder exhibited a slightly wider gap. The
performance of the proposed decoder was similar to that of
its sub-optimal counterpart requiring the impulse statistics.
A mere 0.6-dB SNR loss at Pg = 0.1 was observed (see
solid and dash-dot lines marked “o”), and SNR loss was
almost indistinguishable at Pp = 0.01 (see solid and dash-dot
lines marked “[J”), evidencing the robustness of the proposed
decoder. A fixed estimate of R was applied in the previous
experiment — R = 200 was set in Fig. 2; however, in the
subsequent experiment the degree to which the magnitude of
R affects the BER performance was examined. Fig. 3 shows
that the BER performance level of the proposed decoder in the

Markov Gaussian channel (P = 0.05, R = 100) did not vary
according to the value of R(%), although a slight performance
loss was observed when an excessively low estimate (R(Y) =
50) was used. Thus, R was set as 200 in the following tests.

Compared with the conventional SISO decoder for which
a decoding metric was revised according to an alpha-PFD,
the proposed decoder showed a substantial SNR gap (Fig. 4,
which used oo = 0.5 (suggested otherwise for convolutionally
coded systems in [20])), verifying that the proposed decoding
metric is effective because it accommodates unknown transi-
tion probabilities, which were also neglected in [20], causing
the BER to be persistently high even at moderate SNR values;
the BER did not decrease to 10~° until the SNR increased to
greater than 8 and 10 dB at Pp = 0.02 and 0.05, respectively
(see dashed lines marked “[J” and “o” in Fig. 4).

To validate the robustness of the proposed decoder, all
of the channel parameters in the Markov Gaussian channel,
P = 0.1(0.05), Pgg = 0.025, and R = 100 were assumed
to be unavailable. The proposed decoder used R(* = 200 and
ng = 0.035 and tested various Pl(gd) values. Regardless of the
assumed P](gd) (Péd) = 0.02,0.05,0.1), the BER performance
level was nearly identical at Pp = 0.05, as shown in Fig. 5.
By referring the context in which Pp = 0.1 to those solid
lines in Fig. 5, a similar observation can be made. These
results reinforced the assertion that the proposed decoder is
robust against the estimate Péd) (together with R(¥) and Pédc);,

(Fig. 3)).

——— Proposed
— - — - Sub-optimal

0.5 1 1.5 2 25 3 3.5

Fig. 2. BER performance for the proposed and sub-optimal turbo decoders
in Markov Gaussian channel (P = 0.01,0.02,0.05,0.1; R = 100).

-0 - Proposed decoder, R%=50

—&— Proposed decoder, R¥=100
=3 = Proj coder, R“=200
= =+ = Proposed decoder, R®=400

BER

0.5 1 1.5 25 3 35

2
E,/N, (dB)

Fig. 3. BER performance for the proposed turbo decoder with various guesses
of R in Markov Gaussian channel (Pg = 0.05; R = 100).
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Fig. 4. BER performance comparison for the proposed decoder and alpha-
PFD in Markov Gaussian channel (Pp = 0.02,0.05; R = 100).
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Fig. 5. BER Performance for the proposed decoder assuming R = 200
and various PBd) in Markov Gaussian channel (P = 0.05,0.1; R = 100).

V. CONCLUSION

This paper describes a robust turbo decoding scheme imple-
mented in a Markov Gaussian channel. The branch metric was
derived from a two-dimensional trellis, which accommodated
the impulse channel state; the bad channel state is charac-
terized by an excessively large power relative to that of the
noise in the good channel state. Moreover, the channel state
transition was incorporated into the decoding algorithm despite
that the statistics on the underlying memory impulse channel
were not assumed. Compared with conventional schemes, the
proposed decoder yielded a substantial performance enhance-
ment and a performance similar to that of its sub-optimal
counterpart requiring statistical impulse knowledge in harsh
scenarios, evidencing the robustness of the proposed decoder.

APPENDIX
Given impulse channel statistics, the sub-optimal decoder
yields v(S,_1,8,) (c.f., Fig. 1) by measuring
Pr(gny2ny2l+1|‘§l—1) = Pr(m, = d(w’w,))
'25216{6;13} Pr(52l7 S2l+1 |821—1) Pl"(yu, y2l+1 |Sl_1, SI)
:Pr(m, = d(m’m,)) . Z ;l;;Lng,lskPr(yka 51«)7(8)

where Pr(m, = d(f’zl)) is the a priori probability, m, =
d@") is the information bit, represented by the modulated
symbol &,, that governs the transition from the encoder state
x (regarding the superstate S,_.,) to state 2’ (with respect to

S21€{G,B}

S), and 5.4, 1s the accompanied redundancy. By contrast, the
proposed decoder, which lacks statistical information on the
impulse channel, calculates v(S,_,,S,) using

o P Pr(yklé, Sk:)} ;

®
where the estimate (7) is used to replace the PDF (c.f., (2),
which is used in (8)) when the state si(k € {2{,2]1 4 1})
is assumed to be B; besides, the estimates of transition
probability (i.e., Ps(fllsk) substitute the unknown P;

Pr(m, = d(x"’cl))-maXSmE{G)B}{

k—15k"
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