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Decoding Procedure
• The BCH/RS codes decoding has four steps:

1. Syndrome computation
2. Solving the key equation for the error-locator

polynomial Λ(x)
3. Searching error locations given the Λ(x) polynomial

by simply finding the inverse roots
4. (Only nonbinary codes need this step) Determine the

error magnitude at each error location by
error-evaluator polynomial Ω(x)

• The decoding procedure can be performed in time or
frequency domains.

• This lecture only considers the decoding procedure in
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time domain. The frequency domain decoding can be
found in [1, 2].
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Syndrome Computation
• Let α, α2, . . . , α2t be the 2t consecutive roots of the

generator polynomial for the BCH/RS code, where α is
an element in finite field GF (qm) with order n.

• Let y(x) be the received vector. Then define the
syndrome Sj , 1 ≤ j ≤ 2t, as follows:

Sj = y(αj) = c(αj) + e(αj) = e(αj)

=
n−1∑
i=0

ei(α
j)i

=
v∑

k=1

eikα
ikj ,

(1)
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where n is the code length and it is assumed that v errors
occurred in locations corresponding to time indexes
i1, i2, . . . , iv.

• When n is large one can calculate syndromes by the
minimum polynomial for αj .

• Let ϕj(x) be the minimum polynomial for αj . That is,
ϕj(α

j) = 0. Let y(x) = q(x)ϕj(x) + rj(x), where rj(x) is
the remainder and the degree of rj(x) is less than the
degree of ϕj(x), which is at most m.

• Sj = y(αj) = q(αj)ϕj(α
j) + rj(α

j) = rj(α
j).

• For ease of notation we reformulate the syndromes as

Sj =

v∑
k=1

YkX
j
k, for 1 ≤ j ≤ 2t,
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where Yk = eik and Xk = αik .

• The system of equations for syndromes is

S1 = Y1X1 + Y2X2 + · · ·+ YvXv

S2 = Y1X
2
1 + Y2X

2
2 + · · ·+ YvX

2
v

S3 = Y1X
3
1 + Y2X

3
2 + · · ·+ YvX

3
v

...
S2t = Y1X

2t
1 + Y2X

2t
2 + · · ·+ YvX

2t
v .
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Key Equation

• Recall that the error-locator polynomial is

Λ(x) = (1− xX1)(1− xX2) · · · (1− xXv) = Λ0 +

v∑
i=1

Λix
i,

where Λ0 = 1.

• Define the infinite degree syndrome polynomial (though
we only know the first 2t coefficients) as

S(x) =

∞∑
j=0

Sj+1x
j

=
∞∑
j=0

xj

(
v∑

k=1

YkX
j+1
k

)
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=
v∑

k=1

YkXk

1− xXk
.

• Define the error-evaluator polynomial as

Ω(x)
△
= Λ(x)S(x)

=
v∑

k=1

YkXk

v∏
j=1
j ̸=k

(1− xXj).

• The degree of the error-evaluator polynomial is less than
v.

• Actually we only know the first 2t terms of S(x) such
that we have
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Λ(x)S(x) ≡ Ω(x) mod x2t. (2)

• Since the degree of Ω(x) is at most v − 1 the terms of
Λ(x)S(x) from xv through x2t−1 are all zeros.

• Then
v∑

k=0

ΛkSj−k = 0, for v + 1 ≤ j ≤ 2t. (3)

• The above system of equations is the same as the key
equation given previously if we only consider those
equations up to j = 2v (remember that v ≤ t).

• Thus, (2) is also known as key equation.

• Solving key equation to determine the coefficients of the
School of Electrical Engineering & Intelligentization, Dongguan University of Technology



Y. S. Han Decoding BCH/RS Codes 9

error-locator polynomial is a hard problem and it will be
mentioned later.

• The key equation becomes

Λ(x)(1 + S(x)) ≡ Ω(x) mod x2t+1 (4)

if we define the infinite degree syndrome equation as

S(x) =

∞∑
j=1

Sjx
j . (5)
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Chien Search

• The next important decoding step is to find the actual
error locations X1 = αi1 , X2 = αi2 , . . . , Xv = αiv .

• Note that Λ(x) has roots
X−1

1 = α−i1 , X−1
2 = α−i2 , . . . , X−1

v = α−iv .

• Observe that an error occurs in position i if and only if
Λ(α−i) = 0 or

v∑
k=0

Λkα
−ik = 0.

• Then

Λ(α−(i−1)) =
v∑

k=0

Λkα
−ik+k =

v∑
k=0

(
Λkα

−ik
)
αk.
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• This suggests that the potential error locations are tested
in succession starting with time index n− 1.

1. Summing all terms of Λ(α−i) at index i tests to see
whether Λ(α−i) = 0

2. Then to test at index i− 1 only requires multiplying the
kth term of Λ(α−i) by αk for all k and summing all terms
again

3. This procedure is repeated until index 0 is reached

4. The initial value for kth term is Λkα
−nk = Λk
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Forney’s Formula

• For nonbinary BCH or RS codes one still needs to
determine the error magnitude for each error location.

• These values, Y1, Y2, . . . , Yv, can be obtained by utilizing
the error-evaluator polynomial. This step is known as
Forney’s formula.

• By substituting X−1
k = α−ik into the error-evaluator

polynomial we have

Ω(X−1
k ) = YkXk

v∏
j=1
j ̸=k

(1−X−1
k Xj).

• By taking the formal derivative of Λ(x) and also
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evaluating it at x = X−1
k we have

Λ′(X−1
k ) = −Xk

v∏
j=1
j ̸=k

(1−X−1
k Xj)

=
−1

Yk
Ω(X−1

k ).

• Thus the error magnitude Yk is given by

Yk = −
Ω(X−1

k )

Λ′(X−1
k )

= − Ω(α−ik)

Λ′(α−ik)
. (6)

• Clearly, the above formula can be determined by a search
procedure similar to Chien Search.

• Usually, Ω(x) can be obtained by solving the key
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equation.
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The Euclidean Algorithm [1]

• Euclidean algorithm is a recursive technology to find the
greatest common divisor (GCD) of two numbers or two
polynomials.

• The Euclidean algorithm is as follows. Let a(x) and b(x)

represent the two polynomials, which
deg [a(x)] ≥ deg [b(x)]. Divide a(x) by b(x). If the
remainder, r(x), is zero, then GCD d(x) = b(x). If the
remainder is not zero, then replace a(x) with b(x),
replace b(x) with r(x), and repeat.

• Considering a simple example, where a(x) = x5 + 1 and
b(x) = x3 + 1. Then
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x5 + 1 = x2(x3 + 1) + (x2 + 1)

x3 + 1 = x(x2 + 1) + (x+ 1)

x2 + 1 = (x+ 1)(x+ 1) + 0

• Since d(x) divides x5 + 1 and x3 + 1 it must also divide
x2 + 1. Since it divides x3 + 1 and x2 + 1 it must also
divide x+ 1. Consequently, x+ 1 = d(x).

• The useful aspect of this process is that, at each
iteration, a set of polynomials fi(x), gi(x), and ri(x) are
generated such that

fi(x)a(x) + gi(x)b(x) = ri(x). (7)

• A way to obtain fi(x) and gi(x) is as follows.
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• Define qi(x) to be the quotient polynomial that is
produced by dividing ri−2(x) by ri−1(x). Then, for i ≥ 1,

ri(x) = ri−2(x)− qi(x)ri−1(x)

fi(x) = fi−2(x)− qi(x)fi−1(x)

gi(x) = gi−2(x)− qi(x)gi−1(x),

where the initial values are

f−1(x) = g0(x) = 1

f0(x) = g−1(x) = 0

r−1(x) = a(x)

r0(x) = b(x).

(8)

• There are two useful properties of the algorithm:
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1. deg [ri(x)] < deg [ri−1(x)];
2. deg [gi(x)] + deg [ri−1(x)] = deg [a(x)].
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The Sugiyama Algorithm for Solving Key Equation [1]
• The Sugiyama algorithm utilizes Euclidean algorithm to

solve the key equation. Hence, the Sugiyama algorithm is
also called Euclidean algorithm.

• (7) can be written as

gi(x)b(x) ≡ ri(x) mod a(x).

• Comparing (2) with the above equation, they are
equivalent when

a(x) = x2t, b(x) = S(x)

gi(x) = Λi(x), ri(x) = Ωi(x).

• The Euclidean algorithm produces a sequence of
solutions to the key equation.
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• When v ≤ t one needs to know which solutions produced
is the desired solution. It can be determined as follows.

• By the property of Euclidean algorithm, we have

deg [gi(x)] + deg [ri−1(x)] = 2t

and
deg [gi(x)] + deg [ri(x)] < 2t.

• If v ≤ t, then
deg [Ω(x)] < deg [Λ(x)] ≤ t (deg [rℓ(x)] < deg [gℓ(x)] ≤ t).

• There exists only one polynomial Λ(x) with degree no
greater than t which satisfies the key equation.

• If deg [rℓ−1(x)] ≥ t, then deg [gℓ(x)] ≤ t. Since
deg [rℓ(x)] < t, deg [gℓ+1(x)] > t.
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• The results at the ℓth step provide the only solution to
the key equation that is of interest.
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Summary of the Sugiyama Decoding algorithm

1. Apply Euclidean algorithm to a(x) = x2t and b(x) =

S(x).

2. Use the initial conditions of (8).

3. Stop when deg [rℓ(x)] < t.

4. Set Λ(x) = gℓ(x) and Ω(x) = rℓ(x).

• Note that the algorithm will give an error-locator
polynomial no matter whether v ≤ t or not. Thus, a
circuit to check for valid error-locator polynomial must
be performed during Chien search.

• One can check whether the number of roots found by
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Chien search is the same as the degree of the
error-locator polynomial or not. If they are agreed, the
valid error-locator polynomial is assumed. Otherwise,
too-many-error alert is reported.
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Example

Consider the triple-error-correcting BCH code where
generator polynomial has α, α2, . . . , α6 as roots and α is a
primitive element of GF (24) with α4 = α+ 1. Let the
received vector y(x) = x7 + x2. We now want to find the
error locations of the received vector.

First we need to calculate the syndrome coefficients. By (1),
we have

S(x) = x4 + α3x3 + α9x+ α12.

Next we perform Sugiyama algorithm as follows:
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i Λi(x)(gi(x)) Ωi(x)(ri(x)) qi(x)

−1 0 x6 −

0 1 S(x) −

1 x2 + α3x+ α6 α11x+ α3 x2 + α3x+ α6

Thus, Λ(x) = x2 + α3x+ α6. By performing Chien search we
can find the roots of Λ(x) are α−7 and α−2 and consequently,
e(x) = x7 + x2.
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The Berlekamp-Massey Algorithm for Solving Key
Equation [3]

• For simplicity, we only consider binary BCH codes.

• The Berlekamp-Massey (BM) algorithm builds the
error-locator polynomial by requiring that its coefficients
satisfy a set of equations called the Newton’s identities
rather than (3). The Newton’s identities are:

S1 + Λ1 = 0,

S2 + Λ1S1 + 2Λ2 = 0,

S3 + Λ1S2 + Λ2S1 + 3Λ3 = 0,

...
Sv + Λ1Sv−1 + · · ·+ Λv−1S1 + vΛv = 0,
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and for j > v:

Sj + Λ1Sj−1 + · · ·+ Λv−1Sj−v+1 + ΛvSj−v = 0.

• It turns out that we only need to look at the first, third,
fifth,...of these equations. For notation ease, we number
these Newton identities as (noting that iΛi = Λi when i

is odd):
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1) S1 + Λ1 = 0,

2) S3 + Λ1S2 + Λ2S1 + Λ3 = 0,

3) S5 + Λ1S4 + Λ2S3 + Λ3S2 + Λ4S1 + Λ5 = 0,

...
µ) S2µ−1 + Λ1S2u−2 + Λ2S2µ−3 + · · ·+ Λ2µ−2S1 + Λ2µ−1 = 0,

...

(9)

• Define a sequence of polynomials Λ(µ)(x) of degree dµ

indexed by µ as follows:

Λ(µ)(x) = 1 + Λ
(µ)
1 x+ Λ

(µ)
2 x2 + · · ·+ Λ

(µ)
dµ

xdµ.
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• The polynomial Λ(µ)(x) is calculated to be the minimum
degree polynomial whose coefficients satisfy all of the first
µ numbered equations of (9).

• For each polynomial, its discrepancy ∆µ, which measures
how far Λ(µ)(x) is from satisfying the µ+ 1st identity, is
defined as

∆µ = S2µ+1 + Λ1S2u + Λ2S2µ−1 + · · ·+ ΛdµS2µ+1−dµ .(10)

• One starts with two initial polynomials, Λ(−1/2)(x) = 1

and Λ(0)(x) = 1, and then generate Λ(µ) iteratively in a
manner that depends on the discrepancy.

• The discrepancy ∆−1/2 = 1 by convention and the
remaining discrepancies are calculated.
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• The Berlekamp-Massey algorithm is as follows:

1. Λ(−1/2)(x) = 1, Λ(0)(x) = 1, and ∆−1/2 = 1.
2. Start from µ = 1 and repeat the next two steps until

µ = t.
3. Calculate ∆µ according to (10). If ∆µ = 0, then

Λ(µ+1)(x) = Λ(µ)(x).

4. If ∆µ ̸= 0, find a value −(1/2) ≤ ρ < µ such that
∆ρ ̸= 0 and 2ρ− dρ is as large as possible. Then

Λ(µ+1)(x) = Λ(µ)(x) + ∆µ∆
−1
ρ x2(µ−ρ)Λ(ρ)(x).
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• The error-locator polynomial is Λ(x) = Λ(t)(x).

• If this polynomial had degree greater than t, more than t

errors have been made, and uncorrectable alert should be
declared.
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Example

Consider the same BCH code and received vector as in the
previous example. Then

S(x) = x4 + α3x3 + α9x+ α12.

Next we perform Berlekamp-Massey algorithm as follows:
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µ Λ(µ)(x) ∆µ dµ 2µ− dµ

-1/2 1 1 0 -1
0 1 α12 0 0
1 1 + α12x α6 1 1 (take ρ = −1/2)
2 1 + α12x+ α9x2 0 2 2 (take ρ = 0)
3 1 + α12x+ α9x2 - - -

1 + α12x+ α9x2 has the same roots as α6 + α3x+ x2 which
was found by the Sugiyama algorithm.
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LFSR Interpretation of Berlekamp-Massey Algorithm[4]

• Key equations:

Sj = −
v∑

i=1

ΛiSj−i, j = v + 1, v + 2, . . . , 2t.

• The formula describes the output of a linear feedback
shift register (LFSR) with coefficients Λ1, Λ2, . . . , Λv.

• The problem to find the error locator polynomial is then
equivalent to find the smallest number of coefficients of
an LFSR such that it can produce S1, S2, . . . , S2t, i.e.,
to find a shortest such LFSR.

• In the Berlekamp-Massey algorithm, one builds the
LFSR that produces the entire sequence of syndromes by
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successively modifying an existing LFSR. This procedure
starts with an LFSR that could produce S1 and end at
an LFSR that produces the entire sequence of syndromes.

• Let Lk denote the length of the LFSR produced at stage
k of the algorithm.

• Let
Λ[k](x) = 1 + Λ

[k]
1 x+ · · ·+ Λ

[k]
Lk
xLk

be the connection polynomial at stage k, indicating the
connections for the LFSR capable of producing the
output sequence {S1, S2, . . . , Sk}. That is

Sj = −
Lk∑
i=1

Λ
[k]
i Sj−i, j = Lk + 1, Lk + 2, . . . , k.
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• Assume that we have a connection polynomial Λ[k−1](x)

of length Lk−1 that produces {S1, S2, . . . , Sk−1} for
some k − 1 < 2t.

• Then Ŝk = −
Lk−1∑
i=1

Λ
[k−1]
i Sk−i.

• If Ŝk is equal to Sk, then there is no need to update the
LFSR, so Λ[k](x) = Λ[k−1](x) and Lk = Lk−1.

• Otherwise, there is some nonzero discrepancy associated
with Λ[k−1](x),

dk = Sk − Ŝk = Sk +

Lk−1∑
i=1

Λ
[k−1]
i Sk−i =

Lk−1∑
i=0

Λ
[k−1]
i Sk−i.

In this case, we update the connection polynomial using
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the formula

Λ[k](x) = Λ[k−1](x) +AxℓΛ[m−1](x), (11)

where A is some element in the finite field, ℓ is an integer,
and Λ[m−1](x) is one of the prior connection polynomials
produced by our processes associated with nonzero
discrepancy dm.

• The new discrepancy is then

d′k =

Lk∑
i=0

Λ
[k]
i Sk−i =

Lk−1∑
i=0

Λ
[k−1]
i Sk−i+A

Lm−1∑
i=0

Λ
[m−1]
i Sk−i−ℓ.

• We can find an A and an ℓ to make the new discrepancy
zero as follows. Let
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ℓ = k −m.

Then the second summation gives

A

Lm−1∑
i=0

Λ
[m−1]
i Sm−i = Adm.

If we choose

A = −d−1
m dk,

then
d′k = dk − d−1

m dkdm = 0.

• We still need to prove that such selection indeed makes a
shortest LSFR.
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Characterization of LFSR Length

• Suppose that an LFSR with connection polynomial
Λ[k−1](x) of length Lk−1 produces the sequence
{S1, S2, . . . , Sk−1}, but not {S1, S2, . . . , Sk}. Then
any connection polynomial that produces the latter
sequence must have a length Lk satisfying Lk ≥ k−Lk−1.

• This can be proved as follows. We assume that
Lk−1 < k − 1; otherwise, it is trivial. We then prove it by
contradiction with assuming that Lk ≤ k − 1− Lk−1. We
can observe that

−
Lk−1∑
i=1

Λ
[k−1]
i Sj−i

 = Sj j = Lk−1 + 1, Lk−1 + 2, . . . , k − 1

̸= Sk j = k
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and

−
Lk∑
i=1

Λ
[k]
i Sj−i = Sj j = Lk + 1, Lk + 2, . . . , k.

In particular, we have

Sk = −
Lk∑
i=1

Λ
[k]
i Sk−i.

Since k − Lk ≥ Lk−1 + 1, all values of Sj involved in the
above summation can be substituted by
−
∑Lk−1

i=1 Λ
[k−1]
i Sj−i. Hence,

Sk = −
Lk∑
i=1

Λ
[k]
i Sk−i =

Lk∑
i=1

Λ
[k]
i

Lk−1∑
j=1

Λ
[k−1]
j Sk−i−j .

School of Electrical Engineering & Intelligentization, Dongguan University of Technology



Y. S. Han Decoding BCH/RS Codes 41

Interchanging the order of summation we have

Sk =

Lk−1∑
j=1

Λ
[k−1]
j

Lk∑
i=1

Λ
[k]
i Sk−i−j .

However, we have

Sk ̸= −
Lk−1∑
i=1

Λ
[k−1]
i Sk−i.

By the assumption, Lk + 1 ≤ k − Lk−1,

Sk ̸=
Lk−1∑
j=1

Λ
[k−1]
j

Lk∑
i=1

Λ
[k]
i Sk−i−j ,

which contradicts to what we just derived.

• Since the shortest LFSR that produces the sequence
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{S1, S2, . . . , Sk} must also produce the first part of that
sequence, we must have Lk ≥ Lk−1. Thus, we have

Lk ≥ max(Lk−1, k − Lk−1).

• In the update procedure, if Λ[k](x) ̸= Λ[k−1](x), then a
new LFSR can be found whose length satisfies
Lk = max(Lk−1, k − Lk−1).

• It can be proved by induction on k. When k = 1 we take
L0 = 0 and Λ[0](x) = 1. We find that d1 = S1. If S1 = 0,
then no update is necessary. If S1 ̸= 0, then we take
Λ[m](x) = Λ[0](x) = 1, so that ℓ = 1− 0 = 1. Also take
dm = 1. The updated polynomial is

Λ[1](x) = 1 + S1x,
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which has degree L1 = max(L0, 1− L0) = 1.

Now let Λ[m−1](x), m < k − 1, denote the last connection
polynomial before Λ[k−1](x) with Lm−1 < Lk−1 that can
produce the sequence {S1, S2, . . . , Sm−1} but not the
sequence {S1, S2, . . . , Sm}. Then Lm = Lk−1. By the
inductive hypothesis,

Lm = m− Lm−1 = Lk−1, or −m+ Lm−1 = −Lk−1.

Since ℓ = k −m, we have

Lk = max(Lk−1, k −m+ Lm−1) = max(Lk−1, k − Lk−1).

• In the update step if 2Lk−1 ≥ k, the connection
polynomial is updated, but there is no change in length.
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Welch-Berlekamp Key Equation

• Welch-Berlekamp (WB) key equation was invented in
1983.

• It is no need to calculate syndromes.

• It uses coefficients of a remainder polynomial to represent
errors (syndromes).

• There are several methods to solve WB key equation
such as Welch-Berlekamp algorithm, Lagrange-Euclidean
algorithm, and Modular approach.
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Notations

• The generator polynomial for an (n, k) RS code can be
written as

g(x) =

2t∏
i=1

(x− αi).

• Let Lc = {0, 1, . . . , 2t− 1} be the index set of the check
locations. Let Lαc = {αk, 0 ≤ k ≤ 2t− 1}.

• Let Lm = {2t, 2t+ 1, . . . , n− 1} be the index set of the
message locations. Let Lαm = {αk, 2t ≤ k ≤ n− 1}.

• Define remainder polynomial as

r(x) = y(x) mod g(x)
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and

r(x) =

2t−1∑
i=0

rix
i.

• Let E(x) be the error pattern. It can be proved that

r(x) ≡ E(x) mod g(x)

and
r(αk) = E(αk) for k ∈ {1, 2, . . . , 2t}.
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Errors in Message Location

• Assume that e ∈ Lm with error value Y .

• r(αk) = E(αk) = Y (αk)e = Y Xk, k ∈ {1, 2, . . . , 2t},
where X = αe is the error locator.

• Define u(x) = r(x)−Xr(α−1x) which has degree less
than 2t.

• u(αk) = r(αk)−Xr(α−1αk) = Y Xk −XYXk−1 = 0 for
k ∈ {2, 3, . . . , 2t}.

• u(x) has roots at α2, α3, . . . , α2t, so that u(x) is divisible
by

p(x) =
2t∏

k=2

(x− αk) =
2t−1∑
i=0

pix
i.
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• Thus, u(x) = ap(x), where a ∈ GF (qm).

• Equating coefficients between u(x) and p(x) we have

ri(1−Xα−i) = api, i = 0, 1, . . . , 2t− 1.

That is,

ri(α
i −X) = aαipi, i = 0, 1, . . . , 2t− 1.

• Define the error locator polynomial as
Wm(x) = x−X = x− αe.

• Since r(α) = E(α) = Y X,

Y = X−1r(α) = X−1
2t−1∑
i=0

riα
i
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= X−1
2t−1∑
i=0

aαipi
Wm(αi)

αi = aX−1
2t−1∑
i=0

α2ipi
(αi −X)

.

• Define f(x) = x−1
∑2t−1

i=0
α2ipi
(αi−x)

for x ∈ Lαm . f(x) can be
pre-computed for all values of x ∈ Lαm .

• Y = af(X) and

ri =
Y αipi

f(X)Wm(αi)
.

• Assume that there are v ≥ 1 errors, with error locators
Xi and corresponding error values Yi for i = 1, 2, . . . , v.
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• By linearity we have

rk = pkα
k

v∑
i=1

Yi
f(Xi)(αk −Xi)

, k = 0, 1, . . . , 2t− 1.

• Define

F (x) =

v∑
i=1

Yi
f(Xi)(x−Xi)

having poles at the error locations.

• Let

F (x) =

v∑
i=1

Yi
f(Xi)(x−Xi)

=
Nm(x)

Wm(x)
,

where Wm(x) =
∏v

i=1(x−Xi) is the error locator
polynomial for the errors among the message locations.
Note that the error locator polynomial defined here is
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different from previously defined by Peterson.

• It is clear that deg(Nm(x)) < deg(Wm(x)).

• We have

Nm(αk) =
rk

pkαk
Wm(αk), k ∈ Lc = {0, 1, . . . , 2t− 1}.

• Nm(x) and Wm(x) have the degree constraints
deg(Nm(x)) < deg(Wm(x)) and deg(Wm(x)) ≤ t.
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Errors in Check Locations

• For a single error occurring in a check location e ∈ Lc,
r(x) = E(x).

• u(x) = r(x)−Xr(α−1x) = 0.

• We have

rk =

 Y k = e

0 otherwise.
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WB Key Equation
• Let Em = {i1, i2, . . . , ivl} ⊂ Lm denote the error locations

among the message locations.

• Let Ec = {ivl+1, ivl+2, . . . , iv} ⊂ Lc denote the error
locations among the check locations.

• The (error location, error value) pairs are (Xi, Yi),
i = 1, 2, . . . , v.

• By linearity,

rk = pkα
k

vl∑
j=1

Yij
f(Xij )(α

k −Xij )

+

 Yj if error locator Xj is in check location k

0 otherwise.
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• We have

Nm(αk) =
rk

pkαk
Wm(αk), k ∈ Lc \ Ec.

• Let Wc(x) =
∏

i∈Ec
(x− αi) be the error locator

polynomial for errors in check locations.

• Let N(x) = Nm(x)Wc(x) and W (x) = Wm(x)Wc(x).

• Since N(αk) = W (αk) = 0 for k ∈ Ec, we have

N(αk) =
rk

pkαk
W (αk), k ∈ Lc = {0, 1, . . . , 2t− 1}. (12)

• (12) is the Welch-Berlekamp (WB) key equation subject
to the conditions

deg(N(x)) < deg(W (x)) and deg(W (x)) ≤ t.
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• We write (12) as

N(xi) = W (xi)yi, i = 1, 2, . . . , 2t (13)

for “points” (xi, yi) = (αi−1, ri−1/(pi−1α
i−1)),

i = 1, 2, . . . , 2t.
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Finding the Error Values
• Denote the error values corresponding to an error locator

Xi as Y [Xi].

• By definition,
vl∑
i=1

Y [Xi]

f(Xi)(x−Xi)
=

Nm(x)Wc(x)

Wm(x)Wc(x)
=

N(x)∏
i∈Ecm

(x−Xi)
,

where Ecm = Ec ∪ Em.

• Suppose we want determine Y [Xk] at message location.
Multiplying both sides of the above equation by
W (x) =

∏
i∈Ecm

(x−Xi) and evaluate at x = Xk, we have

Y [Xk]
∏

i ̸=k
i∈Ecm

(Xk −Xi)

f(Xk)
= N(Xk).
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• Taking the formal derivative, we obtain

W ′(x) =
∑

j∈Ecm

∏
i ̸=j

(x−Xi)

and
W ′(Xk) =

∏
i̸=k

i∈Ecm

(Xk −Xi).

• Thus,

Y [Xk] = f(Xk)
N(Xk)

W ′(Xk)
.

• When the error is in a check location, Xj = αk for
k ∈ Ec, we have

rk = Y [Xj ]+pkα
k

vl∑
i=1

Y [Xi]

f(Xi)(αk −Xi)
= Y [Xj ]+pkXj

Nm(Xj)

Wm(Xj)
.
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Thus,

Y [Xj ] = rk − pkXj
Nm(Xj)

Wm(Xj)
.

• Both N(Xj) = Nm(Xj)Wc(Xj) and
W (Xj) = Wm(Xj)Wc(Xj) (Since Wc(Xj) = 0) are 0 so a
“L’Hopitial’s rule” must be used. Since

N ′(Xj) = Nm(Xj)W
′
c(Xj)+N ′

m(Xj)Wc(Xj) = Nm(Xj)W
′
c(Xj)

and

W ′(Xj) = Wm(Xj)W
′
c(Xj)+W ′

m(Xj)Wc(Xj) = Wm(Xj)W
′
c(Xj),

so
N ′(Xj)

W ′(Xj)
=

Nm(Xj)

Wm(Xj)
̸= 0.

• Then
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Y [Xj ] = rk − pkXj
N ′(Xj)

W ′(Xj)
.
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Rational Interpolation Problem

• Given a set of points (xi, yi), i = 1, 2, . . . ,m over some
field F, find polynomials N(x) and W (x) with
deg(N(x)) < deg(W (x)) satisfying

N(xi) = W (xi)yi, i = 1, 2, . . . ,m. (14)

• A solution to the rational interpolation problem provides
a pair [N(x),W (x)] satisfying (14).
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Welch-Berlekamp Algorithm
• We are interested in a solution satisfying

deg(N(x)) < deg(W (x)) and deg(W (x)) ≤ m/2.

• The rank of a solution [N(x),W (x)] is defined as

rank[N(x),W (x)] = max{2deg(W (x)), 1 + 2 deg(N(x))}.

• WB algorithm constructs a solution to the rational
interpolation problem of rank≤ m and show that it is
unique.

• Since the solution is unique, by the definition of the rank,
the degee of N(x) is less than the degree of W (x).

• Let P (x) be an interpolation polynomial such that
P (xi) = yi, i = 1, 2, . . . ,m.
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• The equation N(xi) = W (xi)yi is equivalent to

N(x) = W (x)P (x) (mod (x− xi)).

• By Chinese remainder theorem we have

N(x) = W (x)P (x) (mod Π(x)), (15)

where Π(x) =
∏m

i=1(x− xi).

• Suppose [N(x),W (x)] is a solution to (14) and that N(x)

and W (x) shares a common factor f(x), such that
N(x) = n(x)f(x) and W (x) = w(x)f(x). If [n(x), w(x)]
is also a solution to (14), the solution [N(x),W (x)] is
said to be reducible. Otherwise, it is irreducible.

• There exists at least one irreducible solution to (15) with
rank≤ m.
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• Proof: Let S = {[N(x),W (x)]| rank(N(x),W (x)) ≤ m}
be the set of polynomial meeting the rank specification.
For [N(x),W (x)] ∈ S and [M(x), V (x)] ∈ S and f a
scalar value, define

[N(x),W (x)] + [M(x), V (x)] = [N(x) +M(x),W (x) + V (x)]

f [N(x),W (x)] = [fN(x), fW (x)].

Then S is a module over F[x].

• A basis for the N(x) component is

{1, x, . . . , x⌊(m−1)/2⌋} (1 + ⌊(m− 1)/2⌋ dimensions).

• A basis for the W (x) component is

{1, x, . . . , x⌊m/2⌋} (1 + ⌊m/2⌋ dimensions).

• So the dimension of the Cartesian product is
1 + ⌊(m− 1)/2⌋+ 1 + ⌊m/2⌋ = m+ 1.
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• Let
N(x)−W (x)P (x) = Q(x)Π(x) +R(x).

• Define the mapping

E : S −→ {h ∈ F[x]|deg(h(x)) < m} (16)

by E([N(x),W (x)]) = R(x).

• The dimension of the range of E is m.

• E is a linear mapping from a space of dimension m+ 1 to a
space of dimension m, so the dimension of its kernel is > 0. ■

• We say that [N(x),W (x)] satisfy the interpolation(k) problem
if

N(xi) = W (xi)yi, i = 1, 2, . . . k.

• We also express the interpolation(k) problem as

N(x) = W (x)Pk(x) (mod Πk(x)),
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where Πk(x) =
∏k

i=1(x− xi) and Pk(x) is a polynomial that
interpolations the first k points, Pk(xi) = yi, i = 1, 2, . . . , k.

• The WB- algorithm finds a sequence of solution [N(x),W (x)]

of minimum rank satisfying the interpolation(k) problem, for
k = 1, 2, . . . ,m.

• If [N(x),W (x)] is an irreducible solution to the
interpolation(k) problem and [M(x), V (x)] is another solution
such that rank[N(x),W (x)] + rank[M(x), V (x)] ≤ 2k, then
[M(x), V (x)] can be reduced to [N(x),W (x)].

• Proof: By assumption, there exist two polynomials Q1(x) and
Q2(x) such that

N(x)−W (x)Pk(x) = Q1(x)Πk(x)

M(x)− V (x)Pk(x) = Q2(x)Πk(x). (17)

Recall that N(xi) = yiW (xi) and M(xi) = yiV (xi) for
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i = 1, . . . , k. Hence

N(xi)V (xi) = M(xi)W (xi), i = 1, . . . , k

which implies

Πk(x)|(N(x)V (x)−M(x)W (x)). (18)

• From the definition of the rank we have

deg(N(x)V (x)) = deg(N(x)) + deg(V (x))

≤ rank[N(x),W (x)]− 1

2
+

rank[M(x), V (x)]

2
< k

and

deg(M(x)W (x)) = deg(M(x)) + deg(W (x))

≤ rank[M(x), V (x)]− 1

2
+

rank[N(x),W (x)]

2
< k.
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• Then deg(N(x)V (x)−M(x)W (x)) < k. From (18), we have

N(x)V (x)−M(x)W (x) = 0. (19)

• Let d(x) = GCD(W (x), V (x)). Then there exist two
polynomials which are relatively prime such that

W (x) = d(x)w(x), V (x) = d(x)v(x). (20)

• Substituting (20) into (19), we have

N(x)d(x)v(x) = M(x)d(x)w(x)

and
w(x)|N(x), v(x)|M(x).

• Let N(x)
w(x) = M(x)

v(x) = h(x), so

N(x) = h(x)w(x) and M(x) = h(x)v(x). (21)
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• Substituting (20) and (21) into (17), we have

h(x)w(x)− d(x)w(x)Pk(x) = Q1(x)Πk(x)

and
h(x)v(x)− d(x)v(x)Pk(x) = Q2(x)Πk(x).

• Since GCD(w(x), v(x)) = 1, there exists two polynomials
s(x), t(x) such that s(x)w(x) + t(x)v(x) = 1.

• Thus, we obtain

h(x)− d(x)Pk(x) = (s(x)Q1(x) + t(x)Q2(x))Πk(x).

The above equation shows that [h(x), d(x)] is also a solution.
From (20) and (21), both [N(x),W (x)] and [M(x), V (x)] can
be reduced to [h(x), d(x)]. Since [N(x),W (x)] is irreducible,
we have deg(w(x)) = 0. ■

• If [N(x),W (x)] and [M(x), V (x)] are two solutions of
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interpolation(k) such that

rank[N(x),W (x)] + rank[M(x), V (x)] = 2k + 1,

then both of them are irreducible solutions, and
N(x)V (x)−M(x)W (x) = fΠk(x) for some scalar f .

• Proof: Assume that the first conclusion is not correct. Then
there exist two irreducible solutions, [n(x), w(x)] and
[m(x), v(x)], such that

N(x) = f(x)n(x), W (x) = f(x)w(x),

M(x) = g(x)m(x), V (x) = g(x)v(x),

and deg(f(x)) + deg(g(x)) > 0. Then

rank[n(x), w(x)] + rank[m(x), v(x)]

= 2k + 1− 2(deg(f(x)) + deg(g(x))) < 2k.

By the previous result, [n(x), w(x)] and [m(x), v(x)] at most
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differ by a constant common factor. Hence,
rank[n(x), w(x)] + rank[m(x), v(x)] is even. Contradiction.

• Next we prove the second conclusion. It is easy to see that one
of rank[N(x),W (x)] and rank[M(x), V (x)] is even and the
other is odd. There are two cases:
Case 1: rank[N(x),W (x)] is odd. We have

2k + 1 = rank[N(x),W (x)] + rank[M(x), V (x)]

= (1 + 2 deg(N(x)) + 2 deg(V (x))

> 2deg(W (x)) + (1 + 2 deg(M(x))).

Thus, deg(N(x)V (x)) = k and deg(W (x)M(x)) < k.
Case 2: rank[N(x),W (x)] is even. We have

2k + 1 = rank[N(x),W (x)] + rank[M(x), V (x)]

= 2deg(W (x)) + (1 + 2 deg(M(x)))
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> (1 + 2 deg(N(x))) + 2 deg(V (x)).

Thus, deg(N(x)V (x)) < k and deg(W (x)M(x)) = k.
In either case,

deg(N(x)V (x)−M(x)W (x)) = k.

We have proved that Πk(x)|N(x)V (x)−M(x)W (x) and then,
N(x)V (x)−M(x)W (x) = fΠk(x). ■

• Let [N(x),W (x)] and [M(x), V (x)] be two solutions of
interpolation(k) such that

rank[N(x),W (x)] + rank[M(x), V (x)] = 2k + 1

and N(x)V (x)−M(x)W (x) = fΠk(x) for some scalar f . Then
[N(x),W (x)] and [M(x), V (x)] are complementary.

• If [N(x),W (x)] is an irreducible solution to the
interpolation(k) problem and [M(x), V (x)] is one of its
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complements, then for any a, b ∈ F with b ̸= 0,
[bM(x)− aN(x), bV (x)− aW (x)] is also one of its
complements.

• Proof: It is easy to show that
[bM(x)− aN(x), bV (x)− aW (x)] is also a solution. Since
[M(x), V (x)] cannot be reduced to [N(x),W (x)],
[bM(x)− aN(x), bV (x)− aW (x)] is also cannot be reduced to
[N(x),W (x)]. Hence,

rank[N(x),W (x)]+rank[bM(x)−aN(x), bV (x)−aW (x)] = 2k+1,

and [bM(x)− aN(x), bV (x)− aW (x)] is a complement of
[N(x),W (x)]. ■

• Suppose that [N(x),W (x)] and [M(x), V (x)] are two
complementary solutions of interpolation(k) problem. Suppose
also that [N(x),W (x)] is the solution of lower rank. Let
b = N(xk+1)− yk+1W (xk+1) and a = M(xk+1)− yk+1V (xk+1).
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If b = 0, then [N(x),W (x)] and
[(x− xk+1)M(x), (x− xk+1)V (x)] are two complementary
solutions of the interpolation(k + 1) problem and [N(x),W (x)]

is the solution with lower rank. If b ̸= 0, then

[(x− xk+1)N(x), (x− xk+1)W (x)]

and
[bM(x)− aN(x), bV (x)− aW (x)]

are two complementary solutions. The solution with lower
rank is the solution to the interpolation(k + 1) problem.

• Proof: If b = 0, it is clear that [N(x),W (x)] is a solution to
the interpolation(k + 1) problem. Also
M(x) ≡ V (x)Pk(x) (mod Πk(x)) such that we have

(x− xk+1)M(x) ≡ (x− xk+1)V (x)Pk+1(x) (mod Πk+1(x)).

Since
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rank[(x− xk+1)M(x), (x− xk+1)V (x)] = rank[M(x), V (x)] + 2

we have

rank[N(x),W (x)] + rank[(x− xk+1)M(x), (x− xk+1)V (x)]

= 2k + 1 + 2 = 2(k + 1) + 1.

Now consider b ̸= 0. Since [N(x),W (x)] satisfies

N(x) ≡ W (x)Pk+1(x) (mod Πk(x))

it follows that

(x− xk+1)N(x) ≡ (x− xk+1)W (x)Pk+1(x) (mod Πk+1(x)).

Thus, [(x− xk+1)N(x), (x− xk+1)W (x)] is a solution to the
interpolation(k + 1) problem.

• From previous result, [bM(x)− aN(x), bV (x)− aW (x)] is a
complementary solution of [N(x),W (x)] to interpolation(k)
problem. To show that [bM(x)− aN(x), bV (x)− aW (x)] is
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also a solution at the point (xk+1, yk+1), substituting a and b

into the following to show that equality holds:

bM(xk+1)− aN(xk+1) = (bV (xk+1)− aW (xk+1)) yk+1.

It is clear that

rank[(x− xk+1)N(x), (x− xk+1)W (x)]

+ rank[bM(x)− aN(x), bV (x)− aW (x)] = 2(k + 1) + 1.

■

• The initial condition for WB algorithm is

N(x) = V (x) = 0,W (x) = M(x) = 1.
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Algorithm 1 Welch-Belekamp Algorithm
1: Input: (xi, yi), i = 1, . . . ,m
2: N (0)(x) := V (0)(x) := 0; M (0)(x) := W (0)(x) := 1;
3: for k = 0, 1, 2, . . . ,m− 1 do
4: bk := N (k)(xk+1)− yk+1W

(k)(xk+1);
5: ak := M (k)(xk+1)− yk+1V

(k)(xk+1);
6: if bk = 0 then
7: N (k+1)(x) := N (k)(x); W (k+1)(x) := W (k)(x);
8: M (k+1)(x) := (x− xk+1)M

(k)(x);
9: V (k+1)(x) := (x− xk+1)V

(k)(x);
10: else
11: M (k+1)(x) := (x− xk+1)N

(k)(x);
12: V (k+1)(x) := (x− xk+1)W

(k)(x);
13: N (k+1)(x) := bkM

(k)(x)− akN
(k)(x);

14: W (k+1)(x) := bkV
(k)(x)− akW

(k)(x);
15: if rank[N (k+1)(x),W (k+1)(x)] > rank[M (k+1)(x), V (k+1)(x)] then
16: swap[N (k+1)(x),W (k+1)(x)] ↔ [M (k+1)(x), V (k+1)(x)]
17: end if
18: end if
19: end for
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