
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 1

Parallel Welch–Berlekamp Algorithm
Chao Chen, Yunghsiang S. Han, Fellow, IEEE, Nianqi Tang, Xiao Ma, and Baoming Bai

Abstract—This paper presents new variants of the Welch–
Berlekamp algorithm that are favorable to hardware implemen-
tation. First, we derive the parallel Welch–Berlekamp (PWB)
algorithm in a constructive manner based on the properties of
solutions to the rational interpolation problem. The algorithm
features the simultaneously performed discrepancy computation
and polynomial update. Second, we explore the early-termination
mechanism of the PWB algorithm for decoding of Reed–Solomon
(RS) codes. By introducing the concept of incomplete error
locator polynomial, we show that if e ≤ t (where e is the
number of errors and t is the error correction capability), the
PWB algorithm can be terminated at latest at the completion
of the (t + e)-th iteration. This leads to the early-terminating
PWB (EPWB) algorithm. Finally, we develop frequency-domain
versions of the PWB and EPWB algorithms, namely, FPWB
and FEPWB. The key point toward the two algorithms is to
replace the update of polynomial coefficients with the update
of polynomial evaluations. It is worth noting that the FEPWB
algorithm applies only to shortened RS codes. Furthermore, an
efficient systolic architecture for the FPWB algorithm is designed,
which is easily adapted for the FEPWB algorithm.

Index Terms—Reed–Solomon codes, parallel Welch–
Berlekamp algorithm, incomplete error locator polynomial,
early termination, systolic architecture.

I. INTRODUCTION

RECENTLY, a new Fast Fourier Transform (FFT) over
binary extension fields was proposed by Lin, Chung,

and Han [5], which for the first time achieves the O(n log n)
complexity over such fields (where n is the FFT length). Based
on LCH-FFT, new low-complexity encoding and decoding
algorithms have been developed for Reed–Solomon (RS) codes
[5], [6], [7], [8], [9], [10].

The LCH-FFT-based RS decoding has the Welch–
Berlekamp (WB) form of the key equation [7], which can
be solved by the WB algorithm [2], [3], [4]. Due to the use of
LCH-FFT, the computational complexity of both the syndrome
computation and the Chien search is significantly reduced.
Although the WB algorithm requires a little more computation,
the overall computation complexity of the LCH-FFT-based RS
decoding is considerably lower than that of the conventional
RS decoding that uses the Berlekamp–Massey (BM) algorithm
[1]. See [9] for a detailed complexity comparison.

This work was supported by the China National Key R&D Program under
Grant 2021YFA1000500. Part of this work was presented at the 2023 IEEE
International Symposium on Information Theory [20]. (Corresponding author:
Chao Chen.)

Chao Chen and Baoming Bai are with the State Key Lab of
ISN, Xidian University, Xi’an, China. (e-mail: cchen@xidian.edu.cn, bm-
bai@mail.xidian.edu.cn).

Yunghsiang S. Han and Nianqi Tang are with the Shenzhen Institute for
Advanced Study, University of Electronic Science and Technology of China,
Shenzhen, China. (e-mail: yunghsiangh@gmail.com, 724973040@qq.com).

Xiao Ma is with the School of Computer Science and Engineering, Sun
Yat-sen University, Guangzhou, China. (e-mail: maxiao@mail.sysu.edu.cn).

For the purpose of hardware implementation, parallel algo-
rithms other than the WB algorithm were derived to solve
the WB equation based on the concepts of module and
exact sequence [11]. Recently, the modular approach (MA)
algorithm [9] was proposed as an improvement of [11]. Two
variants, called frequency-domain modular approach (FDMA)
and fast modular approach (FMA), were also developed [9],
which are suitable for hardware and software implementations,
respectively. In [19], it was shown that the MA algorithm is
equivalent to a modified WB algorithm.

In this paper, we present new variants of the WB algorithm
favorable to hardware implementation. The main contributions
are as follows.

1) We present the parallel Welch–Berlekamp (PWB) algo-
rithm. Different from the WB algorithm that conducts
the discrepancy computation and the polynomial update
in serial, the PWB algorithm conducts the two operations
in parallel, hence its name. The derivation of the PWB
algorithm is constructive from the properties of solutions
to the rational interpolation problem, which is entirely
different from that of the MA algorithm [9] that relies
on complicated mathematical concepts including module
and exact sequence.

2) We present an early-terminating PWB (EPWB) algo-
rithm. It is known that the BM algorithm can be termi-
nated early [13], [14], [15], [16], [17]. By introducing
the concept of incomplete error locator polynomial, we
show that the PWB algorithm can be terminated early
as well. Specifically, if e ≤ t (where e is the number of
errors and t is the error correction capability), the PWB
algorithm can be terminated at latest at the completion
of the (t + e)-th iteration. The early termination rule
also applies to the WB algorithm. To the best of our
knowledge, this is the first time that the early termination
mechanism is explored for the WB algorithm.

3) We develop frequency-domain versions of the PWB and
EPWB algorithms, dubbed FPWB and FEPWB, respec-
tively. By the qualifier ‘frequency-domain’, we mean
to use the update of polynomial evaluations to replace
the update of polynomial coefficients. Moreover, we
design an efficient architecture for the FPWB algorithm,
which can be easily adapted for the FEPWB algorithm.
The architecture has a regular systolic structure, a low
implementation cost, and a small critical path.

The rest of the paper is organized as follows. Section II
reviews the rational interpolation problem and characterizes
the solution properties. Section III derives the PWB algorithm.
Section IV presents the EPWB algorithm. Section V develops
the FPWB and FEPWB algorithms and the architectures.
Finally, Section VI concludes the paper.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 2

II. THE RATIONAL INTERPOLATION PROBLEM

Let F be an arbitrary field. Let (xi, yi) ∈ F × F, 0 ≤ i ≤
ρ− 1, be ρ points such that the xi’s are distinct. Consider the
following rational interpolation problem.

Problem 1: Find a pair of polynomials (W (x), N(x)) ∈
F[x]× F[x] satisfying

N(xi) = yiW (xi), i = 0, 1, . . . , ρ− 1. (1)

An equivalent formulation of Problem 1 is to find a pair of
polynomials (W (x), N(x)) satisfying

N(x) = P (x)W (x) mod

ρ−1∏
i=0

(x− xi), (2)

where P (x) is an interpolating polynomial such that P (xi) =
yi, 0 ≤ i ≤ ρ − 1. For example, we may let P (x) be the
Lagrange interpolating polynomial

P (x) =

ρ−1∑
i=0

yi

∏
j ̸=i(x− xj)∏
j ̸=i(xi − xj)

. (3)

Clearly, Problem 1 has a trivial solution, W (x) = N(x) =
0. Here, we are only interested in the nontrivial solutions.
Suppose that (W (x), N(x)) is a solution to Problem 1. The
solution is said to be reducible if W (x) = f(x)w(x) and
N(x) = f(x)n(x) such that deg(f(x)) > 0 and (w(x), n(x))
is also a solution to Problem 1. The solution is said to be
irreducible if it is not reducible.

Define the rank of a solution (W (x), N(x)) as

rank(W (x), N(x)) ≜ max{2 deg(W (x)), 2 deg(N(x)) + 1}.
(4)

Suppose that (W0(x), N0(x)) and (W1(x), N1(x)) are two
solutions of Problem 1. The two solutions are said to be
complementary if

rank(W0(x), N0(x)) + rank(W1(x), N1(x)) = 2ρ+ 1, (5)

and

N0(x)W1(x)−N1(x)W0(x) = γ

ρ−1∏
i=0

(x− xi), (6)

for some γ ̸= 0 ∈ F. A solution is said to be a complement
of another solution if the two solutions are complementary.

Lemma 1 ([18]): The solutions of Problem 1 have the
following properties.
(i). There exists at least one irreducible solution with rank

≤ ρ.
(ii). If (W0(x), N0(x)) is an irreducible solution and

(W1(x), N1(x)) is another solution such that

rank(W0(x), N0(x)) + rank(W1(x), N1(x)) ≤ 2ρ, (7)

then (W1(x), N1(x)) = (f(x)W0(x), f(x)N0(x)) for
some f(x) with deg(f(x)) ≥ 0. This implies that the
irreducible solutions with rank ≤ ρ are unique (up to a
scalar).

(iii). If (W0(x), N0(x)) and (W1(x), N1(x)) are two com-
plementary solutions, then both of them are irreducible

solutions and one of them is the (unique) irreducible
solution with rank ≤ ρ.

(iv). If (W0(x), N0(x)) is the (unique) irreducible solu-
tion with rank ≤ ρ, then there exists at least one
solution (W1(x), N1(x)) which is a complement of
(W0(x), N0(x)).

(v). If (W0(x), N0(x)) is an irreducible solution and
(W1(x), N1(x)) is one of its complements, then for any
a, b ∈ F with b ̸= 0, (bW1(x) − aW0(x), bN1(x) −
aN0(x)) is also one of its complements.

It is worth pointing out that the properties as given in
Lemma 1 were derived independently of any algorithm that
solves Problem 1 [18]. Instead, the algorithm to be presented
in the next section is constructed based on these properties.

The minimal interpolation problem related to Problem 1 can
be described as follows [18].

Problem 2: Find a pair of polynomials (W (x), N(x))
satisfying{

N(xi) = yiW (xi), i = 0, 1, . . . , ρ− 1.
rank(W (x), N(x)) is minimized. (8)

By Lemma 1, the solution of Problem 2 is unique, which is
exactly the irreducible solution of Problem 1 with rank ≤ ρ.
In the next section, we will derive a parallel WB algorithm to
solve Problem 2.

III. PARALLEL WELCH–BERLEKAMP ALGORITHM

A. Modified WB algorithm

Let 1 ≤ r ≤ ρ, consider the following two problems.
Problem 1(r): Find a pair of polynomials (W (x), N(x))

satisfying

N(xi) = yiW (xi), i = 0, 1, . . . , r − 1. (9)

Problem 2(r): Find a pair of polynomials (W (x), N(x))
satisfying{

N(xi) = yiW (xi), i = 0, 1, . . . , r − 1.
rank(W (x), N(x)) is minimized. (10)

The basic idea for problem-solving is to construct two
complementary solutions of Problem 1(r + 1) from those
of Problem 1(r). Suppose that (W

[r]
0 (x), N

[r]
0 (x)) and

(W
[r]
1 (x), N

[r]
1 (x)) are two complementary solutions of Prob-

lem 1(r). By Lemma 1, one of the two solutions with a lower
rank is the solution of Problem 2(r). By the definition of
complementary solutions (refer to (5) and (6)), we have

rank(W
[r]
0 (x), N

[r]
0 (x)) + rank(W

[r]
1 (x), N

[r]
1 (x)) = 2r + 1,

(11)

and

N
[r]
0 (x)W

[r]
1 (x)−N

[r]
1 (x)W

[r]
0 (x) = γ

r−1∏
i=0

(x− xi), (12)

for some γ ̸= 0 ∈ F. To simplify notation, we de-
note rank(W

[r]
0 (x), N

[r]
0 (x)) and rank(W

[r]
1 (x), N

[r]
1 (x)) by

rank
[r]
0 and rank

[r]
1 , respectively. From (11), we see that one

of rank
[r]
0 and rank

[r]
1 is even and the other is odd. Hence,

rank
[r]
0 ̸= rank

[r]
1 .

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 3

Define the discrepancies br and ar as(
br
ar

)
≜

(
N

[r]
0 (xr)− yrW

[r]
0 (xr)

N
[r]
1 (xr)− yrW

[r]
1 (xr)

)
. (13)

Then, we have the following result.
Lemma 2: ar and br cannot both be zero.

Proof: Since (x − xr) ̸ |
∏r−1

i=0 (x − xi), from (12), we
have

(x− xr) ̸ | (N [r]
0 (x)W

[r]
1 (x)−N

[r]
1 (x)W

[r]
0 (x)). (14)

Suppose on the contrary that ar = br = 0. Based on (13), we
have

N
[r]
0 (xr)W

[r]
1 (xr) = N

[r]
1 (xr)W

[r]
0 (xr), (15)

which implies that (x − xr) | (N
[r]
0 (x)W

[r]
1 (x) −

N
[r]
1 (x)W

[r]
0 (x)), a contradiction to (14).

We introduce a quantity δ[r], defined as

δ[r] ≜

1, if

(
rank

[r]
0 < rank

[r]
1 and br = 0

)
or(

rank
[r]
0 > rank

[r]
1 and ar ̸= 0

)
;

0, if
(
rank

[r]
0 < rank

[r]
1 and br ̸= 0

)
or(

rank
[r]
0 > rank

[r]
1 and ar = 0

)
.

(16)

We have the following result.
Theorem 1 (modified WB algorithm):(
W

[r+1]
0 (x) N

[r+1]
0 (x)

W
[r+1]
1 (x) N

[r+1]
1 (x)

)

=

(
−ar br

(x− xr)(1− δ[r]) (x− xr)δ
[r]

)(
W

[r]
0 (x) N

[r]
0 (x)

W
[r]
1 (x) N

[r]
1 (x)

)
.

(17)

Proof: According to the definition of δ[r] given in (16),
we need to consider four cases. We prove for the following
two cases, one for δ[r] = 1 and one for δ[r] = 0. The other
two cases can be proved similarly and are omitted.

1) rank[r]0 < rank
[r]
1 and br = 0.

In this case, δ[r] = 1. By Lemma 2, ar ̸=
0. It is easily verified that (W

[r+1]
0 (x), N

[r+1]
0 (x)) =

(−arW
[r]
0 (x),−arN

[r]
0 (x)) and (W

[r+1]
1 (x), N

[r+1]
1 (x)) =

((x − xr)W
[r]
1 (x), (x − xr)N

[r]
1 (x)) are two solutions of

Problem 1(r + 1). Based on (11) and (12), we have

rank(−arW
[r]
0 (x),−arN

[r]
0 (x))

+ rank((x− xr)W
[r]
1 (x), (x− xr)N

[r]
1 (x))

= 2r + 3, (18)

and

(−arN
[r]
0 (x))((x− xr)W

[r]
1 (x))

− ((x− xr)N
[r]
1 (x))(−arW

[r]
0 (x))

= arγ

r∏
i=0

(x− xi). (19)

Therefore, the two solutions (W
[r+1]
0 (x), N

[r+1]
0 (x)) and

(W
[r+1]
1 (x), N

[r+1]
1 (x)) are complementary.

Algorithm 1: Modified WB algorithm
Input: (xi, yi), 0 ≤ i ≤ ρ− 1.
Output:

(
W (x), N(x)

)
satisfying that N(xi) = yiW (xi)

for 0 ≤ i ≤ ρ− 1, and rank(W (x), N(x)) is minimized.
1: Initialization:(

W
[0]
0 (x) N

[0]
0 (x)

W
[0]
1 (x) N

[0]
1 (x)

)
=

(
1 0
0 1

)
,(

rank
[0]
0

rank
[0]
1

)
=

(
0
1

)
.

2: for r = 0, 1, · · · , ρ− 1 do

3:

(
br
ar

)
=

(
N

[r]
0 (xr)− yrW

[r]
0 (xr)

N
[r]
1 (xr)− yrW

[r]
1 (xr)

)
4: Let δ[r] =

(
(rank

[r]
0 < rank

[r]
1)&& (br =

0)
)
||
(
(rank

[r]
0 > rank

[r]
1)&& (ar ̸= 0)

)
5:

(
W

[r+1]
0 (x) N

[r+1]
0 (x)

W
[r+1]
1 (x) N

[r+1]
1 (x)

)
=(

−ar br
(x− xr)(1− δ[r]) (x− xr)δ

[r]

)(
W

[r]
0 (x) N

[r]
0 (x)

W
[r]
1 (x) N

[r]
1 (x)

)
6: if δ[r] = 1 then

7:

(
rank

[r+1]
0

rank
[r+1]
1

)
=

(
rank

[r]
0

rank
[r]
1 + 2

)
8: else

9:

(
rank

[r+1]
0

rank
[r+1]
1

)
=

(
rank

[r]
1

rank
[r]
0 + 2

)
10: end if
11: end for
12: if rank[ρ]0 < rank

[ρ]
1 then

13: return
(
W

[ρ]
0 (x), N

[ρ]
0 (x)

)
14: else
15: return

(
W

[ρ]
1 (x), N

[ρ]
1 (x)

)
16: end if

2) rank[r]0 < rank
[r]
1 and br ̸= 0.

In this case, δ[r] = 0. It is easily verified
that (W

[r+1]
0 (x), N

[r+1]
0 (x)) = (−arW

[r]
0 (x) +

brW
[r]
1 (x),−arN

[r]
0 (x) + brN

[r]
1 (x)) and

(W
[r+1]
1 (x), N

[r+1]
1 (x)) = ((x−xr)W

[r]
0 (x), (x−xr)N

[r]
0 (x))

are two solutions of Problem 1(r + 1). Based on (11) and
(12), we have

rank(−arW
[r]
0 (x) + brW

[r]
1 (x),−arN

[r]
0 (x) + brN

[r]
1 (x))

+ rank((x− xr)W
[r]
0 (x), (x− xr)N

[r]
0 (x))

= rank(W
[r]
1 (x), N

[r]
1 (x))

+ rank((x− xr)W
[r]
0 (x), (x− xr)N

[r]
0 (x))

= 2r + 3, (20)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 4

and

(−arN
[r]
0 (x) + brN

[r]
1 (x))((x− xr)W

[r]
0 (x))

− ((x− xr)N
[r]
0 (x))(−arW

[r]
0 (x) + brW

[r]
1 (x))

= −br(x− xr)(N
[r]
0 (x)W

[r]
1 (x)−N

[r]
1 (x)W

[r]
0 (x))

= −brγ

r∏
i=0

(x− xi). (21)

Therefore, the two solutions (W
[r+1]
0 (x), N

[r+1]
0 (x)) and

(W
[r+1]
1 (x), N

[r+1]
1 (x)) are complementary.

Based on Theorem 1, we present a modified WB algorithm
in Algorithm 1. The algorithm is iterative in nature, producing
the solution to Problem 2 after ρ iterations.

Remark 1: The modified WB algorithm is different from
the WB algorithm [3] in two aspects. First, Lemma 2 is not
needed in deriving the WB algorithm in which ar is not
computed. Second, the WB algorithm keeps rank[r]0 < rank

[r]
1

for all 0 ≤ r ≤ ρ. If rank[r]0 > rank
[r]
1 , then a swap operation

(W
[r]
0 (x), N

[r]
0 (x)) ↔ (W

[r]
1 (x), N

[r]
1 (x)) is performed to

make rank
[r]
0 < rank

[r]
1 .

B. Parallel WB algorithm

For 0 ≤ r ≤ ρ, let(
b
[r]
i

a
[r]
i

)
≜

(
N

[r]
0 (xi)− yiW

[r]
0 (xi)

N
[r]
1 (xi)− yiW

[r]
1 (xi)

)
, 0 ≤ i ≤ ρ− 1.

(22)

Then based on (13) and (22), it is clear that(
b
[r]
r

a
[r]
r

)
=

(
br
ar

)
. (23)

We have the following result.
Theorem 2 (parallel WB algorithm): For any 0 ≤ r < ρ,

for all 0 ≤ i ≤ ρ− 1,(
b
[r+1]
i

a
[r+1]
i

)

=

(
−a

[r]
r b

[r]
r

(xi − xr)(1− δ[r]) (xi − xr)δ
[r]

)(
b
[r]
i

a
[r]
i

)
, (24)

with the initialization(
b
[0]
i

a
[0]
i

)
=

(
−yi
1

)
. (25)

Proof: According to Algorithm 1, (W [0]
0 (x), N

[0]
0 (x)) =

(1, 0) and (W
[0]
1 (x), N

[0]
1 (x)) = (0, 1). Then it follows from

(22) that (25) holds. Based on (22), we have for all 0 ≤ i ≤

Algorithm 2: Parallel WB algorithm
Input: (xi, yi), 0 ≤ i ≤ ρ− 1.
Output:

(
W (x), N(x)

)
satisfying that N(xi) = yiW (xi)

for 0 ≤ i ≤ ρ− 1, and rank(W (x), N(x)) is minimized.
1: Initialization:(

W
[0]
0 (x) N

[0]
0 (x)

W
[0]
1 (x) N

[0]
1 (x)

)
=

(
1 0
0 1

)
,

(
b
[0]
i

a
[0]
i

)
=(

−yi
1

)
, 0 ≤ i ≤ ρ− 1,

(
rank

[0]
0

rank
[0]
1

)
=

(
0
1

)
.

2: for r = 0, 1, · · · , ρ− 1 do
3: Let δ[r] =

(
(rank

[r]
0 < rank

[r]
1)&& (b

[r]
r =

0)
)
||
(
(rank

[r]
0 > rank

[r]
1)&& (a

[r]
r ̸= 0)

)
4: for i = 0, 1, · · · , ρ− 1 do

5:

(
b
[r+1]
i

a
[r+1]
i

)
=(

−a
[r]
r b

[r]
r

(xi − xr)(1− δ[r]) (xi − xr)δ
[r]

)(
b
[r]
i

a
[r]
i

)
6: end for

7:

(
W

[r+1]
0 (x) N

[r+1]
0 (x)

W
[r+1]
1 (x) N

[r+1]
1 (x)

)
=(

−a
[r]
r b

[r]
r

(x− xr)(1− δ[r]) (x− xr)δ
[r]

)(
W

[r]
0 (x) N

[r]
0 (x)

W
[r]
1 (x) N

[r]
1 (x)

)
8: if δ[r] = 1 then

9:

(
rank

[r+1]
0

rank
[r+1]
1

)
=

(
rank

[r]
0

rank
[r]
1 + 2

)
10: else

11:

(
rank

[r+1]
0

rank
[r+1]
1

)
=

(
rank

[r]
1

rank
[r]
0 + 2

)
12: end if
13: end for
14: if rank[ρ]0 < rank

[ρ]
1 then

15: return
(
W

[ρ]
0 (x), N

[ρ]
0 (x)

)
16: else
17: return

(
W

[ρ]
1 (x), N

[ρ]
1 (x)

)
18: end if

ρ− 1,(
b
[r+1]
i

a
[r+1]
i

)

=

(
N

[r+1]
0 (xi)− yiW

[r+1]
0 (xi)

N
[r+1]
1 (xi)− yiW

[r+1]
1 (xi)

)

=

(
−a

[r]
r b

[r]
r

(xi − xr)(1− δ[r]) (xi − xr)δ
[r]

)(
N

[r]
0 (xi)− yiW

[r]
0 (xi)

N
[r]
1 (xi)− yiW

[r]
1 (xi)

)
=

(
−a

[r]
r b

[r]
r

(xi − xr)(1− δ[r]) (xi − xr)δ
[r]

)(
a
[r]
i

b
[r]
i

)
,

where the second equality follows from (17).
Combining Algorithm 1 and Theorem 2, we present the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 5

parallel WB algorithm in Algorithm 2. Based on the update
rule for b

[r+1]
i and a

[r+1]
i (refer to Lines 4-6), it is easily

obtained that a[r+1]
i = b

[r+1]
i = 0 for all 0 ≤ i ≤ r. Therefore,

Line 4 can actually be replaced by “for i = r+1, . . . , ρ−1 do”.
It can be noticed that only a

[r]
r and b

[r]
r are used for polynomial

update in the index-r iteration. The following explains why we
need to compute a

[r]
i and b

[r]
i for all 0 ≤ i ≤ ρ− 1 (or rather,

r ≤ i ≤ ρ−1) in the index-(r−1) iteration. Taking a
[r]
r+1 and

b
[r]
r+1 as an example, if they were not computed in the index-
(r−1) iteration, then we would not be able to compute a

[r+1]
r+1

and b
[r+1]
r+1 in the index-r iteration, which shall be used in the

index-(r + 1) iteration. The rest may be deduced by analogy.
Remark 2: For both the modified WB algorithm and the

parallel WB algorithm, the computed discrepancies are in-
volved in the polynomial update. The difference is as follows.
For the modified WB algorithm, since the discrepancies are
computed temporarily in each iteration, the polynomial update
is performed after the discrepancy computation. Whereas for
the parallel WB algorithm, since the preceding iteration has
worked out the discrepancies for the current iteration in
advance, the discrepancy computation (computing the discrep-
ancies for the next iteration) and the polynomial update are
conducted in parallel, hence the name parallel WB algorithm.
In this sense, the PWB algorithm is to the WB algorithm what
the Reformulated inversionless BM (RiBM) algorithm [12] is
to the BM algorithm. Our derivation of the PWB algorithm
is in the same sprit as that of the RiBM algorithm, i.e.,
deserializing discrepancy computation and polynomial update.
For hardware implementation, each iteration is usually accom-
plished in one clock cycle. As a consequence, the parallel WB
algorithm is preferred in terms of reducing the critical path
(which is dominated by the discrepancy computation and the
polynomial update).

IV. EARLY-TERMINATING PARALLEL
WELCH–BERLEKAMP ALGORITHM

In this section, we show that the parallel WB algorithm can
be terminated early when applied to the decoding of RS codes.
We take the polynomial-evaluation-based RS codes [7] as an
example to explore the early termination mechanism.

Let F2m be a binary extension field and let {vj}m−1
j=0 denote

a basis of F2m over F2. Let {ωi}2
m−1

i=0 be the elements of F2m

represented as

ωi =

m−1∑
j=0

ijvj , ij ∈ F2, (26)

where {ij}m−1
j=0 is the binary representation of i, i.e., i =∑m−1

j=0 ij2
j .

A full-length (2m, k) RS code over F2m can be defined as

C ≜
{
(f(ω0), f(ω1), · · · , f(ω2m−1)) :

f(x) ∈ F2m [x], deg(f(x)) < k
}
. (27)

We see that each codeword is a multi-point polynomial
evaluation and that the code symbols are indexed by the
points {ωi}2

m−1
i=0 . The multi-point evaluation can be efficiently

performed through LCH-FFT [5]. Let t denote the error
correction capability of the code. By assuming that the number
of parity symbols 2m − k is even, we have 2t = 2m − k.

For systematic encoding, the reader can refer to [7], [8], and
[10] for details. For a full-length (2m, k) systematic RS code,
we consider two ways to place information and parity symbols,
as illustrated in Fig. 1. As we shall see below, this may bring
a slight difference in error evaluation. In Fig. 1-a), parity
symbols and information symbols are placed on the left and the
right of the block, respectively. In Fig. 1-b), the positions for
information and parity symbols are exchanged as compared to
Fig. 1-a). Also shown in Fig. 1 are code shortening methods.
By code shortening it is meant that the symbols in a prescribed
set of information positions are set to be zero and thus are
not transmitted. These symbols are called shortened symbols.
Let the number of shortened symbols be denoted by ns. The
shortened code has the parameter (n = 2m − ns, k − ns). In
Fig. 1-a) and Fig. 1-b), the shortened symbols are positioned
on the right side and the left side of the block, respectively.

Let (c0, c1, · · · , c2m−1) ∈ C be the transmitted codeword.
Assume that the received vector is given by

(r0, r1, · · · , r2m−1) =(c0, c1, · · · , c2m−1)

+ (e0, e1, · · · , e2m−1), (28)

where (e0, e1, · · · , e2m−1) is the error vector over F2m and
the operator ‘+’ denotes the component-wise addition in F2m .
Define the error locator polynomial

Λ(x) =
∏
ω∈E

(x− ω), (29)

where E = {ωi : ei ̸= 0} is the set of error locators. The
number of errors is equal to e = |E|.

Let S(x) be the syndrome polynomial (refer to [7] for
the definition and computation) corresponding to the received
vector. Then the key equation is given by [7],

Z(x) = S(x)Λ(x) mod

2m−k−1∏
i=0

(x− ωi), (30)

where deg(Z(x)) < deg(Λ(x)). For a full-length (2m, k) RS
code, the error value in the error locator ωi ∈ E can be
computed as [7]

ei =

Z(ωi)∏2m−k−1

j=0 (ωi−ωj)·Λ′(ωi)
, if 2m − k ≤ i ≤ 2m − 1,

Z′(ωi)−S(ωi)Λ
′(ωi)∏2m−k−1

j=0,j ̸=i (ωi−ωj)·Λ′(ωi)
, if 0 ≤ i < 2m − k.

(31)

Note that (31) applies not only to systematic codes (regardless
of how information and parity symbols are placed) but also
to non-systematic codes. We see that 2m − k is the dividing
point for the two cases in (31). If we place the information
and parity symbols as in Fig. 1-a), then for both full-length

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 6

2m

2m-k k

2m

2m-kk

shortening

2m-ns 2m-ns

2m-k 2m-kk-ns k-nsns ns

(a) (b)

information information

information parity

shortening

parity information

parity parity

shortened shortened

Fig. 1. Two ways to put information and parity symbols for full-length RS codes and the code shortening methods: (a) Information symbols on the right;
(b) Information symbols on the left.

and shortened systematic codes, it follows from (31) that

ei =

Z(ωi)∏2m−k−1
j=0 (ωi−ωj)·Λ′(ωi)

, if i is an information

position (i.e., i ≥ 2m − k),

Z′(ωi)−S(ωi)Λ
′(ωi)∏2m−k−1

j=0,j ̸=i (ωi−ωj)·Λ′(ωi)
, if i is a parity position

(i.e., i < 2m − k).
(32)

For a shortened systematic code as given in Fig. 1-b), by
assuming ns ≥ 2m − k, it follows from (31) that

ei =
Z(ωi)∏2m−k−1

j=0 (ωi − ωj) · Λ′(ωi)
, 2m − ns ≤ i ≤ 2m − 1,

(33)

where i can be either an information position or a parity
position. The error evaluation turns out to be uniform for both
information and parity symbols. Here, we adopt the coordinate
system of the original full-length code for the shortened code,
i.e., the range of the symbol index i for the shortened code is
2m − ns ≤ i ≤ 2m − 1.

Now we introduce the concept of incomplete error locator
polynomial. Given the error locator polynomial Λ(x) in (29),
a polynomial Λ1(x) is called an incomplete error locator
polynomial if

Λ1(x) | Λ(x). (34)

and ∏
ωi∈E,i≥2m−k

(x− ωi) | Λ1(x). (35)

By defining

Λ0(x) ≜
Λ(x)

Λ1(x)
, (36)

we have Λ0(x) |
∏

ωi∈E,i<2m−k(x − ωi). Based on (30), we
have Λ0(x) | Z(x). We call

Z1(x) ≜
Z(x)

Λ0(x)
(37)

the incomplete error evaluator polynomial associated with the
incomplete error locator polynomial Λ1(x).

Note that for a shortened RS code as given in Fig. 1-b), the
errors will not occur in the shortened positions {i : 0 ≤ i <
ns}. Therefore, if the number of shortened symbols is such
that ns ≥ 2m−k, then (x−ωi)̸ |Λ(x) for any 0 ≤ i < 2m−k,
which implies that Λ1(x) = Λ(x) and further Z1(x) = Z(x).

We have the following result.
Lemma 3: If Λ1(x) is an incomplete error locator polyno-

mial and Z1(x) is the associated incomplete error evaluator
polynomial, then the error values in the error locators ωi ∈ E
with i ≥ 2m − k can be alternatively computed as

ei =
Z1(ωi)∏2m−k−1

j=0 (ωi − ωj) · Λ′
1(ωi)

. (38)

Proof: Based on (31), for i ≥ 2m − k, we have

ei =
Z(ωi)∏2m−k−1

j=0 (ωi − ωj) · Λ′(ωi)

=
Λ0(ωi)Z1(ωi)∏2m−k−1

j=0 (ωi − ωj) · (Λ′
0(ωi)Λ1(ωi) + Λ0(ωi)Λ′

1(ωi))

=
Λ0(ωi)Z1(ωi)∏2m−k−1

j=0 (ωi − ωj) · Λ0(ωi)Λ′
1(ωi)

=
Z1(ωi)∏2m−k−1

j=0 (ωi − ωj) · Λ′
1(ωi)

. (39)

To solve the key equation (30), we can set ρ = 2t, xi = ωi

and yi = S(ωi) in Algorithm 2. If e ≤ t, by virtue of the
decoding problem itself, the key equation has a unique solution
(Λ(x), Z(x)) such that deg(Z(x)) < deg(Λ(x)) = e, which
is equal (up to a scalar) to the algorithm output [3], [7].

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 7

Theorem 3: In Algorithm 2, if e ≤ t, then there exists some
r ≤ t + e such that rank

[r]
1 = 2t + 1. Furthermore, for any

0 < r ≤ 2t, if rank[r]1 = 2t+ 1, then rank
[r]
0 < rank

[r]
1 .

Proof: Based on the initialization of rank
[0]
0 and rank

[1]
1

(refer to Line 1 of Algorithm 2) and the update of rank[r]0 and
rank

[r]
1 (refer to Lines 8-11), it is easily verified by induction

that

rank
[r]
0 + rank

[r]
1 = 2r + 1, 0 ≤ r ≤ 2t, (40)

which is exactly (11) as required by the definition of com-
plementary solutions. Since rank

[2t]
0 + rank

[2t]
1 = 4t + 1, we

have

max{rank[2t]0 , rank
[2t]
1 } ≥ 2t+ 1. (41)

Since e ≤ t, we have

min{rank[2t]0 , rank
[2t]
1 } = rank{Λ(x), Z(x)}

= max{2 deg(Λ(x)), 1 + 2 deg(Z(x))}
= 2 deg(Λ(x)), (42)

where the first equality is due to the fact that the algorithm
output (Λ(x), Z(x)) has a lower rank (note that the algorithm
solves Problem 2(r)). Therefore, min{rank[2t]0 , rank

[2t]
1 } is

even.
First, we show that there exists some r, 0 ≤ r ≤

2t, such that max{rank[r]0 , rank
[r]
1 } = 2t + 1. Sup-

pose, on the contrary, that no such r exists. Then from
(41), max{rank[2t]0 , rank

[2t]
1 } ≥ 2t + 2. It follows from

Lines 8-11 of Algorithm 2 that when r is increased by
1, max{rank[r]0 , rank

[r]
1 } is increased at most by 2. This

implies that as r increases, max{rank[r]0 , rank
[r]
1 } is guar-

anteed to take at least one of any two consecutive integers
which are less than or equal to 2t + 2. Therefore, due to
(41) and by assumption max{rank[r]0 , rank

[r]
1 } ̸= 2t + 1

for any r, there must exist some r′, 0 ≤ r′ ≤ 2t, such
that max{rank[r

′]
0 , rank

[r′]
1 } = 2t + 2. We now show that

when r ≥ r′, max{rank[r+1]
0 , rank

[r+1]
1 } is either equal to

max{rank[r]0 , rank
[r]
1 } or max{rank[r]0 , rank

[r]
1 }+2. Consider

the following two possible cases for r ≥ r′. It is clear from
(40) that rank[r]0 ̸= rank

[r]
1 .

1) δ[r] = 1.
Then rank

[r+1]
0 = rank

[r]
0 and rank

[r+1]
1 = rank

[r]
1 + 2.

• If rank
[r]
0 < rank

[r]
1 , then

max{rank[r+1]
0 , rank

[r+1]
1 } =

max{rank[r]0 , rank
[r]
1 }+ 2.

• If rank
[r]
0 > rank

[r]
1 , then

max{rank[r+1]
0 , rank

[r+1]
1 } =

max{rank[r]0 , rank
[r]
1 }, which can be seen as

follows. Based on (40), max{rank[r]0 , rank
[r]
1 } +

min{rank[r]0 , rank
[r]
1 } ≤ 4t+ 1 for r ≤ 2t. Then it

follows from max{rank[r]0 , rank
[r]
1 } ≥ 2t + 2

that min{rank[r]0 , rank
[r]
1 } ≤ 2t − 1 for

r ≥ r′. Therefore, rank
[r]
0 − (rank

[r]
1 + 2) =

max{rank[r]0 , rank
[r]
1 } − min{rank[r]0 , rank

[r]
1 } −

2 ≥ (2t + 2) − (2t − 1) − 2 > 0,

which implies max{rank[r+1]
0 , rank

[r+1]
1 } =

max{rank[r]0 , rank
[r]
1 + 2} = rank

[r]
0 =

max{rank[r]0 , rank
[r]
1 }.

2) δ[r] = 0.
Then rank

[r+1]
0 = rank

[r]
1 and rank

[r+1]
1 = rank

[r]
0 + 2.

• If rank
[r]
0 > rank

[r]
1 , then

max{rank[r+1]
0 , rank

[r+1]
1 } =

max{rank[r]0 , rank
[r]
1 }+ 2.

• If rank
[r]
0 < rank

[r]
1 , then

max{rank[r+1]
0 , rank

[r+1]
1 } =

max{rank[r]0 , rank
[r]
1 }, which can be seen as

follows. Based on (40), max{rank[r]0 , rank
[r]
1 } +

min{rank[r]0 , rank
[r]
1 } ≤ 4t+ 1 for r ≤ 2t. Then it

follows from max{rank[r]0 , rank
[r]
1 } ≥ 2t + 2

that min{rank[r]0 , rank
[r]
1 } ≤ 2t − 1 for

r ≥ r′. Therefore, rank
[r]
1 − (rank

[r]
0 + 2) =

max{rank[r]0 , rank
[r]
1 } − min{rank[r]0 , rank

[r]
1 } −

2 ≥ (2t + 2) − (2t − 1) − 2 > 0,
which implies max{rank[r+1]

0 , rank
[r+1]
1 } =

max{rank[r]1 , rank
[r]
0 + 2} = rank

[r]
1 =

max{rank[r]0 , rank
[r]
1 }.

Since max{rank[r
′]

0 , rank
[r′]
1 } = 2t + 2, then

max{rank[2t]0 , rank
[2t]
1 } must be even. This is in

contradiction to that min{rank[2t]0 , rank
[2t]
1 } is even because

max{rank[2t]0 , rank
[2t]
1 }+min{rank[2t]0 , rank

[2t]
1 } = 4t+ 1 is

odd. This proves that there exists some r, 0 ≤ r ≤ 2t, such
that max{rank[r]0 , rank

[r]
1 } = 2t+ 1.

Let r1 be the smallest integer such that
max{rank[r1]0 , rank

[r1]
1 } = 2t + 1. Next, we show that

r1 ≤ t+e. Since e ≤ t and rank
[t+e]
0 +rank

[t+e]
1 = 2t+2e+1,

we have max{rank[t+e]
0 , rank

[t+e]
1 } ≥ 2t + 1 because

min{rank[t+e]
0 , rank

[t+e]
1 } ≤ min{rank[2t]0 , rank

[2t]
1 } =

2deg(Λ(x)) = 2e (note that the inequality here is due to
that min{rank[r]0 , rank

[r]
1 } is non-decreasing with r, refer to

Lines 8-11 of Algorithm 2). Therefore, given that there exists
some r, 0 ≤ r ≤ 2t, such that max{rank[r]0 , rank

[r]
1 } = 2t+1,

the smallest r1 such that max{rank[r1]0 , rank
[r1]
1 } = 2t + 1

must satisfy r1 ≤ t+ e.
Finally, we show that rank[r1]0 < rank

[r1]
1 . Suppose on the

contrary that rank
[r1]
0 > rank

[r1]
1 , which implies rank

[r1]
0 =

2t+1. Let r0 < r1 be the largest integer such that rank[r0]0 <

rank
[r0+1]
0 = rank

[r0+2]
0 = · · · = rank

[r1]
0 . Since rank

[r0+1]
0

is equal to either rank
[r0]
0 or rank

[r0]
1 , we have rank

[r0+1]
0 =

rank
[r0]
1 , which implies that rank

[r0]
1 = rank

[r1]
0 = 2t + 1.

Therefore, we have max{rank[r0]0 , rank
[r0]
1 } = 2t + 1, in

contradiction to that r1 is the smallest integer such that
max{rank[r1]0 , rank

[r1]
1 } = 2t + 1. Therefore, rank

[r1]
0 <

rank
[r1]
1 . This completes the proof of the first half of the

theorem that if e ≤ t, there exists some r ≤ t + e such that
rank

[r]
1 = 2t+ 1.

For any 0 < r ≤ 2t such that rank[r]1 = 2t + 1, it follows
from (40) that rank[r]0 = 2r + 1 − rank

[r]
1 = 2r − 2t ≤ 2t <

rank
[r]
1 . This completes the proof of the second half of the

theorem.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 8

The following result shows that the PWB algorithm can be
terminated early.

Theorem 4: Assuming e ≤ t, Algorithm 2 has the following
properties.

(i). If rank
[2e]
0 < rank

[2e]
1 , then W

[2e]
0 (x) is an incomplete

error locator polynomial and N
[2e]
0 (x) is the associ-

ated incomplete error evaluator polynomial, otherwise,
W

[2e]
1 (x) is an incomplete error locator polynomial and

N
[2e]
1 (x) is the associated incomplete error evaluator

polynomial.
(ii). Let r1 be the smallest integer such that rank[r1]1 = 2t+1

(by Theorem 3, r1 ≤ t + e), then W
[r1]
0 (x) is an

incomplete error locator polynomial and N
[r1]
0 (x) is the

associated incomplete error evaluator polynomial.
(iii). The error values in the error locators ωi ∈ E with i ≥

2m − k are given by

ei =
N

[r1]
0 (ωi)∏2m−k−1

j=0 (ωi − ωj) ·W [r1]′

0 (ωi)
, (43)

where r1 is the smallest integer such that rank[r1]1 = 2t+
1.

(iv). If there are no errors in the positions {0 ≤ i < 2m − k},
as is always the case for a shortened RS code in Fig. 1-b),
then the smallest integer r1 such that rank[r1]1 = 2t+1 is
equal to t+ e and W

[t+e]
0 (x) = γΛ(x) for some nonzero

γ ∈ F2m .

Proof: Let (W [r](x), N [r](x)) be a polynomial pair de-
fined by

(W [r](x), N [r](x))

≜

{
(W

[r]
0 (x), N

[r]
0 (x)), if rank

[r]
0 < rank

[r]
1 ;

(W
[r]
1 (x), N

[r]
1 (x)), if rank

[r]
0 > rank

[r]
1 .

(44)

According to the description of Algorithm 2 (refer to Lines 14-
18), we see that the output is given by (W [2t](x), N [2t](x)), as
defined by (44), which is equal (up to a scalar) to (Λ(x), Z(x))
if e ≤ t. Under the assumption that e ≤ t, we have
min{rank[r]0 , rank

[r]
1 } ≤ 2e < 2t+1 for all 0 ≤ r ≤ 2t. Based

on (40), we have max{rank[2e]0 , rank
[2e]
1 } ≥ 2e+1. Note that

max{rank[r]0 , rank
[r]
1 } is non-decreasing as r increases. There-

fore, max{rank[r]0 , rank
[r]
1 } ≥ max{rank[2e]0 , rank

[2e]
1 } ≥

2e+ 1 for 2e ≤ r ≤ 2t.
(i). Based on (44), we shall prove that W [2e](x) is an incom-

plete error locator polynomial and N [2e](x) is the associated
incomplete error evaluator polynomial. When 2e ≤ r < 2t,
(W [r+1](x), N [r+1](x)) is updated based on the following
four cases.

1) rank
[r]
0 < rank

[r]
1 and b

[r]
r ̸= 0.

Then δ[r] = 0. Since max{rank[r]0 , rank
[r]
1 } = rank

[r]
1 ≥

2e + 1 and min{rank[r+1]
0 , rank

[r+1]
1 } ≤ 2e, we have

min{rank[r+1]
0 , rank

[r+1]
1 } = rank

[r+1]
1 = rank

[r]
0 + 2 <

rank
[r]
1 = rank

[r+1]
0 . Therefore,

(W [r+1](x), N [r+1](x)) = (W
[r+1]
1 (x), N

[r+1]
1 (x))

= (x− ωr)(W
[r]
0 (x), N

[r]
0 (x))

= (x− ωr)(W
[r](x), N [r](x)).

(45)

2) rank
[r]
0 < rank

[r]
1 and b

[r]
r = 0.

Then δ[r] = 1. Since rank
[r+1]
0 = rank

[r]
0 < rank

[r]
1 +2 =

rank
[r+1]
1 , we have

(W [r+1](x), N [r+1](x)) = (W
[r+1]
0 (x), N

[r+1]
0 (x))

= −a[r]r (W
[r]
0 (x), N

[r]
0 (x))

= −a[r]r (W [r](x), N [r](x)).
(46)

Here, by Lemma 2, a[r]r ̸= 0.
3) rank

[r]
0 > rank

[r]
1 and a

[r]
r ̸= 0.

Then δ[r] = 1. Since max{rank[r]0 , rank
[r]
1 } = rank

[r]
0 ≥

2e + 1 and min{rank[r+1]
0 , rank

[r+1]
1 } ≤ 2e, we have

min{rank[r+1]
0 , rank

[r+1]
1 } = rank

[r+1]
1 = rank

[r]
1 + 2 <

rank
[r]
0 = rank

[r+1]
0 . Therefore,

(W [r+1](x), N [r+1](x)) = (W
[r+1]
1 (x), N

[r+1]
1 (x))

= (x− ωr)(W
[r]
1 (x), N

[r]
1 (x))

= (x− ωr)(W
[r](x), N [r](x)).

(47)

4) rank
[r]
0 > rank

[r]
1 and a

[r]
r = 0.

Then δ[r] = 0. Since rank
[r+1]
0 = rank

[r]
1 < rank

[r]
0 +2 =

rank
[r+1]
1 , we have

(W [r+1](x), N [r+1](x)) = (W
[r+1]
0 (x), N

[r+1]
0 (x))

= b[r]r (W
[r]
1 (x), V

[r]
1 (x))

= b[r]r (W [r](x), N [r](x)). (48)

Here, by Lemma 2, b[r]r ̸= 0.
Based on the above update rule, (W [2t](x), N [2t](x)) can be
written as

(W [2t](x), N [2t](x)) = β
(∏

i∈A

(x− ωi)
)
(W [2e](x), N [2e](x)),

(49)

for some β ̸= 0 ∈ F2m and some index set A ⊂ {2e, 2e +
1, . . . , 2t − 1}. Since (W [2t](x), N [2t](x)) is equal (up to a
scalar) to (Λ(x), Z(x)), we know from (49) that W [2e](x) is
an incomplete error locator polynomial and N [2e](x) is the
associated incomplete error evaluator polynomial. The proof
is complete by noting (44).

(ii). The existence of such an r1 is guaranteed by The-
orem 3 which also indicates that r1 ≤ t + e. Similar to
the proof of (i), it can be shown that when r1 ≤ r < 2t,
(W [r+1](x), N [r+1](x)) has the same update rule as in (i).
Here, we only give the proof for the first case: rank

[r]
0 <

rank
[r]
1 and b

[r]
r ̸= 0. In this case, δ[r] = 0. Since rank

[r]
1 =

max{rank[r]0 , rank
[r]
1 } ≥ max{rank[r1]0 , rank

[r1]
1 } = 2t + 1

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 9

and min{rank[r+1]
0 , rank

[r+1]
1 } ≤ min{rank[2t]0 , rank

[2t]
1 } =

2e < 2t + 1, we have min{rank[r+1]
0 , rank

[r+1]
1 } =

rank
[r+1]
1 = rank

[r]
0 + 2 < rank

[r]
1 = rank

[r+1]
0 . There-

fore, (W [r+1](x), N [r+1](x)) = (W
[r+1]
1 (x), N

[r+1]
1 (x)) =

(x − ωr)(W
[r]
0 (x), N

[r]
0 (x)) = (x − ωr)(W

[r](x), N [r](x)).
Consequently, (W [2t](x), N [2t](x)) can be written as

(W [2t](x), N [2t](x)) = β
(∏

i∈A

(x− ωi)
)
(W [r1](x), N [r1](x))

= β
(∏

i∈A

(x− ωi)
)
(W

[r1]
0 (x), N

[r1]
0 (x)),

(50)

for some β ̸= 0 ∈ F2m and some index set A ⊂ {2e, 2e +
1, . . . , 2t − 1}. The second equality in (50) is due to that
rank

[r1]
0 < rank

[r1]
1 by Theorem 3. Therefore, W

[r1]
0 (x) is

an incomplete error locator polynomial and N
[r1]
0 (x) is the

associated incomplete error evaluator polynomial.
(iii). This follows directly from (ii) and Theorem 3.
(iv). Due to (ii) and the assumption that there are no errors

in the positions {i ≥ 2m − k}, we can deduce that

(W
[r1]
0 (x), N

[r1]
0 (x)) = (γΛ(x), γZ(x)), (51)

for some scalar γ. This makes b[r1]i = 0 for any 0 ≤ i ≤ 2t−1,
according to (22) and the definition of Λ(x) and Z(x). This,
in turns, makes δ[r1] = 0 and leads to

(W
[r1+1]
0 (x), N

[r1+1]
0 (x)) = (γ′Λ(x), γ′Z(x)), (52)

for (possibly) another scalar γ′, according to Line 7 of
Algorithm 2. According to Line 9 of Algorithm 2, we have
rank

[r1+1]
0 = rank

[r1]
0 and rank

[r1+1]
0 < rank

[r1+1]
1 . By the

same argument, we have rank
[r1]
0 = rank

[r1+1]
0 = · · · =

rank
[2t]
0 = 2e. Since rank

[r1]
1 = 2t + 1 and rank

[r1]
0 +

rank
[r1]
1 = 2r1 + 1 by (40), we have r1 = t + e. Note

that if all the e errors occur in the positions {i ≥ 2m − k},
an incomplete error locator polynomial is equal to the error
locator polynomial multiplied by a nonzero field element. Then
it follows from (ii) that W [r1]

0 (x) = γΛ(x) for some nonzero
γ ∈ F2m , where r1 = t+ e.

Remark 3: Although derived in the context of the PWB
algorithm, the early-terminating mechanism also applies to
the WB algorithm. The algorithm difference, as stated in
Remark 2, is not essential to the early-terminating rule.

Remark 4: It was previously known that the Berlekamp–
Massey (BM) algorithm can be terminated early [13], [14],
[15], [16], [17]. Therefore, it is interesting to make a compar-
ison between the two algorithms in terms of early termination.
Assume e ≤ t. The similarity is that both algorithms can
be terminated before or at the completion of the (t + e)-
th iteration. There are also several differences. For the BM
algorithm, the error locator polynomial is obtained after 2e
iterations. Since e is unknown, the early termination is based
on a detection method to identify the (t + e)-th iteration.
Whereas for the WB algorithm, the complete error locator
polynomial may not be obtained until the 2t-th iteration.
The early termination is based on a detection method to
identify the r1-th iteration (r1 ≤ t+ e) so that an incomplete

Algorithm 3: Early-terminating parallel WB (EPWB)
algorithm

Input: (xi, yi), 0 ≤ i ≤ 2t− 1.

Output:
(
W

[r1]
0 (x), N

[r1]
0 (x)

)
.

1: Initialization:(
W

[0]
0 (x) N

[0]
0 (x)

W
[0]
1 (x) N

[0]
1 (x)

)
=

(
1 0
0 1

)
,

(
b
[0]
i

a
[0]
i

)
=(

−yi
1

)
, 0 ≤ i ≤ 2t− 1,

(
rank

[0]
0

rank
[0]
1

)
=

(
0
1

)
.

2: for r = 0, 1, · · · , 2t− 1 do
3: Let δ[r] =

(
(rank

[r]
0 < rank

[r]
1)&& (b

[r]
r =

0)
)
||
(
(rank

[r]
0 > rank

[r]
1)&& (a

[r]
r ̸= 0)

)
4: for i = 0, 1, · · · , 2t− 1 do

5:

(
b
[r+1]
i

a
[r+1]
i

)
=(

−a
[r]
r b

[r]
r

(xi − xr)(1− δ[r]) (xi − xr)δ
[r]

)(
b
[r]
i

a
[r]
i

)
6: end for

7:

(
W

[r+1]
0 (x) N

[r+1]
0 (x)

W
[r+1]
1 (x) N

[r+1]
1 (x)

)
=(

−a
[r]
r b

[r]
r

(x− xr)(1− δ[r]) (x− xr)δ
[r]

)(
W

[r]
0 (x) N

[r]
0 (x)

W
[r]
1 (x) N

[r]
1 (x)

)
8: if δ[r] = 1 then

9:

(
rank

[r+1]
0

rank
[r+1]
1

)
=

(
rank

[r]
0

rank
[r]
1 + 2

)
10: else

11:

(
rank

[r+1]
0

rank
[r+1]
1

)
=

(
rank

[r]
1

rank
[r]
0 + 2

)
12: end if
13: if ((rank

[r+1]
1 = 2t+ 1) || (r = 2t− 1)) then

14: return (W
[r+1]
0 (x), N

[r+1]
0 (x))

15: end if
16: end for

error locator polynomial can be obtained. As a consequence,
the early-terminating BM algorithm can accomplish the error
corrections in all positions while the early-terminating WB
algorithm can only accomplish the error corrections in the
positions 2m − k ≤ i < 2m.

Based on Theorem 4, we present the early-terminating
parallel WB (EPWB) algorithm in Algorithm 3. A dif-
ference between the PWB algorithm (Algorithm 2) and
the EPWB algorithm is that the former selectively outputs
(W

[2t]
0 (x), N

[2t]
0 (x)) or (W

[2t]
1 (x), N

[2t]
1 (x)) while the latter

always outputs (W
[r1]
0 (x), N

[r1]
0 (x)). Note that in Line 13 of

Algorithm 3, we add the subcase r = 2t − 1. This is to
ensure that the algorithm always has an output, considering
that the other subcase rank

[r+1]
1 = 2t + 1 may not be

encountered if e > t. In fact, if e > t, it is entirely
possible that rank[2t]0 > rank

[2t]
1 , in which case Algorithm 2

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 10

TABLE I
THE OPERATION DETAILS OF THE PWB ALGORITHM FOR EXAMPLE 1

r b
[r]
r a

[r]
r rank

[r]
0 rank

[r]
1 δ[r]

0 α18 1 0 1 0
1 α4 α17 1 2 0
2 0 α13 2 3 1
3 0 α22 2 5 1
4 0 α3 2 7 1
5 α18 α23 2 9 0
6 α10 α30 9 4 1
7 α12 0 9 6 0
8 − − 6 11 −

r W
[r]
0 (x) N

[r]
0 (x)

0 1 0
1 1 α18

2 α4x+ α17 α4

3 α17x+ α30 α17

4 α8x+ α21 α8

5 α11x+ α24 α11

6 α18x4 + α20x3 + α29x2 + α18x+ α28 α5x4 + α7x3 + α16x2 + α14x+ α15

7 α17x4 + α19x3 + α12x2 + α20x+ α19 α4x4 + α6x3 + α15x2 + α2x+ α6

8 α23x3 + α7x2 + α7x+ α29 α23x2 + α10x+ α16

r W
[r]
1 (x) N

[r]
1 (x)

0 0 1
1 x 0
2 x+ 1 α18x+ α18

3 x2 + α18x+ α α18x2 + α5x+ α19

4 x3 + α11x+ α19 α18x3 + α29x+ α6

5 x4 + α2x3 + α11x2 + α9x+ α21 α18x4 + α20x3 + α29x2 + α27x+ α8

6 α11x2 + α5x+ α29 α11x+ α16

7 α11x3 + α26x2 + α26x+ α17 α11x2 + α29x+ α4

8 α17x5 + α4x4 + α13x3 + α18x2 + α11x+ α30 α4x5 + α22x4 + α20x3 + α17x2 + α28x+ α17

outputs (W
[2t]
1 (x), N

[2t]
1 (x)) whereas Algorithm 3 outputs

(W
[2t]
0 (x), N

[2t]
0 (x)). For a bounded-distance decoding, how-

ever, such a kind of output diversity shall not be a concern.
To facilitate understanding the early termination mecha-

nism, we now present several examples.
Example 1: Let F25 be generated by the primitive poly-

nomial p(x) = x5 + x2 + 1. Let α ∈ F25 be a prim-
itive element and {v0, v1, v2, v3, v4} = {1, α, α2, α3, α4}
be a basis of F25 over F2. The elements of F25 can be
represented as {ωi =

∑4
j=0 ijvj : i =

∑4
j=0 ij2

j , 0 ≤
i < 32}. Consider a (32, 24) RS code over F25 as de-
fined by (27). The error correction capability of the code
is t = 4. Assume that the all-zero codeword is transmitted
and the received word is given by r(x) = α19x5 + α29x6 +
α18x28. Therefore, e = 3 errors have occurred. The syn-
dromes can be computed as (S(ω0), S(ω1), · · · , S(ω7)) =
(α18, α17, α7, α16, α10, α28, α9, α15). Thus, the algorithm in-
put, (xi, yi) = (ωi, S(ωi)), 0 ≤ i < 8, is given by

i 0 1 2 3 4 5 6 7
xi 0 1 α α18 α2 α5 α19 α11

yi α18 α17 α7 α16 α10 α28 α9 α15

The operation details of the PWB algorithm are shown in
Table I.

Since rank
[8]
0 < rank

[8]
1 , the PWB algorithm outputs

(W
[8]
0 (x), N

[8]
0 (x)), which is equal (up to a scalar) to

(Λ(x), Z(x)). The roots of W
[8]
0 (x) give the error locators

α5 = ω5, α19 = ω6, and α13 = ω28. According to (31),

the corresponding error values can be computed as e5 = α19,
e6 = α29, and e28 = α18 based on (W

[8]
0 (x), N

[8]
0 (x)).

From Table I, the smallest integer r such that rank
[r]
1 =

2t + 1 = 9 is equal to 5. Therefore, the EPWB algorithm
outputs (W

[5]
0 (x), N

[5]
0 (x)). The roots of W

[5]
0 (x) are given

by α13 = ω28. According to (43), the error value at ω28 can
be computed as e28 = α18 based on (W

[5]
0 (x), N

[5]
0 (x)).

According to Theorem 4-(i), since e = 3 and rank
[2e]
0 >

rank
[2e]
1 , W [2e]

1 (x) = W
[6]
1 (x) is also an incomplete error lo-

cator polynomial. The roots of W [6]
1 (x) are given by α5 = ω5

and α13 = ω28. According to Lemma 3, the error value at ω28

can be computed as e28 = α18 based on (W
[6]
1 (x), N [6]

1 (x)).
For this example, the smallest integer r such that rank[r]1 =

2t+1 = 9 is r = 5 < 2e = 6 and the incomplete error locator
polynomial W

[5]
0 (x) contains no roots of Λ(x) in {ωi : i <

2m−k}. However, this is not always the case, as can be seen
from the following two examples. □

Example 2: Consider the (32, 24) RS code over F25 given
in Example 1. Assume that the all-zero codeword is trans-
mitted and the received word is given by r(x) = α18x4 +
α2x7 + α3x20. Therefore, e = 3 errors have occurred. The
syndromes can be computed as (S(ω0), S(ω1), · · · , S(ω7)) =
(α16, α, α26, α28, α3, α13, α24, 1). Thus, the algorithm input,
(xi, yi) = (ωi, S(ωi)), 0 ≤ i < 8, is given by

i 0 1 2 3 4 5 6 7
xi 0 1 α α18 α2 α5 α19 α11

yi α16 α α26 α28 α3 α13 α24 1

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 11

TABLE II
THE OPERATION DETAILS OF THE PWB ALGORITHM FOR EXAMPLE 2

r b
[r]
r a

[r]
r rank

[r]
0 rank

[r]
1 δ[r]

0 α16 1 0 1 0
1 α25 α 1 2 0
2 0 α7 2 3 1
3 0 α9 2 5 1
4 α26 α21 2 7 0
5 α7 α4 7 4 0
6 0 α5 4 9 1
7 α22 α13 4 11 0
8 − − 11 6 −

r W
[r]
0 (x) N

[r]
0 (x)

0 1 0
1 1 α16

2 α25x+ α α17

3 αx+ α8 α24

4 α10x+ α17 α2

5 α26x3 + α27x+ α29 α11x3 + α22x+ α14

6 α17x2 + α21x+ α26 α9x+ α11

7 α22x2 + α26x+ 1 α14x+ α16

8 α17x5 + α4x4 + α30x3 + α25x2 + α24x α2x5 + α20x4 + α27x3 + α2x2 + α12x

r W
[r]
1 (x) N

[r]
1 (x)

0 0 1
1 x 0
2 x+ 1 α16x+ α16

3 x2 + α18x+ α α16x2 + α3x+ α17

4 x3 + α11x+ α19 α16x3 + α27x+ α4

5 α10x2 + α14x+ α19 α2x+ α4

6 α26x4 + x3 + α27x2 + α27x+ α3 α11x4 + α16x3 + α22x2 + α28x+ α19

7 α26x5 + α13x4 + α8x3 + α7x2 + α26x+ α22 α11x5 + α29x4 + α5x3 + α11x2 + α14x+ α7

8 α22x3 + α17x2 + α27x+ α11 α14x2 + αx+ α27

The operation details of the PWB algorithm are shown in
Table II.

Since rank
[8]
0 > rank

[8]
1 , the PWB algorithm outputs

(W
[8]
1 (x), N

[8]
1 (x)), which is equal (up to a scalar) to

(Λ(x), Z(x)). The roots of W
[8]
1 (x) give the error locators

α2 = ω4, α11 = ω7, and α7 = ω20. According to (31), the
corresponding error values can be computed as e4 = α18,
e7 = α2, and e20 = α3 based on (W

[8]
1 (x), N [8]

1 (x)).
From Table II, the smallest integer r such that rank

[r]
1 =

2t + 1 = 9 is equal to 6. Therefore, the EPWB algorithm
outputs (W

[6]
0 (x), N

[6]
0 (x)). The roots of W

[6]
0 (x) are given

by α2 = ω4 and α7 = ω20. According to (43), the error value
at ω20 is e20 = α3 based on (W

[6]
0 (x), N

[6]
0 (x)).

For this example, the smallest integer r such that rank[r]1 =
2t + 1 = 9 is r = 6 = 2e and the incomplete error locator
polynomial W

[6]
0 (x) contains partial roots of Λ(x) in {ωi :

i < 2m−k}. □
Example 3: Consider the (32, 24) RS code over F25 given

in Example 1. Assume that the all-zero codeword is trans-
mitted and the received word is given by r(x) = α23x19 +
α27x25 + α5x30. Therefore, e = 3 errors have occurred. The
syndromes can be computed as (S(ω0), S(ω1), . . . , S(ω7)) =
(α10, α30, α15, α13, α24, α4, α26, 0). Thus, the algorithm in-
put, (xi, yi) = (ωi, S(ωi)), 0 ≤ i < 8, is given by

i 0 1 2 3 4 5 6 7
xi 0 1 α α18 α2 α5 α19 α11

yi α10 α30 α15 α13 α24 α4 α26 0

The operation details of the PWB algorithm are shown in
Table III.

Since rank
[8]
0 < rank

[8]
1 , the PWB algorithm outputs

(W
[8]
0 (x), N

[8]
0 (x)), which is equal (up to a scalar) to

(Λ(x), Z(x)). The roots of W
[8]
0 (x) give the error locators

α17 = ω19, α25 = ω25, and α24 = ω30. According to (31),
the corresponding error values can be computed as e19 = α23,
e25 = α27, and e30 = α5 based on (W

[8]
0 (x),N [8]

0 (x)).

From Table III, the smallest integer r such that rank[r]1 =
2t + 1 = 9 is equal to 7. Therefore, the EPWB algorithm
outputs (W

[7]
0 (x), N

[7]
0 (x)). The roots of W

[7]
0 (x) are α17 =

ω19, α25 = ω25, and α24 = ω30. According to (43), the error
values at these error locators can be computed as e19 = α23,
e25 = α27, and e30 = α5 based on (W

[7]
0 (x),N [7]

0 (x)), the
same as computed based on the PWB algorithm.

In this example, all three errors occur in the positions {i ≥
2m − k}. The smallest integer r such that rank[r]1 = 2t+ 1 is
equal to t+ e = 7 and W

[7]
0 (x) = α30Λ(x), which conforms

to Theorem 4-(iv). □

From the above examples, we have the following obser-
vations: (1) The incomplete error locator polynomial may or
may not contain the error locators ωi with i < 2m − k as its
roots. (2) If some errors occur in the positions {i < 2m − k},
then the smallest integer r such that rank[r]1 = 2t+ 1 may be
less than 2e.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 12

TABLE III
THE OPERATION DETAILS OF THE PWB ALGORITHM FOR EXAMPLE 3

r b
[r]
r a

[r]
r rank

[r]
0 rank

[r]
1 δ[r]

0 α10 1 0 1 0
1 α18 α30 1 2 0
2 α23 α30 2 3 0
3 α16 α26 3 4 0
4 α7 α20 4 5 0
5 α20 α30 5 6 0
6 0 α7 6 7 1
7 0 α9 6 9 1
8 − − 6 11 −

r W
[r]
0 (x) N

[r]
0 (x)

0 1 0
1 1 α10

2 α18x+ α30 α9

3 α13x+ α19 α2x+ α29

4 α3x2 + αx+ α19 α23x+ α29

5 α18x2 + α16x+ α10 α9x2 + α20

6 α23x3 + α30x2 + α14x+ α27 α18x2 + α24x+ α6

7 α30x3 + α6x2 + α21x+ α3 α25x2 + x+ α13

8 α8x3 + α15x2 + α30x+ α12 α3x2 + α9x+ α22

r W
[r]
1 (x) N

[r]
1 (x)

0 0 1
1 x 0
2 x+ 1 α10x+ α10

3 α18x2 + α7x+ 1 α9x+ α10

4 α13x2 + α11x+ α6 α2x2 + α5x+ α16

5 α3x3 + α11x2 + α12x+ α21 α23x2 + α4x+ 1
6 α18x3 + α7x2 + α29x+ α15 α9x3 + α14x2 + α20x+ α25

7 α18x4 + α24x3 + α24x2 + α20x+ α3 α9x4 + α27x3 + α3x2 + α7x+ α13

8 α18x5 + α26x4 + α12x3 + α13x2 + α29x+ α14 α9x5 + α11x4 + α13x3 + α29x2 + α15x+ α24

V. FREQUENCY-DOMAIN ALGORITHMS AND
ARCHITECTURES

A. FPWB algorithm and FEPWB algorithm

We first adapt the PWB algorithm to the decoding of RS
codes by letting xi = ωi and yi = S(ωi). Unlike the
PWB algorithm that updates the four polynomials W

[r+1]
0 (x),

N
[r+1]
0 (x), W [r+1]

1 (x), and N
[r+1]
1 (x), we consider to update

two of them (refer to Line 7 of Algorithm 2),(
W

[r+1]
0 (x)

W
[r+1]
1 (x)

)

=

(
−ar br

(x− ωr)(1− δ[r]) (x− ωr)δ
[r]

)(
W

[r]
0 (x)

W
[r]
1 (x)

)
.

(53)

Letting x = ωi for 0 ≤ i ≤ t, we obtain(
W

[r+1]
0 (ωi)

W
[r+1]
1 (ωi)

)

=

(
−a

[r]
r b

[r]
r

(ωi − ωr)(1− δ[r]) (ωi − ωr)δ
[r]

)(
W

[r]
0 (ωi)

W
[r]
1 (ωi)

)
.

(54)

Based on the above discussion, we now present
the frequency-domain PWB (FPWB) algorithm in Algo-
rithm 4. Unlike the PWB algorithm that returns a poly-
nomial pair (W (x), N(x)), the FPWB algorithm returns

the evaluation of W (x) at t + 1 points {ωi}ti=0, i.e.,
(W (ω0),W (ω1), . . . ,W (ωt)). Note that if e ≤ t, the error
locator polynomial Λ(x) is such that deg(Λ(x)) ≤ t. Conse-
quently, we have

(Λ(ω0),Λ(ω1), . . . ,Λ(ωt)) = (W (ω0),W (ω1), . . . ,W (ωt)).
(55)

Once we have obtained (Λ(ω0),Λ(ω1), . . . ,Λ(ωt)) by the
FPWB algorithm, based on (30), we can compute

(Z(ω0), Z(ω1), . . . , Z(ωt−1))

= (Λ(ω0)S(ω0),Λ(ω1)S(ω1), . . . ,Λ(ωt−1)S(ωt−1)). (56)

If deg(Λ(x)) ≤ t and deg(Z(x)) < t, Λ(x) and Z(x)
can be computed based on (Λ(ω0),Λ(ω1), . . . ,Λ(ωt)) and
(Z(ω0), Z(ω1), . . . , Z(ωt−1)) by polynomial interpolation or
more efficiently by LCH-FFT [9].

We know from Section IV that for a shortened RS code as
given in Fig. 1-b), we have Λ1(x) = Λ(x) and Z1(x) = Z(x),
where Λ1(x) is an incomplete error locator polynomial and
Z1(x) is the associated error evaluator polynomial. Based on
the early-terminating PWB (EPWB) algorithm in Algorithm 3,
we present the frequency-domain EPWB (FEPWB) algorithm
in Algorithm 5. Note that the FEPWB algorithm applies only
to the shortened RS code in Fig. 2-b) such that ns ≥ 2m − k.
For other RS codes in Fig. 2, we cannot compute Z1(x) as
the FPWB algorithm that uses (56). If e ≤ t, the FEPWB

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 13

Algorithm 4: The frequency-domain PWB (FPWB)
algorithm

Input: (ωi, S(ωi)), 0 ≤ i ≤ 2t− 1.
Output: (Λ(ω0),Λ(ω1), . . . ,Λ(ωt))

1: Initialization:(
W

[0]
0 (ωi)

W
[0]
1 (ωi)

)
=

(
1
0

)
, 0 ≤ i ≤ t;

(
b
[0]
i

a
[0]
i

)
=(

−yi
1

)
, 0 ≤ i ≤ 2t− 1;

(
rank

[0]
0

rank
[0]
1

)
=

(
0
1

)
.

2: for r = 0, 1, . . . , 2t− 1 do
3: Let δ[r] =

(
(rank

[r]
0 < rank

[r]
1)&& (b

[r]
r =

0)
)
||
(
(rank

[r]
0 > rank

[r]
1)&& (a

[r]
r ̸= 0)

)
4: for i = 0, 1, . . . , 2t− 1 do

5:

(
b
[r+1]
i

a
[r+1]
i

)
=(

−a
[r]
r b

[r]
r

(ωi − ωr)(1− δ[r]) (ωi − ωr)δ
[r]

)(
b
[r]
i

a
[r]
i

)
6: end for;
7: for i = 0, 1, . . . , t do

8:

(
W

[r+1]
0 (ωi)

W
[r+1]
1 (ωi)

)
=(

−a
[r]
r b

[r]
r

(ωi − ωr)(1− δ[r]) (ωi − ωr)δ
[r]

)(
W

[r]
0 (ωi)

W
[r]
1 (ωi)

)
9: end for;

10: if δ[r] = 1 then

11:

(
rank

[r+1]
0

rank
[r+1]
1

)
=

(
rank

[r]
0

rank
[r]
1 + 2

)
12: else

13:

(
rank

[r+1]
0

rank
[r+1]
1

)
=

(
rank

[r]
1

rank
[r]
0 + 2

)
14: end if
15: if rank[2t]0 < rank

[2t]
1 then

16: return
(
W

[2t]
0 (ω0),W

[2t]
0 (ω1), . . . ,W

[2t]
0 (ωt)

)
17: else
18: return

(
W

[2t]
1 (ω0),W

[2t]
1 (ω1), . . . ,W

[2t]
1 (ωt)

)
19: end if
20: end for

algorithm outputs

(W
[r1]
0 (ω0),W

[r1]
0 (ω1), . . . ,W

[r1]
0 (ωt))

= (Λ1(ω0),Λ1(ω1), . . . ,Λ1(ωt)). (57)

However, the errors may occur in the positions {i : 0 ≤ i <
2m − k}, in which case we have Λ1(x) ̸= Λ(x) and Z1(x) ̸=
Z(x), which implies that

(Z1(ω0), Z1(ω1), . . . , Z1(ωt−1))

̸= (Λ1(ω0)S(ω0),Λ1(ω1)S(ω1), . . . ,Λ1(ωt−1)S(ωt−1)).
(58)

Consequently, we have no way to compute Z1(x).

Algorithm 5: The frequency-domain EPWB (FEPWB)
algorithm

Input: (ωi, S(ωi)), 0 ≤ i ≤ 2t− 1.
Output: (Λ1(ω0),Λ1(ω1), . . . ,Λ1(ωt))

1: Initialization:(
W

[0]
0 (ωi)

W
[0]
1 (ωi)

)
=

(
1
0

)
, 0 ≤ i ≤ t;

(
b
[0]
i

a
[0]
i

)
=(

−yi
1

)
, 0 ≤ i ≤ 2t− 1;

(
rank

[0]
0

rank
[0]
1

)
=

(
0
1

)
.

2: for r = 0, 1, . . . , 2t− 1 do
3: Let δ[r] =

(
rank

[r]
0 < rank

[r]
1)&& (b

[r]
r =

0)
)
||
(
(rank

[r]
0 > rank

[r]
1)&& (a

[r]
r ̸= 0)

)
4: for i = 0, 1, . . . , 2t− 1 do

5:

(
b
[r+1]
i

a
[r+1]
i

)
=(

−a
[r]
r b

[r]
r

(ωi − ωr)(1− δ[r]) (ωi − ωr)δ
[r]

)(
b
[r]
i

a
[r]
i

)
6: end for;
7: for i = 0, 1, . . . , t do

8:

(
W

[r+1]
0 (ωi)

W
[r+1]
1 (ωi)

)
=(

−a
[r]
r b

[r]
r

(ωi − ωr)(1− δ[r]) (ωi − ωr)δ
[r]

)(
W

[r]
0 (ωi)

W
[r]
1 (ωi)

)
9: end for;

10: if δ[r] = 1 then

11:

(
rank

[r+1]
0

rank
[r+1]
1

)
=

(
rank

[r]
0

rank
[r]
1 + 2

)
12: else

13:

(
rank0[r+1]

rank
[r+1]
1

)
=

(
rank

[r]
1

rank
[r]
0 + 2

)
14: end if
15: if ((rank[r+1]

1 = 2t+ 1) || (r = 2t− 1)) then
16: return

(
W

[r+1]
0 (ω0),W

[r+1]
0 (ω1), . . . ,W

[r+1]
0 (ωt)

)
17: end if
18: end for

B. Architectures

In this paper, when we speak of an architecture designed
based on a certain algorithm, we use the name of the algorithm
to designate the architecture. Based on the description of the
FPWB algorithm in Algorithm 4, we present a systolic archi-
tecture for the algorithm in Fig. 2. A systolic architecture refers
to a network of processor elements (PEs) that rhythmically
compute and pass data through the system [21]. It derived
its name from drawing an analogy to how blood rhythmically
flows through a biological heart as the data flows from memory
in a rhythmic fashion passing through many elements before
it returns to memory.

The FPWB architecture consists of two main blocks: dis-
crepancy computation (DC) block and error locator update
(ELU) block, as shown in the upper and lower part of Fig. 2-a),

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 14

CTRL

0

0

0

1 1 1

0 0 0

1 1 1

PE00 PE01

PE11 PE1tPE10

PE0t PE02t-1

1

()0S)0 ()1S)1 ()tS)t ()2 1t
S)2 1t2 12 1-

00 11 tt 2 1tt2 12 1-

()0)0L ()1)1L ()t)tL

DC-block

ELU-block

DD

DD

DD

rr

rré ùë û r

r
b
é ùë û r

r
a
é ùë û

DD

DD

rr

rré ùë û r

r
b
é ùë û r

r
a
é ùë û

()i)iL

ii

(a)

(b) (c)

0

1

0

1

0

1

0

1

0

1

0

1

r

sel
é ùë û

Fig. 2. The FPWB architecture. (a) The systolic architecture. (b) The structure for PE0. (c) The structure for PE1.

respectively. The DC block is responsible for updating a
[r]
i and

b
[r]
i for 0 ≤ i ≤ 2t− 1. It is an array of 2t PE0s, arranged as

PE00,PE01, . . . ,PE02t−1 in sequence. The structure of PE0i
is shown in Fig. 2-b), which accomplishes the following two
assignment operations (refer to Line 5 of Algorithm 4),

b
[r+1]
i = b[r]r a

[r]
i − a[r]r b

[r]
i , (59)

and

a
[r+1]
i =

{
(ωi − ωr)b

[r]
i , if δ[r] = 0;

(ωi − ωr)a
[r]
i , if δ[r] = 1.

(60)

Each PE0i consists of two adders, three multipliers, three
latches, and one multiplexer. The ELU block is responsible

for updating W
[r]
0 (ωi) and W

[r]
1 (ωi) for 0 ≤ i ≤ t. It is

an array of t + 1 PE1s, arranged as PE10,PE11, . . . ,PE1t in
sequence. The structure of PE1i is shown in Fig. 2-c), which
accomplishes the following two assignment operations (refer
to Line 8 of Algorithm 4),

W
[r+1]
0 (ωi) = b[r]r W

[r]
1 (ωi)− a[r]r W

[r]
0 (ωi), (61)

and

W
[r+1]
1 (ωi) =

{
(ωi − ωr)W

[r]
0 (ωi), if δ[r] = 0;

(ωi − ωr)W
[r]
1 (ωi), if δ[r] = 1.

(62)

Each PE1i consists of two adders, three multipliers, two
latches, and two multiplexers.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 15

TABLE IV
COMPARISONS OF VARIOUS ARCHITECTURES

Architectures Adders Multipliers Latches Muxes Clocks Tcrit-path

RiBM [12] 3t+ 1 6t+ 2 6t+ 2 3t+ 1 2t Tmult + Tadd
ePIBMA [13] 2t+ 1 4t+ 2 4t+ 2 6t+ 3 2t Tmult + Tadd

FPWB 6t+ 2 9t+ 3 8t+ 2 4t+ 2 2t Tmult + Tadd
FEPWB 6t+ 2 9t+ 3 8t+ 2 3t+ 1 t+ e Tmult + Tadd

It should be noted that (b[r]i , a
[r]
i) and (W

[r]
0 (ωi),W

[r]
1 (ωi))

have the same update rule. Here, we use a heterogeneous
design, using two different PE structures separately updating
them. This is based on the following considerations. To single
out b

[r]
r and a

[r]
r as broadcast signals, the updated b

[r]
i and

a
[r]
i are shifted leftwards so that b[r]r and a

[r]
r can always be

fetched out from PE00 that is the leftmost PE0. An advantage
of the design is that the critical path can be improved because
the circuitry for selecting b

[r]
r and a

[r]
r can be eliminated in

the critical path. On the other hand, the updated W
[r]
0 (ωi)

and W
[r]
1 (ωi) are not shifted leftwards but left in the original

place. This is to save power consumption. Moreover, if the
early termination is adopted, as discussed below, the algorithm
output can be fetched out from fixed positions.

The FEPWB algorithm differs from the FPWB algorithm
in the early termination. The algorithm difference has a slight
impact on the architecture design. The control unit needs
to be modified to signal the early termination. Besides, one
multiplexer in PE0i in Fig. 2-c) shall be removed because the
output of the FEPWB algorithm is not selective as compared
with the FPWB algorithm. In light of the slight difference
between the FPWB and the FEPWB architectures, it is easy
to develop a scalable architecture that allows to switch between
the functions of the two architectures.

Table IV compares various architectures, including RiBM
[12], ePIBMA [13], FPWB, and FEPWB, in terms of resource,
clock, and critical path. The RiBM and ePIBMA architectures
were designed by reformulating the BM algorithm. Clearly,
all the four architectures have the same critical path, i.e., one
adder and one multiplier. The proposed FPWB and FEPWB
architectures represent the most efficient architectures for the
WB algorithm by far. For high-speed parallel implementation,
although FPWB and FEPWB have higher complexity than
RiBM and ePIBMA, the overall implementation complexity of
the FFT-based decoding using FEPWB or FEPWB is expected
to be considerably lower than that of the conventional decod-
ing using RiBM or ePIBMA due to significant complexity
advantage in the syndrome computation and the Chien search
by using LCH-FFT. See [9] for detailed examples.

VI. CONCLUSION

In this paper, we present four new variants of the WB
algorithm, namely, parallel WB (PWB) algorithm, early-
terminating PWB (EPWB) algorithm, frequency-domain PWB
(FPWB) algorithm, and frequency-domain EPWB (FEPWB)
algorithm. The concept of incomplete error locator polyno-
mial is introduced to show that the PWB algorithm can be
terminated early. The similarities and differences between the
WB algorithm and the BM algorithm are compared in terms

of early-termination mechanism. A systolic architecture for the
FPWB algorithm is developed, which can be easily adapted to
the FEPWB algorithm. This provides an efficient key equation
solver for the FFT-based RS decoding [7].

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
the anonymous reviewers for their excellent comments and
suggestions that helped us improve this paper.

REFERENCES

[1] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge, U.K.:
Cambridge Univ. Press, 2003.

[2] L. R. Welch and E. R. Berlekamp, “Error correction for algebraic block
codes,” U.S. Patent 4,633,470, Dec. 1986.

[3] T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

[4] V. Guruswami, A. Rudra, and M. Sudan, Essential Coding The-
ory. Draft available at https://cse.buffalo.edu/faculty/atri/courses/coding-
theory/book/.

[5] S.-J. Lin, W.-H. Chung, and Y. S. Han, “Novel polynomial basis and its
application to Reed–Solomon erasure codes,” in Proc. IEEE 55th Annu.
Symp. Found. Comput. Sci. (FOCS), Oct. 2014, pp. 316–325.

[6] S.-J. Lin, T. Y. Al-Naffouri, Y. S. Han, and W.-H. Chung, “Novel
polynomial basis with fast Fourier transform and its application to Reed–
Solomon erasure codes,” IEEE Trans. Inf. Theory, vol. 62, no. 11, pp.
6284–6299, Nov. 2016.

[7] S.-J. Lin, T. Y. Al-Naffouri, and Y. S. Han, “FFT algorithm for binary
extension finite fields and its application to Reed–Solomon codes,” IEEE
Trans. Inf. Theory, vol. 62, no. 10, pp. 5343–5358, Oct. 2016.

[8] N. Tang and Y. Lin, “Fast encoding and decoding algorithms for arbitrary
(n, k) Reed–Solomon codes over F2m ,” IEEE Commun. Lett., vol. 24,
no. 4, pp. 716–719, Apr. 2020.

[9] N. Tang and Y. S. Han, “A new decoding method for Reed–Solomon
codes based on FFT and modular approach,” IEEE Trans. Commun., vol.
70, no. 12, pp. 7790–7801, Oct. 2022.

[10] N. Tang and Y. S. Han, “New decoding of Reed–Solomon
codes based on FFT and modular approach,” [Online]. Available:
https://arxiv.org/abs/2207.11079 (The arxiv version provides more details
than [9])

[11] D. Dabiri and I. F. Blake, “Fast parallel algorithms for decoding Reed-
Solomon codes based on remainder polynomials, ” IEEE Trans. Inf.
Theory, vol. 41, no. 4, pp. 873–885, Apr. 1995.

[12] D. V. Sarwate and N. R. Shanbhag, “High-speed architectures for Reed–
Solomon decoders,” IEEE Trans. VLSI Syst., vol. 9, no. 5, pp. 641–655,
Oct. 2001.

[13] Y. Wu, “New scalable decoder architectures for Reed–Solomon codes,”
IEEE Trans. Commun., vol. 63, no. 8, pp. 2741–2761, Aug. 2015.

[14] K.-K. Tzeng, C. R. P. Hartmann, and R.-T. Chien, “Some notes on
iterative decoding,” in Proc. 9th Annu. Allerton Conf. Circuit and System
Theory, 1971, pp. 689–695.

[15] C.-L. Chen, “High-speed decoding of BCH codes,” IEEE Trans. Inf.
Theory, vol. IT-27, no. 2, pp. 254–256, Mar. 1981.

[16] K. Imamura and W. Yoshida, “A simple derivation of the Berlekamp–
Massey algorithm and some applications,” IEEE Trans. Inf. Theory, vol.
33, no. 1, pp. 146–150, Jan. 1987.

[17] C.-W. Liu and C.-C. Lu, “A view of Gaussian elimination applied to
early-stopped Berlekamp–Massey algorithm,” IEEE Trans. Commun., vol.
55, no. 6, pp. 1131–1143, Jun. 2007.

[18] X. Ma and X.-M. Wang, “On the minimal interpolation problem and
decoding RS codes,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1573–
1580, Jul. 2000.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXX 2025 16

[19] C. Chen, N. Tang, Y. S. Han, and B. Bai, “On the equivalence between
the Welch–Berlekamp algorithm and the modular approach algorithm,” in
2023 IEEE/CIC International Conference on Communications in China
(ICCC Workshops), Sept. 2023, pp. 1–5.

[20] C. Chen, Y. S. Han, N. Tang, S.-J. Lin, B. Bai, and X. Ma, “An early-
termination method for the Welch–Berlekamp algorithm,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Taipei, Taiwan, Jun. 2023, pp. 815–819.

[21] H. T. Kung, “Why systolic architectures?”, Computer, vol. 15, no. 1,
pp. 37–46, Jan. 1982.

Chao Chen received the Ph.D. degree in communication and information
systems from Xidian University, China, in 2010. From 2010 to 2014, he was
an Engineer with China Academy of Space Technology (CAST), Xi’an. From
2014 to 2015, he was a Postdoctoral Fellow with Institute of Network Coding
(INC), The Chinese University of Hong Kong. He is currently an associate
Professor with the State Key Laboratory of Integrated Services Networks
(ISN), Xidian University, China. His research interests include channel coding
and source coding.

Yunghsiang S. Han (Fellow, IEEE) was born in Taipei, Taiwan, in 1962.
He received the B.Sc. and M.Sc. degrees in electrical engineering from the
National Tsing Hua University, Hsinchu, Taiwan, in 1984 and 1986, respec
tively, and the Ph.D. degree from the School of Computer and Information
Science, Syracuse University, Syracuse, NY, USA, in 1993. From 1986 to
1988, he was a Lecturer at the Ming-Hsin Engineering College, Hsinchu. He
was a Teaching Assistant from 1989 to 1992, and a Research Associate with
the School of Computer and Information Science, Syracuse University, from
1992 to 1993. From 1993 to 1997, he was an Associate Professor with the
Department of Electronic Engineering, Hua Fan College of Humanities and
Technology, Taipei Hsien, Taiwan. He was with the Department of Computer
Science and Information Engineering, National Chi Nan University, Nantou,
Taiwan, from 1997 to 2004. He was promoted to a Professor in 1998.
He was a Visiting Scholar with the Department of Electrical Engineering,
University of Hawaii at Manoa, Honolulu, HI, USA, from June 2001 to
October 2001; the SUPRIA Visiting Research Scholar with the Department of
Electrical Engineering and Computer Science and the CASECenter, Syracuse
University, from September 2002 to January 2004 and from July 2012 to
June 2013; and a Visiting Scholar with the Department of Electrical and
Computer Engineering, The University of Texas at Austin, Austin, TX, USA,
from August 2008 to June 2009. He was with the Graduate Institute of
Communication Engineering, National Taipei University, Taipei, from August
2004 to July 2010. From August 2010 to January 2017, he was a Chair
Professor with the Department of Electrical Engineering, National Taiwan
University of Science and Technology. He has been a Chair Professor at
the National Taipei University since February 2015. From February 2017
to February 2021, he was with the School of Electrical Engineering and
Intelligentization, Dongguan University of Technology, China. He is currently
with the Shenzhen Institute for Advanced Study, University of Electronic
Science and Technology of China. His research interests include error-control
coding, wireless networks, and security. He was a Winner of the 1994 Syracuse
University Doctoral Prize. One of his papers won the prestigious 2013 ACM
CCS Test-of-Time Award in Cybersecurity.

Nianqi Tang received the Ph.D. degree in communication and information
systems from Xidian University, China, in 2019. From 2019 to 2023, he
was a Senior Engineer with Huawei Technologies Co., Ltd. Since 2023, he
has been an assistant professor with the Shenzhen Institute for Advanced
Study, University of Electronic Science and Technology of China. His research
interests include error control coding, network coding, and information theory.

Xiao Ma (Member, IEEE) received the Ph.D. degree in communication and
information systems from Xidian University, China, in 2000. From 2000 to
2002, he was a Post-Doctoral Fellow with Harvard University, Cambridge,
MA, USA. From 2002 to 2004, he was a Research Fellow with the City
University of Hong Kong. He is currently a Professor with the School of
Computer Science and Engineering, Sun Yat-sen University, Guangzhou,
China. His research interests include information theory, channel coding
theory and their applications to communication systems, and digital recording
systems.

Baoming Bai (Senior Member, IEEE) received the B.S. degree from the
Northwest Telecommunications Engineering Institute, China, in 1987, and
the M.S. and Ph.D. degrees in communication engineering from Xidian
University, China, in 1990 and 2000, respectively. From 2000 to 2003, he
was a Senior Research Assistant at the Department of Electronic Engineering,
City University of Hong Kong. Since April 2003, he has been with the State
Key Laboratory of Integrated Services Networks (ISN), School of Telecom
munication Engineering, Xidian University, China, where he is currently a
Professor. In 2005, he was with the University of California, Davis, CA,
USA, as a Visiting Scholar. In 2018, he spent one month as a Senior Visiting
Fellow at McMaster University, Ontario, Canada. Dr. Bai co-authored the
book Channel Coding for 5G (in Chinese, 2020). His research interests include
information theory and channel coding, wireless communication, and quantum
communication. He received the Best Paper Award from the CIC/IEEE China
Communications, in 2018.

