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Reed-Solomon Codes Construction (1)

• The first construction of Reed-solomon (RS) codes is

simply to evaluate the information polynomials at all the

non-zero elements of finite field GF (qm).

• Let α be a primitive element in GF (qm) and let

n = qm − 1.

• Let u(x) = u0 + u1x+ · · ·+ uk−1x
k−1 be the information

polynomial, where ui ∈ GF (qm) for all 0 ≤ i ≤ k − 1.

• The encoding is defined by the mapping ρ : u(x) −→ v by

(v0, v1, . . . , vn−1) = (u(1), u(α), u(α2), . . . , u(αn−1)).

• The RS code of length n and dimensional k over GF (qm)

is the image under all polynomials in GF (qm)[x] of
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degree less than or equal to k − 1.

• The minimum distance of an (n, k) RS code is

dmin = n− k + 1. It can be proved by follows.

• Since u(x) has at most k − 1 roots, there are at most

k − 1 zero positions in each nonzero codeword. Hence,

dmin ≥ n− k + 1. By the Singleton bound,

dmin ≤ n− k + 1. So dmin = n− k + 1.
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Reed-Solomon Codes Construction (2)

• The RS codes can be constructed by finding their

generator polynomials.

• In GF (qm), the minimum polynomial for any element αi

is simply (x− αi).

• Let g(x) = (x− αb)(x− αb+1) · · · (x− αb+2t−1) be the

generator polynomial for the RS code. Since the degree

of g(x) is exactly equal to 2t, by the BCH bound,

n = qm − 1, n− k = 2t, and dmin ≥ n− k + 1.

• Again, by the Singleton bound, dmin = n− k + 1.

• Considering GF (8) with the primitive polynomial
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x3 + x+ 1. Let α be a root of x3 + x+ 1. Then

g(x) = (x−α)(x−α2)(x−α3)(x−α4) = x4+α3x3+x2+αx+α3

will generate a (7, 3) RS code with dmin = 2× 2 + 1 = 5.

The number of codewords of this code is 83 = 512.
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Encoding Reed-Solomon Codes

• RS codes can be encoded just as any other cyclic code.

• The systematic encoding process is

v(x) = u(x)xn−k−
[
u(x)xn−k mod g(x)

]
.

• Typically, the code is over GF (2m) for some m. The

information symbols ui can be formed by grabbing m bits

of data, then interpreting these as the vector

representation of the GF (2m) elements.
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Weight Distributions for RS Codes

• A code is called maximum distance separable (MDS) code

when its dmin is equal to n− k + 1. A family of

well-known MDS nonbinary codes is Reed-Solomon codes.

• The dual code of any (n, k) MDS code C is also an

(n, n− k) MDS code with dmin = k + 1.

• It can be proved as follows: We need to prove that the

(n, n− k) dual code C⊥ , which is generated by the

parity-check matrix H of C, has dmin = k + 1. Let

c ∈ C⊥ have weight w, 0 < w ≤ k. Since w ≤ k, there are

at least n− k coordinates of c are zero. Let Hs be an

(n− k)× (n− k) submatrix formed by any collection of

n− k columns of H in the above coordinates. Since the
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row rank of Hs is less than n− k and consequently the

column rank is also less than n− k. Therefore, we have

found n− k columns of H are linear dependent which

contradicts to the facts that dmin of C is n− k + 1 and

then any combination of n− k columns of H is linear

independent.

• Any combination of k symbols of codewords in an MDS

code may be used as information symbols in a systematic

representation.

• It can be proved as follows: Let G be the k × n generator

matrix of an MDS code C. Then G is the parity check

matrix for C⊥. Since C⊥ has minimum distance k + 1,

any combination of k columns of G must be linearly

independent . Thus any k × k submatrix of G must be
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nonsingular. So, by row reduction on G, any k × k

submatrix can be reduced to the k × k identity matrix.

• The number of codewords in a q-ary (n, k) MDS code C

of weight dmin = n− k + 1 is

An−k+1 = (q−1)

(
n

n− k + 1

)
.

• It can be proved as follows: Select an arbitrary set of k

coordinates as information positions for an information u

of weight 1. The systemic encoding for these coordinates

thus has k − 1 zeros in it. Since the minimum distance of

the code is n− k + 1, all the n− k parity check symbols

must be nonzero. Since there are
(

n
k−1

)
=

(
n

n−k+1

)
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different ways of selecting the k − 1 zero coordinates and

q − 1 ways of selecting the nonzero information symbols,

An−k+1 = (q − 1)

(
n

n− k + 1

)
.

• The number of codewords of weight j in a q-qry (n, k)

MDS code is

Aj =

(
n

j

)
(q − 1)

j−dmin∑
i=0

(−1)i
(
j − 1

i

)
qj−dmin−i.
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