Introduction to Reed-Solomon Codes[1]

Yunghsiang S. Han

Department of Electrical Engineering, National Taiwan University of Science and Technology Taiwan E-mail: yshan@mail.ntust.edu.tw

Reed-Solomon Codes Construction (1)

- The first construction of Reed-solomon (RS) codes is simply to evaluate the information polynomials at all the non-zero elements of finite field *GF*(*q ^m*).
- Let α be a primitive element in $GF(q^m)$ and let $n = q^m - 1.$
- Let $u(x) = u_0 + u_1x + \cdots + u_{k-1}x^{k-1}$ be the information polynomial, where $u_i \in GF(q^m)$ for all $0 \le i \le k - 1$.
- The encoding is defined by the mapping $\rho : u(x) \longrightarrow v$ by

 $(v_0, v_1, \ldots, v_{n-1}) = (u(1), u(\alpha), u(\alpha^2), \ldots, u(\alpha^{n-1})).$

• The RS code of length *n* and dimensional *k* over $GF(q^m)$ is the image under all polynomials in $GF(q^m)[x]$ of

- *•* The minimum distance of an (*n, k*) RS code is $d_{min} = n - k + 1$. It can be proved by follows.
- Since $u(x)$ has at most $k-1$ roots, there are at most *k* − 1 zero positions in each nonzero codeword. Hence, $d_{min} \geq n - k + 1$. By the Singleton bound, $d_{min} \leq n - k + 1$. So $d_{min} = n - k + 1$.

Reed-Solomon Codes Construction (2)

- The RS codes can be constructed by finding their generator polynomials.
- In $GF(q^m)$, the minimum polynomial for any element α^i is simply $(x - \alpha^i)$.
- Let $g(x) = (x \alpha^b)(x \alpha^{b+1}) \cdots (x \alpha^{b+2t-1})$ be the generator polynomial for the RS code. Since the degree of $g(x)$ is exactly equal to 2t, by the BCH bound, $n = q^m - 1$, $n - k = 2t$, and $d_{min} \ge n - k + 1$.
- Again, by the Singleton bound, $d_{min} = n k + 1$.
- Considering $GF(8)$ with the primitive polynomial

$$
x^{3} + x + 1.
$$
 Let α be a root of $x^{3} + x + 1$. Then
\n
$$
g(x) = (x - \alpha)(x - \alpha^{2})(x - \alpha^{3})(x - \alpha^{4}) = x^{4} + \alpha^{3}x^{3} + x^{2} + \alpha x + \alpha^{3}
$$
\nwill generate a (7,3) RS code with $d_{min} = 2 \times 2 + 1 = 5$.
\nThe number of codewords of this code is $8^{3} = 512$.

Department of Electrical Engineering, National Taiwan University of Science and Technology

Encoding Reed-Solomon Codes

- RS codes can be encoded just as any other cyclic code.
- The systematic encoding process is

$$
v(x) = u(x)x^{n-k} - \left[u(x)x^{n-k} \bmod g(x)\right].
$$

• Typically, the code is over *GF*(2*m*) for some *^m*. The information symbols u_i can be formed by grabbing m bits of data, then interpreting these as the vector representation of the $GF(2^m)$ elements.

Weight Distributions for RS Codes

- *•* A code is called *maximum distance separable* (MDS) code when its d_{min} is equal to $n - k + 1$. A family of well-known MDS nonbinary codes is Reed-Solomon codes.
- *•* The dual code of any (*n, k*) MDS code *C* is also an $(n, n - k)$ MDS code with $d_{min} = k + 1$.
- *•* It can be proved as follows: We need to prove that the $(n, n - k)$ dual code C^{\perp} , which is generated by the parity-check matrix *H* of *C*, has $d_{min} = k + 1$. Let $c \in \mathbb{C}^{\perp}$ have weight *w*, $0 < w \leq k$. Since $w \leq k$, there are at least $n - k$ coordinates of c are zero. Let H_s be an $(n - k) \times (n - k)$ submatrix formed by any collection of $n-k$ columns of *H* in the above coordinates. Since the

row rank of H_s is less than $n-k$ and consequently the column rank is also less than $n - k$. Therefore, we have found $n - k$ columns of H are linear dependent which contradicts to the facts that d_{min} of *C* is $n - k + 1$ and then any combination of $n - k$ columns of *H* is linear independent.

- *•* Any combination of *k* symbols of codewords in an MDS code may be used as information symbols in a systematic representation.
- It can be proved as follows: Let G be the $k \times n$ generator matrix of an MDS code C . Then G is the parity check matrix for C^{\perp} . Since C^{\perp} has minimum distance $k+1$, any combination of *k* columns of *G* must be linearly independent. Thus any $k \times k$ submatrix of *G* must be

nonsingular. So, by row reduction on G , any $k \times k$ submatrix can be reduced to the $k \times k$ identity matrix.

• The number of codewords in a *q*-ary (*n, k*) MDS code *C* of weight $d_{min} = n - k + 1$ is

$$
A_{n-k+1} = (q-1) \binom{n}{n-k+1}.
$$

• It can be proved as follows: Select an arbitrary set of *k* coordinates as information positions for an information *u* of weight 1. The systemic encoding for these coordinates thus has $k-1$ zeros in it. Since the minimum distance of the code is $n - k + 1$, all the $n - k$ parity check symbols must be nonzero. Since there are $\binom{n}{k}$ *k−*1 $) = {n \choose n-k+1}$

different ways of selecting the *k −* 1 zero coordinates and *q* − 1 ways of selecting the nonzero information symbols,

$$
A_{n-k+1} = (q-1) \binom{n}{n-k+1}.
$$

• The number of codewords of weight *j* in a *q*-qry (*n, k*) MDS code is

$$
A_j = {n \choose j} (q-1) \sum_{i=0}^{j-d_{min}} (-1)^i {j-1 \choose i} q^{j-d_{min}-i}.
$$

Department of Electrical Engineering, National Taiwan University of Science and Technology

References

[1] T.K. Moon, *Error Correction Coding: Mathematical Methods and Algorithms*, Hoboken, NJ: John Wiley & Sons, Inc., 2005.