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Abstract—In the field of lossless source coding, universal
coding of integers (UCI) and generalized universal coding of
integers (GUCI) are binary codes that are suitable for probability
distributions without prior knowledge. UCI C is defined as a
prefix coding in which the constant expansion factor KC times
max{1, H(P )} is greater than or equal to the expected codeword
length, where P is the decreasing probability distribution of the
source and H(P ) is the entropy of P . Since P is decreasing,
when the set of codewords of the prefix code C is determined,
the length of the n+1-th codeword of the prefix code C is greater
than or equal to the length of the n-th codeword for any positive
integer n, at which time the expected codeword length of C is
minimized, and C is said to be minimal. GUCI G is defined as
a prefix variable-to-variable length (VV) coding for which the
constant expansion factor KG times H(P ) is greater than or
equal to the coding rate. In this paper, we prove two important
theorems for UCI. First, we provide and prove the necessary
and sufficient conditions for a minimal prefix code to be UCI.
Second, we provide the first proof of an essential theorem for VV
codes. This theorem can reveal the connection between UCI and
GUCI and prove the converse part of Shannon’s first theorem
concerning VV codes.

Index Terms—Variable-length codes, Source coding, Universal
coding of integers.

I. INTRODUCTION

A variable-length code is a source code that encodes a
single source symbol into variable-length binary bits. Huffman
codes [1] are variable-length codes that provide the best com-
pression effect when the underlying probability distribution
is known. However, in reality, the probability distributions of
most sources are unknown and difficult to measure. Therefore,
in 1975, Elias [2] considered the coding problem of universal
codes. This class of universal codes is called universal coding
of integers (UCI). A variable-length code is termed a prefix
code if no codeword is a prefix of any other codeword.

Suppose that the discrete memoryless source S = (A, P ) is
considered, where A ≜ N = {1, 2, · · · , r, · · · } is a countable
alphabet and P is a probability distribution that decreases
over A (i.e.,

∑∞
r=1 P (r) = 1, and 0 ≤ P (r + 1) ≤ P (r)

for all r ∈ A). The distributions considered in this paper
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are all decreasing probability distributions. Let C denote a
prefix code for the discrete memoryless source S = (A, P ),
and let LC(·) be a length function such that LC(r) de-
notes the length of the r-th codeword for all r ∈ A. Let
H(P ) ≜ −

∑∞
r=1 P (r) log2 P (r)1 be the entropy of P , and let

EP (LC) ≜
∑∞

r=1 P (r)LC(r) denote the expected codeword
length for C. Elias [2] defined that C is said to be universal if
there exists a constant KC such that

EP (LC)

max{1, H(P )}
≤ KC (1)

for all P with H(P ) < ∞. KC is termed the expansion
factor of C. Elias found that when the set of codewords
{C(1), C(2), · · · , C(r), · · · } of the prefix code C is determined,
EP (LC) is minimized when the codeword length satisfies

LC(1) ≤ LC(2) ≤ · · · ≤ LC(r) ≤ · · · .

Elias [2] defined that C is said to be minimal if it satisfies
LC(r + 1) ≥ LC(r) for all r ∈ A. Therefore, it is reasonable
to consider minimal prefix codes when studying UCI.

Since this pioneering work was published, many UCI vari-
ants have been constructed, and they can be broadly divided
into two categories [3, 4]: (1) flag strategy UCIs (see [5–
7]), (2) message length strategy UCIs (see [8–11]). Today,
UCIs are applied in many applications, such as the inverted
file index [12], H.265 video coding standards [13], evolving
secret sharing [14], and biological sequence data compres-
sion [15, 16].

Recently, Yan et al. [17, 18] made it possible to construct
a new class of codes that satisfies an inequality similar to

EP (LC)

H(P )
≤ KC .

They solved the problem by introducing variable-to-variable
length (VV) codes, where the VV codes encode variable-
length input chunks as variable-length codewords. They [17,
18] defined generalized universal coding of integers (GUCI)
as follows. A VV code G with a prefix property is said to be
generalized universal if there exists a constant KG such that

RG

H(P )
≤ KG (2)

for all P with 0 < H(P ) < ∞, where RG denotes the coding
rate of G and KG is termed the expansion factor of G. The
coding rate and the prefix property of VV codes are defined
in Section II.

1We define P (r) log2 P (r) = 0 when P (r) = 0.
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In this paper, we prove two important theorems for UCI.
First, we provide and prove the necessary and sufficient
conditions for a minimal prefix code to be UCI. Second,
we provide a proof of an essential theorem for VV codes.
This theorem was first introduced by Nishiara et al. [19], but
they did not present its proof. The theorem was used in their
paper [19] to prove a coding theorem for VV codes. Moreover,
this theorem can reveal the connection between UCI and GUCI
and prove the converse part of Shannon’s first theorem about
VV codes [17, 18]. The main contributions of this study are
summarized below.

1) We are the first to propose the necessary and sufficient
conditions for a minimal prefix code to be UCI.

2) We are the first to prove an essential theorem for
VV codes, which characterizes the relationship between
dictionary entropy H(D) and Shannon entropy H(P )
(see Theorem 5 in Section III).

In the remainder of this paper, Section II presents some
background knowledge. Section III provides the two main
theorems to be proven in this paper. These two theorems are
subsequently proven in Section IV and Section V. Section VI
summarizes this work.

II. PRELIMINARIES

In this section, we first introduce two lemmas related to
UCI and then some definitions concerning variable-to-fixed
length (VF) codes and VV codes. Let |y| denote the length
of a string y. A dictionary D denotes a set of some finite-
length strings; that is, D ⊆ A∗, where A∗ denotes the set of
all finite-length strings over A. Let F denote the set of all
infinite-length sequences.

A. Two lemmas related to UCI

We begin with two lemmas related to UCI.

Lemma 1 ([20]). Let P be a decreasing probability distribu-
tion, and let H(P ) < ∞. Then,

∞∑
r=1

P (r) log2 r ≤ H(P ) < ∞.

Proof. Because P is decreasing,

rP (r) ≤
r∑

z=1

P (z) ≤
∞∑
z=1

P (z) = 1.

Thus, we have that log2 r ≤ − log2 P (r) for all r ∈ A and
P (r) ̸= 0. Furthermore, we obtain

∞∑
r=1

P (r) log2 r ≤ −
∞∑
r=1

P (r) log2 P (r) = H(P ) < ∞.

A sufficient condition for a prefix code to be UCI is obtained
using Lemma 1.

Lemma 2 ([10, 21]). Let C be a prefix code. If there are two
constants R1 and R2 such that LC(r) ≤ R1 + R2 log2 r for
all r ∈ A, then C is UCI.

Proof. For any probability distribution P , we have

EP (LC) =

∞∑
r=1

P (r)LC(r)

≤
∞∑
r=1

[
R1P (r) +R2P (r) log2 r

]
= R1 +R2

∞∑
r=1

P (r) log2 r

(a)

≤ R1 +R2H(P ),

where (a) is derived from Lemma 1. Thus, we obtain

EP (LC)

max{1, H(P )}
≤ R1 +R2H(P )

max{1, H(P )}
≤ R1 +R2.

Therefore, C is UCI, and R1 + R2 is an expansion factor of
C.

B. Variable-to-fixed length codes

VF codes refer to source codes that map variable-length
input chunks to fixed-length codewords. A VF encoder com-
prises a string encoder and a parser. The encoding process is
as follows. The parser first partitions an input sequence y into
a series of concatenated chunks y1, y2, · · · from a dictionary
D; that is, yi ∈ D. Then, the string encoder maps each chunk
yi ∈ D to a fixed-length string. Below, we describe the two
properties that a dictionary D may have.

Definition 1 ([22]). 1) Suppose that yi and yj are any two
different elements contained in the dictionary D. If yi ∈
D is not a prefix of yj ∈ D, then D is called proper.

2) Suppose that y is any infinite-length sequence. A dic-
tionary D is said to be complete if y has a prefix in
D.

For example, the dictionary D = {0, 1, 20, 21, 22} defined
over {0, 1, 2} is clearly proper. Suppose that y is an infinite-
length sequence. If 0 or 1 is the first element of y, then 0 ∈ D
or 1 ∈ D is its prefix; if 2 is the first element of y, then
20 ∈ D, 21 ∈ D or 22 ∈ D is its prefix. Thus, the dictionary
D is complete.

C. Variable-to-variable length codes

Fixed-to-variable length (FV) codes encode fixed-length
input chunks as variable-length codewords. A VV code is a
concatenation of VF and FV codes. The encoding process for
a VV code is as follows.

First, the VF encoder divides the input sequence into chunks
with various lengths, and each chunk is mapped to a fixed-
length string. Second, the FV encoder then encodes these
constant-length strings as variable-length codewords.

Suppose that d = d1d2 · · · dn is a finite-length sequence and
that y = y1y2 · · · is an infinite-length sequence, where di ∈ A
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and yj ∈ A. In this paper, source S = (A, P ) is a discrete
memoryless source; then, we obtain that

P (d) =

n∏
i=1

P (di),

P (y) =

∞∏
j=1

P (yj).

The code rate and almost surely complete (ASC) dictionary
for VV codes are defined as follows.

Definition 2 ([19]). 1) A dictionary D is said to be ASC if
the probability that D has the prefix of an infinite-length
sequence is 1; that is,∑

y∈B
P (y) = 1,

where

B ≜ {y ∈ F | ∃d ∈ D, such that d is a prefix of y}.

2) Suppose that G is a VV code with a VV encoder ξ, and
an ASC and proper dictionary D. Then, the coding rate
of G is

RG ≜

∑
d∈D P (d)|ξ(d)|∑
d∈D P (d)|d|

.

When the dictionary D of the VV code G is equal to the
alphabet A, i.e., the VV code G is a variable-length code, we
obtain

RG =

∑
r∈A P (r)|ξ(r)|∑

r∈A P (r)
= EP (LG).

An example of a dictionary D over {0, 1} that is proper and
ASC is D = {0, 10, 110, 1110, · · · }. Note that the dictionary
D is not complete since the infinite sequence containing all
ones has no prefix in the dictionary D.

The VV code G with a VV encoder ξ and a dictionary D
possesses the prefix property, which means that ξ(z) is not a
prefix of ξ(y) for all y ̸= z ∈ D.

D. Three related theorems

First, two theorems related to Theorem 5 in Section III are
presented.

Theorem 1 (Lemma 5 in [22]). Let S = (Jc, P ) be a discrete
memoryless source with a finite alphabet Jc of size c. Let

l(D) ≜
∑
d∈D

P (d)|d|,

H(D) ≜ −
∑
d∈D

P (d) log2 P (d).

Suppose that C is a VF code with a complete and proper
dictionary D; then,

H(D) = l(D)H(P ).

Theorem 2 (Theorem 1 in [23]). Let T denote any stopping
time for a sequence of independent identically distributed ran-
dom variables Y1, Y2, · · · . Disregarding the cases ET = ∞
and H(Y1) = 0; then,

H(Y T ) = (ET )H(Y1) +H(T |Y ∞).

Theorem 1 is close in form to the formulation of Theorem 5
(which will be proven in this paper), wherea Theorem 2 still
seems quite different. In Section III, we explain how the above
two theorems are related to Theorem 5.

Second, the converse part of Shannon’s first theorem about
VV codes is given below.

Theorem 3 ([17, 18]). Consider a discrete memoryless source
S = (A, P ), where A is a countable alphabet and H(P ) <
∞. If a VV code G possesses the prefix property, then RG ≥
H(P ).

III. RESULTS

We provide the main conclusions to be proven in this
paper. First, we are the first to propose the necessary and
sufficient conditions for a minimal prefix code to be UCI.
These conditions are shown in Theorem 4.

Theorem 4. Suppose that C is a minimal prefix code; then,
the following statements are equivalent:

(a) C is UCI.
(b) There are two constants R1 and R2 such that LC(r) ≤

R1 +R2⌊log2 r⌋ for all r ∈ A.
(c) There are two constants R1 and R2 such that LC(r) ≤

R1 +R2 log2 r for all r ∈ A.

Remark 1 in Section IV tells us that when a prefix code
is not minimal, the necessary and sufficient conditions do not
hold. Specifically, when C is a non-minimal prefix code, (a) in
Theorem 4 is a necessary but not sufficient condition for (b)
or (c) of Theorem 4; that is, when C is a non-minimal prefix
code, (b) or (c) of Theorem 4 leads to (a) of Theorem 4, but
(a) does not lead to (b) or (c). However, any non-minimal
prefix code C1 can be obtained by adjusting the order of the
corresponding codewords to obtain a minimal prefix code C2
with the same set of codewords. Therefore, it is possible to
change the non-minimal prefix code C1 to the minimal prefix
code C2, after which the necessary and sufficient conditions
can be applied.

Next, we present the following Theorem 5. This theorem
reveals the connection between UCI and GUCI (see [17],
Theorems 2 and 6) and proves the converse part of Shannon’s
first theorem about VV codes (see [17], Theorem 1).

Theorem 5 (Lemma 1 in [19]). Let S = (A, P ) be a discrete
memoryless source with a countable alphabet A and entropy
H(P ) < ∞. Suppose that G is a VV code with an ASC and
proper dictionary D; then,

H(D) = l(D)H(P ), (3)

where l(D) =
∑

d∈D P (d)|d| is the average length of an
element in D and H(D) = −

∑
d∈D P (d) log2 P (d) is the

entropy of D.

Theorem 5 was first introduced by Nishiara et al. (Lemma
1 in [19]), but they did not provide a corresponding proof.
The proof regarding the proper and complete dictionary and
the finite alphabet can be found in [22]. Nishiara et al. [19]
claimed that [23] provided a proof of the proper and ASC dic-
tionary and the finite alphabet version of Theorem 5. However,
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Ekroot et al. [23] studied the entropy of randomly stopped
sequences, and some differences exist between the forms of
Theorem 5 and Theorem 2. In addition, a similar theorem
called conservation of entropy [24] was used for memory
sources. Unlike previous work, the complete proof presented
in Section V is the first to proof of the infinite countable
alphabet version of Theorem 5. Note that when the alphabet
is infinitely countable, the proof of Theorem 5 is nontrivial
and cannot be obtained directly from the conclusions of the
relevant references [19, 22, 23]. In addition, Shannon [25]
proved Shannon’s first theorem about fixed-to-fixed length
codes, and the famous textbook on information theory [26, 27]
provided Shannon’s first theorem about FV codes. The proof
of the converse part of Shannon’s first theorem about VV
codes [17] (i.e., Theorem 3) is necessary to use Theorem 5.
Therefore, a complete proof of Theorem 5 is valuable.

IV. PROOF OF THEOREM 4

We provide an auxiliary lemma before proving Theorem 4.

Lemma 3. Let C be a minimal UCI and let K be an expansion
factor of C. Then, we have that

LC(r) ≤ K + 5K⌊log2 r⌋

for all r ∈ A.

Proof. This lemma is proven by contradiction. Suppose that
there is an integer z0 ∈ A such that

LC(z0) ≥ K + 5K⌊log2 z0⌋+ 1.

Let T ≜ ⌊log2 z0⌋; then, 2T ≤ z0 ≤ 2T+1 − 1. Consider the
following two cases.

(1) When T = 0, then z0 = 1 and LC(1) ≥ 1 + K. We
consider the probability distribution P1 = (0.5, 0.5);
then,

K ≥ EP1
(LC)

max{1, H(P1)}
≥ 1 +K

1
= 1 +K.

This is a contradiction. That is, as long as there is a
decreasing probability distribution P1 that fails to satisfy
Equation (1), C is not a UCI.

(2) When T ≥ 1, we consider the probability distribution
P2:

P2(r) =


1

25T
, if r = 1, 2, · · · , 25T ,

0, otherwise.

Then, the entropy of P2 is H(P2) = log2(2
5T ) = 5T .

Furthermore, we obtain

EP2(LC) =

z0−1∑
r=1

P2(r)LC(r) +

25T∑
r=z0

P2(r)LC(r)

>
1

25T

25T∑
r=z0

LC(r)

≥ 1

25T
(
25T − z0 + 1

)
LC(z0)

≥ 1

25T
(
25T − 2T+1 + 2

)
(K + 5KT + 1)

>
1

25T
(
25T − 2T+1

)
(K + 5KT + 1)

= 5KT +
K(24T−1− 5T − 1) + 24T−1− 1

24T−1

(a)
> 5KT,

where (a) is due to the fact that 24T−1 − 5T − 1 > 0
when T ≥ 1. Thus, we have

K ≥ EP2
(LC)

max{1, H(P2)}
>

5KT

5T
= K.

This is a contradiction. That is, the decreasing probabil-
ity distribution P2 cannot satisfy Equation (1).

The proof is complete.

Next, Theorem 4 is proven as follows.

Proof. We show that (a), (b) and (c) are equivalent by proving
that (a)⇒(b), (b)⇒(c) and (c)⇒(a).

(a)⇒(b): Since C is UCI, there exists a constant K that is an
expansion factor of C. Let R1 ≜ K and R2 ≜ 5K; from
Lemma 3, we obtain that LC(r) ≤ R1 +R2⌊log2 r⌋ for
all r ∈ A.

(b)⇒(c): Because LC(r) ≤ R1 + R2⌊log2 r⌋ ≤ R1 +
R2 log2 r, the implication clearly holds.

(c)⇒(a): This holds according to Lemma 2.

Remark 1. When C is not minimal, (a) of Theorem 4 is
a necessary but not sufficient condition for (b) or (c) of
Theorem 4. First, it follows from the content of Lemma 2
and the proof of Theorem 4 that (b) or (c) leads to (a).
Second, we show that neither (b) nor (c) can be derived from
(a). That is, we prove that there exists a UCI C0 with an
integer n0 ∈ A for any two constants R1 and R2 such that
LC0(n0) > R1 + R2 log2 n0 ≥ R1 + R2⌊log2 n0⌋. Suppose
that C is any UCI and that K is an expansion factor of C;
i.e., Kmax{1, H(P )} ≥ EP (LC) for all P with H(P ) < ∞.
The prefix code C0 is constructed as follows.

C0(r) =


C(r) 00 · · · 0︸ ︷︷ ︸

32z+3z

, if r = 23
z

and z ≥ 2 ,

C(r), otherwise.
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First, we prove that C0 is a UCI. Because P (23
z

) ≤ 1
23z

,
we obtain

∞∑
z=2

P (23
z

)(32z + 3z) ≤
∞∑
z=2

1

23z
(32z + 3z)

<

∞∑
z=2

1

23z
(3z + 1)2

<

∞∑
z=2

1

23z
(4z)2

=

∞∑
z=2

24z−3z

(a)

≤
∞∑
z=2

2−z+1 = 1,

where (a) is derived from the fact that 4z − 3z ≤ −z + 1 for
an integer z ≥ 2. Furthermore, we obtain that

EP (LC0) =

∞∑
z=2

P (23
z

)(32z + 3z) + EP (LC)

< 1 + EP (LC)

≤ 1 +Kmax{1, H(P )}
≤ (K + 1)max{1, H(P )}

for all P with H(P ) < ∞. Therefore, C0 is a UCI.
Second, we prove that for any two constants R1 and

R2, there exists an integer n0 such that LC0
(n0) > R1 +

R2 log2 n0 ≥ R1 + R2⌊log2 n0⌋. For any fixed R1 and
R2, there must be an integer k0 ≥ 2 that satisfies 3k0 >
max{R1, R2}. We define the integer n0 as 23

k0 ; then,

LC0
(n0) = LC(n0) + 32k0 + 3k0

> 3k0 log2 n0 + 3k0

> R1 +R2 log2 n0

≥ R1 +R2⌊log2 n0⌋.

V. PROOF OF THEOREM 5

The proof of Theorem 5 in this section draws on the proof
techniques employed in [22, 23]. For a better understanding
by the reader, we provide a complete proof. Let us first present
some definitions.

Definition 3. Suppose that D is a dictionary.

1) Let Az denote all strings of length z over the alphabet
A. For any integer z ∈ N, the three corresponding
dictionaries are defined as follows:

Tz ≜ {ζ ∈ Az
∣∣∣ any string η ∈ D is not a prefix of ζ},

D⊥
z ≜ {ζ ∈ D

∣∣∣ |ζ| = z} ∪ Tz,

Dz ≜ {ζ ∈ D
∣∣∣ |ζ| < z} ∪ D⊥

z .

In particular, T1 = {ζ ∈ A | ζ /∈ D} and D⊥
1 = D1 =

A.

2) For every string η, let

(D, η) ≜ {ζ ∈ D
∣∣∣ η is a prefix of ζ}.2

In particular, when D is proper and η ∈ D, we have
that (D, η) = {η}.

3) For every η ∈ D, let D[η] denote a dictionary as follows:

D[η] ≜ (D \ {η}) ∪ ηA,

where ηA ≜ {ηζ | ζ ∈ A}. The dictionary D[η] is said
to be an extension of dictionary D, and η is termed the
extending string from D to D[η].

When D is proper and complete, D[η] is also proper and
complete. Before Theorem 5 is proven, an auxiliary lemma is
introduced.

Lemma 4. (1) If the dictionary D is proper, then Dz is
proper and complete.

(2) Tz is the set of extending strings from Dz to Dz+1.
(3) If the dictionary D is proper and ASC, then

P (η) =
∑

ζ∈(D,η)

P (ζ)

for any given string η, where η has no prefix with a
length less than |η| in D.

(4) If the dictionary D is proper, then∑
η∈D⊥

z

(D, η) = {ζ ∈ D
∣∣∣ |ζ| ≥ z}

for all z ∈ N.

Proof. (1) First, we prove that the dictionary Dz is proper.
The dictionary Dz can be expressed as follows:

Dz ≜ {ζ ∈ D
∣∣∣ |ζ| ≤ z} ∪ Tz.

The following two cases are considered for any string
ζi ∈ Dz .

a) Assume that ζi ∈ {ζ ∈ D | |ζ| ≤ z}. Since D is
proper, ζi is not a prefix of ζj ∈ {ζ ∈ D | |ζ| ≤
z} \ {ζi}. According to the definition of Tz , ζi is
not a prefix of η for all η ∈ Tz .

b) Assume that ζi ∈ Tz . Because |ζi| = z, ζi is not a
prefix of ζj for all ζj ∈ Dz \ {ζi}.

Therefore, Dz is proper.
Second, we prove that Dz is complete. For any infinite
sequence, we consider its first z-bit string η. Assume
that an α ∈ D exists such that α is a prefix of η. Then,
α ∈ {ζ ∈ D | |ζ| ≤ z} ⊆ Dz is the prefix of the infinite
sequence. Assume that any string ζ ∈ D is not a prefix
of η. Then, η ∈ Tz ⊆ Dz is the prefix of the infinite
sequence. This part of the proof is complete.

(2) According to the definition of Dz , the set of extending
strings from Dz to Dz+1 is essentially composed of
elements with lengths of z in Dz that do not belong to
D. This is because Tz consists of elements with lengths

2In our setup, η is the prefix of η. For example, the string dcba has the
prefixes d, dc, dcb, and dcba, while its proper prefixes are d, dc, and dcb.
Therefore, η ∈ (D, η) ̸= ∅ when η ∈ D.
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of z in Dz that do not belong to D. Therefore, Tz is the
set of extending strings from Dz to Dz+1.

(3) For any finite sequence ξ, let Iξ denote the set consisting
of all infinite sequences beginning with ξ, and let
Hξ denote the set consisting of all infinite sequences
beginning with ξ that possess probabilities greater than
0. That is,

Iξ = {δ = ξy1y2 · · · ∈ F | yi ∈ A},
Hξ = {δ = ξy1y2 · · · ∈ F | yi ∈ A, P (δ) > 0}.

First, the sum of the probabilities of the elements
contained in Hξ is

∑
δ∈Hξ

P (δ) =
∑
δ∈Iξ

P (δ)

=
∑

δ=ξy1y2···∈Iξ

(
P (ξ)

∞∏
j=1

P (yj)
)

= P (ξ)
∑

yj∈A,j∈N

∞∏
j=1

P (yj)

= P (ξ)

∞∏
j=1

( ∑
yj∈A

P (yj)
)

= P (ξ).

(4)

Second, the following proves that

Hη =
⊔

ζ∈(D,η)

Hζ , (5)

where
⊔

denotes the disjoint union of sets. This process
is proven in the following three steps.

a)
⋃

ζ∈(D,η) Hζ ⊆ Hη : For every δ ∈
⋃

ζ∈(D,η) Hζ ,
it follows from the definitions of (D, η) and Hζ

that δ is an infinite sequence beginning with η;
that is, δ ∈ Hη .

b) Hη ⊆
⋃

ζ∈(D,η) Hζ : For every δ ∈ Hη , since
D is proper and ASC, the infinite sequence δ has
a unique prefix ζ ∈ D. Suppose that |ζ| < |η|;
then, ζ ∈ D is a prefix of η because δ ∈ Hη .
This contradicts the fact that η has no prefix with
a length less than |η| in D. Thus, |ζ| ≥ |η| and η
is a prefix of ζ ∈ D; that is, ζ ∈ (D, η). Hence,
δ ∈

⋃
ζ∈(D,η) Hζ .

c) Hζ1

⋂
Hζ2 = ∅ for every ζ1, ζ2 ∈ (D, η) and ζ1 ̸=

ζ2 : Otherwise, assume that δ ∈ Hζ1

⋂
Hζ2 ̸= ∅;

then, the infinite sequence δ has the prefixes ζ1 and
ζ2. Without loss of generality, assume that |ζ1| <
|ζ2|; then, ζ1 is a prefix of ζ2. Since ζ1, ζ2 ∈ (D, η),
we have that ζ1, ζ2 ∈ D. This contradicts the fact
that the dictionary D is proper.

Finally, we obtain

P (η)
(a)
=

∑
δ∈Hη

P (δ)

(b)
=

∑
δ∈

⊔
ζ∈(D,η) Hζ

P (δ)

=
∑

ζ∈(D,η)

∑
δ∈Hζ

P (δ)

(c)
=

∑
ζ∈(D,η)

P (ζ)

where (a) and (c) are derived from Equation (4), and
(b) stems from Equation (5).

(4) First, because η ∈ D⊥
z , we have |η| = z. Thus, |ζ| ≥ z

for every ζ ∈ (D, η). Therefore, we obtain∑
η∈D⊥

z

(D, η) ⊆ {ζ ∈ D
∣∣∣ |ζ| ≥ z}.

Second, owing to Lemma 4(1), Dz is proper and com-
plete. Therefore, for every δ ∈ {ζ ∈ D

∣∣∣ |ζ| ≥ z}, δ has
a unique prefix η ∈ Dz . Since δ belongs to D and D is
proper, η /∈ {ζ ∈ D | |ζ| < z}; that is, η ∈ D⊥

z . Thus,
we obtain

δ ∈
∑

η∈D⊥
z

(D, η).

Therefore, we obtain∑
η∈D⊥

z

(D, η) ⊇ {ζ ∈ D
∣∣∣ |ζ| ≥ z}.

Now, we begin the proof of Theorem 5.

Proof. The proof is divided into three parts. First, we prove
that if a dictionary satisfies Equation (3), then the dictionary
obtained after applying finite extensions also satisfies Equa-
tion (3). Next, the following equation is proven:

H(Dn) = l(Dn)H(P ) (6)

for all n ∈ N. Finally, the proof for Equation (3) is presented.

1) Suppose that S is a dictionary. We need to prove that
when S satisfies Equation (3), the S[η] acquired after
one extension also satisfies Equation (3). Note that

l(S[η]) =
∑

ζ∈S\{η}

P (ζ)|ζ|+
∑
ζ∈ηA

P (ζ)|ζ|

=
∑
ζ∈S

P (ζ)|ζ| − P (η)|η|+ P (η)(|η|+ 1)

= l(S) + P (η),
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and

H(S[η]) = −
∑

ζ∈S\{η}

P (ζ) log2 P (ζ)−
∑
ζ∈ηA

P (ζ) log2 P (ζ)

= −
∑
ζ∈S

P (ζ) log2 P (ζ) + P (η) log2 P (η)

−
∑
ζ∈A

P (η)P (ζ) log2 P (η)P (ζ)

= H(S) + P (η) log2 P (η)− P (η) log2 P (η)

− P (η)
∑
ζ∈A

P (ζ) log2 P (ζ)

= l(S)H(P ) + P (η)H(P )

= l(S[η])H(P ).

We have proven that for one extension, the extended
dictionary also satisfies Equation (3). With a similar
process, we can prove that for any finite number of ex-
tensions, the corresponding extended dictionary satisfies
Equation (3). The first part of the proof is complete.

2) We prove Equation (6) via mathematical induction.
When n = 1, we have D1 = A and

l(D1)H(P ) = 1×H(P ) = H(D1).

Suppose that Equation (6) holds when n = r. Now,
we consider the extension process from Dr to Dr+1.
If |Tr| < ∞, then Dr+1 is obtained by Dr after a
finite number of extensions. We obtain H(Dr+1) =
l(Dr+1)H(P ) because of the first part of the proof. If
|Tr| = ∞, because A is countable and the lengths of the
elements contained in Tr are all r, Tr is also countable.
Therefore, it can be assumed that Tr ≜ {αi}∞i=1, the
extension process from Dr to Dr+1 is as follows:

Dr+1,1 ≜ (Dr \ {α1}) ∪ α1A,

Dr+1,2 ≜ (Dr+1,1 \ {α2}) ∪ α2A
= (Dr \ {αi}2i=1) ∪ {αiA}2i=1,

...

Dr+1,z ≜ (Dr+1,z−1 \ {αz}) ∪ αzA
= (Dr \ {αi}zi=1) ∪ {αiA}zi=1,

...

Then, we have the following three equations.

(i) H(Dr+1,z) = l(Dr+1,z)H(P ) for all z ∈ N.
(ii) lim

z→+∞
Dr+1,z = Dr+1.

(iii) Dr+1 = (Dr \ {αi}∞i=1) ∪ {αiA}∞i=1.

Next, we prove the following two equations:

lim
z→+∞

l(Dr+1,z) = l(Dr+1),

lim
z→+∞

H(Dr+1,z) = H(Dr+1).
(7)

First, we have

l(Dr+1) =
∑

η∈Dr+1

P (η)|η|

≥
∑

η∈Dr+1,z

P (η)|η|

= l(Dr+1,z)

≥
∑

η∈(Dr\{αi}∞
i=1)∪{αiA}z

i=1

P (η)|η|.

Taking the limit z → ∞, we obtain

l(Dr+1) ≥ lim
z→+∞

l(Dr+1,z)

≥ lim
z→+∞

∑
η∈(Dr\{αi}∞

i=1)∪{αiA}z
i=1

P (η)|η|

= l(Dr+1).

Then, we have

H(Dr+1) = −
∑

η∈(Dr\{αi}∞
i=1)∪{αiA}z

i=1

P (η) log2 P (η)

−
∑

η∈{αiA}∞
i=z+1

P (η) log2 P (η)

(a)

≥ −
∑

η∈(Dr\{αi}∞
i=1)∪{αiA}z

i=1

P (η) log2 P (η)

−
∑

η∈{αi}∞
i=z+1

P (η) log2 P (η)

= −
∑

η∈(Dr\{αi}z
i=1)∪{αiA}z

i=1

P (η) log2 P (η)

= H(Dr+1,z)

≥ −
∑

η∈(Dr\{αi}∞
i=1)∪{αiA}z

i=1

P (η) log2 P (η),

where (a) is due to the fact that

−
∑

η∈αiA
P (η) log2 P (η) ≥ −P (αi) log2 P (αi)

for all i ∈ N. Taking the limit z → ∞, we obtain

H(Dr+1) ≥ lim
z→+∞

H(Dr+1,z)

≥ lim
z→+∞

−
∑

η∈(Dr\{αi}∞
i=1)∪{αiA}z

i=1

P (η) log2 P (η)

= H(Dr+1).

Equation (7) is proven. From the perspective of math-
ematical analysis, Equation (7) essentially involves
considering whether the function and the limit can
be exchanged. For example, lim

z→+∞
H(Dr+1,z) =

H( lim
z→+∞

Dr+1,z). Finally, from Equation (7), we have

H(Dr+1) = lim
z→+∞

H(Dr+1,z)

= lim
z→+∞

l(Dr+1,z)H(P )

= l(Dr+1)H(P ).

The second part of the proof is complete.
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3) We prove the following two equations similar to Equa-
tion (7).

lim
r→+∞

l(Dr) = l(D).

lim
r→+∞

H(Dr) = H(D).
(8)

First, according to Lemma 4(3), we obtain that∑
η∈(D,ζ)

P (η)|η| ≥ |ζ|
∑

η∈(D,ζ)

P (η) = P (ζ)|ζ|

for any given ζ ∈ D⊥
r . Furthermore, from Lemma 4(4),

we have that∑
η∈D,|η|≥r

P (η)|η| =
∑

ζ∈D⊥
r

∑
η∈(D,ζ)

P (η)|η| ≥
∑

ζ∈D⊥
r

P (ζ)|ζ|.

Therefore, we obtain

l(D) =
∑

η∈D,|η|<r

P (η)|η|+
∑

η∈D,|η|≥r

P (η)|η|

≥
∑

η∈D,|η|<r

P (η)|η|+
∑

ζ∈D⊥
r

P (ζ)|ζ|

= l(Dr)

≥
∑

η∈D,|η|<r

P (η)|η|.

Taking the limit r → ∞, we obtain

l(D) ≥ lim
r→+∞

l(Dr)

≥ lim
r→+∞

∑
η∈D,|η|<r

P (η)|η|

= l(D).

Then, according to Lemma 4(3), we obtain that

−
∑

η∈(D,ζ)

P (η) log2 P (η) ≥ − log2 P (ζ)
∑

η∈(D,ζ)

P (η)

= −P (ζ) log2 P (ζ)

for any given ζ ∈ D⊥
r . Furthermore, from Lemma 4(4),

we have

−
∑

η∈D,|η|≥r

P (η) log2 P (η) = −
∑

ζ∈D⊥
r

∑
η∈(D,ζ)

P (η) log2 P (η)

≥ −
∑

ζ∈D⊥
r

P (ζ) log2 P (ζ).

Therefore, we obtain

H(D) = −
∑

η∈D,|η|<r

P (η) log2 P (η)

−
∑

η∈D,|η|≥r

P (η) log2 P (η)

≥ −
∑

η∈D,|η|<r

P (η) log2 P (η)

−
∑

ζ∈D⊥
r

P (ζ) log2 P (ζ)

= H(Dr)

≥ −
∑

η∈D,|η|<r

P (η) log2 P (η),

Taking the limit r → ∞, we obtain

H(D) ≥ lim
r→+∞

H(Dr)

≥ lim
r→+∞

−
∑

η∈D,|η|<r

P (η) log2 P (η)

= H(D).

Equation (8) is proven. Finally, from Equation (8), we
have

H(D) = lim
r→+∞

H(Dr)

= lim
r→+∞

l(Dr)H(P )

= l(D)H(P ).

The proof is complete.

Remark 2. Theorem 1 [22] is the proper and complete
dictionary version of Theorem 5 with a finite alphabet. The
relevant proof of [22] can be equated to the first part of the
proof; namely, if the given dictionary satisfies Equation (3),
then the dictionary obtained after performing finite extensions
also satisfies Equation (3). The reason for not using Theorem 1
directly in the proof is that Theorem 1 requires the dictionary
D to be complete and the associated alphabet to be finite.

When studying the entropy of randomly stopped sequences,
Ekroot et al. [23] presented conclusions related to Theorem 5,
that is, Theorem 2. It can be assumed that [23] proved the
proper and ASC dictionary version of Theorem 5 with a finite
alphabet. Owing to the formal differences that are present in
Theorem 2, this theorem cannot be directly used in the proof of
Theorem 5. Moreover, we use Lemma 4 (which is proven in this
paper) for the relevant part of the proof, which distinguishes
it from [23].

VI. CONCLUSION

UCI has been studied for almost half a century, but questions
that are worth exploring remain. In this paper, we are the
first to propose the necessary and sufficient conditions for a
minimal prefix code C to be UCI, as stated below.

1) There are two constants R1 and R2 such that LC(r) ≤
R1 +R2⌊log2 r⌋ for all r ∈ A.

2) There are two constants R1 and R2 such that LC(r) ≤
R1 +R2 log2 r for all r ∈ A.

In addition, this paper is the first to prove Theorem 5,
which characterizes the relationship between dictionary en-
tropy H(D) and Shannon entropy H(P ). This theorem leads
to a series of useful conclusions [17–19]. It can also be used to
prove a coding theorem for VV codes. Moreover, this theorem
can reveal the connection between UCI and GUCI and prove
the converse part of Shannon’s first theorem about VV codes.
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