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General Description of Sequential Decoding Algorithm

1. As a consequence of minimizing the codeword estimate error

subject to an equiprobable codeword prior, the MLD rule,

upon receipt of a received vector r = (r0, r1, . . . , rN−1), outputs

the codeword c∗ = (c∗0, c
∗
1, . . . , c

∗
N−1) satisfying

N−1∑
j=0

log2 Pr(rj |c∗j ) ≥
N−1∑
j=0

log2 Pr(rj |cj) for all c ∈ C. (1)

2. A natural implication of (1) is that by simply letting∑nℓ−1
j=n(ℓ−1) log2 Pr(rj |cj) be the metric associated with a branch

labeled by (cn(ℓ−1), . . . , cnℓ−1), the MLD rule becomes a search

of the code path with maximum metric, where the metric of a

path is defined as the sum of the individual metrics of the

branches of which the path consists.
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3. For a graph over which the Algorithm A searches, a link

between the origin node and any node, either directly

connected or indirectly connected through some intermediate

nodes, is called a path. Suppose that a real-valued function

f(·), often referred to as the evaluation function, is defined for

every path in the graph G.
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Algorithm A

Step 1. Compute the associated f -function value of the

single-node path that contains only the origin node.

Insert the single-node path with its associated f -function

value into the stack.

Step 2. Generate all immediate successor paths of the top path

in the stack, and compute their f -function values. Delete

the top path from the stack.

Step 3. If the graph G is a trellis, check whether these successor

paths end at a node that belongs to a path that is

already in the stack. Restated, check whether these

successor paths merge with a path that is already in the

stack. If it does, and the f -function value of the successor

path exceeds the f -function value of the sub-path that

traverses the same nodes as the merged path in the stack
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but ends at the merged node, redirect the merged path

by replacing its sub-path with the successor path, and

update the f -function value associated with the newly

redirected path.a Remove those successor paths that

merge with some paths in the stack.

(Note that if the graph G is a code tree, there is a unique

path connecting the origin node to each node on the

graph; hence, it is unnecessary to examine the path

merging.)

Step 4. Insert the remaining successor paths into the stack, and

reorder the stack in descending f -function values.

Step 5. If the top path in the stack ends at a terminal node in

the graph G, the algorithm stops; otherwise go to Step 2.

aThe redirect procedure is sometimes time-consuming, especially when the

f -function value of a path is computed based on the branches the path traverses.
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In principle, the evaluation function f(·) that guides the search of

the Algorithm A is the sum of two parts, g(·) and h(·); both range

over all possible paths in the graph. The first part, g(·), is simply a

function of all the branches traversed by the path, while the second

part, h(·), called the heuristic function, help to predict a future

route from the end node of the current path to a terminal node.
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Fano Metric

1. Since its discovery in 1963 [3], the Fano metric has become a

typical path metric in sequential decoding.

2. Originally, the Fano metric was discovered through mass

simulations, and was first used by Fano in his sequential

decoding algorithm on a code tree [3].

3. For any path v(ℓn−1) that ends at level ℓ on a code tree, the

Fano metric is defined as:

M
(
v(ℓn−1)|r(ℓn−1)

)
=

ℓn−1∑
j=0

M(vj |rj).

4. r = (r0, r1, . . . , rN−1) is the received vector, and

M(vj |rj) = log2[Pr(rj |vj)/Pr(rj)]−R

is the bit metric.
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5. The calculation of Pr(rj) follows the convention that the code

bits— 0 and 1—are transmitted with equal probability, i.e.,

Pr(rj) =
∑

vj∈{0,1}

Pr(vj) Pr(rj |vj) =
1

2
Pr(rj |vj = 0)+

1

2
Pr(rj |vj = 1),

and R = k/n is the code rate.
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Example of Fano Metric

1. A hard-decision decoder with

Pr{rj = 0|vj = 1} = Pr{rj = 1|vj = 0} = p for 0 ≤ j ≤ N − 1

(i.e., a memoryless BSC channel with crossover probability p),

where 0 < p < 1/2, will interpret the Fano metric for path

v(ℓn−1) as:

M(v(ℓn−1)|r(ℓn−1)) =
ℓn−1∑
j=0

log2 Pr(rj |vj) + ℓn(1−R), (2)

where

log2 Pr(rj |vj) =

 log2(1− p), for rj = vj ;

log2(p), for rj ̸= vj .

2. In terms of the Hamming distance, (2) can be re-written as

M
(
v(ℓn−1)|r(ℓn−1)

)
= −α · dH(r(ℓn−1),v(ℓn−1)) + β · ℓ, (3)
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where α = − log2[p/(1− p)] > 0, and β = n[1−R+ log2(1− p)].

3. An immediate observation from (3) is that a larger Hamming

distance between the path labels and the respective portion of

the received vector corresponds to a smaller path metric.

4. This property guarantees that if no error exists in the received

vector (i.e., the bits demodulated are exactly the bits

transmitted), and β > 0 (or equivalently, R < 1 + log2(1− p)),

then the path metric increases along the correct code path, and

the path metric along any incorrect path is smaller than that of

the equally long correct path. Such a property is essential for a

metric to work properly with sequential decoding.
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Interpretation of Fano Metric

1. Massey [16] proved that at any decoding stage, extending the

path with the largest Fano metric in the stack minimizes the

probability that the extending path does not belong to the

optimal code path, and the usage of the Fano metric for

sequential decoding is thus analytically justified.

2. However, making such a locally optimal decision at every

decoding stage does not always guarantee the ultimate finding

of the globally optimal code path in the sense of the MLD rule

in (1). Hence, the error performance of sequential decoding

with the Fano metric is in general a little inferior to that of the

MLD-rule-based decoding algorithm.

3. A striking feature of the Fano metric is its dependence on the

code rate R. Introducing the code rate into the Fano metric

somehow reduces the complexity of the sequential decoding
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algorithm.

4. Observe from (2) that the first term,
∑ℓn−1

j=0 log2 Pr(rj |vj), is
the part that reflects the maximum-likelihood decision in (1),

and the second term, ℓn(1−R), is introduced as a bias to favor

a longer path or specifically a path with larger ℓ, since a longer

path is closer to the leaves of a code tree and thus is more

likely to be part of the optimal code path.

5. When the code rate increases, the number of incorrect paths for

a given output length increases.a Hence, the confidence on the

currently examined path being part of the correct code path

should be weaker. Therefore, the claim that longer paths are

part of the optimal code path is weaker at higher code rates.

6. The Fano metric indeed mirrors the above intuitive observation
aImagine that the number of branches that leave each node is 2k, and increas-

ing the code rate can be conceptually interpreted as increasing k subject to a

fixed n for a (n, k,m) convolutional code.
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by using a linear bias with respect to the code rate.
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Generalization of Fano Metric

1. Universally adding a constant to the Fano metric of all paths

does not change the sorting result at each stage of the

sequential decoding algorithm (cf. Step 4 of the Algorithm A).

2. By choosing the additive constant
∑N−1

j=0 log2 Pr(rj), we have

M
(
v(ℓn−1)|r(ℓn−1)

)
+

N−1∑
j=0

log2 Pr(rj)

=

ℓn−1∑
j=0

[log2 Pr(rj |vj)−R] +

N−1∑
j=ℓn

log2 Pr(rj), (4)

for which the two terms of (4) can be immediately

re-interpreted as the g-function and the h-function from the

perspective of the Algorithm A.

3. As the g-function is now defined based on the branch metric
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∑ℓn−1
j=ℓ(n−1)[log2 Pr(rj |vj)−R], the Algorithm A becomes a

search to find the code path v∗ that satisfies

N−1∑
j=0

[
log2 Pr(rj |v∗j )−R

]
≥

N−1∑
j=0

[log2 Pr(rj |vj)−R]

for all code path v.

4. The above criterion is equivalent to the MLD rule.

Consequently, the Fano path metric indeed implicitly uses∑N−1
j=ℓn log2 Pr(rj) as a heuristic estimate of the upcoming

metric from the end node of the current path to a terminal

node.

5. By studying the effect of varying weights on the g-function

(i.e., the cumulative metric sum that is already known) and
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h-function (i.e., the estimate) we have:

fω
(
v(ℓn−1)

)
= ω

ℓn−1∑
j=0

[log2 Pr(rj |vj)−R]+(1−ω)
N−1∑
j=ℓn

log2 Pr(rj),

(5)

where 0 ≤ ω ≤ 1.

6. Subtracting a universal constant (1− ω)
∑N−1

j=0 log2 Pr(rj) from

(5) gives the generalized Fano metric for sequential decoding as:

Mω

(
v(ℓn−1)|r(ℓn−1)

)
=

ℓn−1∑
j=0

(
log2

Pr(rj |vj)ω

Pr(rj)1−ω
− ωR

)
. (6)

7. When ω = 1/2, the generalized Fano metric reduces to the

Fano metric with a multiplicative constant, 1/2.

8. As ω is slightly below 1/2, which can be interpreted from (5) as

the sequential search is guided more by the estimate on the

upcoming metrics than by the known cumulative metric sum,
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the number of metric computations reduces but the decoding

failure probability grows.

9. When ω is closer to one, the decoding failure probability of

sequential decoding tends to be lower; however, the

computational complexity increases. In the extreme case,

taking ω = 1 makes the generalized Fano metric completely

mirror the MLD metric in (1), and the sequential decoding

becomes a maximum-likelihood (hence, optimal in decoding

failure probability) decoding algorithm.

10. The work in [10] thereby concluded that an (implicit) heuristic

estimate can be elaborately defined to reduce fairly the

complexity of sequential decoding with a slight degradation in

error performance.
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Stack Algorithm

1. The stack algorithm or the ZJ algorithm was discovered by

Zigangirov [18] and later independently by Jelinek [12] to

search a code tree for the optimal codeword.

2. It is exactly the Algorithm A with g-function equal to the Fano

metric and zero h-function.

3. Because a stack is involved in searching for the optimal

codeword, the algorithm is called the stack algorithm.

Example 1 For a BSC with crossover probability p = 0.045,

the Fano bit metric for a convolutional code with code rate

R = 1/2 can be obtained from (2) as

M(vj |rj) =

 log2(1− p) + (1−R) = 0.434, for rj = vj ;

log2(p) + (1−R) = −3.974, for rj ̸= vj .

Consequently, only two Fano bit metric values are possible,

Department of Electrical Engineering, National Taiwan University of Science and Technology



Y. S. Han Sequential Decoding of Binary Convolutional Codes 18

0.434 and −3.974. These two Fano bit metric values can be

“scaled” to equivalent “integers” to facilitate the simulation

and implementation of the system. Taking the multiplicative

scaling factor of 2.30415 yields

Mscaled(vj |rj) =

 0.434× 2.30415 ≈ 1, for rj = vj ;

−3.974× 2.30415 ≈ −9, for rj ̸= vj .
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loop 1 loop 2 loop 3 loop 4 loop 5

1 (1 + 1 = 2) 11 (2 + 1 + 1 = 4) 111 (4 − 9 + 1 = −4) 1110 (−4 + 1 + 1 = −2) 110 (−4)
0 (−9 − 9 = −18) 10 (2 − 9 − 9 = −16) 110 (4 + 1 − 9 = −4) 110 (−4) 11100 (−2 + 1 − 9 = −10)

0 (−18) 10 (−16) 10 (−16) 11101 (−2 − 9 + 1 = −10)
0 (−18) 0 (−18) 10 (−16)

1111 (−4 − 9 − 9 = −22) 0 (−18)
1111 (−22)

loop 6 loop 7 loop 8 loop 9

11100 (−10) 11101 (−10) 111010 (−10 + 1 + 1 = −8) 1110100 (−8 + 1 + 1 = −6)
11101 (−10) 1100 (−12) 1100 (−12) 1100 (−12)
1100 (−4 − 9 + 1 = −12) 1101 (−12) 1101 (−12) 1101 (−12)
1101 (−4 + 1 − 9 = −12) 10 (−16) 10 (−16) 10 (−16)
10 (−16) 111000 (−10 − 9 + 1 = −18) 111000 (−18) 111000 (−18)
0 (−18) 0 (−18) 0 (−18) 0 (−18)
1111 (−22) 1111 (−22) 1111 (−22) 1111 (−22)
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Stack Implementation

1. In a straightforward implementation of the stack algorithm, the

paths are stored in the stack in order of descending f -function

values; hence, a sorting mechanism is required.

2. Another implementation issue of the stack algorithm is that

the stack size in practice is often insufficient to accommodate

the potentially large number of paths examined during the

search process. The stack can therefore overflow.

3. A common way of compensating for a stack overflow is to

simply discard the path with the smallest f -function value [15],

since it is least likely to be the optimal code path. However,

when the discarded path happens to be an early predecessor of

the optimal code path, performance is degraded.

4. Jelinek proposed the so-called stack-bucket technique to reduce

the sorting burden of the stack algorithm [12].
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5. In his proposal, the range of possible path metric values is

divided into a number of intervals with pre-specified, fixed

spacing. For each interval, a separate storage space, a bucket, is

allocated. The buckets are then placed in order of descending

interval endpoint values. During decoding, the next path to be

extended is always the top path of the first non-empty bucket,

and every newly generated path is directly placed on top of the

bucket in which interval the respective path metric lies.

6. The sorting burden is therefore removed by introducing the

stack-buckets. The time taken to locate the next path no

longer depends on the size of the stack, rather on the number of

buckets, considerably reducing the time required by decoding.

7. Consequently, the stack-bucket technique was used extensively

in the software implementation of the stack algorithm for

applications in which the decoding time is precisely restricted

[7, 9, 15]
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8. The drawback of the stack-bucket technique is that the path

with the best path metric may not be selected, resulting in

degradation in performance.

9. A so-called metric-first stack-bucket implementation overcomes

the drawback by sorting the top bucket when it is being

accessed. However, Anderson and Mohan [1] indicated that the

access time of the metric-first stack-buckets will increase at

least to the order of S1/3, where S is the total number of the

paths ever generated.

10. Mohan and Anderson [17] suggested the adoption of a balanced

binary tree data structure, such as an AVL tree [13], to

implement the stack, offering the benefit that the access time

of the stack becomes of order log2(S), where S represents the

momentary stack size.

11. Briefly, a balanced binary tree is a sorted structure with node
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insertion and deletion schemes such that its depth is

maintained equal to the logarithm of the total number of nodes

in the tree, whenever possible.

12. As a result, inserting or deleting a path (which is now a node in

the data structure of a balanced binary tree) in a stack of size

S requires at most log2(S) comparisons (that is, the number of

times the memory is accessed). The balanced binary tree

technique is indeed superior to the metric-first stack-bucket

implementation, when the stack grows beyond certain size.

13. In 1994, a novel systolic priority queue, called the Parallel

Entry Systolic Priority Queue (PESPQ), was proposed to

replace the stack-buckets [14]. Although it does not arrange

the paths in the queue in strict order, the systolic priority

queue technique can identify the path with the largest path

metric within a constant time.
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14. This constant time was shown to be comparable to the time

required to compute the metric of a new path. Experiments

revealed that the PESPQ stack algorithm is several times

faster than its stack-bucket counterpart.

15. Most importantly, the invention of the PESPQ technique has

given a seemingly promising future to hardware

implementation of the stack algorithm.
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Fano Algorithm

1. The Fano algorithm is a sequential decoding algorithm that

does not require a stack [3].

2. The Fano algorithm can only operate over a code tree because

it cannot examine path merging.

3. At each decoding stage, the Fano algorithm retains the

information regarding three paths: the current path, its

immediate predecessor path, and one of its successor paths.

4. Based on this information, the Fano algorithm can move from

the current path to either its immediate predecessor path or

the selected successor path; hence, no stack is required for

queuing all examined paths.

5. The movement of the Fano algorithm is guided by a dynamic

threshold T that is an integer multiple of a fixed step size ∆.
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6. Only the path whose path metric is no less than T can be next

visited. According to the algorithm, the process of codeword

search continues to move forward along a code path, as long as

the Fano metric along the code path remains non-decreasing.

7. Once all the successor path metrics are smaller than T , the

algorithm moves backward to the predecessor path if the

predecessor path metric beats T ; thereafter, threshold

examination will be subsequently performed on another

successor path of this revisited predecessor.

8. In case the predecessor path metric is also less than T , the

threshold T is one-step lowered so that the algorithm is not

trapped on the current path.

9. For the Fano algorithm, if a path is revisited, the presently

examined dynamic threshold is always lower than the

momentary dynamic threshold at the previous visit,
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guaranteeing that looping in the algorithm does not occur, and

that the algorithm can ultimately reach a terminal node of the

code tree, and stop.

Department of Electrical Engineering, National Taiwan University of Science and Technology



Notations:
v: label sequence of some path
M : path metric
subscripts p, c, s, t = predecessor,

current, successor, temporary
T : dynamic threshold,

an integer multiple of ∆
∆: fixed step size

Initialization:

T = 0;
vp=dummy; Mp = −∞;

vc =origin node; Mc = 0;

❄
Among the successor paths of the current path vc,

find the one vs with the largest path metric.∗

Let Ms be the path metric of vs.

❄✟✟✟✟✟✟

❍❍❍❍❍❍

❍❍❍❍❍❍

✟✟✟✟✟✟Ms ≥ T?

❄
YES

NO

Move forward and update Mc, Mp:

I.e., vp = vc; Mp = Mc;

vc = vs; Mc = Ms;

❄✟✟✟✟✟✟

❍❍❍❍❍❍

❍❍❍❍❍❍

✟✟✟✟✟✟vc is a code path?

❄
NO

YES

✟✟✟✟✟✟

❍❍❍❍❍❍

❍❍❍❍❍❍

✟✟✟✟✟✟
Tightening?

I.e., Mp < T + ∆?

❄
YES

NO

Tighten the threshold T :

I.e., adjust T such that
T ≤ Mc < T + ∆

❄

❄✟✟✟✟✟✟

❍❍❍❍❍❍

❍❍❍❍❍❍

✟✟✟✟✟✟Mp ≥ T?

❄
NO

YES

T = T − ∆

❄

✻

Move backward and update Mc, Mp:

I.e., vs = vc; Ms = Mc;
vc = vp; Mc = Mp;

vp = vp with the last

branch labels removed;
Re-compute Mp for new vp if necessary;

✻

Among the successor paths (of vc)

other than vs, satisfying

either (1) path metric less than Ms

or (2) path metric equal to Ms

and path label less than vs,
find the one vt with the largest path

metric Mt.
∗

SUCCEED

FAIL✛

✻

✛ vs = vt;
Ms = Mt;

❄✗
✖

✔
✕

Stop & output
the labels of vc

✛

✲



Iteration vp vc vs Mp Mc Ms T Action

0 D S 1 −∞ 0 2 0 MFTT
1 S 1 11 0 2 4 0 MFTT
2 1 11 111 2 4 −4 4 LT
3 1 11 111 2 4 −4 0 MBS
4 S 1 10 0 2 −16 0 MBS
5 D S 0 −∞ 0 −18 0 LT
6 D S 1 −∞ 0 2 −4 MF
7 S 1 11 0 2 4 −4 MF
8 1 11 111 2 4 −4 −4 MF
9 11 111 1110 4 −4 −2 −4 MFTT
10 111 1110 11100 −4 −2 −10 −4 MBS
11 11 111 1111 4 −4 −22 −4 MBS
12 1 11 110 2 4 −4 −4 MF
13 11 110 1100 4 −4 −12 −4 MBF
14 1 11 110 2 4 −4 −4 MBS
15 S 1 10 0 2 −16 −4 MBS
16 D S 0 −∞ 0 −18 −4 LT
17 D S 1 −∞ 0 2 −8 MF
18 S 1 11 0 2 4 −8 MF
19 1 11 111 2 4 −4 −8 MF
20 11 111 1110 4 −4 −2 −8 MF
21 111 1110 11100 −4 −2 −10 −8 MBS
22 11 111 1111 4 −4 −22 −8 MBS
23 1 11 110 2 4 −4 −8 MF
24 11 110 1100 4 −4 −12 −8 MBF
25 1 11 110 2 4 −4 −8 MBS
26 S 1 10 0 2 −16 −8 MBS
27 D S 0 −∞ 0 −18 −8 LT
28 D S 1 −∞ 0 2 −12 MF
29 S 1 11 0 2 4 −12 MF
30 1 11 111 2 4 −4 −12 MF
31 11 111 1110 4 −4 −2 −12 MF
32 111 1110 11100 −4 −2 −10 −12 MF
33 1110 11100 111000 −2 −10 −18 −12 MBS
34 111 1110 11101 −4 −2 −10 −12 MF
35 1110 11101 111010 −2 −10 −8 −12 MFTT
36 11101 111010 1110100 −10 −8 −6 −8 Stop
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Step Size of Fano algorithm

1. As stated in [15], the load of branch metric computations

executed during the finding of a qualified successor path

becomes heavy when ∆ is too small.

2. When ∆ is too large, the dynamic threshold T might be

lowered too much in a single adjustment, forcing an increase in

both the decoding error and the computational effort.

3. Experiments suggest [15] that a better performance can be

obtained by taking ∆ within 2 and 8 for the unscaled Fano

metric (∆ should be analogously scaled if a scaled Fano metric

is used).
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Comparison of Stack and Fano algorithms

1. The Fano algorithm, perhaps surprisingly, while quite different

in its design from the stack algorithm, exhibits broadly the

same searching behavior as the stack algorithm.

2. In fact, with a slight modification to the update procedure of

the dynamic threshold, both algorithms have been proven to

visit almost the same set of paths during the decoding process

[8].

3. Their only dissimilarity is that unlike the stack algorithm

which visits each path only once, the Fano algorithm may

revisit a path several times, and thus has a higher

computational complexity.

4. The next three figures show comparisons of computational

complexities of the Fano algorithm and the stack algorithm

(with stack-bucket modification) based on the (2, 1, 35)
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convolutional code and a single input sequence of length 256.

5. Simulations are performed over the binary symmetric channel

with crossover probability p. Pr{T ≥ t} is the empirical

complement cumulative distribution function for the software

computation time T .

6. In simulations, (log2[2(1− p)]− 1/2, log2(2p)− 1/2), which is

derived from the Fano metric formula, is scaled to (2,−18),

(2,−16) and (4,−35) for p = 0.033, p = 0.045 and p = 0.057,

respectively.
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Erasure Probability

1. In practice, the time taken to decode an input sequence often

has an upper limit. If the decoding process is not completed

before the time limit, the undecoded part of the input sequence

must be aborted or erased.

2. Hence, the probability of input erasure is another system

requirement for sequential decoding.

3. The next three figures confirm that the stack algorithm with

stack-bucket modification remains faster than the Fano

algorithm except when either admitting a high erasure

probability (for example, erasure probability > 0.5 for

p = 0.045, and erasure probability > 0.9 for p = 0.057) or

experiencing a less noisier channel (for example, p = 0.033) [7].
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Hardware Implementation

1. An evident drawback of the stack algorithm in comparison

with the Fano algorithm is its demand for an extra stack space.

However, with recent advances in computer technology, a large

memory requirement is no longer a restriction for software

implementation.

2. In hardware implementation, stack maintenance normally

requires accessing external memory a certain number of times,

which usually bottlenecks the system performance.

3. Furthermore, the hardware is renowned for its efficient

adaptation to a big number of computations. These hardware

implementation features apparently favor the no-stack Fano

algorithm, even when the number of its computations required

is larger than the stack algorithm.

4. In fact, a hard-decision version of the Fano algorithm has been
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hardware-implemented, and can operate at a data rate of 5

Mbits/second [5]. The prototype employs a systematic

convolutional code to compensate for the input erasures so that

whenever the pre-specified decoding time expires, the

remaining undecoded binary demodulator outputs that directly

correspond to the input sequences are immediately outputted.
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Generalized Stack Algorithm

1. Sequential decoding was mostly operated over a code tree in

early publications, although some early published work already

hinted at the possibility of conducting sequential decoding over

a trellis [6, 4].

2. The first feasible algorithm that sequentially searches a trellis

for the optimal codeword is the generalized stack algorithm [9].

3. The generalized stack algorithm simultaneously extends the top

M paths in the stack. It then examines, according to the trellis

structure, whether any of the extended paths merge with a

path that is already in the stack. If so, the algorithm deletes

the newly generated path after ensuring that its path metric is

smaller than the cumulative path metric of the merged path up

to the merged node.

4. No redirection on the merged path is performed, even if the
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path metric of the newly generated path exceeds the path

metric of the sub-path that traverses along the merged path,

and ends at the merged node. The newly generated path and

the merged path may coexist in the stack.

5. The generalized stack algorithm, although it generally yields a

larger average computational complexity than the stack

algorithm, has lower variability in computational complexity

and a smaller probability of decoding error [9].

6. The main obstacle in implementing the generalized stack

algorithm by hardware is the maintenance of the stack for the

simultaneously extended M paths.

7. One feasible solution is to employ M independent stacks, each

of which is separately maintained by a processor [2].

8. In such a multiprocessor architecture, only one path extraction

and two path insertions are sufficient for each stack in a
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decoding cycle of a (2, 1,m) convolutional code [2].

9. Simulations have shown that this multiprocessor counterpart

not only retained the low variability in computational

complexity as the original generalized stack algorithm, but also

had a smaller average decoding time.
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Maximum-Likelihood Trellis-Based Sequential Decoding

1. When the trellis-based generalized stack algorithm

simultaneously extends 2K most likely paths in the stack (that

is, M = 2K), where K =
∑k

j=1 Kj and Kj is the length of the

jth shift register in the convolutional code encoder, the

algorithm becomes the maximum-likelihood Viterbi decoding

algorithm.

2. The optimal codeword is thereby sought by exhausting all

possibilities, and no computational complexity gain can be

obtained at a lower noise level.

3. Han, et al. [11] recently proposed a true noise-level-adaptable

trellis-based maximum-likelihood sequential decoder, called

maximum-likelihood soft-decision decoding algorithm (MLSDA).

4. The MLSDA adopts a new metric, other than the Fano metric,

to guide its sequential search over a trellis for the optimal code
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path, which is now the code path with the minimum path

metric.

5. The new path metric associated with a path v(ℓn−1) is given by

MML

(
v(ℓn−1)|r(ℓn−1)

)
=

ℓn−1∑
j=0

MML(vj |rj), (7)

where MML(vj |rj) = (yj ⊕ vj)× |ϕj | is the jth bit metric, r is

the received vector, ϕj = ln[Pr(rj |0)/Pr(rj |1)] is the jth

log-likelihood ratio, and

yj =

 1, if ϕj < 0;

0, otherwise

is the hard-decision output due to ϕj .

6. For AWGN channels, the ML bit metric can be simplified to
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MML(vj |rj) = (yj ⊕ vj)× |rj |, where

yj =

 1, if rj < 0;

0, otherwise.

7. The MLSDA genuinely redirects and merges any two paths

that share a common node, resulting in a stack without

coexistence of crossed paths.

8. A remarkable feature of the new ML path metric is that when

a newly extended path merges with an existing path of longer

length, the ML path metric of the newly extended path is

always greater than or equal to the cumulative ML metric of

the existing path up to the merged node.

9. A newly generated path that is shorter than its merged path

can be immediately deleted, reducing the redirection overhead

of the MLSDA only to the case in which the newly generated
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path and the merged existing path are equally long.
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