Chapter 4: Multiple Random Variables 1

Yunghsiang S. Han

Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw

 $^1\rm{Modified}$ from the lecture notes by Prof. Mao-Ching Chiu

4.1 Vector Random Variables

Consider the two dimensional random variable $\mathbf{X} = (X, Y)$. Find the regions of the planes corresponding to the events

$$
A = \{X + Y \le 10\},
$$

\n
$$
B = \{min(X, Y) \le 5\}
$$
 and
\n
$$
C = \{X^2 + Y^2 \le 100\}.
$$

- Let the *n*-dimensional random variable \boldsymbol{X} be $\boldsymbol{X} = (X_1, X_2, \dots, X_n)$ and A_k be a one dimensional event that involves X_k .
- Events with product form is defined as

$$
A = \{X_1 \in A_1\} \cap \{X_2 \in A_2\} \cap \cdots \cap \{X_n \in A_n\}.
$$

$$
P[A] = P[{X_1 \in A_1} \cap {X_2 \in A_2} \cap \dots \cap {X_n \in A_n}]
$$

\n
$$
\stackrel{\triangle}{=} P[X_1 \in A_1, \dots, X_n \in A_n].
$$

• Some events may not be of product form.

Graduate Institute of Communication Engineering, National Taipei University

Probability of non-product-form event

• *B* is partitioned into disjoint product-form events such as B_1, B_2, \ldots, B_n , and

$$
P[B] \approx P\left[\bigcup_{k} B_{k}\right] = \sum_{k} P[B_{k}].
$$

• Approximation becomes exact as B_k 's become arbitrary fine.

Graduate Institute of Communication Engineering, National Taipei University

Independence

 \bullet Two random variables X and Y are independent if

$$
P[X \in A_1, Y \in A_2] = P[X \in A_1]P[Y \in A_2].
$$

• Random variables X_1, X_2, \ldots, X_n are independent if

$$
P[X_1 \in A_1, \ldots, X_n \in A_n] = P[X_1 \in A_1] \cdots P[X_n \in A_n].
$$

Graduate Institute of Communication Engineering, National Taipei University

$$
P[\mathbf{X} \in A] = \sum_{(x_j, y_k) \in A} p_{X,Y}(x_j, y_k).
$$

• Marginal probability mass function is

$$
p_X(x_j) = P[X = x_j]
$$

= $P[X = x_j, Y = \text{anything}]$
= $P[\{X = x_j \text{ and } Y = y_1\} \cup$

$$
\{X = x_j \text{ and } Y = y_2\} \cup \cdots]
$$

=
$$
\sum_{k=1}^{\infty} p_{X,Y}(x_j, y_k).
$$

• Joint cumulative distribution function of X and Y is given as

$$
F_{X,Y}(x_1, y_1) = P[X \le x_1, Y \le y_1]
$$

Graduate Institute of Communication Engineering, National Taipei University

Properties

- 1. $F_{X,Y}(x_1, y_1) \leq F_{X,Y}(x_2, y_2)$, if $x_1 \leq x_2$ and $y_1 \leq y_2$.
- 2. $F_{X,Y}(-\infty, y_1) = F_{X,Y}(x_1, -\infty) = 0.$
- 3. $F_{X,Y}(\infty,\infty) = 1$.
- 4. $F_X(x) = F_{X,Y}(x, \infty) = P[X \le x, Y < \infty] = P[X \le x];$ $F_Y(y) = F_{X,Y}(\infty, y) = P[Y \leq y].$
- 5. Continuous from the right

$$
\lim_{x \to a^{+}} F_{X,Y}(x, y) = F_{X,Y}(a, y)
$$

$$
\lim_{y \to b^{+}} F_{X,Y}(x, y) = F_{X,Y}(x, b)
$$

Graduate Institute of Communication Engineering, National Taipei University

.

Example: Joint cdf of
$$
\mathbf{X} = (X, Y)
$$
 is given as

$$
F_{X,Y}(x,y) = \begin{cases} (1 - e^{-\alpha x})(1 - e^{-\beta y}) & x \ge 0, y \ge 0\\ 0 & \text{otherwise} \end{cases}
$$

Find the marginal cdf's. Sol:

$$
F_X(x) = \lim_{y \to \infty} F_{X,Y}(x, y) = 1 - e^{-\alpha x} \quad x \ge 0.
$$

$$
F_Y(y) = \lim_{x \to \infty} F_{X,Y}(x, y) = 1 - e^{-\beta y} \quad y \ge 0.
$$

Graduate Institute of Communication Engineering, National Taipei University

- Probability of region $B = \{x_1 < X < x_2, Y \leq y_1\}$ $F_{X,Y}(x_2,y_1) = F_{X,Y}(x_1,y_1) + P[x_1 < X < x_2, Y \le y_1]$ $\rightarrow P[x_1 < X < x_2, Y \leq y_1] = F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_1)$
- Probability of region $A = \{x_1 < X \leq x_2, y_1 < Y \leq y_2\}$

$$
F_{X,Y}(x_2, y_2) = P[x_1 < X \le x_2, y_1 < Y \le y_2]
$$

+
$$
F_{X,Y}(x_2, y_1) + F_{X,Y}(x_1, y_2) - F_{X,Y}(x_1, y_1)
$$

$$
P[x_1 < X \le x_2, y_1 < Y \le y_2]
$$
\n
$$
= F_{X,Y}(x_2, y_2) - F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_2) + F_{X,Y}(x_1, y_1)
$$

Graduate Institute of Communication Engineering, National Taipei University

Joint pdf of Two Jointly Continuous Random Variables

- Random variable $\boldsymbol{X} = (X, Y)$
- Joint probability density function $f_{X,Y}(x,y)$ is defined such that for every event A

$$
P[\mathbf{X} \in A] = \int \int_A f_{X,Y}(x',y') dx' dy'.
$$

Graduate Institute of Communication Engineering, National Taipei University

.

Properties
\n1.
$$
1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X,Y}(x',y')dx'dy'.
$$
\n2.
$$
F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(x',y')dx'dy'.
$$
\n3.
$$
f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}.
$$
\n4.
$$
P[a_1 < X \leq b_1, a_2 < Y \leq b_2] = \int_{a_2}^{b_2} \int_{a_1}^{b_1} f_{X,Y}(x',y')dx'dy'.
$$
\n5. Marginal pdf's\n
$$
f_X(x) = \frac{d}{dx}F_X(x) = \frac{d}{dx}F_{X,Y}(x,\infty)
$$

Graduate Institute of Communication Engineering, National Taipei University

$$
= \frac{d}{dx} \int_{-\infty}^{x} \left\{ \int_{-\infty}^{+\infty} f_{X,Y}(x',y')dy' \right\} dx'
$$

$$
= \int_{-\infty}^{+\infty} f_{X,Y}(x,y')dy'.
$$

6. $f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x',y)dx'.$

Graduate Institute of Communication Engineering, National Taipei University

Graduate Institute of Communication Engineering, National Taipei University

Example: Let the pdf of $\mathbf{X} = (X, Y)$ be $f_{X,Y}(x,y) =$ $\left\{ \begin{array}{ccc} 1 & 0 \ 0 & \mathrm{e} \end{array} \right.$ $\leq x \leq 1$ and $0 \leq y \leq 1$ 0 elsewhere . Find the joint cdf. Sol: Consider five cases: 1. $x < 0$ or $y < 0$, $F_{X,Y}(x, y) = 0$; 2. $(x, y) \in$ unit interval, $F_{X,Y}(x, y) = \int_0^y$ \overline{y} $\int_0^y \int_0^y$ \overline{x} 0 $1dx'dy' = xy;$ 3. $0 \le x \le 1$ and $y > 1$, $F_{X,Y}(x, y) = \int_0^1$ $\int_0^1 \int_0^1$ \hat{x} 0 $1dx'dy' = x;$ 4. $x > 1$ and $0 \le y \le 1$, $F_{X,Y}(x, y) = y$; 5. $x > 1$ and $y > 1$, $F_{X,Y}(x, y) = \int_0^1$ $\int_0^1 \int_0^1$ 0 $1dx'dy'=1.$

Example: Random variables X and Y are jointly Gaussian

$$
f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}}e^{-(x^2-2\rho xy + y^2)/2(1-\rho^2)} -\infty < x, y < \infty.
$$

Find the marginal pdf's.

Graduate Institute of Communication Engineering, National Taipei University

$$
f_X(x) = \frac{e^{-x^2/2(1-\rho^2)}}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{+\infty} e^{-(y^2-2\rho xy)/2(1-\rho^2)} dy
$$

• Add and subtract $\rho^2 x^2$ in the exponent, i.e., \overline{y} $2^2 - 2\rho xy + \rho^2 x^2 - \rho^2 x^2 = (y - \rho x)^2 - \rho^2 x^2$.

$$
f_X(x) = \frac{e^{-x^2/2(1-\rho^2)}}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{+\infty} e^{-[(y-\rho x)^2 - \rho^2 x^2]/2(1-\rho^2)} dy
$$

$$
= \frac{e^{-x^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{e^{-(y-\rho x)^2/2(1-\rho^2)}}{\sqrt{2\pi(1-\rho^2)}} dy
$$

$$
N(\rho x; 1-\rho^2)
$$

Graduate Institute of Communication Engineering, National Taipei University

Example: Let X be the input to a communication channel and Y the output. The input to the channel is $+1$ volt or −1 volt with equal probability. The output of the channel is the input plus ^a noise voltage N that is uniformly distributed in the interval $[-2, +2]$ volts. Find $P[X = +1, Y \le 0].$ Sol:

 $P[X = +1, Y \le y] = P[Y \le y|X = +1]P[X = +1],$

where $P[X = +1] = 1/2$. When the input $X = 1$, the output Y is uniformly distributed in the interval $[-1,3]$. Therefore,

$$
P[Y \le y | X = +1] = \frac{y+1}{4}
$$
 for $-1 \le y \le 3$.

Thus

$$
P[X = +1, Y \le 0] = P[Y \le 0 | X = +1] P[X = +1]
$$

= (1/4)(1/2) = 1/8.

$= p_X(x_j) p_Y(y_k)$

 \rightarrow joint pmf is equal to the product of the marginal pmf's.

• Let X and Y be random variables with $p_{X,Y}(x_j, y_k) = p_X(x_j)p_Y(y_k)$. Let $A = A_1 \cap A_2$. $p = p_X(x_j) p_Y(y_k). \text{ Let } A = A_1 \cap$
 $P[A] = \sum_{i=1}^{n} \sum_{j=1}^{n} p_{X,Y}(x_j, y_k).$ $x_j \in A_1$ $y_k \in A_2$ = $\sum_{j\in A_1}\sum_{y_k\in A_2} p_X(x_j)p_Y(y_k)$ $x_j \in A_1$ $y_k \in A_2$ = $\sum_{j\in A_1} y_k \in A_2$
 $\sum_{j\in A_2} p_X(x_j) \sum_{j\in A_3} p_Y(y_k)$ $x_j \in A_1$ $y_k \in A_2$ $= P[A_1]P[A_2]$

• Discrete random variables X and Y are independent if and only if the joint pmf is equal to the product of the marginal pmf's for all

 \hat{x}_j, y_k .

Graduate Institute of Communication Engineering, National Taipei University

• Random variables X and Y are independent if and only if

$$
F_{X,Y}(x,y) = F_X(x)F_Y(y) \quad \text{for all } x \text{ and } y.
$$

• If X and Y are jointly continuous, then X and Y are independent if and only if

 $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ for all x and y.
\bullet If X and Y are independent random variables, then $g(X)$ and $h(Y)$ are also independent.

Proof: Let A and B are any two events involve $g(X)$ and $h(Y)$, respectively. Define

 $A' = \{x : g(x) \in A\}$ and $B' = \{y : h(y) \in B\}.$

Then

$$
P[g(X) \in A, h(Y) \in B] = P[X \in A', Y \in B']
$$

=
$$
P[X \in A']P[Y \in B']
$$

=
$$
P[g(X) \in A]P[h(Y) \in B].
$$

Graduate Institute of Communication Engineering, National Taipei University

• Conditional pdf of Y given $X = x_k$ is

$$
f_Y(y|x_k) = \frac{d}{dy} F_Y(y|x_k).
$$

• Probability of event A given $X = x_k$ is

$$
P[Y \in A | X = x_k] = \int_{y \in A} f_Y(y | x_k) dy.
$$

• If X and Y are independent, then $F_Y(y|x) = F_Y(y)$ and $f_Y(y|x) = f_Y(y).$

 \bullet If X and Y are discrete, then conditional pdf will consist of delta functions with probability mass given by the conditional pmf of Y given $X = x_k$:

$$
p_Y(y_j|x_k) = P[Y = y_j | X = x_k]
$$

=
$$
\frac{P[X = x_k, Y = y_j]}{P[X = x_k]}
$$

=
$$
\frac{p_{X,Y}(x_k, y_j)}{p_X(x_k)}.
$$

• If X and Y are discrete, the probability of any event A given $X = x_k$ is

$$
x_k \text{ is}
$$

$$
P[Y \in A | X = x_k] = \sum_{y_j \in A} p_Y(y_j | x_k).
$$

Example: Let X be the input to a communication channel and let Y be the output. The input to the channel is +1 volt or −1 volt with equal probability. The output of the channel is the input plus ^a noise voltage N that is uniformly distributed in the interval $[-2, +2]$ volts. Find the probability that Y is negative given that X is $+1$. **Sol**: If $X = +1$, then Y is uniformly distributed in the $interval [-1, 3]$ and

$$
f_Y(y|1) = \begin{cases} \frac{1}{4} & -1 \le y \le 3\\ 0 & \text{elsewhere} \end{cases}
$$

.

Graduate Institute of Communication Engineering, National Taipei University

$$
P[Y < 0 | X = +1] = \int_{-1}^{0} \frac{dy}{4} = \frac{1}{4}.
$$

Continuous Random Variables

- \bullet If X is a continuous random variable, then $P[X = x] = 0.$
- Conditional cdf of Y given $X = x$ is

$$
F_Y(y|x) = \lim_{h \to 0} F_Y(y|x < X \le x + h).
$$

$$
F_Y(y|x < X \le x + h) = \frac{P[Y \le y, x < X \le x + h]}{P[x < X \le x + h]}
$$

=
$$
\frac{\int_{-\infty}^y \int_x^{x+h} f_{X,Y}(x', y') dx' dy'}{\int_x^{x+h} f_X(x') dx'}
$$

Graduate Institute of Communication Engineering, National Taipei University

Example: Let X and Y be random variables with joint pdf

$$
f_{X,Y}(x,y) = \begin{cases} 2e^{-x}e^{-y} & 0 \le y \le x < \infty \\ 0 & \text{elsewhere} \end{cases}
$$

Find $f_X(x|y)$ and $f_Y(y|x)$. Sol: The marginal pdfs of X and Y are

$$
f_X(x) = \int_0^\infty f_{X,Y}(x, y) dy = \int_0^x 2e^{-x} e^{-y} dy = 2e^{-x} (1 - e^{-x}) \quad 0 \le x < \infty
$$

$$
f_Y(y) = \int_0^\infty f_{X,Y}(x, y) dx = \int_y^\infty 2e^{-x} e^{-y} dx = 2e^{-2y} \quad 0 \le y < \infty
$$

$$
f_X(x|y) = \frac{f_{X,Y}(x, y)}{f_Y(y)} = \frac{2e^{-x} e^{-y}}{2e^{-2y}} = e^{-(x-y)} \quad \text{for } x \ge y
$$

$$
f_Y(y|x) = \frac{f_{X,Y}(x, y)}{f_X(x)} = \frac{2e^{-x} e^{-y}}{2e^{-x} (1 - e^{-x})} \quad \text{for } 0 < y < x
$$

Graduate Institute of Communication Engineering, National Taipei University

.

• The relation of joint probability and conditional probability for discrete random variables X and Y are

$$
P[X = x_k, Y = y_j] = P[Y = y_j | X = x_k] P[X = x_k]
$$

$$
p_{X,Y}(x, y) = p_Y(y|x)p_X(x)
$$

• Suppose that we are interested in the probability of $Y \in A$. Then

$$
P[Y \in A] = \sum_{\text{all } x_k} \sum_{y_j \in A} p_{X,Y}(x_k, y_j)
$$

$$
= \sum_{\text{all } x_k} \sum_{y_j \in A} p_Y(y_j | x_k) p_X(x_k)
$$

Graduate Institute of Communication Engineering, National Taipei University

Example: The random variable X is selected at random from the unit interval; the random variable Y is then selected at random from the interval $(0, X)$. Find the cdf of Y .

Sol: We have

$$
F_Y(y) = P[Y \le y] = \int_0^1 P[Y \le y | X = x] f_X(x) dx.
$$

When $X = x$, Y is uniformly distributed in $(0, x)$. Thus,

$$
P[Y \le y | X = x] = \begin{cases} \frac{y}{x} & 0 \le y \le x \\ 1 & x \le y \end{cases}
$$

and

$$
F_Y(y) = \int_0^y 1 dx' + \int_y^1 \frac{y}{x'} dx' = y - y \ln y.
$$

The pdf of Y is then

$$
f_Y(y) = -\ln y \qquad 0 \le y \le 1.
$$

Conditional Expectation

• Conditional expectation of Y given $X = x$ is

$$
E[Y|x] = \int_{-\infty}^{+\infty} y f_Y(y|x) dy.
$$

• For discrete random variables, we have

$$
E[Y|x] = \sum_{y_j} y_j p_Y(y_j|x).
$$

- Define a function $g(x) = E[Y|x]$.
- $g(X)$ is a random variable.
- Consider $E[g(X)] = E[E[Y|X]]$. Then, We have

 $E[Y] = E[E[Y|X]],$

where

$$
E[E[Y|X]] = \int_{-\infty}^{+\infty} E[Y|x] f_X(x) dx \text{ when } X \text{ is continuous;}
$$

$$
E[E[Y|X]] = \sum_{x_k} E[Y|x_k] p_X(x_k) \text{ when } X \text{ is discrete.}
$$

• For continuous random variables,

$$
E[E[Y|X]] = \int_{-\infty}^{+\infty} E[Y|x] f_X(x) dx
$$

\n
$$
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f_Y(y|x) dy f_X(x) dx
$$

\n
$$
= \int_{-\infty}^{+\infty} y \int_{-\infty}^{+\infty} f_{X,Y}(x, y) dx dy
$$

\n
$$
= \int_{-\infty}^{+\infty} y f_Y(y) dy = E[Y].
$$

\n• The expected value of a function $h(Y)$ of Y is

 $E[h(Y)] = E[E[h(Y)|X]].$

4.5 Multiple Random Variables

- Let X_1, X_2, \ldots, X_n be an *n*-dimensional vector random variable.
- Joint cdf of X_1, X_2, \ldots, X_n is

 $F_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n) = P[X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n].$

• Joint cdf of $X_1, X_2, \ldots, X_{n-1}$ is

$$
F_{X_1,X_2,...,X_{n-1}}(x_1,x_2,...,x_{n-1})=F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_{n-1},\infty).
$$

Example: Let event A be defined as follows:

$$
A = \{ \max(X_1, X_2, X_3) \le 5 \}.
$$

Find the probability of A.

Sol: $\max(X_1, X_2, X_3) \leq 5$ if and only if each of the three numbers is less than 5; therefore

$$
P[A] = P[{X_1 \le 5} \cap {X_2 \le 5} \cap {X_3 \le 5}]
$$

= $F_{X_1, X_2, X_3}(5, 5, 5).$

• Joint probability mass function of n discrete random variables is

 $p_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n) = P[X_1 = x_1, X_2 = x_2, ..., X_n = x_n].$

• Probability of event A is

$$
P[(X_1, ..., X_n) \in A] = \sum \cdots \sum \n{z \in A} p_{X_1, X_2, ..., X_n}(x_1, ..., x_n),
$$

where $\boldsymbol{x} = (x_1, x_2, \dots, x_n).$

• Marginal pmf for X_j is

$$
p_{X_j}(x_j) = \sum_{x_1} \cdots \sum_{x_{j-1}} \sum_{x_{j+1}} \cdots \sum_{x_n} p_{X_1, X_2, \ldots, X_n}(x_1, \ldots, x_n).
$$

• Marginal pmf for
$$
X_1, X_2, ..., X_{n-1}
$$
 is
\n
$$
p_{X_1, X_2, ..., X_{n-1}}(x_1, x_2, ..., x_{n-1}) = \sum_{x_n} p_{X_1, X_2, ..., X_n}(x_1, ..., x_n).
$$

 \bullet

.

• Conditional pmf is

$$
p_{X_n}(x_n|x_1,\ldots,x_{n-1})=\frac{p_{X_1,\ldots,X_n}(x_1,\ldots,x_n)}{p_{X_1,\ldots,X_{n-1}}(x_1,\ldots,x_{n-1})}
$$

$$
p_{X_1,...,X_n}(x_1,...,x_n)
$$

= $p_{X_n}(x_n|x_1,...,x_{n-1})$
 $\times p_{X_{n-1}}(x_{n-1}|x_1,...,x_{n-2})\cdots p_{X_2}(x_2|x_1)p_{X_1}(x_1).$

Example: A computer system receives message over three communications lines. Let X_j be the number of messages received on line *j* in one hour. Suppose that the joint pmf of X_1, X_2 , and X_3 is given by

$$
p_{X_1, X_2, X_3}(x_1, x_2, x_3) = (1 - a_1)(1 - a_2)(1 - a_3)a_1^{x_1}a_2^{x_2}a_3^{x_3}
$$

for $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

Find $p_{X_1, X_2}(x_1, x_2)$ and $p_{X_1}(x_1)$ given that $0 < a_i < 1$. **Sol**: The marginal pmf of X_1 and X_2 is

$$
p_{X_1, X_2}(x_1, x_2) = (1 - a_1)(1 - a_2)(1 - a_3) \sum_{x_3=0}^{\infty} a_1^{x_1} a_2^{x_2} a_3^{x_3}
$$

=
$$
(1 - a_1)(1 - a_2)a_1^{x_1} a_2^{x_2}.
$$

Graduate Institute of Communication Engineering, National Taipei University

The pmf of X_1 is

$$
p_{X_1}(x_1) = (1 - a_1)(1 - a_2) \sum_{x_2=0}^{\infty} a_1^{x_1} a_2^{x_2}
$$

=
$$
(1 - a_1) a_1^{x_1}.
$$

Graduate Institute of Communication Engineering, National Taipei University

• Random variables X_1, X_2, \ldots, X_n are jointly continuous random variables if the probability of any *n*-dimensional event A is given by an *n*-dimensional integral of ^a probability density function:

$$
P[(X_1,\ldots,X_n)\in A]=\int\cdots\int_{\boldsymbol{x}\in A}f_{X_1,\ldots,X_n}(x'_1,\ldots,x'_n)dx'\ldots dx'_n,
$$

where $f_{X_1,...,X_n}(x'_1,\ldots,x'_n)$ is the joint probability density function.

• Joint cdf of X is obtained from the joint pdf:

$$
F_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n)
$$

= $\int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{X_1, ..., X_n}(x'_1, ..., x'_n) dx' ... dx'_n.$

• The marginal pdf for ^a subset of random variables is obtained by integrating the other variables out. For example, the marginal pdf of X_1 is

$$
f_{X_1}(x_1) = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f_{X_1, X_2, \ldots, X_n}(x_1, x'_2, \ldots, x'_n) dx'_2 \cdots dx'_n.
$$

• The marginal pdf for X_1, \ldots, X_{n-1} is given by

$$
f_{X_1,...,X_{n-1}}(x_1,...,x_{n-1})=\int_{-\infty}^{+\infty}f_{X_1,...,X_n}(x_1,...,x_{n-1},x'_n)dx'_n.
$$

• Conditional pdf is given by $f_{X_n}(x_n|x_1,\ldots,x_{n-1}) =$ $f_{X_1,...,X_n}(x_1,\ldots,x_n)$ $\overline{f_{X_1,...,X_{n-1}}(x_1,...,x_{n-1})}$. \bullet $f_{X_1,...,X_n}(x_1,\ldots,x_n)$

 $= f_{X_n}(x_n | x_1, \ldots, x_{n-1})$

Graduate Institute of Communication Engineering, National Taipei University

 $\times f_{X_{n-1}}(x_{n-1}|x_1,\ldots,x_{n-2})\cdots f_{X_2}(x_2|x_1)f_{X_1}(x_1).$

Example: The random variables X_1 , X_2 , and X_3 have the joint Gaussian pdf:

$$
f_{X_1, X_2, X_3}(x_1, x_2, x_3) = \frac{e^{-(x_1^2 + x_2^2 - \sqrt{2}x_1x_2 + \frac{1}{2}x_3^2)}}{2\pi\sqrt{\pi}}.
$$

Find the marginal pdf of X_1 and X_3 . **Sol**: The marginal pdf for the pair X_1 and X_3 is

$$
f_{X_1,X_3}(x_1,x_3) = \frac{e^{-x_3^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{e^{-(x_1^2 + x_2^2 - \sqrt{2}x_1x_2)}}{2\pi/\sqrt{2}} dx_2.
$$

The above integral gives

$$
f_{X_1,X_3}(x_1,x_3) = \frac{e^{-x_3^2/2}}{\sqrt{2\pi}} \frac{e^{-x_1^2/2}}{\sqrt{2\pi}}
$$

.

Graduate Institute of Communication Engineering, National Taipei University

Independence

• X_1, \ldots, X_n are independent if

$$
P[X_1 \in A_1, \dots, X_n \in A_n] = P[X_1 \in A_1] \dots P[X_n \in A_n].
$$

• X_1, \ldots, X_n are independent if and only if

$$
F_{X_1,...,X_n}(x_1,...,x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n) \quad \forall \, x_1,...,x_n.
$$

• If the random variables are discrete, then the above equation is equivalent to

$$
p_{X_1,...,X_n}(x_1,...,x_n) = p_{X_1}(x_1)...p_{X_n}(x_n) \quad \forall x_1,...,x_n;
$$

If the random variables are jointly continuous, then the above equation is equivalent to

$$
f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n) \quad \forall x_1,...,x_n.
$$

Example: The *n* samples X_1, X_2, \ldots, X_n of a "white noise" signal have joint pdf given by

$$
f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\frac{e^{-(x_1^2+\cdots+x_n^2)/2}}{(2\pi)^{n/2}} \quad \forall \ x_1,\ldots,x_n.
$$

It is clear that the above is the product of n one-dimensional Gaussian pdf's. Thus X_1, \ldots, X_n are independent Gaussian random variables.

Graduate Institute of Communication Engineering, National Taipei University

Example: Let $Z = X + Y$. Find $F_Z(z)$ and $f_Z(z)$ in terms of the joint pdf of X and Y .

Sol: The cdf of Z is

$$
F_Z(z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{z-x'} f_{X,Y}(x',y') dy' dx'.
$$

The pdf of Z is

$$
f_Z(z) = \frac{d}{dz} F_Z(z) = \int_{-\infty}^{+\infty} f_{X,Y}(x', z - x') dx'.
$$

If X and Y are independent random variables, then

$$
f_Z(z) = \int_{-\infty}^{+\infty} f_X(x') f_Y(z - x') dx' \quad - \quad \text{convolution integral.}
$$

Example: Find the pdf of the sum $Z = X + Y$ of two zero-mean, unit-variance Gaussian random variables with correlation coefficient $\rho=-1/2.$ Sol:We have

$$
f_Z(z) = \int_{-\infty}^{+\infty} f_{X,Y}(x', z - x') dx'
$$

=
$$
\frac{1}{2\pi (1 - \rho^2)^{1/2}} \int_{-\infty}^{+\infty} e^{-[(x')^2 - 2\rho x'(z - x') + (z - x')^2]/2(1 - \rho^2)} dx'
$$

=
$$
\frac{1}{2\pi (3/4)^{1/2}} \int_{-\infty}^{+\infty} e^{-((x')^2 - x'z + z^2)/2(3/4)} dx'.
$$

After completing the square of the argument in the exponent we have

$$
f_Z(z) = \frac{e^{-z^2/2}}{\sqrt{2\pi}}.
$$

Graduate Institute of Communication Engineering, National Taipei University

Thus, the sum of two nonindependent Gaussian random variables is also ^a Gaussian random variable.

• Find pdf of ^a function from conditional pdf

$$
f_Z(z) = \int_{-\infty}^{+\infty} f_Z(z|y') f_Y(y') dy'
$$

Example: Let $Z = X/Y$. Find the pdf of Z if X and Y are independent and both exponential distributed with mean one. Sol: Assume $Y = y$, then $Z = X/y$ is a scaled version of X. Therefore

$$
f_Z(z|y) = |y| f_X(yz|y).
$$

The pdf of Z is

$$
f_Z(z) = \int_{-\infty}^{+\infty} |y'| f_X(y'z|y') f_Y(y') dy' = \int_{-\infty}^{+\infty} |y'| f_{X,Y}(y'z,y') dy'.
$$

Since X and Y are independent and exponentially distributed with

mean one, we have

$$
f_Z(z) = \int_0^\infty y' f_X(y'z) f_Y(y') dy' \qquad z > 0
$$

=
$$
\int_0^\infty y' e^{-y'z} e^{-y'} dy'
$$

=
$$
\frac{1}{(1+z)^2} \qquad z > 0.
$$

Transformations of Random Variables

- Let X_1, X_2, \ldots, X_n be random variables.
- Let random variables Z_1, Z_2, \ldots, Z_n be defined as

$$
Z_1=g_1(\boldsymbol{X}), \quad Z_2=g_2(\boldsymbol{X}), \quad \cdots, \quad Z_n=g_n(\boldsymbol{X})
$$

• How to find the joint cdf and pdf of Z_1, \ldots, Z_n ?

• Joint cdf of
$$
Z_1, \ldots, Z_n
$$
 is

 $F_{Z_1,...,Z_n}(z_1,...,z_n) = P[g_1(\boldsymbol{X}) \leq z_1,...,g_n(\boldsymbol{X}) \leq z_n].$

• If
$$
X_1, \ldots, X_n
$$
 have a joint pdf, then
\n
$$
F_{Z_1, \ldots, Z_n}(z_1, \ldots, z_n) = \int \cdots \int_{\mathbf{x}': g_k(\mathbf{x}') \le z_k} f_{X_1, \ldots, X_n}(x'_1, \ldots, x'_n) dx'_1 \cdots dx
$$

′ $\pmb{\eta}$. Example: Let random variables W and Z be defined as

$$
W = \min(X, Y)
$$
 and $Z = \max(X, Y)$.

Find the joint cdf of W and Z in terms of the joint cdf of X and Y . Sol:

 $F_{W,Z}(w, z) = P[\{\min(X, Y) \leq w\} \cap \{\max(X, Y) \leq z\}].$

Graduate Institute of Communication Engineering, National Taipei University

$$
= F_{X,Y}(w, z) + F_{X,Y}(z, w) - F_{X,Y}(w, w).
$$

If $z \leq w$, then

$$
F_{W,Z}(w,z) = F_{X,Y}(z,z).
$$

pdf of Linear Transformations

• Consider the linear transformation of two random variables:

$$
V = aX + bY
$$
 or
$$
\begin{bmatrix} V \\ W \end{bmatrix} = \begin{bmatrix} a & b \\ c & e \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}
$$

• Assume that A is invertible, that is,

$$
\left[\begin{array}{c} x \\ y \end{array}\right] = A^{-1} \left[\begin{array}{c} v \\ w \end{array}\right]
$$

.

Graduate Institute of Communication Engineering, National Taipei University

where dP is the area of the parallelogram.

• The joint pdf of V and W is

$$
f_{V,W}(v,w) = \frac{f_{X,Y}(x,y)}{\left|\frac{dP}{dxdy}\right|}.
$$

• $dP/dxdy$ is called "Stretch factor." It can be shown $dP = (|ae - bc|)dxdy$, so $|ae-bc|(dxdy)$ $dxdy$ $= |ae - bc| = |A|,$

where $|A|$ is the determinant of A.

• Let the *n*-dimensional vector Z be

 $\mathbf{Z} = A\mathbf{X}$, where A is an $n \times n$ invertable matrix.

• The joint pdf of **Z** is then

 $\overline{}$

 dP

 $\left. \frac{dxdy}{dxdy}\right| =$

 $\overline{\mathbf{a}}$

$$
f_{\mathbf{Z}}(z) = f_{Z_1,...,Z_n}(z_1,...,z_n) = \frac{f_{X_1,...,X_n}(x_1,...,x_n)}{|A|} \bigg|_{\mathbf{x} = A^{-1} \mathbf{Z}}
$$

=
$$
\frac{f_{\mathbf{X}}(A^{-1}z)}{|A|}.
$$

Example: Let X and Y be the jointly Gaussian random variables with the pdf

$$
f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}}e^{-(x^2-2\rho xy + y^2)/2(1-\rho^2)} - \infty < x, y < \infty.
$$

Let V and W be obtained from (X, Y) by

$$
\begin{bmatrix} V \\ W \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = A \begin{bmatrix} X \\ Y \end{bmatrix}.
$$

Find the joint pdf of V and W .

Sol: $|A|=1$ and the inverse mapping is given by

$$
\left[\begin{array}{c} X \\ Y \end{array}\right] = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} V \\ W \end{array}\right].
$$

Hence, $X = (V - W)/\sqrt{2}$ and $Y = (V + W)/\sqrt{2}$. Therefore, the joint pdf of V and W is

$$
f_{V,W}(v, w) = f_{X,Y}\left(\frac{v - w}{\sqrt{2}}, \frac{v + w}{\sqrt{2}}\right).
$$

The argument of the exponent becomes

$$
\frac{(v-w)^2/2 - 2\rho(v-w)(v+w)/2 + (v+w)^2/2}{2(1-\rho^2)}
$$

=
$$
\frac{v^2}{2(1+\rho)} + \frac{w^2}{2(1-\rho)}.
$$

Thus

$$
f_{V,W}(v,w) = \frac{1}{2\pi(1-\rho^2)^{1/2}}e^{-\{[v^2/2(1+\rho)]+[w^2/2(1-\rho)]\}}.
$$

Therefore, V and W are independent.

pdf of General Transformations

 \bullet Let V and W be defined by two nonlinear functions of X and Y :

$$
V = g_1(X, Y) \qquad \text{and} \qquad W = g_2(X, Y)
$$

• Assume that $g_1(x, y)$ and $g_2(x, y)$ are invertible, that is,

 $x = h_1(v, w)$ and $y = h_2(v, w)$

• The approximation is

$$
g_k(x+dx,y) \approx g_k(x,y) + \frac{\partial}{\partial x} g_k(x,y) dx \qquad k = 1,2.
$$

• The probability of the infinitesimal rectangle and the parallelogram are approximately equal

$$
f_{X,Y}(x,y)dxdy = f_{V,W}(v,w)dP
$$

and

$$
f_{V,W}(v, w) = \frac{f_{X,Y}(h_1(v, w), h_2(v, w))}{|\frac{dP}{dxdy}|},
$$

where dP is the area of the parallelogram.

Graduate Institute of Communication Engineering, National Taipei University

Graduate Institute of Communication Engineering, National Taipei University

• Stretch factor – **Jacobian** of the transformation:

$$
\mathcal{J}(x, y) = \det \begin{bmatrix} \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \end{bmatrix}
$$

.

.

• Jacobian of the inverse transformation is given by

$$
\mathcal{J}(v, w) = \det \begin{bmatrix} \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \end{bmatrix}
$$

• It can be shown that

$$
|\mathcal{J}(v,w)| = \frac{1}{|\mathcal{J}(x,y)|}.
$$

Graduate Institute of Communication Engineering, National Taipei University

Example: Let X and Y be zero-mean, unit-variance independent Gaussian random variables. Find the joint pdf of V and W defined by

$$
V = (X^2 + Y^2)^{1/2}
$$

$$
W = \angle(X, Y),
$$

where $\angle \theta$ denotes the angle in the range $(0, 2\pi)$ that is defined by the point (x, y) .

Sol: Changing from Cartesian to polar coordinates. The inverse transformation is given by

 $x = v \cos w$ and $y = v \sin w$.

The Jacobian is given by

$$
\mathcal{J}(v, w) = \begin{vmatrix} \cos w & -v \sin w \\ \sin w & v \cos w \end{vmatrix} = v.
$$

Thus,

$$
f_{V,W}(v, w) = \frac{v}{2\pi} e^{-[v^2 \cos^2(w) + v^2 \sin^2(w)]/2}
$$

=
$$
\frac{1}{2\pi} v e^{-v^2/2} \qquad 0 \le v, 0 \le w < 2\pi.
$$

The pdf of a **Rayleigh random variable** is given by

$$
f_V(v) = v e^{-v^2/2} \qquad v \ge 0.
$$

Therefore, radius V and angle W are independent random variables and

V: Rayleigh random variable;

 $W\colon$ uniformly distributed $(0,2\pi).$

Graduate Institute of Communication Engineering, National Taipei University

$$
= \int_{-\infty}^{+\infty} x' f_X(x') dx' + \int_{-\infty}^{+\infty} y' f_Y(y') dy' = E[X] + E[Y].
$$

• Expected value of a sum of *n* random variables is

$$
E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n].
$$

Example: Suppose that X and Y are independent random variables, and let $g(X,Y) = g_1(X)g_2(Y)$. Show that $E[g(X,Y)] = E[g_1(X)g_2(Y)] = E[g_1(X)]E[g_2(X)].$ Sol:

$$
E[g_1(X)g_2(X)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g_1(x')g_2(y')f_X(x')f_Y(y')dx'dy'
$$

=
$$
\left\{ \int_{-\infty}^{+\infty} g_1(x')f_X(x')dx' \right\} \left\{ \int_{-\infty}^{+\infty} g_2(y')f_Y(y')dy' \right\}
$$

=
$$
E[g_1(X)]E[g_2(X)].
$$

In general, if X_1, \ldots, X_n are independent random variables, then

$$
E[g_1(X_1)g_2(X_2)\cdots g_n(X_n)]=E[g_1(X_1)]E[g_2(X_2)]\cdots E[g_n(X_n)].
$$

Correlation and Covariance of Two Random Variables

• Joint moment of X and Y is

 $E[X^jY^k]=$ ۔
1 $\left\{\right.$ $\begin{matrix} \end{matrix}$ $\int_{-\infty}^{+\infty}$ $+\infty$ $\int_{-\infty}^{+\infty}$ $\int_{-\infty}^{+\infty} x^j y^k f_{X,Y}(x,y) dx dy \quad X, Y \text{ jointly continuous}$ $J-\infty$ $J-\infty \ \sum_i \sum_n x_i^j$ $\frac{j}{i}y_n^k$ ${}_{n}^{k}p_{X,Y}(x_{i},y_{n}) \hspace{1.5cm} X,\, Y \text { discrete}$

- If $j = 0$, then we obtain moments of Y, and if $k = 0$, then we obtain the moments of X.
- Correlation of X and Y is defined as $E[XY]$.
- If $E[XY] = 0$, then X and Y are orthogonal.
- The *jkth* central moment of X and Y is defined as $E[(X-E[X])^j(Y-E[Y])^k].$

.

Graduate Institute of Communication Engineering, National Taipei University

Example: Let X and Y be independent random variables.

Find their covariance.

$$
COV(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

=
$$
E[X - E[X]]E[Y - E[Y]]
$$

= 0.

Pairs of independent random variables have covariance zero.

• Correlation Coefficient of *X* and *Y*
\n
$$
\rho_{X,Y} = \frac{\text{COV}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[XY] - E[X]E[Y]}{\sigma_X \sigma_Y},
$$
\nwhere $\sigma_X = \sqrt{\text{VAR}(X)}$ and $\sigma_Y = \sqrt{\text{VAR}(Y)}$.

• $\rho_{X,Y}$ is at most 1 in magnitude, that is,

$$
-1 \leq \rho_{X,Y} \leq 1.
$$

This result is from the fact that the expected value of the square of ^a random variable is nonnegative:

$$
0 \leq E \left\{ \left(\frac{X - E[X]}{\sigma_X} \pm \frac{Y - E[Y]}{\sigma_Y} \right)^2 \right\}
$$

= 1 \pm 2\rho_{X,Y} + 1 = 2(1 \pm \rho_{X,Y}).

• The extreme values of $\rho_{X,Y}$ are achieved when X and Y are related linearly, $Y = aX + b$:

$$
\rho_{X,Y} = \begin{cases} 1 & a > 0 \\ -1 & a < 0 \end{cases}
$$

- X, Y are said to be uncorrelated if $\rho_{X,Y} = 0$
	- X, Y are independent \rightarrow X, Y are uncorrelated

.

- X, Y are uncorrelated \overrightarrow{NOT} X, Y are independent
- X, Y are uncorrelated jointly Gaussian \rightarrow X, Y are independent

Graduate Institute of Communication Engineering, National Taipei University

X and Y are dependent.

$$
E[XY] = E[\sin \Theta \cos \Theta] = \frac{1}{2\pi} \int_0^{2\pi} \sin \phi \cos \phi d\phi
$$

$$
= \frac{1}{4\pi} \int_0^{2\pi} \sin 2\phi d\phi = 0.
$$

Since $E[X] = E[Y] = 0$, it implies that X and Y are uncorrelated.
Example: Let X and Y be random variables with

$$
f_{X,Y}(x,y) = \begin{cases} 2e^{-x}e^{-y} & 0 \le y \le x < \infty \\ 0 & \text{elsewhere.} \end{cases}
$$

Find $E[XY]$, COV(X,Y), and $\rho_{X,Y}$.

Sol: First, find the mean, variance, and correlation of X and Y. We have $E[X] = 3/2$, $VAR[X] = 5/4$, $E[Y] = 1/2$ and $VAR[Y] = 1/4$. The correlation of X and Y is

$$
E[XY] = \int_0^\infty \int_0^x xy2e^{-x}e^{-y}dydx
$$

=
$$
\int_0^\infty 2xe^{-x}(1-e^{-x} - xe^{-x})dx = 1.
$$

$$
\rho_{X,Y} = \frac{1 - \frac{3}{2}\frac{1}{2}}{\sqrt{\frac{5}{4}}\sqrt{\frac{1}{4}}} = \frac{1}{\sqrt{5}}.
$$

Graduate Institute of Communication Engineering, National Taipei University

Graduate Institute of Communication Engineering, National Taipei University

.

• The conditional pdf $f_X(x|y)$ $(f_Y(y|x))$ is

$$
f_X(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{\exp\left\{\frac{-1}{2(1-\rho_{X,Y}^2)\sigma_1^2} \left[x - \rho_{X,Y}\frac{\sigma_1}{\sigma_2}(y - m_2) - m_1\right]^2\right\}}{\sqrt{2\pi\sigma_1^2(1-\rho_{X,Y}^2)}}
$$

- Conditional mean is $m_1 + \rho_{X,Y}(\sigma_1/\sigma_2)(y m_2)$ and conditional variance $\sigma_1^2(1-\rho_{X,Y}^2)$.
- Show that $\rho_{X,Y}$ is the correlation coefficient between X and Y .

Sol: We have

$$
COV(X, Y) = E[(X - m1)(Y - m2)]
$$

$$
= E[E[(X - m_1)(Y - m_2)|Y]].
$$

The conditional expectation of $(X - m_1)(Y - m_2)$
given $Y = y$ is

$$
E[(X - m_1)(Y - m_2)|Y = y] = (y - m_2)E[X - m_1|Y = y]
$$

$$
= (y - m_2) (E[X|Y = y] - m_1)
$$

$$
= (y - m_2) (\rho_{X,Y} \frac{\sigma_1}{\sigma_2} (y - m_2)).
$$

Therefore,

$$
E[(X - m_1)(Y - m_2)|Y] = \rho_{X,Y} \frac{\sigma_1}{\sigma_2} (Y - m_2)^2
$$

and

$$
COV(X, Y) = E[E[(X - m_1)(Y - m_2)|Y]] = \rho_{X,Y} \frac{\sigma_1}{\sigma_2} E[(Y - m_2)^2]
$$

= $\rho_{X,Y} \sigma_1 \sigma_2$.

Graduate Institute of Communication Engineering, National Taipei University

n jointly Gaussian Random Variables

• X_1, X_2, \ldots, X_n are jointly Gaussian if the pdf is given by

$$
f_{\boldsymbol{X}}(\boldsymbol{x}) = f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n)
$$

=
$$
\frac{\exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{m})^T K^{-1}(\boldsymbol{x} - \boldsymbol{m})\right\}}{(2\pi)^{n/2}|K|^{1/2}},
$$

where x and m are column vectors defined by

Graduate Institute of Communication Engineering, National Taipei University

Example: Verify the two-dimensional Gaussian pdf. Sol: The covariance matrix is $K =$ |
|
| $\sigma_{\text{\tiny 1}}^2$ $\int_1^2 \rho_{X,Y} \sigma_1 \sigma_2$ $\rho_{X,Y}\sigma_1\sigma_2 \qquad \quad \sigma_2^2$ $\begin{bmatrix} \sigma_1 \sigma_2 \\ \sigma_2 \\ \sigma_3 \end{bmatrix}$ and K^{-1} = 1 σ^2 $_{1}^{2}\sigma_{2}^{2}(1-\rho_{2}^{2}%)^{2}=(1-\rho_{1}^{2})^{2}$ $^2_{X,Y})$ $\begin{bmatrix} \\ \end{bmatrix}$ σ^2 2 − $\rho_{X,Y}\sigma_1\sigma_2$ − $\rho_{X,Y}\sigma_1\sigma_2 \qquad \quad \sigma_1^2$ 1 *<u><i>* </u> . The term in the exponential is 1 $\sigma_{^{\text{-}}}^2$ $^{2}_{1}\sigma^{2}_{2}(1-\rho^{2}_{2})$ $_{X,Y}^2)$ $[x - m_1, y - m_2]$ $\sqrt{2}$ $\overline{\mathsf{L}}$ σ_{2}^{2} $-\rho_{X,Y} \sigma_1 \sigma_2$ $-\rho_{X,Y}\sigma_1\sigma_2 \qquad \qquad \sigma_1^2$ 1 $\overline{1}$ 5 $\sqrt{2}$ $\overline{\mathsf{L}}$ $x - m_1$ $y - m_2$ $\overline{1}$ 5 $=\frac{((x-m_1)/\sigma_1)^2-2\rho_{X,Y}((x-m_1)/\sigma_1)((y-m_2)/\sigma_2)+((y-m_2)/\sigma_2)^2}{(x-m_1)/\sigma_1}$ $(1-\rho_{\mathcal{I}}^2$ $_{X,Y}^2)$.

Graduate Institute of Communication Engineering, National Taipei University

Linear Transformation of Gaussian Random Variables

• Let $\mathbf{X} = (X_1, \ldots, X_n)$ be jointly Gaussian, and

 $\boldsymbol{Y} = A \boldsymbol{X},$

where A is an $n \times n$ invertible matrix.

• The pdf of Y is

$$
f_{\boldsymbol{Y}}(\boldsymbol{y}) = \frac{f_{\boldsymbol{X}}(A^{-1}\boldsymbol{y})}{|A|} \\
= \frac{\exp\left\{-\frac{1}{2}(A^{-1}\boldsymbol{y}-\boldsymbol{m})^T K^{-1}(A^{-1}\boldsymbol{y}-\boldsymbol{m})\right\}}{(2\pi)^{n/2}|A||K|^{1/2}}
$$

.

Since

$$
(A^{-1}\boldsymbol{y}-\boldsymbol{m})=A^{-1}(\boldsymbol{y}-A\boldsymbol{m})
$$

and

$$
(A^{-1}\boldsymbol{y}-\boldsymbol{m})^T=(\boldsymbol{y}-A\boldsymbol{m})^T A^{-1T},
$$

the argument of the exponential is

$$
(\mathbf{y} - A\mathbf{m})^T A^{-1T} K^{-1} A^{-1} (\mathbf{y} - A\mathbf{m}) = (\mathbf{y} - A\mathbf{m})^T (A K A^T)^{-1} (\mathbf{y} - A\mathbf{m}).
$$

Let $C = AKA^T$ $\boldsymbol{n} = A\boldsymbol{m}$. Noting that $\det(C) = \det(AKA^T) = \det(A)^2 \det(K)$ and we have

$$
f_{\boldsymbol{Y}}(\boldsymbol{y}) = \frac{e^{-(1/2)(\boldsymbol{y}-\boldsymbol{n})^T C^{-1}(\boldsymbol{y}-\boldsymbol{n})}}{(2\pi)^{n/2}|C|^{1/2}}.
$$

Therefore, Y are jointly Gaussian with mean n and

covariance C:

$$
n = Am \qquad \text{and} \qquad C = AKA^T.
$$

• It is possible to transform a vector of jointly Gaussian random variables into ^a vector of independent Gaussian random variables since it is always possible to find ^a matrix A such that $AKA^{T} = \Lambda$, where Λ is a diagonal matrix, due to the symmetry of A.