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4.1 Vector Random Variables

Consider the two dimensional random variable

X = (X,Y ). Find the regions of the planes corresponding

to the events

A = {X + Y ≤ 10},
B = {min(X,Y ) ≤ 5} and

C = {X2 + Y 2 ≤ 100}.
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• Let the n-dimensional random variable X be

X = (X1, X2, . . . , Xn) and Ak be a one dimensional

event that involves Xk.

• Events with product form is defined as

A = {X1 ∈ A1} ∩ {X2 ∈ A2} ∩ · · · ∩ {Xn ∈ An}.

P [A] = P [{X1 ∈ A1} ∩ {X2 ∈ A2} ∩ · · · ∩ {Xn ∈ An}]
△
= P [X1 ∈ A1, . . . , Xn ∈ An].

• Some events may not be of product form.
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Some two-dimensional product form events
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Probability of non-product-form event

• B is partitioned into disjoint product-form events such

as B1, B2, . . . , Bn, and

P [B] ≈ P

[
⋃

k

Bk

]

=
∑

k

P [Bk].

• Approximation becomes exact as Bk’s become arbitrary

fine.
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Non-product-form events
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Independence

• Two random variables X and Y are independent if

P [X ∈ A1, Y ∈ A2] = P [X ∈ A1]P [Y ∈ A2].

• Random variables X1, X2, . . . , Xn are independent if

P [X1 ∈ A1, . . . , Xn ∈ An] = P [X1 ∈ A1] · · ·P [Xn ∈ An].
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4.2 Pairs of Random Variables

Pairs of Discrete Random Variables

• Random variable X = (X,Y )

• Sample space S = {(xj, yk) : j = 1, 2, . . . , k = 1, 2, . . .}
is countable.

• Joint probability mass function (pmf) of X is

pX,Y (xj, yk)

= P [{X = xj} ∩ {Y = yk}]
△
= P [X = xj, Y = yk] j = 1, 2, . . . k = 1, 2, . . .
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• Probability of event A is

P [X ∈ A] =
∑

(xj ,yk)∈A

pX,Y (xj, yk).

• Marginal probability mass function is

pX(xj) = P [X = xj]

= P [X = xj, Y = anything]

= P [{X = xj and Y = y1} ∪
{X = xj and Y = y2} ∪ · · ·]

=
∞∑

k=1

pX,Y (xj, yk).
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• Similarly

pY (yk) =
∞∑

j=1

pX,Y (xj, yk).
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Joint cdf of X and Y

• Joint cumulative distribution function of X and Y is

given as

FX,Y (x1, y1) = P [X ≤ x1, Y ≤ y1]
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Properties

1. FX,Y (x1, y1) ≤ FX,Y (x2, y2), if x1 ≤ x2 and y1 ≤ y2.

2. FX,Y (−∞, y1) = FX,Y (x1,−∞) = 0.

3. FX,Y (∞,∞) = 1.

4. FX(x) = FX,Y (x,∞) = P [X ≤ x, Y < ∞] = P [X ≤ x];

FY (y) = FX,Y (∞, y) = P [Y ≤ y].

5. Continuous from the right

lim
x→a+

FX,Y (x, y) = FX,Y (a, y)

lim
y→b+

FX,Y (x, y) = FX,Y (x, b)
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Example: Joint cdf of X = (X,Y ) is given as

FX,Y (x, y) =

{

(1 − e−αx)(1 − e−βy) x ≥ 0, y ≥ 0

0 otherwise
.

Find the marginal cdf’s.

Sol:

FX(x) = lim
y→∞

FX,Y (x, y) = 1 − e−αx x ≥ 0.

FY (y) = lim
x→∞

FX,Y (x, y) = 1 − e−βy y ≥ 0.
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• Probability of region B = {x1 < X < x2, Y ≤ y1}
FX,Y (x2, y1) = FX,Y (x1, y1) + P [x1 < X < x2, Y ≤ y1]

→ P [x1 < X < x2, Y ≤ y1] = FX,Y (x2, y1) − FX,Y (x1, y1)

• Probability of region A = {x1 < X ≤ x2, y1 < Y ≤ y2}

FX,Y (x2, y2) = P [x1 < X ≤ x2, y1 < Y ≤ y2]

+ FX,Y (x2, y1) + FX,Y (x1, y2) − FX,Y (x1, y1)

P [x1 < X ≤ x2, y1 < Y ≤ y2]

= FX,Y (x2, y2) − FX,Y (x2, y1) − FX,Y (x1, y2) + FX,Y (x1, y1)
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Joint pdf of Two Jointly Continuous Random

Variables

• Random variable X = (X,Y )

• Joint probability density function fX,Y (x, y) is defined

such that for every event A

P [X ∈ A] =

∫ ∫

A

fX,Y (x′, y′)dx′dy′.
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Properties

1. 1 =

∫ +∞

−∞

∫ +∞

−∞
fX,Y (x′, y′)dx′dy′.

2. FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (x′, y′)dx′dy′.

3. fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
.

4. P [a1 < X ≤ b1, a2 < Y ≤ b2] =

∫ b2

a2

∫ b1

a1

fX,Y (x′, y′)dx′dy′.

5. Marginal pdf’s

fX(x) =
d

dx
FX(x) =

d

dx
FX,Y (x,∞)
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=
d

dx

∫ x

−∞

{∫ +∞

−∞
fX,Y (x′, y′)dy′

}

dx′

=

∫ +∞

−∞
fX,Y (x, y′)dy′.

6. fY (y) =

∫ +∞

−∞
fX,Y (x′, y)dx′.
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Example: Let the pdf of X = (X,Y ) be

fX,Y (x, y) =

{

1 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

0 elsewhere
.

Find the joint cdf.

Sol: Consider five cases:

1. x < 0 or y < 0, FX,Y (x, y) = 0;

2. (x, y) ∈ unit interval, FX,Y (x, y) =
∫ y

0

∫ x

0
1dx′dy′ = xy;

3. 0 ≤ x ≤ 1 and y > 1, FX,Y (x, y) =
∫ 1

0

∫ x

0
1dx′dy′ = x;

4. x > 1 and 0 ≤ y ≤ 1, FX,Y (x, y) = y;

5. x > 1 and y > 1, FX,Y (x, y) =
∫ 1

0

∫ 1

0
1dx′dy′ = 1.
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Example: Random variables X and Y are jointly

Gaussian

fX,Y (x, y) =
1

2π
√

1 − ρ2
e−(x2−2ρxy+y2)/2(1−ρ2) −∞ < x, y < ∞.

Find the marginal pdf’s.
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• Marginal pdf of X

fX(x) =
e−x2/2(1−ρ2)

2π
√

1 − ρ2

∫ +∞

−∞
e−(y2−2ρxy)/2(1−ρ2)dy

• Add and subtract ρ2x2 in the exponent, i.e.,

y2 − 2ρxy + ρ2x2 − ρ2x2 = (y − ρx)2 − ρ2x2.

fX(x) =
e−x2/2(1−ρ2)

2π
√

1 − ρ2

∫ +∞

−∞
e−[(y−ρx)2−ρ2x2]/2(1−ρ2)dy

=
e−x2/2

√
2π

∫ +∞

−∞

e−(y−ρx)2/2(1−ρ2)

√

2π(1 − ρ2)
︸ ︷︷ ︸

N(ρx;1−ρ2)

dy
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=
e−x2/2

√
2π

→ N(0, 1).
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Example: Let X be the input to a communication

channel and Y the output. The input to the channel is +1

volt or −1 volt with equal probability. The output of the

channel is the input plus a noise voltage N that is

uniformly distributed in the interval [−2,+2] volts. Find

P [X = +1, Y ≤ 0].

Sol:

P [X = +1, Y ≤ y] = P [Y ≤ y|X = +1]P [X = +1],

where P [X = +1] = 1/2. When the input X = 1, the

output Y is uniformly distributed in the interval [−1, 3].

Therefore,

P [Y ≤ y|X = +1] =
y + 1

4
for −1 ≤ y ≤ 3.
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Thus

P [X = +1, Y ≤ 0] = P [Y ≤ 0|X = +1]P [X = +1]

= (1/4)(1/2) = 1/8.
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4.3 Independence of Two Random Variables

• X and Y are independent random variables if for every

events A1 and A2

P [X ∈ A1, Y ∈ A2] = P [X ∈ A1]P [Y ∈ A2]

• Suppose X and Y are discrete random variables. We

are interesting in the probability of event A = A1 ∩ A2.

Let A1 = {X = xj} and A2 = {Y = yk}, then the

independence of X and Y implies

pX,Y (xj, yk) = P [X = xj, Y = yk]

= P [X = xj]P [Y = yk]
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= pX(xj)pY (yk)

→ joint pmf is equal to the product of the marginal

pmf’s.
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• Let X and Y be random variables with

pX,Y (xj, yk) = pX(xj)pY (yk). Let A = A1 ∩ A2.

P [A] =
∑

xj∈A1

∑

yk∈A2

pX,Y (xj, yk)

=
∑

xj∈A1

∑

yk∈A2

pX(xj)pY (yk)

=
∑

xj∈A1

pX(xj)
∑

yk∈A2

pY (yk)

= P [A1]P [A2]

• Discrete random variables X and Y are

independent if and only if the joint pmf is equal

to the product of the marginal pmf’s for all
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xj, yk.
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• Random variables X and Y are independent if and only

if

FX,Y (x, y) = FX(x)FY (y) for all x and y.

• If X and Y are jointly continuous, then X and Y are

independent if and only if

fX,Y (x, y) = fX(x)fY (y) for all x and y.
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• If X and Y are independent random variables, then

g(X) and h(Y ) are also independent.

Proof: Let A and B are any two events involve g(X)

and h(Y ), respectively. Define

A′ = {x : g(x) ∈ A} and B′ = {y : h(y) ∈ B}.

Then

P [g(X) ∈ A, h(Y ) ∈ B] = P [X ∈ A′, Y ∈ B′]

= P [X ∈ A′]P [Y ∈ B′]

= P [g(X) ∈ A]P [h(Y ) ∈ B].
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4.4 Conditional Probability & Conditional Expectation

Conditional Probability

• Probability of Y ∈ A given that the exact value of X is

known as

P [Y ∈ A|X = x] =
P [Y ∈ A,X = x]

P [X = x]
.

• Conditional cdf of Y given X = xk is

FY (y|xk) =
P [Y ≤ y,X = xk]

P [X = xk]
, for P [X = xk] > 0.
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• Conditional pdf of Y given X = xk is

fY (y|xk) =
d

dy
FY (y|xk).

• Probability of event A given X = xk is

P [Y ∈ A|X = xk] =

∫

y∈A

fY (y|xk)dy.

• If X and Y are independent, then FY (y|x) = FY (y) and

fY (y|x) = fY (y).
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• If X and Y are discrete, then conditional pdf will

consist of delta functions with probability mass given

by the conditional pmf of Y given X = xk:

pY (yj|xk) = P [Y = yj|X = xk]

=
P [X = xk, Y = yj]

P [X = xk]

=
pX,Y (xk, yj)

pX(xk)
.

• If X and Y are discrete, the probability of any event A

given X = xk is

P [Y ∈ A|X = xk] =
∑

yj∈A

pY (yj|xk).
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Example: Let X be the input to a communication

channel and let Y be the output. The input to the channel

is +1 volt or −1 volt with equal probability. The output of

the channel is the input plus a noise voltage N that is

uniformly distributed in the interval [−2,+2] volts. Find

the probability that Y is negative given that X is +1.

Sol: If X = +1, then Y is uniformly distributed in the

interval [−1, 3] and

fY (y|1) =

{
1
4

−1 ≤ y ≤ 3

0 elsewhere
.
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Thus

P [Y < 0|X = +1] =

∫ 0

−1

dy

4
=

1

4
.
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Continuous Random Variables

• If X is a continuous random variable, then

P [X = x] = 0.

• Conditional cdf of Y given X = x is

FY (y|x) = lim
h→0

FY (y|x < X ≤ x + h).

FY (y|x < X ≤ x + h) =
P [Y ≤ y, x < X ≤ x + h]

P [x < X ≤ x + h]

=

∫ y

−∞
∫ x+h

x
fX,Y (x′, y′)dx′ dy′

∫ x+h

x
fX(x′)dx′
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≈
∫ y

−∞ fX,Y (x, y′)dy′h

fX(x)h
.

• As h approach zero

FY (y|x) =

∫ y

−∞ fX,Y (x, y′)dy′

fX(x)
.

• Conditional pdf of Y given X = x is

fY (y|x) =
d

dy
FY (y|x) =

fX,Y (x, y)

fX(x)
.

• If X and Y are independent, then

fX,Y (x, y) = fX(x)fY (y), fY (y|x) = fY (y), and

FY (y|x) = FY (y).
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Example: Let X and Y be random variables with joint

pdf

fX,Y (x, y) =

{

2e−xe−y 0 ≤ y ≤ x < ∞
0 elsewhere

.

Find fX(x|y) and fY (y|x).
Sol: The marginal pdfs of X and Y are

fX(x) =

Z ∞

0

fX,Y (x, y)dy =

Z x

0

2e−xe−ydy = 2e−x(1 − e−x) 0 ≤ x < ∞

fY (y) =

Z ∞

0

fX,Y (x, y)dx =

Z ∞

y

2e−xe−ydx = 2e−2y 0 ≤ y < ∞

fX(x|y) =
fX,Y (x, y)

fY (y)
=

2e−xe−y

2e−2y
= e−(x−y) for x ≥ y

fY (y|x) =
fX,Y (x, y)

fX(x)
=

2e−xe−y

2e−x(1 − e−x)
for 0 < y < x
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• The relation of joint probability and conditional

probability for discrete random variables X and Y are

P [X = xk, Y = yj] = P [Y = yj|X = xk]P [X = xk]

pX,Y (x, y) = pY (y|x)pX(x)

• Suppose that we are interested in the probability of

Y ∈ A. Then

P [Y ∈ A] =
∑

all xk

∑

yj∈A

pX,Y (xk, yj)

=
∑

all xk

∑

yj∈A

pY (yj|xk)pX(xk)

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Multiple Random Variables 47

=
∑

all xk

pX(xk)
∑

yj∈A

pY (yj|xk).

Thus,

P [Y ∈ A] =
∑

all xk

P [Y ∈ A|X = xk]pX(xk).
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• If X and Y are continuous, then

fX,Y (x, y) = fY (y|x)fX(x).

• Probability of Y ∈ A is

P [Y ∈ A] =

∫ +∞

−∞
P [Y ∈ A|X = x]fX(x)dx.
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Example: The random variable X is selected at random

from the unit interval; the random variable Y is then

selected at random from the interval (0, X). Find the cdf

of Y .

Sol: We have

FY (y) = P [Y ≤ y] =

∫ 1

0

P [Y ≤ y|X = x]fX(x)dx.

When X = x, Y is uniformly distributed in (0, x). Thus,

P [Y ≤ y|X = x] =

{
y
x

0 ≤ y ≤ x

1 x ≤ y
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and

FY (y) =

∫ y

0

1dx′ +

∫ 1

y

y

x′dx′ = y − y ln y.

The pdf of Y is then

fY (y) = − ln y 0 ≤ y ≤ 1.
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Conditional Expectation

• Conditional expectation of Y given X = x is

E[Y |x] =

∫ +∞

−∞
yfY (y|x)dy.

• For discrete random variables, we have

E[Y |x] =
∑

yj

yjpY (yj|x).
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• Define a function g(x) = E[Y |x].

• g(X) is a random variable.

• Consider E[g(X)] = E[E[Y |X]]. Then, We have

E[Y ] = E[E[Y |X]],

where

E[E[Y |X]] =

∫ +∞

−∞
E[Y |x]fX(x)dx when X is continuous;

E[E[Y |X]] =
∑

xk

E[Y |xk]pX(xk) when X is discrete.
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• For continuous random variables,

E[E[Y |X]] =

∫ +∞

−∞
E[Y |x]fX(x)dx

=

∫ +∞

−∞

∫ +∞

−∞
yfY (y|x)dyfX(x)dx

=

∫ +∞

−∞
y

∫ +∞

−∞
fX,Y (x, y)dxdy

=

∫ +∞

−∞
yfY (y)dy = E[Y ].

• The expected value of a function h(Y ) of Y is

E[h(Y )] = E[E[h(Y )|X]].
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4.5 Multiple Random Variables

• Let X1, X2, . . . , Xn be an n-dimensional vector random

variable.

• Joint cdf of X1, X2, . . . , Xn is

FX1,X2,...,Xn(x1, x2, . . . , xn) = P [X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn].

• Joint cdf of X1, X2, . . . , Xn−1 is

FX1,X2,...,Xn−1(x1, x2, . . . , xn−1) = FX1,X2,...,Xn(x1, x2, . . . , xn−1,∞).
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Example: Let event A be defined as follows:

A = {max(X1, X2, X3) ≤ 5} .

Find the probability of A.

Sol: max(X1, X2, X3) ≤ 5 if and only if each of the three

numbers is less than 5; therefore

P [A] = P [{X1 ≤ 5} ∩ {X2 ≤ 5} ∩ {X3 ≤ 5}]
= FX1,X2,X3(5, 5, 5).
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• Joint probability mass function of n discrete random
variables is

pX1,X2,...,Xn(x1, x2, . . . , xn) = P [X1 = x1, X2 = x2, . . . , Xn = xn].

• Probability of event A is

P [(X1, . . . , Xn) ∈ A] =
X

· · ·
X

x∈A
pX1,X2,...,Xn(x1, . . . , xn),

where x = (x1, x2, . . . , xn).

• Marginal pmf for Xj is

pXj
(xj) =

∑

x1

· · ·
∑

xj−1

∑

xj+1

. . .
∑

xn

pX1,X2,...,Xn
(x1, . . . , xn).
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• Marginal pmf for X1, X2, . . . , Xn−1 is

pX1,X2,...,Xn−1(x1, x2, . . . , xn−1) =
∑

xn

pX1,X2,...,Xn
(x1, . . . , xn).
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• Conditional pmf is

pXn
(xn|x1, . . . , xn−1) =

pX1,...,Xn
(x1, . . . , xn)

pX1,...,Xn−1(x1, . . . , xn−1)
.

•

pX1,...,Xn
(x1, . . . , xn)

= pXn
(xn|x1, . . . , xn−1)

×pXn−1(xn−1|x1, . . . , xn−2) · · · pX2(x2|x1)pX1(x1).
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Example: A computer system receives message over three

communications lines. Let Xj be the number of messages received on

line j in one hour. Suppose that the joint pmf of X1, X2, and X3 is

given by

pX1,X2,X3
(x1, x2, x3) = (1 − a1)(1 − a2)(1 − a3)a

x1

1 ax2

2 ax3

3

for x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Find pX1,X2
(x1, x2) and pX1

(x1) given that 0 < ai < 1.

Sol: The marginal pmf of X1 and X2 is

pX1,X2
(x1, x2) = (1 − a1)(1 − a2)(1 − a3)

∞∑

x3=0

ax1

1 ax2

2 ax3

3

= (1 − a1)(1 − a2)a
x1

1 ax2

2 .
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The pmf of X1 is

pX1
(x1) = (1 − a1)(1 − a2)

∞∑

x2=0

ax1

1 ax2

2

= (1 − a1)a
x1

1 .
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• Random variables X1, X2, . . . , Xn are jointly continuous
random variables if the probability of any
n-dimensional event A is given by an n-dimensional
integral of a probability density function:

P [(X1, . . . , Xn) ∈ A] =

Z

· · ·

Z

x∈A

fX1,...,Xn(x′
1, . . . , x

′
n)dx′ . . . dx′

n,

where fX1,...,Xn
(x′

1, . . . , x
′
n) is the joint probability

density function.

• Joint cdf of X is obtained from the joint pdf:

FX1,X2,...,Xn
(x1, x2, . . . , xn)

=

∫ x1

−∞
· · ·

∫ xn

−∞
fX1,...,Xn

(x′
1, . . . , x

′
n)dx′ . . . dx′

n.

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Multiple Random Variables 62

• Joint pdf ( if the derivative exists) is given by

fX1,X2,...,Xn(x1, x2, . . . , xn) =
∂n

∂x1 · · · ∂xn

FX1,X2,...,Xn(x1, x2, . . . , xn).

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Multiple Random Variables 63

• The marginal pdf for a subset of random variables is
obtained by integrating the other variables out. For
example, the marginal pdf of X1 is

fX1(x1) =

Z +∞

−∞

· · ·

Z +∞

−∞

fX1,X2,...,Xn(x1, x
′
2, . . . , x

′
n)dx′

2 · · · dx′
n.

• The marginal pdf for X1, . . . , Xn−1 is given by

fX1,...,Xn−1(x1, . . . , xn−1) =

Z +∞

−∞

fX1,...,Xn(x1, . . . , xn−1, x
′
n)dx′

n.
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• Conditional pdf is given by

fXn
(xn|x1, . . . , xn−1) =

fX1,...,Xn
(x1, . . . , xn)

fX1,...,Xn−1(x1, . . . , xn−1)
.

•

fX1,...,Xn
(x1, . . . , xn)

= fXn
(xn|x1, . . . , xn−1)

×fXn−1(xn−1|x1, . . . , xn−2) · · · fX2(x2|x1)fX1(x1).
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Example: The random variables X1, X2, and X3 have the

joint Gaussian pdf:

fX1,X2,X3(x1, x2, x3) =
e−(x2

1+x2
2−

√
2x1x2+ 1

2
x2
3)

2π
√

π
.

Find the marginal pdf of X1 and X3.

Sol: The marginal pdf for the pair X1 and X3 is

fX1,X3(x1, x3) =
e−x2

3/2

√
2π

∫ +∞

−∞

e−(x2
1+x2

2−
√

2x1x2)

2π/
√

2
dx2.

The above integral gives

fX1,X3(x1, x3) =
e−x2

3/2

√
2π

e−x2
1/2

√
2π

.
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Therefore, X1 and X3 are independent zero-mean,

unit-variance Gaussian random variables.
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Independence

• X1, . . . , Xn are independent if

P [X1 ∈ A1, . . . , Xn ∈ An] = P [X1 ∈ A1] . . . P [Xn ∈ An].

• X1, . . . , Xn are independent if and only if

FX1,...,Xn
(x1, . . . , xn) = FX1(x1) · · ·FXn

(xn) ∀ x1, . . . , xn.

• If the random variables are discrete, then the above

equation is equivalent to

pX1,...,Xn
(x1, . . . , xn) = pX1(x1) . . . pXn

(xn) ∀ x1, . . . , xn;
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If the random variables are jointly continuous, then the

above equation is equivalent to

fX1,...,Xn
(x1, . . . , xn) = fX1(x1) · · · fXn

(xn) ∀ x1, . . . , xn.
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Example: The n samples X1, X2, . . . , Xn of a “white

noise” signal have joint pdf given by

fX1,...,Xn
(x1, . . . , xn) =

e−(x2
1+···+x2

n)/2

(2π)n/2
∀ x1, . . . , xn.

It is clear that the above is the product of n

one-dimensional Gaussian pdf’s. Thus X1, . . . , Xn are

independent Gaussian random variables.
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4.6 Functions of Several Random Variables

One function of several random variables

• Let Z be defined as a function of several random

variables:

Z = g(X1, X2, . . . , Xn).

• The cdf of Z is

P [Z ≤ z] = P [Rz = {x = (x1, . . . , xn) : g(x) ≤ z}], and

FZ(z) = P [X ∈ Rz]

=

∫

· · ·
∫

x∈Rz

fX1,...,Xn
(x′

1, . . . , x
′
n)dx′

1 . . . dx′
n.
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• The pdf of Z is then found by taking the derivative of

FZ(z).
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Example: Let Z = X + Y . Find FZ(z) and fZ(z) in terms of the

joint pdf of X and Y .

Sol: The cdf of Z is

FZ(z) =

∫ +∞

−∞

∫ z−x′

−∞

fX,Y (x′, y′)dy′dx′.

The pdf of Z is

fZ(z) =
d

dz
FZ(z) =

∫ +∞

−∞

fX,Y (x′, z − x′)dx′.

If X and Y are independent random variables, then

fZ(z) =

∫ +∞

−∞

fX(x′)fY (z − x′)dx′ −− convolution integral.
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Example: Find the pdf of the sum Z = X + Y of two zero-mean,

unit-variance Gaussian random variables with correlation coefficient

ρ = −1/2.

Sol:We have

fZ(z) =

∫ +∞

−∞

fX,Y (x′, z − x′)dx′

=
1

2π(1 − ρ2)1/2

∫ +∞

−∞

e−[(x′)2−2ρx′(z−x′)+(z−x′)2]/2(1−ρ2)dx′

=
1

2π(3/4)1/2

∫ +∞

−∞

e−((x′)2−x′z+z2)/2(3/4)dx′.

After completing the square of the argument in the exponent we have

fZ(z) =
e−z2/2

√
2π

.
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Thus, the sum of two nonindependent Gaussian random variables is

also a Gaussian random variable.
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• Find pdf of a function from conditional pdf

fZ(z) =

∫ +∞

−∞

fZ(z|y′)fY (y′)dy′

Example: Let Z = X/Y . Find the pdf of Z if X and Y are

independent and both exponential distributed with mean one.

Sol: Assume Y = y, then Z = X/y is a scaled version of X .

Therefore

fZ(z|y) = |y|fX(yz|y).

The pdf of Z is

fZ(z) =

∫ +∞

−∞

|y′|fX(y′z|y′)fY (y′)dy′ =

∫ +∞

−∞

|y′|fX,Y (y′z, y′)dy′.

Since X and Y are independent and exponentially distributed with
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mean one, we have

fZ(z) =

∫ ∞

0

y′fX(y′z)fY (y′)dy′ z > 0

=

∫ ∞

0

y′e−y′ze−y′

dy′

=
1

(1 + z)2
z > 0.
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Transformations of Random Variables

• Let X1, X2, . . . , Xn be random variables.

• Let random variables Z1, Z2, . . . , Zn be defined as

Z1 = g1(X), Z2 = g2(X), · · · , Zn = gn(X)

• How to find the joint cdf and pdf of Z1, . . . , Zn?

• Joint cdf of Z1, . . . , Zn is

FZ1,...,Zn
(z1, . . . , zn) = P [g1(X) ≤ z1, . . . , gn(X) ≤ zn].

• If X1, . . . , Xn have a joint pdf, then

FZ1,...,Zn(z1, . . . , zn) =

Z

· · ·

Z

x′:gk(x′)≤zk

fX1,...,Xn(x′
1, . . . , x

′
n)dx′

1 · · · dx′
n.
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Example: Let random variables W and Z be defined as

W = min(X, Y ) and Z = max(X, Y ).

Find the joint cdf of W and Z in terms of the joint cdf of X and Y .

Sol:

FW,Z(w, z) = P [{min(X, Y ) ≤ w} ∩ {max(X, Y ) ≤ z}].

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Multiple Random Variables 80

If z > w,

FW,Z(w, z) = FX,Y (z, z) − P [A]

= FX,Y (z, z)

−{FX,Y (z, z) − FX,Y (w, z) − FX,Y (z, w) + FX,Y (w, w)}
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= FX,Y (w, z) + FX,Y (z, w) − FX,Y (w, w).

If z ≤ w, then

FW,Z(w, z) = FX,Y (z, z).
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pdf of Linear Transformations

• Consider the linear transformation of two random

variables:

V = aX + bY

W = cX + eY
or

[

V

W

]

=

[

a b

c e

]

︸ ︷︷ ︸

A

[

X

Y

]

• Assume that A is invertible, that is,

[

x

y

]

= A−1

[

v

w

]

.
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• Rectangle → parallelogram

fX,Y (x, y)dxdy ≈ fV,W (v, w)dP,
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where dP is the area of the parallelogram.

• The joint pdf of V and W is

fV,W (v, w) =
fX,Y (x, y)

∣
∣
∣

dP
dxdy

∣
∣
∣

.
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• dP/dxdy is called “Stretch factor.” It can be shown

dP = (|ae − bc|)dxdy, so
∣
∣
∣
∣

dP

dxdy

∣
∣
∣
∣
=

|ae − bc|(dxdy)

dxdy
= |ae − bc| = |A|,

where |A| is the determinant of A.

• Let the n-dimensional vector Z be

Z = AX, where A is an n × n invertable matrix.

• The joint pdf of Z is then

fZ (z) = fZ1,...,Zn(z1, . . . , zn) =
fX1,...,Xn(x1, . . . , xn)

|A|

˛

˛

˛

˛

x=A−1z

=
fX (A−1z)

|A|
.
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Example: Let X and Y be the jointly Gaussian random variables

with the pdf

fX,Y (x, y) =
1

2π
√

1 − ρ2
e−(x2−2ρxy+y2)/2(1−ρ2) −∞ < x, y < ∞.

Let V and W be obtained from (X, Y ) by




V

W



 =
1√
2




1 1

−1 1








X

Y



 = A




X

Y



 .

Find the joint pdf of V and W .

Sol: |A|=1 and the inverse mapping is given by




X

Y



 =
1√
2




1 −1

1 1








V

W



 .
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Hence, X = (V −W )/
√

2 and Y = (V + W )/
√

2. Therefore, the joint

pdf of V and W is

fV,W (v, w) = fX,Y

(
v − w√

2
,
v + w√

2

)

.

The argument of the exponent becomes

(v − w)2/2 − 2ρ(v − w)(v + w)/2 + (v + w)2/2

2(1 − ρ2)

=
v2

2(1 + ρ)
+

w2

2(1 − ρ)
.

Thus

fV,W (v, w) =
1

2π(1 − ρ2)1/2
e−{[v2/2(1+ρ)]+[w2/2(1−ρ)]}.

Therefore, V and W are independent.
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pdf of General Transformations

• Let V and W be defined by two nonlinear functions of

X and Y :

V = g1(X,Y ) and W = g2(X,Y )

• Assume that g1(x, y) and g2(x, y) are invertible, that is,

x = h1(v, w) and y = h2(v, w)

• The approximation is

gk(x + dx, y) ≈ gk(x, y) +
∂

∂x
gk(x, y)dx k = 1, 2.
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• The probability of the infinitesimal rectangle and the

parallelogram are approximately equal

fX,Y (x, y)dxdy = fV,W (v, w)dP

and

fV,W (v, w) =
fX,Y (h1(v, w), h2(v, w))

| dP
dxdy

| ,

where dP is the area of the parallelogram.
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• Stretch factor – Jacobian of the transformation:

J (x, y) = det

[
∂v
∂x

∂v
∂y

∂w
∂x

∂w
∂y

]

.

• Jacobian of the inverse transformation is given by

J (v, w) = det

[
∂x
∂v

∂x
∂w

∂y
∂v

∂y
∂w

]

.

• It can be shown that

|J (v, w)| =
1

|J (x, y)| .
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• Joint pdf of V and W is then

fV,W (v, w) =
fX,Y (h1(v, w), h2(v, w))

|J (x, y)|
= fX,Y (h1(v, w), h2(v, w))|J (v, w)|.
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Example: Let X and Y be zero-mean, unit-variance independent

Gaussian random variables. Find the joint pdf of V and W defined by

V = (X2 + Y 2)1/2

W = ∠(X, Y ),

where ∠θ denotes the angle in the range (0, 2π) that is defined by the

point (x, y).

Sol: Changing from Cartesian to polar coordinates. The inverse

transformation is given by

x = v cosw and y = v sinw.

The Jacobian is given by

J (v, w) =

∣
∣
∣
∣
∣
∣

cosw −v sinw

sinw v cosw

∣
∣
∣
∣
∣
∣

= v.
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Thus,

fV,W (v, w) =
v

2π
e−[v2 cos2(w)+v2 sin2(w)]/2

=
1

2π
ve−v2/2 0 ≤ v, 0 ≤ w < 2π.

The pdf of a Rayleigh random variable is given by

fV (v) = ve−v2/2 v ≥ 0.

Therefore, radius V and angle W are independent random variables

and

V : Rayleigh random variable;

W : uniformly distributed (0, 2π).
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4.7 Expected Value of Functions of Random Variables

• The expected value of Z = g(X, Y ) is given by

E[Z] =

8

<

:

R +∞

−∞

R +∞

−∞
g(x, y)fX,Y (x, y)dxdy X, Y are jointly continuous

P

i

P

n g(xi, yn)pX,Y (xi, yn) X,Y are discrete

Example: Let Z = X + Y . Find E[Z].

Sol:

E[Z] = E[X + Y ]

=

Z +∞

−∞

Z +∞

−∞

(x′ + y′)fX,Y (x′, y′)dx′dy′

=

Z +∞

−∞

Z +∞

−∞

x′fX,Y (x′, y′)dx′dy′ +

Z +∞

−∞

Z +∞

−∞

y′fX,Y (x′, y′)dx′dy′
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=

Z +∞

−∞

x′fX(x′)dx′ +

Z +∞

−∞

y′fY (y′)dy′ = E[X] + E[Y ].

• Expected value of a sum of n random variables is

E[X1 + X2 + · · · + Xn] = E[X1] + E[X2] + · · · + E[Xn].
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Example: Suppose that X and Y are independent

random variables, and let g(X,Y ) = g1(X)g2(Y ). Show

that E[g(X,Y )] = E[g1(X)g2(Y )] = E[g1(X)]E[g2(X)].

Sol:

E[g1(X)g2(X)] =

Z +∞

−∞

Z +∞

−∞

g1(x
′)g2(y

′)fX(x′)fY (y′)dx′dy′

=

Z +∞

−∞

g1(x
′)fX(x′)dx′

ff Z +∞

−∞

g2(y
′)fY (y′)dy′

ff

= E[g1(X)]E[g2(X)].

In general, if X1, . . . , Xn are independent random
variables, then

E[g1(X1)g2(X2) · · · gn(Xn)] = E[g1(X1)]E[g2(X2)] · · ·E[gn(Xn)].
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Correlation and Covariance of Two Random

Variables

• Joint moment of X and Y is

E[XjY k] =

8

<

:

R +∞

−∞

R +∞

−∞
xjykfX,Y (x, y)dxdy X, Y jointly continuous

P

i

P

n
xj

i y
k
npX,Y (xi, yn) X, Y discrete

.

• If j = 0, then we obtain moments of Y , and if k = 0,

then we obtain the moments of X.

• Correlation of X and Y is defined as E[XY ].

• If E[XY ] = 0, then X and Y are orthogonal.

• The jkth central moment of X and Y is defined as

E[(X − E[X])j(Y − E[Y ])k].
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• Covariance of X and Y is defined as the j = k = 1

central moment:

COV(X,Y ) = E[(X − E[X])(Y − E[Y ])].

•

COV(X,Y ) = E[XY − XE[Y ] − Y E[X] + E[X]E[Y ]]

= E[XY ] − 2E[X]E[Y ] + E[X]E[Y ]

= E[XY ] − E[X]E[Y ].
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Example: Let X and Y be independent random variables.

Find their covariance.

COV(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[X − E[X]]E[Y − E[Y ]]

= 0.

Pairs of independent random variables have covariance

zero.
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• Correlation Coefficient of X and Y

ρX,Y =
COV(X,Y )

σXσY

=
E[XY ] − E[X]E[Y ]

σXσY

,

where σX =
√

VAR(X) and σY =
√

VAR(Y ).

• ρX,Y is at most 1 in magnitude, that is,

−1 ≤ ρX,Y ≤ 1.

This result is from the fact that the expected value of

the square of a random variable is nonnegative:

0 ≤ E

{(
X − E[X]

σX

± Y − E[Y ]

σY

)2
}

= 1 ± 2ρX,Y + 1 = 2(1 ± ρX,Y ).
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• The extreme values of ρX,Y are achieved when X and Y

are related linearly, Y = aX + b:

ρX,Y =

{

1 a > 0

−1 a < 0
.

• X, Y are said to be uncorrelated if ρX,Y = 0

X, Y are independent → X, Y are uncorrelated

X, Y are uncorrelated −→

NOT X, Y are independent

X, Y are uncorrelated jointly Gaussian → X, Y are independent
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Example: Let Θ be uniformly distributed in the interval

(0, 2π). Let

X = cos Θ and Y = sin Θ.
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X and Y are dependent.

E[XY ] = E[sin Θ cos Θ] =
1

2π

∫ 2π

0

sin φ cos φdφ

=
1

4π

∫ 2π

0

sin 2φdφ = 0.

Since E[X] = E[Y ] = 0, it implies that X and Y are

uncorrelated.
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Example: Let X and Y be random variables with

fX,Y (x, y) =

{

2e−xe−y 0 ≤ y ≤ x < ∞
0 elsewhere.

Find E[XY ], COV(X,Y), and ρX,Y .

Sol: First, find the mean, variance, and correlation of X

and Y . We have E[X] = 3/2, VAR[X] = 5/4, E[Y ] = 1/2

and VAR[Y ] = 1/4. The correlation of X and Y is

E[XY ] =

∫ ∞

0

∫ x

0

xy2e−xe−ydydx

=

∫ ∞

0

2xe−x(1 − e−x − xe−x)dx = 1.
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Thus, the correlation coefficient is given by

ρX,Y =
1 − 3

2
1
2

√
5
4

√
1
4

=
1√
5
.
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4.8 Jointly Gaussian Random Variables

• X and Y are said to be jointly Gaussian if the joint pdf
has the form

fX,Y (x, y)

=

exp



−1
2(1−ρ2

X,Y
)

»

“

x−m1

σ1

”2

− 2ρX,Y

“

x−m1

σ1

” “

y−m2

σ2

”

+
“

y−m2

σ2

”2
–ff

2πσ1σ2

q

1 − ρ2
X,Y

.

• Bell shape

• Equal-pdf contour
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• Marginal pdfs of X and Y are

fX(x) =
e−(x−m1)2/2σ2

1

√
2πσ1

, fY (y) =
e−(y−m2)2/2σ2

2

√
2πσ2

.
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• The conditional pdf fX(x|y) (fY (y|x)) is

fX(x|y) =
fX,Y (x, y)

fY (y)

=

exp



−1
2(1−ρ2

X,Y
)σ2

1

h

x − ρX,Y
σ1

σ2
(y − m2) − m1

i2
ff

q

2πσ2
1(1 − ρ2

X,Y )
.

• Conditional mean is m1 + ρX,Y (σ1/σ2)(y − m2) and

conditional variance σ2
1(1 − ρ2

X,Y ).

• Show that ρX,Y is the correlation coefficient between X

and Y .

Sol: We have

COV(X,Y ) = E[(X − m1)(Y − m2)]
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= E[E[(X − m1)(Y − m2)|Y ]].

The conditional expectation of (X − m1)(Y − m2)
given Y = y is

E[(X − m1)(Y − m2)|Y = y] = (y − m2)E[X − m1|Y = y]

= (y − m2) (E[X|Y = y] − m1)

= (y − m2)

„

ρX,Y
σ1

σ2
(y − m2)

«

.

Therefore,

E[(X − m1)(Y − m2)|Y ] = ρX,Y
σ1

σ2

(Y − m2)
2

and

COV(X, Y ) = E[E[(X − m1)(Y − m2)|Y ]] = ρX,Y
σ1

σ2
E[(Y − m2)

2]

= ρX,Y σ1σ2.
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n jointly Gaussian Random Variables

• X1, X2, . . . , Xn are jointly Gaussian if the pdf is given

by

fX(x) = fX1,X2,...,Xn
(x1, x2, . . . , xn)

=
exp

{
−1

2
(x − m)T K−1(x − m)

}

(2π)n/2|K|1/2
,

where x and m are column vectors defined by

x =










x1

x2

...

xn










m =










m1

m2

...

mn










=










E[X1]

E[X2]
...

E[Xn]










Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Multiple Random Variables 116

and K is the covariance matrix that is defined by

K =

2

6

6

6

6

6

6

4

VAR(X1) COV(X1, X2) · · · COV(X1, Xn)

COV(X2, X1) VAR(X2) · · · COV(X2, Xn)

...
...

...

COV(Xn,X1) · · · VAR(Xn)

3

7

7

7

7

7

7

5

.
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Example: Verify the two-dimensional Gaussian pdf.

Sol: The covariance matrix is

K =

[

σ2
1 ρX,Y σ1σ2

ρX,Y σ1σ2 σ2
2

]

and

K−1 =
1

σ2
1σ

2
2(1 − ρ2

X,Y )

[

σ2
2 −ρX,Y σ1σ2

−ρX,Y σ1σ2 σ2
1

]

.

The term in the exponential is

1

σ2
1σ2

2(1 − ρ2
X,Y )

[x−m1, y−m2]

2

4

σ2
2 −ρX,Y σ1σ2

−ρX,Y σ1σ2 σ2
1

3

5

2

4

x − m1

y − m2

3

5

=
((x − m1)/σ1)

2 − 2ρX,Y ((x − m1)/σ1)((y − m2)/σ2) + ((y − m2)/σ2)
2

(1 − ρ2
X,Y )

.
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Linear Transformation of Gaussian Random

Variables

• Let X = (X1, . . . , Xn) be jointly Gaussian, and

Y = AX,

where A is an n × n invertible matrix.

• The pdf of Y is

fY (y) =
fX(A−1y)

|A|

=
exp

{
−1

2
(A−1y − m)TK−1(A−1y − m)

}

(2π)n/2|A||K|1/2
.
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Since

(A−1y − m) = A−1(y − Am)

and

(A−1y − m)T = (y − Am)T A−1T ,

the argument of the exponential is

(y−Am)T A−1T K−1A−1(y−Am) = (y−Am)T (AKAT )−1(y−Am).

Let C = AKAT n = Am. Noting that

det(C) = det(AKAT ) = det(A)2 det(K) and we have

fY (y) =
e−(1/2)(y−n)T C−1(y−n)

(2π)n/2|C|1/2
.

Therefore, Y are jointly Gaussian with mean n and
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covariance C:

n = Am and C = AKAT .

• It is possible to transform a vector of jointly Gaussian

random variables into a vector of independent Gaussian

random variables since it is always possible to find a

matrix A such that AKAT = Λ, where Λ is a diagonal

matrix, due to the symmetry of A.
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